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ABSTRACT

The cold (~ 10* K) component of the circumgalactic medium (CGM) accounts for a significant fraction of all galactic baryons.
However, using current galaxy-scale simulations to determine the origin and evolution of cold CGM gas poses a significant
challenge, since it is computationally infeasible to directly simulate a galactic halo alongside the sub-pc scales that are crucial
for understanding the interactions between cold CGM gas and the surrounding ‘hot’ medium. In this work, we introduce a
new approach: the Cold Gas Subgrid Model (CGSM), which models unresolved cold gas as a second fluid in addition to the
standard ‘normal’ gas fluid. The CGSM tracks the total mass density and bulk momentum of unresolved cold gas, deriving
the properties of its unresolved cloudlets from the resolved gas phase. The interactions between the subgrid cold fluid and
the resolved fluid are modelled by prescriptions from high-resolution simulations of ‘cloud crushing’ and thermal instability.
Through a series of idealized tests, we demonstrate the CGSM’s ability to overcome the resolution limitations of traditional
hydrodynamics simulations, successfully capturing the correct cold gas mass, its spatial distribution, and the time-scales for
cloud destruction and growth. We discuss the implications of using this model in cosmological simulations to more accurately
represent the microphysics that govern the galactic baryon cycle.
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1 INTRODUCTION

Galactic evolution is driven by the exchange of baryons between
the stellar disc and its surrounding halo. The interstellar medium
(ISM) requires a consistent inflow of gas to form stars, which
then expel chemically enriched gas back into the circumgalactic
medium (CGM) at the end of their lifespans. In this way, the
composition of the CGM provides a detailed record of a galaxy’s
past and the physical processes that govern its evolution (Tumlinson,
Peeples & Werk 2017; Faucher-Giguere & Oh 2023). In particular,
cold (~ 10* K) CGM gas is a crucial component fuelling ongoing star
formation.

Cold gas is ubiquitous in the haloes around dwarf, L., and massive
galaxies across cosmic time (e.g. Thom et al. 2012; Werk et al. 2013;
Cantalupo et al. 2014; Borisova et al. 2016; Mishra & Muzahid
2022; Qu et al. 2022). This cold gas plays an integral role in the
galactic baryon cycle and is frequently observed both, in galactic
outflows (e.g. Heckman et al. 2000; Nielsen et al. 2015; Veilleux
et al. 2020; Burchett et al. 2021) and in accretion streams into the
galaxy (Sancisi et al. 2008; Putman, Peek & Joung 2012; Richtler
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et al. 2018; Zhu et al. 2021; Kamphuis et al. 2022). Recent estimates
indicate that cold CGM gas constitutes at least 25 percent of the
baryonic content in L, galaxies (Werk et al. 2014), and in dwarf
galaxies, it can account for as much as 90 per cent of galactic baryons
(Zhang et al. 2020). Consequently, to fully understand the galactic
baryon cycle and galaxy evolution, theoretical models must not
only reproduce the observed properties of cold CGM gas but also
provide robust predictions about the physical processes influencing
cold gas formation, destruction, and its interactions with the hot
phase.

Recent theoretical work and high-resolution idealized simulations
have significantly advanced our understanding of the formation and
evolution of cold gas across various contexts. For instance, it is
now established that when radiative cooling is sufficiently efficient,
cold gas can condense from thermally unstable hot gas (Field
1965; McCourt et al. 2012; Sharma et al. 2012; Girichidis et al.
2021) and subsequently precipitate onto the host galaxy (Voit &
Donahue 2015). This thermal instability has been explored in diverse
physical contexts including thermal conduction (Sharma, Parrish &
Quataert 2010; Wagh, Sharma & McCourt 2014), magnetic fields
(Ji, Oh & McCourt 2018), turbulence (Voit 2018), and cosmic rays
(Butsky et al. 2020; Tsung, Oh & Bustard 2023). Additionally,
high-resolution ‘cloud-crushing’ simulations have elucidated the
conditions that lead to either the destruction or mass accretion
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of cold gas clouds (Armillotta et al. 2017; Gronke & Oh 2018,
2020; Li et al. 2020; Sparre, Pfrommer & Ehlert 2020; Kanjilal,
Dutta & Sharma 2021; Farber & Gronke 2022; Fielding & Bryan
2022; Abruzzo, Fielding & Bryan 2023), as influenced by the thin,
radiatively cooling boundary layer interface between the hot and
cold gas phases (Fielding et al. 2020; Tan, Oh & Gronke 2021;
Chen, Fielding & Bryan 2023a). Recent theoretical advances have
begun to frame our understanding of what determines the size of
cold gas clouds and under what circumstances these clouds form a
mist of cloudlets or coalesce into larger clouds (Gronke & Oh 2020,
2023). However, without a cosmological context (e.g. Saecedzadeh
et al. 2023), determining the relative impact of each of these
processes on the observed structures of cold CGM gas is exceedingly
difficult.

Studying cold CGM gas with galaxy-scale simulations presents
significant challenges due to the vast range of relevant physical
scales involved. Theoretically, the characteristic scale of cold CGM
clouds is estimated to be around 0.1 — 10 pc (Gronke & Oh 2018;
McCourt et al. 2018; Liang & Remming 2020). While it is difficult to
observationally determine the minimum size of these clouds, there
is evidence suggesting the existence of cold CGM clouds smaller
than ~ 10 — 100 pc (Hennawi et al. 2015; Stern et al. 2016; Rubin
et al. 2018; Bish et al. 2019; Rudie et al. 2019; Werk et al. 2019;
Zahedy et al. 2019; Chen et al. 2023b). The exact resolution required
to accurately simulate cold CGM gas in a galactic context is still
under debate. However, even simulations that employ innovative
algorithms to maximize CGM resolution (reaching down to about
100 pc in the inner CGM) have not achieved convergence across
all relevant cold gas properties (Hummels et al. 2019; Peeples et al.
2019; Suresh et al. 2019; van de Voort et al. 2019; Nelson et al. 2020;
Ramesh & Nelson 2024).

Ifitis necessary to resolve scales significantly smaller than 100 pc,
we may be decades away from the computational resources required
to explicitly simulate cold CGM gas physics. For example, resolving
the halo of an L, galaxy out to 200 kpc with parsec-scale spatial
resolution would require roughly 10 million times more voxels
than current state-of-the-art cosmological simulations. However,
the current alternative of studying CGM gas using simulations
that severely under-resolve its structure substantially restricts the
conclusions we can draw regarding the origins of cold gas and its
impact on galaxy evolution.

Instead of waiting for technological advances that enable di-
rect resolution of the CGM at sub-pc scales, we will show that
resolution issues can be effectively addressed using a physically
motivated subgrid model for cold CGM gas. The use of subgrid
models has a strong precedent in galaxy simulations, particularly for
processes that cannot be directly resolved, such as star formation
and supernova feedback (e.g. Cen & Ostriker 1992; Abadi et al.
2003; Oppenheimer & Davé 2006; Stinson et al. 2006; Hopkins,
Quataert & Murray 2012; Keller et al. 2014), ISM phase structure
(e.g. Springel & Hernquist 2003), and metal diffusion (e.g. Shen,
Wadsley & Stinson 2010; Escala et al. 2017). More recently, several
studies have developed subgrid prescriptions to model unresolved
cold gas in multiphase supernova-driven winds (Huang et al. 2020,
2022; Smith et al. 2024).

In this work, we present a novel framework for explicitly modelling
unresolved cold CGM gas in hydrodynamics simulations, concep-
tually similar to how dust is modelled in protoplanetary discs (e.g.
Laibe & Price 2012a) or the more general multifluid cosmological
hydrodynamics framework (Weinberger & Hernquist 2023). Our
Cold Gas Subgrid Model (CGSM), treats this unresolved cold gas as
a second fluid, tracking its total mass density and bulk momentum
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Figure 1. This schematic illustrates the CGSM. The resolved ‘hot’ fluid
(bottom) functions as a typical hydrodynamic fluid, with each cell tracking
several key properties (gas density p,, velocity vg, and energy density
&£¢) that evolve over time following the conservation equations outlined in
equations (10)—(17). The second, unresolved ‘cold’ fluid (top) is spatially co-
existent with the resolved fluid. This second fluid explicitly tracks the total
mass density pq and bulk velocity (V¢j) of the unresolved cold cloudlets.
Interactions between these two fluids, including the exchange of mass,
momentum, and energy occur via the mixing and drag terms described in
Section 2. The stars symbolize injected sources of gas, such as those resulting
from stellar feedback.

as collections of unresolved cold cloudlets. The properties of these
cloudlets are determined by the properties of the resolved (‘hot’)
gas phase, which we assume to be in thermal pressure equilibrium
with the unresolved cold gas. The interaction terms between the
standard and subgrid fluids are informed by the latest models for
cold gas formation and destruction, as indicated by the idealized
simulations mentioned above. As we will demonstrate, this subgrid
approach effectively replicates the qualitative behaviour of cold gas
in situations where traditional hydrodynamics simulations struggle
due to inadequate resolution.

The remainder of this paper is organized as follows: in Section 2,
we detail the physical basis of the CGSM and introduce the set of
modified conservation equations governing the evolution of the two
fluids. In Section 3, we use a series of idealized simulations to show
that, in contrast to traditional hydrodynamics, our two-fluid model
successfully captures the correct qualitative behaviour of cold CGM
gas, even in cases of limit of very low resolution. The implications of
the CGSM for cosmological simulations are discussed in Section 4,
and we summarize our results in Section 5. Finally, in Appendix A,
we provide tests of the CGSM implementation in the ENZO astro-
physical simulation code (Bryan et al. 2014; Brummel-Smith et al.
2019).

2 COLD GAS SUBGRID MODEL TWO-FLUID
DESCRIPTION

In this section, we detail the physical rationale and numerical imple-
mentation of our CGSM, as illustrated in Fig. 1. Briefly stated, the
resolved (hot) gas phase is treated as a conventional hydrodynamics
fluid, adhering to the equations outlined in Section 2.1 and modified
in Section 2.3. Meanwhile, the unresolved (cold) gas phase is
represented as a second fluid, cospatial with the hot fluid, following
the set of modified governing equations described in Section 2.3.
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Given that the structure of the cold phase is not directly resolvable,
we focus on evolving the total mass density and bulk momentum
of this phase. We make informed assumptions about the physical
characteristics of the unresolved cold gas based on the properties
of its surrounding medium. This approach is qualitatively similar
to modelling dust in protoplanetary discs as described in Laibe &
Price (2012a), as well as the compressible multifluid hydrodynamics
described in Weinberger & Hernquist (2023).

2.1 Traditional ‘resolved’ fluid equations

The evolution of the resolved gas fluid is described by the conven-
tional hydrodynamics conservation equations for mass, momentum,
and energy:

0p

Tj+v'(pgvg):05 M
0(p,v

% + V- (pgvgvy +1P,) = —p, VP, 2)
O,

§+v.(ugsg):—1>gv-ug+sg. 3)

Here, ® represents the gravitational potential, while p, and v, denote
the gas density and velocity, respectively. I is the identity matrix
and the internal gas pressure, P,, is related to the internal thermal
energy density &, = (y, — 1)P,, where y, =5/3. S, symbolizes
thermal energy sources and sinks, such as energy inputs from
supernova feedback events or energy losses due to radiative cooling.
Throughout, the subscript ‘g’ indicates the properties of the resolved
gas. The standard equations above are provided for context, leading
to the modified conservation equations introduced in equations (10)—
(17).

2.2 Unresolved cold gas fluid

In addition to evolving a ‘traditional’ resolved fluid, the CGSM
explicitly evolves a second fluid of cold gas, comprised of numerous
unresolved cloudlets, under the following assumptions.

First, we assume that the size of the unresolved cold gas cloudlets is
significantly smaller than the resolution element size, rq << AXcel,
an assumption easily met in the simulated CGM with cell widths
Ax 2 1 kpc. With this disparity in scale, we make the simplify-
ing assumption that the cold gas clouds are in thermal pressure
equilibrium with the resolved hot phase and ignore any pressure
gradients within the cold cloud interiors. This allows us to treat the
unresolved gas as a pressure-free fluid. Given that the majority of
thermal pressure originates from the hot gas phase, we can deduce
the system’s thermal pressure from the properties of the resolved
fluid.

Second, we assume that the unresolved cold fluid is at a constant
temperature 7. Unless otherwise noted, we default to 7 = 10* K.
Assuming the two fluids are in thermal pressure equilibrium, the
physical density of the unresolved cloudlets is given by:

pg Ty _ wmp Py

s 4
Ta kg Te @

Pcl =
where T, is the temperature of the resolved gas phase, u is the
mean molecular weight, m, is the proton mass, and kg is the
Boltzmann constant. The subscript ‘cl’ is used throughout to refer to
the properties of the cold gas fluid.

Third, we assume that the characteristic size of cold cloudlets is
rel & min(cgteo0), motivated by the mist model of cold CGM gas
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(McCourt et al. 2018). The gas sound speed and cooling time are
described by

cs = /(Y Pg/py), (5)

and

Leool = Pg/(y - 1)['» (6)

for some radiative gas cooling rate £. For a wide range of CGM
pressures, the minimum product of the sound speed and cooling time
occurs at a temperature of Tyoolpeak & 10** K (Liang & Remming
2020). Therefore, we solve for the cold cloud radius at T = Tqo1, peaks

Fep = (Cstcool)|Tc001_peak . @

It is important to note that both the gas sound speed and cooling
time in the above equation are calculated at T = Tcoo1, peak- ASSuming
thermal pressure equilibrium, we solve for the gas density at the peak-
COOIing temperaturev pcool,peak/pg = Tg/Tcool,peak~ In the simulations
below, we assume Tiool peak = 103 K.

Combining equations (4) and (7), we estimate the mass of a single
cold gas cloudlet as

4
me = gﬂrc?’]pcl- (8)

It then follows that the number of cold cloudlets in a given cell is
given by,

Nc] = MC|/mC]’ (9)

where M is the total mass of unresolved cold gas in a cell.

2.3 Conservation equations for the CGSM

We explicitly evolve the total mass density (5.) and bulk velocity
(9a) of the unresolved cold fluid in each cell. Since the temperature
of the cold gas cloudlets is assumed to be constant, we do not
explicitly evolve the internal energy of the cold gas fluid. In the
following sections, we introduce the new conservation equations for
the unresolved fluid and outline the necessary modifications for the
resolved fluid.

2.3.1 Conservation of mass

ai6<:1
ot
Equations (10) and (11) function similarly to the traditional mass
conservation equation (equation 1), but they include an additional
source term, Ppix to account for the mass transfer between the two
fluids. This transfer occurs during the formation of cold clouds, their
mass accretion, and their mass loss due to hydrodynamic instabilities
and conduction. We provide specific prescriptions for these processes
in Sections 2.4 and 2.5. In the equations above, the variable p. =
My cen/ Veen represents the total mass of cold clouds in a single cell
divided by the cell’s volume. It is important to note that this does
not represent the physical density of the unresolved cold clouds,
pa (equation 4). Similarly, v denotes the aggregate velocity of the
unresolved cold fluid in a given cell rather than the physical velocity
of any individual cloudlet.

+V. (ﬁclf)cl) = Pmix- (11)

2.3.2 Conservation of momentum

0(pgv,)

ot +V(pgvgv§+lpg)= _pqu)_pmix _pdrag’ (]2)
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a(ﬁclﬁcl)
ot
As with the mass conservation equations, the revised momentum
conservation equations include new source terms to account for
momentum transfer between the cold and hot fluids. These transfers
occur due to the formation, growth, and destruction of cold clouds
(Pmix), as well as from the drag force resulting from the relative
motion of the two fluids (Pgrag)-
The momentum transfer due to mixing of the two fluids is
dependent on the mass transfer, Pmix, and is expressed as follows:

. pmixvg )
Pnix = PR
Pmix Vel

+V. (ﬁclﬁclt_)g) = _ﬁclvq) + pmix + pdmg' (13)

pmix >0
i < 0 (14)
We note that p ;. only accounts for the net transfer of mass, either
to the cold fluid of from the cold fluid. In reality, in the ensemble of
unresolved cold clouds within a single cell, some clouds would be
losing mass while others would be accreting mass. This could lead
an underestimate of the true momentum transfer, for example, in
the limit where pmix = 0. We leave exploring these effects to future
work.

We model the drag force as a function of the relative velocity
between the two fluids, v = v, — g,

pdrag = Kdragvrely (15)
where K, is the drag coefficient given by:

a

Kdrag = nrczlpg m |Vrel|’ (16)

cl

as described in equation (41) of Laibe & Price (2012b).

2.3.3 Conservation of energy

Og,
ot
Since the cold gas fluid has a fixed temperature, we do not
explicitly track its energy field. However, the energy conservation
equation for the traditional fluid is modified to include two additional
source terms, &nyix and &qrg. The energy lost from the resolved fluid
due to mixing with the cold phase is calculated as

+V'(vg8g): *ng'vg‘FSg — €mix 7édrag- (17)

Emix = pmix(gg/pg)~ (18)

In addition, we consider energy loss due to frictional heating
caused by drag between the two fluids, given by

6.Vdrag = Kdragvrzel- (19)

We provide tests of the implementation of the modified conserva-
tion equations in the ENZO simulation code in Appendix A.

2.4 Cold cloud formation due to thermal instability

A primary mechanism for the spontaneous formation of cold gas
from hot gas is thermal instability (Field 1965). While the cooling
times of hot (T ~ 10° K) CGM gas are generally long, fluctuations
in gas density and temperature can trigger a runaway cooling effect.
This process results in cold gas condensing from the hot phase (e.g.
McCourt et al. 2012; Sharma et al. 2012; Voit & Donahue 2015).
In the CGSM, we model this phenomenon by first identifying cells
likely to experience thermal instability. Then, we convert the energy
that would have been lost due to radiative cooling in the resolved
fluid to generate mass in the unresolved cold fluid.

Cold gas subgrid model 1675
At each time-step, we evaluate the cells of the resolved fluid for
thermal instability using the following criteria:.

(1) The gas temperature falls within the thermally unstable range,
10*K < T < 10°K.

(i1) The size of the cell exceeds the size necessary to resolve a
single cold cloud, Axcey > 7q

(iii) The net energy change due to radiative cooling in the cell
is negative, meaning it would cool in the absence of the two-fluid
model.

If the hot gas cell is not thermally unstable, it is allowed to undergo
radiative cooling (or heating) as usual. However if the gas in a cell is
determined to be thermally unstable, we transfer mass from the hot
gas to the cold subgrid fluid according to the following equation:

Pmix, TI = ApmiX,TI/AtS (20)

where At represents the simulation time-step. Assuming conser-
vation of energy, the quantity of mass transferred depends on the
amount of energy the hot gas cell is expected to lose due to radiative
cooling, AE oo

Pgég + Pciec — |AEcooll =

_ (21)
(pg — Apmix,t1)€g + (Pet + APmix,T1)ECs
AE
Apmix,T1 = ﬂ (22)
€g — €]

In the equations above, ey, and e.q1q are the specific energies (energy
per unit mass) of the hot and cold gas. Note that Appix 11 is always
positive because, by definition, e, > e. Therefore, in the case of
thermal instability, mass is only ever transferred from the hot fluid
to the cold.

We update each cell, i, at time ¢, as follows:

P = p! = (Apmixis

St

= (23)
Peri = P t+ (ApPmix, 11 -

2.5 Cloud crushing

A cold cloudlet moving relative to a hot background medium may
either lose or accrete mass, depending on the physical conditions of
the two gas phases and their relative velocities (e.g. Klein, McKee &
Colella 1994; Marinacci et al. 2010; Armillotta, Fraternali & Mari-
nacci 2016; Gronke & Oh 2018; Li et al. 2020; Sparre et al. 2020;
Banda-Barragén et al. 2021; Kanjilal et al. 2021; Abruzzo, Bryan &
Fielding 2022).

In our model, we incorporate the mass transfer prescription as
derived in equation (36) of Fielding & Bryan 2022, which effectively
captures various regimes of cold gas growth and destruction observed
in high-resolution simulations,

Pricc = 0.6( P )(5“ — 1. (24)
X Tel

In the equation above, x = p.i/p, represents the density contrast be-
tween the cold cloudlets and the hot phase, and & = ¢/ (Vwrbeool, peak)
determines whether the cold gas is accreting or losing mass, with
a=1/4 if £ >1 and o = 1/2 otherwise. We assume that the
turbulent velocity, vy = 0.1v,, to be a constant fraction of the
relative velocity between the two fluids.

In the limit of no cooling, equation (24) implies a cloud-crushing
time,

r 1/2
foe = 1.67 (—‘) (@) . (25)
Vrel pg
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2.6 Time stepping

Following the approach in Laibe & Price (2012a), we incorporate a
time-step criterion that is a function of the drag coefficient, K.
The time-step requirement is given by

pgﬁcl )
Algag = | ——————— |- (26)
drag <Kdrag(pg + pcl)

Next, we consider the time constraints imposed by the mass and
momentum transfer due to thermal instability and cloud-crushing
processes in the CGSM

Al‘mix,p = min(.pigv &> P (27)
Pmix  Pmix

Al‘mix,v = min (ﬁs &) . (28)
Pmix  Pmix

The final time-step constraint for the CGSM is the minimum of
the above constraints,

Ar = 6cmin(Atdrags Al‘mix,ps Al‘mix.v)‘ (29)

In the simulations below, we choose the constant pre-factor €, = 0.2.

3 PHYSICAL APPLICATIONS OF THE CGSM

Next, we use a series of idealized simulations to underscore the fun-
damental qualitative differences between traditional hydrodynamics
and CGSM simulations. Specifically, we focus on examples of the
formation, spatial distribution, destruction, and accretion of cold
gas. As we will detail below, a recurring theme is that in the low-
resolution limit typical of the CGM in galaxy simulations, traditional
hydrodynamics significantly diverges from the ‘true’ behaviour of
cold gas. In such instances, the CGSM is able to reproduce the
essential qualitative behaviour of cold gas more accurately.

3.1 Cold gas formation in a single cell

For the initial application of our subgrid model, we choose a simple
but important scenario: the formation of cold gas in a single cell. The
initial conditions consist of a uniform gas with a temperature T, o =
10° K and density pg,0 = 107*’gcm™. The gas undergoes radiative
cooling following an analytic approximation of the cooling curve for
a gas with a metallicity of 0.3Z,. While this metallicity is within the
expected range for hot CGM gas (Bregman et al. 2018), we stress
that the exact value has no bearing on the qualitative behaviour of
the simulations discussed below. The gas is initially motionless, and
experiences no external forces. Therefore, when using the CGSM, we
focus solely on cloud formation due to thermal instability, omitting
terms for cold cloud growth, destruction, and drag.

Fig. 2 compares the growth of cold gas mass in both the traditional
hydrodynamics (orange) and CGSM (blue) simulations. In the
traditional hydrodynamic approach, the gas cools uniformly until it
the entire cell reaches the temperature threshold (T < 5.05 x 10*K)
to be considered as ‘cold’. As aresult, the evolution of cold gas mass
follows a step function, centred near the cooling time determined
by the initial gas properties. In contrast, the CGSM allows for a
gradual increase in cold gas mass as it is progressively transferred
from the resolved hot phase to the cold fluid. After one cooling
cycle, approximately two-thirds of the total gas mass in the CGSM
simulation is cold, compared to the traditional model where cold gas
constitutes the entirety of the gas mass. After three cooling times,
the proportion of cold gas in the CGSM simulation saturates at about
83 per cent of the total gas mass.

MNRAS 535, 1672-1683 (2024)
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Figure 2. The cold mass growth rate in a single cell using traditional
hydrodynamics (hexagons) and the CGSM (diamonds). In both simulations,
the initial condition models a cell of uniform temperature and density
undergoing radiative cooling. In the traditional approach, the transition from
‘hot’ to ‘cold’ gas in the cell is abrupt, resembling a step function. Conversely,
the CGSM facilitates a more gradual transfer of mass between the two gas
phases within the same cell. For comparison, the dashed line represents the
cold gas growth rate in a fully resolved simulation of a thermally unstable
patch. Notably, the CGSM captures the spatial coexistence of cold and hot
gas phases within a single cell.

To provide context, the dashed line shows the cold mass growth
rate from an idealized simulation (described in the following section)
of thermal instability in which the ~ 20 pc cold gas cloudlets are
resolved. While there are some quantitative differences between the
single-cell and fully resolved simulations, the latter underscores two
key aspects of reality: (1) the growth of cold mass is a gradual
process, and (2) the total cold gas mass eventually plateaus, falling
short of encompassing 100 percent of the total gas mass. Unlike
the unresolved hydrodynamic simulation, the CGSM simulation
successfully replicates this more realistic behaviour.

3.2 Spatial distribution of cold gas

Next, we consider the spatial distribution of cold gas in high-
resolution hydrodynamics simulations, low-resolution hydrodynam-
ics simulations, and low-resolution simulations using the CGSM.
We simulate thermal instability in idealized 2D patches of CGM-
like gas. The simulation setup is described in detail in Butsky et al.
(2020); however, we summarize the key aspects here. We initialize a
16 x 16 kpc box with a static, uniform gas, setting the initial density
at pg0 = 107> gcm™ and the initial temperature at 7, o = 10° K.
To seed the thermal instability, we introduce an isobaric perturbation
with a white noise spectrum and 2 per cent amplitude into the uniform
medium. In the CGSM, the subgrid cold fluid mass is initialized to
zero. We ignore the effects of gravity, focusing solely on the in-situ
formation of cold gas.

We model radiative gas cooling with a truncated power law,
A(T) = AoT~%3. This formulation ensures that the temperature of
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Fractional Cold Gas Mass

Figure 3. The distribution of cold gas formed via thermal instability in idealized 2D simulations of a 16 x 16 kpc patch of CGM gas. Progressing from
left to right, the panels show the cold gas mass fraction (Mc¢/ Ml 1ora) in: (1) a high-resolution traditional hydrodynamics simulation with 40962 resolution,
(2) a low-resolution traditional hydrodynamics simulation with 16% resolution, (3) the high-resolution simulation from the first panel but binned to a 16>
resolution, and (4) a CGSM simulation with 167 resolution. In the high-resolution simulation, cold gas condenses into cloudlets of approximately r¢; 2 10 pc
in size. However, in the low-resolution traditional hydrodynamics simulation — where the resolution is Ax = 1 kpc, akin to typical resolutions in the CGM
of galaxy-scale simulations — the cold gas appears as single-cell clouds with artificially inflated sizes due to cell resolution. This results in a cold gas mass
distribution on ~kpc scales that qualitatively differs from what is predicted by the binned high-resolution simulation in the third panel. In contrast, the CGSM
simulation successfully captures the correct qualitative distribution of cold gas mass on kpc scales, even without directly resolving the cold cloudlets.

the cold gas remains at Ty = 5 x 10* K.! We choose the constant,
Ao = 1.1 x 107" erg cm® s~! K?/3, so that the characteristic radius
of cold gas clouds is 10 pc. A crucial aspect of simulating thermal
instability involves incorporating a heating mechanism to maintain
global equilibrium. We model this heating with a mass-weighted
redistribution of the total energy lost to cooling. We refer the
interested reader to Butsky et al. (2020) for additional details.

Fig. 3 compares the spatial distribution of cold gas at t = 2.5 #.e01
across four different simulations. Progressing from left to right,
the first panel shows the fractional cold gas mass (M /M tora) i
a traditional hydrodynamics simulation resolved with 40962 cells,
corresponding to a spatial resolution of Ax. = 4 pc. In this high-
resolution simulation, the cold gas appears as a uniformly distributed
mist of cloudlets throughout the CGM patch. The second panel
depicts the cold gas mass fraction in a traditional hydrodynamics
simulation with a much coarser 16 cell resolution, corresponding to
a spatial resolution of Axn = 1kpc, which is typical for the CGM
in galaxy-scale simulations. While this lower resolution simulation
generates a total cold gas mass comparable to the high-resolution
simulation (with less than a 10 per cent difference in cold gas masses),
there is a marked contrast in the spatial distribution of cold gas clouds.
Due to the limited resolution, the minimum size of cold gas clouds
is constrained, resulting in fewer but larger clouds compared to the
high-resolution simulation.

The distinct contrast in the spatial distribution of cold gas mass
between resolved and under-resolved traditional hydrodynamics
simulations is further demonstrated in the third panel of Fig. 3.
Here, the results of the high-resolution simulation are mapped
onto a 16 x 16 grid, mirroring the resolution of the under-resolved
simulation. This pixelated version of the resolved simulation un-
derscores that, on kiloparsec scales, the distribution of cold gas
mass is almost homogeneous, a characteristic that the low-resolution

Even in idealized, 2D simulations, resolving the full spatial range required
for cold gas at 10* K is computationally expensive. The choice of setting the
cold gas temperature to 5 x 10% K does not qualitatively affect the results.

traditional hydrodynamics simulation fails to qualitatively replicate.
Conversely, as shown in the right panel, the CGSM is capable of
accurately capturing the qualitative distribution of cold gas mass,
even at low resolution.

3.3 Cloud crushing and growth

Next, we turn our attention to the regime in which cold clouds are
destroyed within a hot wind, emphasizing how under-resolving the
CGM in simulations using traditional hydrodynamics can substan-
tially affect the lifespans of cold clouds.

To illustrate this, we first compare simple cloud-crushing sim-
ulations in the unresolved regime with theoretical predictions of
cloud-destruction times. The simulation setup is a 64 x 16 x 16
kpc box with kpc resolution and periodic boundary conditions.
The background is a uniform, hot medium, with T, = 10°K, Py =
1072 gem™3, and v, = [100, 0, 0]kms~!. We place a single cold
cloud near the source of the wind. The cold cloud has T, =
10*K, pq = 1072° gcm™3, and is initially at rest. In the context of
equation (24), these initial conditions correspond to x = 100 and
& = 0, in the limit of no radiative cooling.

In the traditional hydrodynamics simulation, we replicate a
severely under-resolved scenario where the total gas mass is concen-
trated in a single cell, resulting in a cloud of length ¢, =27y =1
kpc. In the CGSM simulation, we distribute the cold gas mass is
evenly throughout the simulation domain. Given the temperature of
the cold phase and the properties of the hot gas, we expect cold
cloudlets to have r, = 1 pc. Both simulations are evolved for two
cloud-crushing times.

Fig. 4 shows the gradual reduction of cold gas mass over time
in both the traditional hydrodynamics simulation (top panel) and
the CGSM simulation (bottom panel). At first glance, both models
exhibit similar qualitative behaviour: the cold gas is progressively
destroyed by the hot wind, following the theoretical cloud-crushing
time-scale (equation25). The low-resolution hydrodynamic simu-
lation abruptly deviates from the analytic solution when the entire
cloud is above the threshold temperature (7Tipresn = 3 X 10* K) to be
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Figure 4. The destruction of a cold gas cloud embedded in a hot wind over
time in low-resolution simulations using traditional hydrodynamics (top) and
the CGSM (bottom). The dashed lines represent the expected mass decay,
M /Mo = e~'/%. In the traditional hydrodynamics simulation, the cold
cloud’s initial size is limited by the resolution to a single cell with £¢) = 27 =
1 kpc. Conversely, in the CGSM, the cold gas mass is implicitly distributed in
unresolved cold cloudlets with £, = 2 pc. Although both simulations follow
the theoretical curve for at least one cloud-crushing time, the cloud-crushing
time in the traditional hydrodynamics simulation is artificially prolonged due
to its limited resolution.

considered cold. However, the most notable difference in behaviour
lies in the respective time-scales. In the low-resolution traditional
hydrodynamics simulation, the destruction time is nearly a thousand
times longer due to the artificially enlarged size of the cold cloud.
In contrast, the CGSM simulation accurately captures the shorter
cloud-destruction time-scales, even at the same resolution.

Finally, we consider the low-resolution effects on cloud-growth
time-scales. To do this, we start with the same initial conditions as
in Fig. 4 and turn on radiative cooling as described in Section 3.2. In
these cloud-crushing simulations, we do not artificially truncate the
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Figure 5. The mass evolution of a cold gas cloud embedded in a hot wind in
the low-resolution limit. The x-axis shows simulation time normalized by the
cloud-crushing time. The initial conditions of these simulations are identical
to those in Fig. 4, only with radiative cooling turned on. Since the cooling
time of the mixed gas (Tmix = /Ty Tc1) is approximately 30 times shorter
than the cloud-crushing time, we would expect the cold gas cloud to accrete
mass if it were resolved. Where the traditional hydrodynamics model fails to
capture cold cloud mass accretion, the CGSM captures subgrid physics, even
at low resolution.

radiative cooling curve, and allow gas to cool down to 10* K. Given
the expected cooling time of the mixed-temperature gas stripped
off of the cold cloud (Tnix = +/T,T), these initial conditions
correspond to & =~ 30, placing them firmly in the expected cloud-
growth regime (Fielding & Bryan 2022). Yet, Fig. 5 shows that in the
low-resolution limit, the cold cloud in the traditional hydrodynamics
simulation loses mass, albeit, more slowly than it did without
radiative cooling. While this simulation behaviour is expected at low
resolutions and small domains (Gronke & Oh 2018), it once again
underscores that with ~kpc resolution, traditional hydrodynamics
simulations struggle to capture the correct qualitative behaviour of
cold CGM gas. Meanwhile, the CGSM allows simulations of the
same resolution to capture the subgrid physics of cold mass accretion.

4 DISCUSSION

4.1 Requirements and limitations of simulating cold clouds as a
pressureless fluid

A key assumption of the CGSM approach is that the unresolved
cold clouds are significantly smaller than the size of the resolution
element. Therefore, this approach is primarily suited for studying
cold gas in the unresolved CGM of galaxy-scale and cosmological
simulations. In this context, the implications of modelling the
unresolved cold clouds as a pressureless fluid are that we ignore
any internal pressure forces in the cold cloud interiors. Also, by im-
posing pressure equilibrium, we are ignoring any physical processes
that introduce pressure anisotropies. For these reasons, the CGSM
model is best suited for applications in which the internal pressure
anisotropies and dynamics of individual cold clouds is dynamically
unimportant.
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By modelling cold gas a separate fluid, the CGSM model removes
the prohibitively high-resolution requirements imposed by resolving
the sharp density gradients between the cold and hot gas phases.
However, the CGSM still requires that the velocity gradients within
each of the fluids are well resolved.

4.2 Comparison to existing subgrid models

In the last few years, there have been several new subgrid models
to address the resolution challenges facing galaxy-scale simulations.
Models such as the physically evolved winds (PhEW; Huang et al.
2020, 2022) and Arkenstone (Smith et al. 2024) specifically address
the difficulties of accurately simulating multiphase galactic winds
driven by supernova feedback. These approaches are motivated by
the results of high-resolution, idealized simulations of ISM patches,
which have shown that while multiphase outflows predominantly
carry their energy in the hot gas phase, the bulk of their mass is
in the cold gas phase (e.g. Li & Bryan 2020; Kim et al. 2020a, b).
Directly resolving this energy-mass partitioning is currently beyond
the capabilities for galaxy simulations in a cosmological context.

To overcome this limitation, the PAEW and Arkenstone models
introduce a novel type of wind particle during supernova feedback
events. These wind particles, conceptually similar to the CGSM
presented here, represent unresolved cold gas mass and engage
in mass, momentum, and energy exchanges with the surrounding
medium before they are ultimately recoupled with the ‘regular’
particles in the CGM.

A key difference between the PAEW and Arkenstone models and
the CGSM lies in the spatial extent and continuity of the cold gas
subgrid prescription. In the PhEW and Arkenstone frameworks,
cold wind particles are generated exclusively during supernova
feedback events. Once these particles recouple with the regular
gas, the capacity to model subgrid cold gas ceases. In contrast, the
CGSM allows every cell in the simulation to host arbitrarily small
amounts of cold gas. This approach facilitates evolving a continuous
distribution of subgrid cold gas throughout the entire simulation
domain. Furthermore, the grid-based approach to the CGSM is
particularly well suited for solving the conservation equations in
low-density regions.

4.3 Missing physics and future applications

In this work, the CGSM intentionally omits certain physical pro-
cesses, such as magnetic fields, conduction, turbulence, and cosmic
rays, to focus on presenting a ‘proof of concept’ of the advantages
of a subgrid approach in CGM simulations. While this missing
physics would likely alter the quantitative aspects of the cold—hot
gas interactions — such as the rate of thermal instability growth or the
time-scales for cloud mass loss and accretion — the modular design
of the CGSM makes it straightforward to incorporate changes to the
expressions for p, p, and é¢. Future modifications will incorporate
new physics or reflect updated methodologies based on the latest
high-resolution simulations, such as using a power law to model
unresolved cold cloud sizes or accounting for the turbulent velocity
dispersion of unresolved clouds within a cell.

Importantly, changes to the quantitative details of the interaction
terms do not compromise the qualitative advantages offered by
the CGSM over standard hydrodynamics simulations in the low-
resolution limit. The CGSM’s ability to (1) capture the gradual
accretion of cold gas mass within a single cell, (2) generate smooth
spatial distributions of cold gas, and (3) accommodate short cloud-
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destruction and growth time-scales remain fundamentally robust,
irrespective of these potential updates.

The assumption in the CGSM that subgrid cold gas clouds are
significantly smaller than the typical CGM resolution (Ax ~ 1 kpc)
may not hold scenarios where extreme non-thermal pressure leads to
the formation of significantly larger cold ‘clouds’ with characteristic
sizes larger than ~ 1 — 100 kpc, as seen in some CGM simulations
that include cosmic ray physics (e.g. Salem, Bryan & Corlies 2016;
Butsky & Quinn 2018; Buck et al. 2020; Ji et al. 2020; Butsky
et al. 2022). However, in such cases, the non-thermal pressure can
be factored into the approximation of the expected cold cloud sizes,
as demonstrated in Butsky et al. (2020). When cold clouds are large
enough to be resolved at a given resolution, the CGSM does not need
to be applied in that region, and the mass of the cold subgrid fluid
would simply be zero.

In future work, we plan to incorporate the missing physics
described above and calibrate the CGSM for use in cosmological
zoom-in simulations. The combination of a cosmological context
and physically motivated treatment of subgrid cold-gas physics will
enable us to better determine the origin and impact of cold gas in
a variety of contexts, including the CGM, galactic winds and mass
accretion, as well as high-velocity clouds in our own Milky Way.

5 SUMMARY

In response to the challenge of resolving cold CGM gas in galaxy
simulations, we introduce a two-fluid framework for modelling the
subgrid physics of unresolved cold gas. The CGSM is designed
to explicitly evolve the total mass density and bulk momentum of
unresolved cold gas cloudlets. It uses the properties of the resolved
gas fluid to inform predictions about the physical state of cold gas.
In this model, the unresolved cold fluid interacts with the resolved
hot fluid, exchanging mass, momentum, and energy in accor-
dance with the findings from high-resolution, idealized simulations
(Fig. 1).

The CGSM offers several distinct benefits over traditional hydro-
dynamics methods in situations where the resolution is significantly
lower than necessary to adequately resolve cold-gas structure. In
contrast to traditional hydrodynamics simulations, which are limited
to a single-phase, single-temperature gas within each cell, the CGSM
allows for the presence of arbitrarily small amounts of cold gas
throughout the simulation (Fig. 2). As a result, the CGSM is
capable of producing more realistic spatial distributions of cold
gas mass. This is in stark contrast to under-resolved traditional
hydrodynamics simulations, which tend to accumulate cold gas mass
in a limited number of large clouds, with sizes artificially inflated
by the size of the low-resolution voxels (Fig. 3). Furthermore, where
under-resolved hydrodynamics simulations predict artificially long
cloud-destruction and accretion time-scales, the CGSM captures the
expected behaviour of cold gas, even when operating at the same
resolution (Figs 4 and 5).

These findings suggest that in the limit of low resolution — as
is typical in the haloes of galaxy-scale simulations — traditional,
single-fluid hydrodynamic simulations may be unreliable tools for
determining the origin and evolution of cold CGM gas. Even if the
simulations converge on certain cold-gas metrics, such as the total
cold gas mass, by artificially inflating cold-gas sizes and evolution
time-scales, we cannot rule out that such simulations are finding the
‘right answer’ for the wrong reasons.

Certainly, opting for a subgrid model comes with its own set
of trade-offs. Fundamentally, this approach introduces new simu-
lation parameters that require precise tuning, nuanced resolution

MNRAS 535, 1672-1683 (2024)

G20z Aey 60 uo Jasn Aseiqi] meT Jaybejes) - jooyog meT uolBuiysepn 1o Alsteniun Aq £625/8//2/91/Z/SES/ao1e/seluw/wod dno oIwapeoe//:sdiy Wwolj papeojumMoc]



1680 I S. Butsky et al.

requirements, and the assumption that the subgrid model accurately
represents the ensemble of cold clouds. Using a subgrid model for
cold CGM gas also means that the simulations cannot be used to
study small-scale cold gas structure and evolution. However, for
simulations with a prohibitively large dynamic range of physical
and temporal scales, the subgrid approach is unavoidable. For
example, there is a strong precedent for using subgrid models of
star formation and stellar feedback in galaxy-scale simulations.
While such simulations cannot be used to study stellar evolution
or supernova remnants, the subgrid approach has been invaluable
for understanding the effects of star formation and stellar feedback
on galaxy evolution. We are now faced with a similar trade-off in
studying galactic haloes.

For those seeking to study the flow of cool gas and its rela-
tionship to galaxy evolution on cosmological scales, the subgrid
model approach is likely inevitable. The alternative — inferring cold
gas properties from simulations where the resolution elements are
orders of magnitude larger than the actual cold gas structures —
is fundamentally flawed. Choosing the right approach hinges on a
better understanding of which scales need to be resolved in order to
accurately model cold-gas physics. Should it be determined that the
required scales are small (< pc) compared to the typical resolution in
the simulated CGM (2, 100s pc), then directly resolving cold CGM
gas would be computationally infeasible with current technologies.
In anticipation of such a scenario and rather than waiting potentially
decades for the requisite computational advancements, the CGSM
offers a means to effectively model cold-gas physics within the
limitations of current resolution capabilities.

SOFTWARE

The CGSM was implemented in the ENZO astrophysical simula-
tion code (Bryan et al. 2014; Brummel-Smith et al. 2019). The
analysis of the simulations relied heavily on the YT (Turk et al.
2011), MATPLOTLIB (Hunter 2007), and NUMPY (Harris et al. 2020)
packages for the PYTHON (Perez & Granger 2007) programming
language.
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APPENDIX A: TESTS OF MODEL BEHAVIOUR

In this section, we test the core functionality of the two-fluid model
and its implementation in the ENZO astrophysical simulation code
(Bryan et al. 2014; Brummel-Smith et al. 2019).

In Fig. Al, we demonstrate the advection of the two-fluid model
in the presence of a shock. For this test, we set up a modified Sod
shocktube with both the regular fluid and the unresolved cold fluid
initialized to the same values described below. We simulate the
shocktube in a 1D domain with x € [—-0.5, 0.5], resolved by 200
cells. The initial conditions are givenby o, = 1, oy =1, and P, =1
for x <0, and p; = 0.125, oy = 0.125, and P, = 0.1 for x > 0.
The velocity of both the regular fluid and the cold subgrid fluid
is initialized to zero everywhere. P, = (y — 1)¢ is the thermal gas
pressure with y = 5/3. We evolve the shocktube for t = 0.2 internal
time units.

In the case of strong drag (Kgr,e = 1000), the analytic solution is
given by the black dashed line. In this case, the simulated shocktube
follows the analytic solution well. There is no analytic solution for the
case of weak drag. Instead, we repeat the numerical test in Laibe &
Price (2012a) with K4,, = 1 and plot the results in the bottom panel
of Fig. A1. The behaviour of the two fluids agrees well with the results
in Paardekooper & Mellema (2006) and Laibe & Price (2012a).

In Fig. A2, we demonstrate the performance of the drag coupling
with a modified version of the dustybox test in Laibe & Price (2012a).
The physical setup of this problem is similar to that of the shocktube,
only the gas properties are uniform throughout the entire space and
the boundary conditions are periodic. The normal gas is initially at
rest and the cold fluid is initialized with a velocity in the %-direction.
If the cold and regular fluids are coupled through a drag coefficient,
then the velocity of the cold gas will decrease over time as it imparts
momentum on the regular gas. For this test, we consider the simplest
case, in which the drag coefficient, Kgy,, is a constant.

We simulate this process for a variety of different drag coefficients,
K grag, and cold gas density ratios, oci/pg. In all cases, the initial hot
gas density and the velocities of the two fluids are: p; = 1, v, =
0, and vy = 1. When testing the effect of the drag coefficient, we
keep pci/pg =1 constant and vary Ky € [0.01, 0.1, 1, 10, 100].
When testing the effect of the cold gas density ratio, we fix Kgre = 1
and vary pa/p, € [0.01,0.1, 1, 10, 100].

Fig. A2 shows the time evolution of the cold gas velocities for
a variety of different drag coefficients (top) and ratios of cold gas
density to regular gas density (bottom). The black dotted lines show
the analytic solutions, which agree with the simulation results in all
cases. When the drag coefficient is low or the cold gas density is high
relative to the hot gas density, the velocity of the cold gas remains
relatively unchanged over time. When the drag coefficient is high or
the cold gas density is low, the cold gas velocity quickly reaches its
equilibrium velocity.
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Figure Al. The distribution of the gas density, velocity, pressure, and specific thermal energy in a 1D modified SOD shocktube after # = 0.2 code time units,
for two different drag coefficients. Top: when the drag coefficient is very high (Kgrg = 1000), the cold and regular gas fluids move at the same velocity,
following the analytic solution for a shocktube with a modified sound speed (black dashed line). Bottom: when the drag coefficient is only moderately strong
(Kdrag = 1), the shock motion of the hot fluid imparts momentum to the cold gas fluid, but the two fluids are not fully coupled. Although there is no analytic
solution for this regime, our results are consistent with those presented in Laibe & Price (2012a).
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Figure A2. The time evolution of cold gas velocity for a variety of different
drag coefficients (top) and ratios of cold gas density to regular gas density
(bottom). The black dotted lines show the analytic solutions, which agree
with the simulation results in all cases. When the drag coefficient is low or
the cold gas density is high relative to the hot gas density, the velocity of the
cold gas remains relatively unchanged over time. When the drag coefficient
is high or the cold gas density is low, the cold gas velocity quickly reaches its
equilibrium velocity.
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