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A B S T R A C T 

The cold ( ∼ 10 
4 K ) component of the circumgalactic medium (CGM) accounts for a significant fraction of all galactic baryons. 

Ho we ver, using current galaxy-scale simulations to determine the origin and evolution of cold CGM gas poses a significant 

challenge, since it is computationally infeasible to directly simulate a galactic halo alongside the sub-pc scales that are crucial 

for understanding the interactions between cold CGM gas and the surrounding ‘hot’ medium. In this work, we introduce a 

new approach: the Cold Gas Subgrid Model (CGSM), which models unresolved cold gas as a second fluid in addition to the 

standard ‘normal’ gas fluid. The CGSM tracks the total mass density and bulk momentum of unresolved cold gas, deriving 

the properties of its unresolved cloudlets from the resolved gas phase. The interactions between the subgrid cold fluid and 

the resolved fluid are modelled by prescriptions from high-resolution simulations of ‘cloud crushing’ and thermal instability. 

Through a series of idealized tests, we demonstrate the CGSM’s ability to o v ercome the resolution limitations of traditional 

hydrodynamics simulations, successfully capturing the correct cold gas mass, its spatial distribution, and the time-scales for 

cloud destruction and growth. We discuss the implications of using this model in cosmological simulations to more accurately 

represent the microphysics that go v ern the galactic baryon cycle. 
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1  I N T RO D U C T I O N  

Galactic evolution is driven by the exchange of baryons between 

the stellar disc and its surrounding halo. The interstellar medium 

(ISM) requires a consistent inflow of gas to form stars, which 

then expel chemically enriched gas back into the circumgalactic 

medium (CGM) at the end of their lifespans. In this way, the 

composition of the CGM provides a detailed record of a galaxy’s 

past and the physical processes that go v ern its evolution (Tumlinson, 

Peeples & Werk 2017 ; Faucher-Gigu ̀ere & Oh 2023 ). In particular, 

cold ( ∼ 10 4 K) CGM gas is a crucial component fuelling ongoing star 

formation. 

Cold gas is ubiquitous in the haloes around dwarf, L ∗, and massive 

galaxies across cosmic time (e.g. Thom et al. 2012 ; Werk et al. 2013 ; 

Cantalupo et al. 2014 ; Borisova et al. 2016 ; Mishra & Muzahid 

2022 ; Qu et al. 2022 ). This cold gas plays an integral role in the 

galactic baryon cycle and is frequently observed both, in galactic 

outflows (e.g. Heckman et al. 2000 ; Nielsen et al. 2015 ; Veilleux 

et al. 2020 ; Burchett et al. 2021 ) and in accretion streams into the 

galaxy (Sancisi et al. 2008 ; Putman, Peek & Joung 2012 ; Richtler 
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et al. 2018 ; Zhu et al. 2021 ; Kamphuis et al. 2022 ). Recent estimates 

indicate that cold CGM gas constitutes at least 25 per cent of the 

baryonic content in L ∗ galaxies (Werk et al. 2014 ), and in dwarf 

galaxies, it can account for as much as 90 per cent of galactic baryons 

(Zhang et al. 2020 ). Consequently, to fully understand the galactic 

baryon cycle and galaxy evolution, theoretical models must not 

only reproduce the observed properties of cold CGM gas but also 

provide robust predictions about the physical processes influencing 

cold gas formation, destruction, and its interactions with the hot 

phase. 

Recent theoretical work and high-resolution idealized simulations 

have significantly advanced our understanding of the formation and 

evolution of cold gas across various conte xts. F or instance, it is 

now established that when radiative cooling is sufficiently efficient, 

cold gas can condense from thermally unstable hot gas (Field 

1965 ; McCourt et al. 2012 ; Sharma et al. 2012 ; Girichidis et al. 

2021 ) and subsequently precipitate onto the host galaxy (Voit & 

Donahue 2015 ). This thermal instability has been explored in diverse 

physical contexts including thermal conduction (Sharma, Parrish & 

Quataert 2010 ; Wagh, Sharma & McCourt 2014 ), magnetic fields 

(Ji, Oh & McCourt 2018 ), turbulence (Voit 2018 ), and cosmic rays 

(Butsky et al. 2020 ; Tsung, Oh & Bustard 2023 ). Additionally, 

high-resolution ‘cloud-crushing’ simulations have elucidated the 

conditions that lead to either the destruction or mass accretion 
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of cold gas clouds (Armillotta et al. 2017 ; Gronke & Oh 2018 , 

2020 ; Li et al. 2020 ; Sparre, Pfrommer & Ehlert 2020 ; Kanjilal, 

Dutta & Sharma 2021 ; Farber & Gronke 2022 ; Fielding & Bryan 

2022 ; Abruzzo, Fielding & Bryan 2023 ), as influenced by the thin, 

radiatively cooling boundary layer interface between the hot and 

cold gas phases (Fielding et al. 2020 ; Tan, Oh & Gronke 2021 ; 

Chen, Fielding & Bryan 2023a ). Recent theoretical advances have 

begun to frame our understanding of what determines the size of 

cold gas clouds and under what circumstances these clouds form a 

mist of cloudlets or coalesce into larger clouds (Gronke & Oh 2020 , 

2023 ). Ho we ver, without a cosmological context (e.g. Saeedzadeh 

et al. 2023 ), determining the relative impact of each of these 

processes on the observed structures of cold CGM gas is exceedingly 

difficult. 

Studying cold CGM gas with galaxy-scale simulations presents 

significant challenges due to the vast range of rele v ant physical 

scales involved. Theoretically, the characteristic scale of cold CGM 

clouds is estimated to be around 0 . 1 − 10 pc (Gronke & Oh 2018 ; 

McCourt et al. 2018 ; Liang & Remming 2020 ). While it is difficult to 

observationally determine the minimum size of these clouds, there 

is evidence suggesting the existence of cold CGM clouds smaller 

than ∼ 10 − 100 pc (Hennawi et al. 2015 ; Stern et al. 2016 ; Rubin 

et al. 2018 ; Bish et al. 2019 ; Rudie et al. 2019 ; Werk et al. 2019 ; 

Zahedy et al. 2019 ; Chen et al. 2023b ). The exact resolution required 

to accurately simulate cold CGM gas in a galactic context is still 

under debate. Ho we ver, e ven simulations that employ innov ati ve 

algorithms to maximize CGM resolution (reaching down to about 

100 pc in the inner CGM) have not achieved convergence across 

all rele v ant cold gas properties (Hummels et al. 2019 ; Peeples et al. 

2019 ; Suresh et al. 2019 ; van de Voort et al. 2019 ; Nelson et al. 2020 ; 

Ramesh & Nelson 2024 ). 

If it is necessary to resolve scales significantly smaller than 100 pc, 

we may be decades away from the computational resources required 

to explicitly simulate cold CGM gas physics. For example, resolving 

the halo of an L ∗ galaxy out to 200 kpc with parsec-scale spatial 

resolution would require roughly 10 million times more voxels 

than current state-of-the-art cosmological simulations. Ho we ver, 

the current alternative of studying CGM gas using simulations 

that severely under-resolve its structure substantially restricts the 

conclusions we can dra w re garding the origins of cold gas and its 

impact on galaxy evolution. 

Instead of waiting for technological advances that enable di- 

rect resolution of the CGM at sub-pc scales, we will show that 

resolution issues can be ef fecti vely addressed using a physically 

moti v ated subgrid model for cold CGM gas. The use of subgrid 

models has a strong precedent in galaxy simulations, particularly for 

processes that cannot be directly resolved, such as star formation 

and supernova feedback (e.g. Cen & Ostriker 1992 ; Abadi et al. 

2003 ; Oppenheimer & Dav ́e 2006 ; Stinson et al. 2006 ; Hopkins, 

Quataert & Murray 2012 ; Keller et al. 2014 ), ISM phase structure 

(e.g. Springel & Hernquist 2003 ), and metal diffusion (e.g. Shen, 

Wadsley & Stinson 2010 ; Escala et al. 2017 ). More recently, several 

studies have developed subgrid prescriptions to model unresolved 

cold gas in multiphase supernov a-dri ven winds (Huang et al. 2020 , 

2022 ; Smith et al. 2024 ). 

In this work, we present a no v el framework for explicitly modelling 

unresolved cold CGM gas in hydrodynamics simulations, concep- 

tually similar to how dust is modelled in protoplanetary discs (e.g. 

Laibe & Price 2012a ) or the more general multifluid cosmological 

hydrodynamics framework (Weinberger & Hernquist 2023 ). Our 

Cold Gas Subgrid Model (CGSM), treats this unresolved cold gas as 

a second fluid, tracking its total mass density and bulk momentum 

Figure 1. This schematic illustrates the CGSM. The resolved ‘hot’ fluid 

(bottom) functions as a typical hydrodynamic fluid, with each cell tracking 

sev eral ke y properties (gas density ρg , velocity v g , and energy density 

ε g ) that evolv e o v er time following the conservation equations outlined in 

equations (10)–( 17 ). The second, unresolved ‘cold’ fluid (top) is spatially co- 

existent with the resolved fluid. This second fluid explicitly tracks the total 

mass density ρ̄cl and bulk velocity ( ̄v cl ) of the unresolved cold cloudlets. 

Interactions between these two fluids, including the exchange of mass, 

momentum, and energy occur via the mixing and drag terms described in 

Section 2 . The stars symbolize injected sources of gas, such as those resulting 

from stellar feedback. 

as collections of unresolved cold cloudlets. The properties of these 

cloudlets are determined by the properties of the resolved (‘hot’) 

gas phase, which we assume to be in thermal pressure equilibrium 

with the unresolved cold gas. The interaction terms between the 

standard and subgrid fluids are informed by the latest models for 

cold gas formation and destruction, as indicated by the idealized 

simulations mentioned abo v e. As we will demonstrate, this subgrid 

approach ef fecti vely replicates the qualitati ve behaviour of cold gas 

in situations where traditional hydrodynamics simulations struggle 

due to inadequate resolution. 

The remainder of this paper is organized as follows: in Section 2 , 

we detail the physical basis of the CGSM and introduce the set of 

modified conservation equations go v erning the evolution of the two 

fluids. In Section 3 , we use a series of idealized simulations to show 

that, in contrast to traditional hydrodynamics, our two-fluid model 

successfully captures the correct qualitative behaviour of cold CGM 

gas, even in cases of limit of very low resolution. The implications of 

the CGSM for cosmological simulations are discussed in Section 4 , 

and we summarize our results in Section 5 . Finally, in Appendix A , 

we provide tests of the CGSM implementation in the ENZO astro- 

physical simulation code (Bryan et al. 2014 ; Brummel-Smith et al. 

2019 ). 

2  C O L D  G A S  SUBGRID  M O D E L  TWO-FLU ID  

DESCR IPTION  

In this section, we detail the physical rationale and numerical imple- 

mentation of our CGSM, as illustrated in Fig. 1 . Briefly stated, the 

resolved (hot) gas phase is treated as a conventional hydrodynamics 

fluid, adhering to the equations outlined in Section 2.1 and modified 

in Section 2.3 . Meanwhile, the unresolved (cold) gas phase is 

represented as a second fluid, cospatial with the hot fluid, following 

the set of modified go v erning equations described in Section 2.3 . 
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Given that the structure of the cold phase is not directly resolvable, 

we focus on evolving the total mass density and bulk momentum 

of this phase. We make informed assumptions about the physical 

characteristics of the unresolved cold gas based on the properties 

of its surrounding medium. This approach is qualitatively similar 

to modelling dust in protoplanetary discs as described in Laibe & 

Price ( 2012a ), as well as the compressible multifluid hydrodynamics 

described in Weinberger & Hernquist ( 2023 ). 

2.1 Traditional ‘resolved’ fluid equations 

The evolution of the resolved gas fluid is described by the conven- 

tional hydrodynamics conservation equations for mass, momentum, 

and energy: 

∂ ρg 

∂ t 
+ ∇ · ( ρg v g ) = 0 , (1) 

∂ ( ρg v g ) 

∂ t 
+ ∇ · ( ρg v g v 

T 
g + I P g ) = −ρg ∇�, (2) 

∂ ε g 

∂ t 
+ ∇ · ( v g ε g ) = −P g ∇ · v g + S g . (3) 

Here, � represents the gravitational potential, while ρg and v g denote 

the gas density and v elocity, respectiv ely. I is the identity matrix 

and the internal gas pressure, P g , is related to the internal thermal 

energy density ε g = ( γg − 1) P g , where γg = 5 / 3. S g symbolizes 

thermal energy sources and sinks, such as energy inputs from 

supernov a feedback e vents or energy losses due to radiative cooling. 

Throughout, the subscript ‘ g’ indicates the properties of the resolved 

gas. The standard equations abo v e are provided for context, leading 

to the modified conservation equations introduced in equations (10)–

( 17 ). 

2.2 Unresolved cold gas fluid 

In addition to evolving a ‘traditional’ resolved fluid, the CGSM 

e xplicitly evolv es a second fluid of cold gas, comprised of numerous 

unresolved cloudlets, under the following assumptions. 

First, we assume that the size of the unresolved cold gas cloudlets is 

significantly smaller than the resolution element size, r cl � �x cell , 

an assumption easily met in the simulated CGM with cell widths 

�x � 1 kpc. With this disparity in scale, we make the simplify- 

ing assumption that the cold gas clouds are in thermal pressure 

equilibrium with the resolved hot phase and ignore any pressure 

gradients within the cold cloud interiors. This allows us to treat the 

unresolved gas as a pressure-free fluid. Given that the majority of 

thermal pressure originates from the hot gas phase, we can deduce 

the system’s thermal pressure from the properties of the resolved 

fluid. 

Second, we assume that the unresolved cold fluid is at a constant 

temperature T cl . Unless otherwise noted, we default to T cl = 10 4 K. 

Assuming the two fluids are in thermal pressure equilibrium, the 

physical density of the unresolved cloudlets is given by: 

ρcl = 
ρg T g 

T cl 
= 

μm p P g 

k B T cl 
, (4) 

where T g is the temperature of the resolved gas phase, μ is the 

mean molecular weight, m p is the proton mass, and k B is the 

Boltzmann constant. The subscript ‘ cl ’ is used throughout to refer to 

the properties of the cold gas fluid. 

Third, we assume that the characteristic size of cold cloudlets is 

r cl ≈ min ( c s t cool ), moti v ated by the mist model of cold CGM gas 

(McCourt et al. 2018 ). The gas sound speed and cooling time are 

described by 

c s = 
√ 

( γP g /ρg ) , (5) 

and 

t cool = P g / ( γ − 1) L , (6) 

for some radiative gas cooling rate L . For a wide range of CGM 

pressures, the minimum product of the sound speed and cooling time 

occurs at a temperature of T cool , peak ≈ 10 4 . 3 K (Liang & Remming 

2020 ). Therefore, we solve for the cold cloud radius at T = T cool , peak , 

r cl = ( c s t cool ) | T cool , peak . (7) 

It is important to note that both the gas sound speed and cooling 

time in the abo v e equation are calculated at T = T cool , peak . Assuming 

thermal pressure equilibrium, we solve for the gas density at the peak- 

cooling temperature, ρcool , peak /ρg = T g /T cool , peak . In the simulations 

below, we assume T cool , peak = 10 4 . 3 K. 

Combining equations (4) and ( 7 ), we estimate the mass of a single 

cold gas cloudlet as 

m cl = 
4 

3 
πr 3 cl ρcl . (8) 

It then follows that the number of cold cloudlets in a given cell is 

given by, 

N cl = M cl /m cl , (9) 

where M cl is the total mass of unresolved cold gas in a cell. 

2.3 Conser v ation equations for the CGSM 

We e xplicitly evolv e the total mass density ( ̄ρcl ) and bulk velocity 

( ̄v cl ) of the unresolved cold fluid in each cell. Since the temperature 

of the cold gas cloudlets is assumed to be constant, we do not 

e xplicitly evolv e the internal energy of the cold gas fluid. In the 

following sections, we introduce the new conservation equations for 

the unresolved fluid and outline the necessary modifications for the 

resolved fluid. 

2.3.1 Conservation of mass 

∂ ̄ρcl 

∂ t 
+ ∇ · ( ̄ρcl ̄v cl ) = ρ̇mix . (11) 

Equations (10) and ( 11 ) function similarly to the traditional mass 

conservation equation (equation 1), but they include an additional 

source term, ρ̇mix to account for the mass transfer between the two 

fluids. This transfer occurs during the formation of cold clouds, their 

mass accretion, and their mass loss due to hydrodynamic instabilities 

and conduction. We provide specific prescriptions for these processes 

in Sections 2.4 and 2.5 . In the equations abo v e, the variable ρ̄cl = 

M cl , cell /V cell represents the total mass of cold clouds in a single cell 

divided by the cell’s volume. It is important to note that this does 

not represent the physical density of the unresolved cold clouds, 

ρcl (equation 4). Similarly, v̄ cl denotes the aggregate velocity of the 

unresolved cold fluid in a given cell rather than the physical velocity 

of any individual cloudlet. 

2.3.2 Conservation of momentum 

∂ ( ρg v g ) 

∂ t 
+ ∇ · ( ρg v g v 

T 
g + I P g ) = −ρg ∇� − ṗ mix − ṗ drag , (12) 
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∂ ( ̄ρcl ̄v cl ) 

∂ t 
+ ∇ · ( ̄ρcl ̄v cl ̄v 

T 
cl ) = −ρ̄cl ∇� + ṗ mix + ṗ drag . (13) 

As with the mass conservation equations, the revised momentum 

conservation equations include new source terms to account for 

momentum transfer between the cold and hot fluids. These transfers 

occur due to the formation, growth, and destruction of cold clouds 

( ̇p mix ), as well as from the drag force resulting from the relative 

motion of the two fluids ( ̇p drag ). 

The momentum transfer due to mixing of the two fluids is 

dependent on the mass transfer, ρ̇mix , and is expressed as follows: 

ṗ mix = 

{

ρ̇mix v g , ρ̇mix > 0 

ρ̇mix ̄v cl , ρ̇mix < 0 
. (14) 

We note that ṗ mix only accounts for the net transfer of mass, either 

to the cold fluid of from the cold fluid. In reality, in the ensemble of 

unresolved cold clouds within a single cell, some clouds would be 

losing mass while others would be accreting mass. This could lead 

an underestimate of the true momentum transfer, for example, in 

the limit where ρ̇mix = 0. We leave exploring these effects to future 

work. 

We model the drag force as a function of the relative velocity 

between the two fluids, v rel = v g − v̄ cl , 

ṗ drag = K drag v rel , (15) 

where K drag is the drag coefficient given by: 

K drag = πr 2 cl ρg 
ρ̄cl 

m cl 
| v rel | , (16) 

as described in equation (41) of Laibe & Price ( 2012b ). 

2.3.3 Conservation of energy 

∂ ε g 

∂ t 
+ ∇ · ( v g ε g ) = −P g ∇ · v g + S g − ε̇ mix − ε̇ drag . (17) 

Since the cold gas fluid has a fixed temperature, we do not 

explicitly track its energy field. Ho we ver, the energy conservation 

equation for the traditional fluid is modified to include two additional 

source terms, ε̇ mix and ε̇ drag . The energy lost from the resolved fluid 

due to mixing with the cold phase is calculated as 

ε̇ mix = ρ̇mix ( ε g /ρg ) . (18) 

In addition, we consider energy loss due to frictional heating 

caused by drag between the two fluids, given by 

ε̇ drag = K drag v 
2 
rel . (19) 

We provide tests of the implementation of the modified conserva- 

tion equations in the ENZO simulation code in Appendix A . 

2.4 Cold cloud formation due to thermal instability 

A primary mechanism for the spontaneous formation of cold gas 

from hot gas is thermal instability (Field 1965 ). While the cooling 

times of hot ( T ∼ 10 6 K) CGM gas are generally long, fluctuations 

in gas density and temperature can trigger a runaway cooling effect. 

This process results in cold gas condensing from the hot phase (e.g. 

McCourt et al. 2012 ; Sharma et al. 2012 ; Voit & Donahue 2015 ). 

In the CGSM, we model this phenomenon by first identifying cells 

likely to experience thermal instability. Then, we convert the energy 

that would have been lost due to radiative cooling in the resolved 

fluid to generate mass in the unresolved cold fluid. 

At each time-step, we e v aluate the cells of the resolved fluid for 

thermal instability using the following criteria:. 

(i) The gas temperature falls within the thermally unstable range, 

10 4 K f T f 10 6 K. 

(ii) The size of the cell exceeds the size necessary to resolve a 

single cold cloud, �x cell > r cl 

(iii) The net energy change due to radiative cooling in the cell 

is ne gativ e, meaning it would cool in the absence of the two-fluid 

model. 

If the hot gas cell is not thermally unstable, it is allowed to undergo 

radiative cooling (or heating) as usual. Ho we ver if the gas in a cell is 

determined to be thermally unstable, we transfer mass from the hot 

gas to the cold subgrid fluid according to the following equation: 

ρ̇mix , TI = �ρmix , TI /�t, (20) 

where �t represents the simulation time-step. Assuming conser- 

vation of energy, the quantity of mass transferred depends on the 

amount of energy the hot gas cell is expected to lose due to radiative 

cooling, �E cool : 

ρg e g + ρ̄cl e cl − | �E cool | = 

( ρg − �ρmix , TI ) e g + ( ̄ρcl + �ρmix , TI ) e cl , 
(21) 

�ρmix , TI = 
| �E cool | 

e g − e cl 
. (22) 

In the equations abo v e, e hot and e cold are the specific energies (energy 

per unit mass) of the hot and cold gas. Note that �ρmix , TI is al w ays 

positive because, by definition, e g > e cl . Therefore, in the case of 

thermal instability, mass is only ever transferred from the hot fluid 

to the cold. 

We update each cell, i, at time t , as follows: 

ρ t+ 1 
i = ρ t 

i − ( �ρmix , TI ) i , 

ρ̄ t+ 1 
cl ,i = ρ̄ t 

cl ,i + ( �ρmix , TI ) i . 
(23) 

2.5 Cloud crushing 

A cold cloudlet moving relative to a hot background medium may 

either lose or accrete mass, depending on the physical conditions of 

the two gas phases and their relativ e v elocities (e.g. Klein, McKee & 

Colella 1994 ; Marinacci et al. 2010 ; Armillotta, Fraternali & Mari- 

nacci 2016 ; Gronke & Oh 2018 ; Li et al. 2020 ; Sparre et al. 2020 ; 

Banda-Barrag ́an et al. 2021 ; Kanjilal et al. 2021 ; Abruzzo, Bryan & 

Fielding 2022 ). 

In our model, we incorporate the mass transfer prescription as 

derived in equation (36) of Fielding & Bryan 2022 , which ef fecti vely 

captures various regimes of cold gas growth and destruction observed 

in high-resolution simulations, 

ρ̇mix , cc = 0 . 6 

(

ρ̄cl v rel 

χ1 / 2 r cl 

)

( ξα − 1) . (24) 

In the equation abo v e, χ = ρcl /ρg represents the density contrast be- 

tween the cold cloudlets and the hot phase, and ξ = r cl / ( v turb t cool , peak ) 

determines whether the cold gas is accreting or losing mass, with 

α = 1 / 4 if ξ g 1 and α = 1 / 2 otherwise. We assume that the 

turbulent velocity, v turb = 0 . 1 v rel , to be a constant fraction of the 

relativ e v elocity between the two fluids. 

In the limit of no cooling, equation ( 24 ) implies a cloud-crushing 

time, 

t cc = 1 . 67 

(

r cl 

v rel 

)(

ρcl 

ρg 

)1 / 2 

. (25) 
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2.6 Time stepping 

Following the approach in Laibe & Price ( 2012a ), we incorporate a 

time-step criterion that is a function of the drag coefficient, K drag . 

The time-step requirement is given by 

�t drag = 

(

ρg ̄ρcl 

K drag ( ρg + ρ̄cl ) 

)

. (26) 

Next, we consider the time constraints imposed by the mass and 

momentum transfer due to thermal instability and cloud-crushing 

processes in the CGSM 

�t mix , ρ = min 

(

ρg 

ρ̇mix 
, 

ρ̄cl 

ρ̇mix 

)

, (27) 

�t mix , v = min 

(

p g 

ṗ mix 

, 
p̄ cl 

ṗ mix 

)

. (28) 

The final time-step constraint for the CGSM is the minimum of 

the abo v e constraints, 

�t = εc min ( �t drag , �t mix , ρ, �t mix , v ) . (29) 

In the simulations below, we choose the constant pre-factor εc = 0 . 2. 

3  PHYSICAL  APPLICATIONS  O F  T H E  CGSM  

Next, we use a series of idealized simulations to underscore the fun- 

damental qualitative differences between traditional hydrodynamics 

and CGSM simulations. Specifically, we focus on examples of the 

formation, spatial distribution, destruction, and accretion of cold 

gas. As we will detail below, a recurring theme is that in the low- 

resolution limit typical of the CGM in galaxy simulations, traditional 

hydrodynamics significantly diverges from the ‘true’ behaviour of 

cold gas. In such instances, the CGSM is able to reproduce the 

essential qualitative behaviour of cold gas more accurately. 

3.1 Cold gas formation in a single cell 

For the initial application of our subgrid model, we choose a simple 

but important scenario: the formation of cold gas in a single cell. The 

initial conditions consist of a uniform gas with a temperature T g, 0 = 

10 6 K and density ρg, 0 = 10 −27 g cm 
−3 . The gas undergoes radiative 

cooling following an analytic approximation of the cooling curve for 

a gas with a metallicity of 0 . 3 Z 	. While this metallicity is within the 

expected range for hot CGM gas (Bregman et al. 2018 ), we stress 

that the exact value has no bearing on the qualitative behaviour of 

the simulations discussed below. The gas is initially motionless, and 

e xperiences no e xternal forces. Therefore, when using the CGSM, we 

focus solely on cloud formation due to thermal instability, omitting 

terms for cold cloud growth, destruction, and drag. 

Fig. 2 compares the growth of cold gas mass in both the traditional 

hydrodynamics (orange) and CGSM (blue) simulations. In the 

traditional hydrodynamic approach, the gas cools uniformly until it 

the entire cell reaches the temperature threshold ( T < 5 . 05 × 10 4 K) 

to be considered as ‘cold’. As a result, the evolution of cold gas mass 

follows a step function, centred near the cooling time determined 

by the initial gas properties. In contrast, the CGSM allows for a 

gradual increase in cold gas mass as it is progressively transferred 

from the resolved hot phase to the cold fluid. After one cooling 

cycle, approximately two-thirds of the total gas mass in the CGSM 

simulation is cold, compared to the traditional model where cold gas 

constitutes the entirety of the gas mass. After three cooling times, 

the proportion of cold gas in the CGSM simulation saturates at about 

83 per cent of the total gas mass. 

Figure 2. The cold mass growth rate in a single cell using traditional 

hydrodynamics (hexagons) and the CGSM (diamonds). In both simulations, 

the initial condition models a cell of uniform temperature and density 

undergoing radiative cooling. In the traditional approach, the transition from 

‘hot’ to ‘cold’ gas in the cell is abrupt, resembling a step function. Conversely, 

the CGSM facilitates a more gradual transfer of mass between the two gas 

phases within the same cell. For comparison, the dashed line represents the 

cold gas growth rate in a fully resolved simulation of a thermally unstable 

patch. Notably, the CGSM captures the spatial coexistence of cold and hot 

gas phases within a single cell. 

To provide context, the dashed line shows the cold mass growth 

rate from an idealized simulation (described in the following section) 

of thermal instability in which the ∼ 20 pc cold gas cloudlets are 

resolved. While there are some quantitative differences between the 

single-cell and fully resolved simulations, the latter underscores two 

key aspects of reality: (1) the growth of cold mass is a gradual 

process, and (2) the total cold gas mass eventually plateaus, falling 

short of encompassing 100 per cent of the total gas mass. Unlike 

the unresolved hydrodynamic simulation, the CGSM simulation 

successfully replicates this more realistic behaviour. 

3.2 Spatial distribution of cold gas 

Next, we consider the spatial distribution of cold gas in high- 

resolution hydrodynamics simulations, low-resolution hydrodynam- 

ics simulations, and low-resolution simulations using the CGSM. 

We simulate thermal instability in idealized 2D patches of CGM- 

like gas. The simulation setup is described in detail in Butsky et al. 

( 2020 ); ho we ver, we summarize the key aspects here. We initialize a 

16 × 16 kpc box with a static, uniform gas, setting the initial density 

at ρg, 0 = 10 −27 g cm 
−3 and the initial temperature at T g, 0 = 10 6 K. 

To seed the thermal instability, we introduce an isobaric perturbation 

with a white noise spectrum and 2 per cent amplitude into the uniform 

medium. In the CGSM, the subgrid cold fluid mass is initialized to 

zero. We ignore the effects of gravity, focusing solely on the in-situ 

formation of cold gas. 

We model radiative gas cooling with a truncated power law, 


 ( T ) = 
 0 T 
−2 / 3 . This formulation ensures that the temperature of 
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Figure 3. The distribution of cold gas formed via thermal instability in idealized 2D simulations of a 16 × 16 kpc patch of CGM gas. Progressing from 

left to right, the panels show the cold gas mass fraction ( M cl /M cl , total ) in: (1) a high-resolution traditional hydrodynamics simulation with 4096 2 resolution, 

(2) a low-resolution traditional hydrodynamics simulation with 16 2 resolution, (3) the high-resolution simulation from the first panel but binned to a 16 2 

resolution, and (4) a CGSM simulation with 16 2 resolution. In the high-resolution simulation, cold gas condenses into cloudlets of approximately r cl ≈ 10 pc 

in size. Ho we ver, in the lo w-resolution traditional hydrodynamics simulation – where the resolution is �x = 1 kpc, akin to typical resolutions in the CGM 

of galaxy-scale simulations – the cold gas appears as single-cell clouds with artificially inflated sizes due to cell resolution. This results in a cold gas mass 

distribution on ∼kpc scales that qualitatively differs from what is predicted by the binned high-resolution simulation in the third panel. In contrast, the CGSM 

simulation successfully captures the correct qualitative distribution of cold gas mass on kpc scales, even without directly resolving the cold cloudlets. 

the cold gas remains at T cl = 5 × 10 4 K. 1 We choose the constant, 


 0 = 1 . 1 × 10 −19 erg cm 
3 s −1 K 

2 / 3 , so that the characteristic radius 

of cold gas clouds is 10 pc. A crucial aspect of simulating thermal 

instability involves incorporating a heating mechanism to maintain 

global equilibrium. We model this heating with a mass-weighted 

redistribution of the total energy lost to cooling. We refer the 

interested reader to Butsky et al. ( 2020 ) for additional details. 

Fig. 3 compares the spatial distribution of cold gas at t = 2 . 5 t cool 

across four different simulations. Progressing from left to right, 

the first panel shows the fractional cold gas mass ( M cl /M cl , total ) in 

a traditional hydrodynamics simulation resolved with 4096 2 cells, 

corresponding to a spatial resolution of �x cell = 4 pc . In this high- 

resolution simulation, the cold gas appears as a uniformly distributed 

mist of cloudlets throughout the CGM patch. The second panel 

depicts the cold gas mass fraction in a traditional hydrodynamics 

simulation with a much coarser 16 2 cell resolution, corresponding to 

a spatial resolution of �x cell = 1 kpc , which is typical for the CGM 

in galaxy-scale simulations. While this lower resolution simulation 

generates a total cold gas mass comparable to the high-resolution 

simulation (with less than a 10 per cent difference in cold gas masses), 

there is a marked contrast in the spatial distribution of cold gas clouds. 

Due to the limited resolution, the minimum size of cold gas clouds 

is constrained, resulting in fewer but larger clouds compared to the 

high-resolution simulation. 

The distinct contrast in the spatial distribution of cold gas mass 

between resolved and under-resolved traditional hydrodynamics 

simulations is further demonstrated in the third panel of Fig. 3 . 

Here, the results of the high-resolution simulation are mapped 

onto a 16 × 16 grid, mirroring the resolution of the under-resolved 

simulation. This pixelated version of the resolved simulation un- 

derscores that, on kiloparsec scales, the distribution of cold gas 

mass is almost homogeneous, a characteristic that the low-resolution 

1 Even in idealized, 2D simulations, resolving the full spatial range required 

for cold gas at 10 4 K is computationally e xpensiv e. The choice of setting the 

cold gas temperature to 5 × 10 4 K does not qualitatively affect the results. 

traditional hydrodynamics simulation fails to qualitatively replicate. 

Conversely, as shown in the right panel, the CGSM is capable of 

accurately capturing the qualitative distribution of cold gas mass, 

even at low resolution. 

3.3 Cloud crushing and growth 

Next, we turn our attention to the regime in which cold clouds are 

destroyed within a hot wind, emphasizing how under-resolving the 

CGM in simulations using traditional hydrodynamics can substan- 

tially affect the lifespans of cold clouds. 

To illustrate this, we first compare simple cloud-crushing sim- 

ulations in the unresolved regime with theoretical predictions of 

cloud-destruction times. The simulation setup is a 64 × 16 × 16 

kpc box with kpc resolution and periodic boundary conditions. 

The background is a uniform, hot medium, with T g = 10 6 K, ρg = 

10 −28 g cm 
−3 , and v g = [100 , 0 , 0] km s −1 . We place a single cold 

cloud near the source of the wind. The cold cloud has T cl = 

10 4 K, ρcl = 10 −26 g cm 
−3 , and is initially at rest. In the context of 

equation ( 24 ), these initial conditions correspond to χ = 100 and 

ξ = 0, in the limit of no radiative cooling. 

In the traditional hydrodynamics simulation, we replicate a 

sev erely under-resolv ed scenario where the total gas mass is concen- 

trated in a single cell, resulting in a cloud of length � cl = 2 r cl = 1 

kpc. In the CGSM simulation, we distribute the cold gas mass is 

evenly throughout the simulation domain. Given the temperature of 

the cold phase and the properties of the hot gas, we expect cold 

cloudlets to have r cl = 1 pc . Both simulations are evolved for two 

cloud-crushing times. 

Fig. 4 shows the gradual reduction of cold gas mass o v er time 

in both the traditional hydrodynamics simulation (top panel) and 

the CGSM simulation (bottom panel). At first glance, both models 

e xhibit similar qualitativ e behaviour: the cold gas is progressiv ely 

destroyed by the hot wind, following the theoretical cloud-crushing 

time-scale (equation 25). The low-resolution hydrodynamic simu- 

lation abruptly deviates from the analytic solution when the entire 

cloud is abo v e the threshold temperature ( T thresh = 3 × 10 4 K) to be 
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Figure 4. The destruction of a cold gas cloud embedded in a hot wind o v er 

time in low-resolution simulations using traditional hydrodynamics (top) and 

the CGSM (bottom). The dashed lines represent the expected mass decay, 

M cl /M cl , 0 = e −t/t cc . In the traditional hydrodynamics simulation, the cold 

cloud’s initial size is limited by the resolution to a single cell with � cl = 2 r cl = 

1 kpc . Conversely, in the CGSM, the cold gas mass is implicitly distributed in 

unresolved cold cloudlets with � cl = 2 pc . Although both simulations follow 

the theoretical curve for at least one cloud-crushing time, the cloud-crushing 

time in the traditional hydrodynamics simulation is artificially prolonged due 

to its limited resolution. 

considered cold. Ho we ver, the most notable dif ference in behaviour 

lies in the respective time-scales. In the low-resolution traditional 

hydrodynamics simulation, the destruction time is nearly a thousand 

times longer due to the artificially enlarged size of the cold cloud. 

In contrast, the CGSM simulation accurately captures the shorter 

cloud-destruction time-scales, even at the same resolution. 

Finally, we consider the low-resolution effects on cloud-growth 

time-scales. To do this, we start with the same initial conditions as 

in Fig. 4 and turn on radiative cooling as described in Section 3.2 . In 

these cloud-crushing simulations, we do not artificially truncate the 

Figure 5. The mass evolution of a cold gas cloud embedded in a hot wind in 

the low-resolution limit. The x -axis shows simulation time normalized by the 

cloud-crushing time. The initial conditions of these simulations are identical 

to those in Fig. 4 , only with radiative cooling turned on. Since the cooling 

time of the mixed gas ( T mix = 
√ 

T g T cl ) is approximately 30 times shorter 

than the cloud-crushing time, we would expect the cold gas cloud to accrete 

mass if it were resolved. Where the traditional hydrodynamics model fails to 

capture cold cloud mass accretion, the CGSM captures subgrid physics, even 

at low resolution. 

radiativ e cooling curv e, and allow gas to cool do wn to 10 4 K. Gi ven 

the expected cooling time of the mixed-temperature gas stripped 

off of the cold cloud ( T mix = 
√ 

T g T cl ), these initial conditions 

correspond to ξ ≈ 30, placing them firmly in the expected cloud- 

growth regime (Fielding & Bryan 2022 ). Yet, Fig. 5 shows that in the 

low-resolution limit, the cold cloud in the traditional hydrodynamics 

simulation loses mass, albeit, more slowly than it did without 

radiative cooling. While this simulation behaviour is expected at low 

resolutions and small domains (Gronke & Oh 2018 ), it once again 

underscores that with ∼kpc resolution, traditional hydrodynamics 

simulations struggle to capture the correct qualitative behaviour of 

cold CGM gas. Meanwhile, the CGSM allows simulations of the 

same resolution to capture the subgrid physics of cold mass accretion. 

4  DISCUSSION  

4.1 Requirements and limitations of simulating cold clouds as a 

pr essur eless fluid 

A key assumption of the CGSM approach is that the unresolved 

cold clouds are significantly smaller than the size of the resolution 

element. Therefore, this approach is primarily suited for studying 

cold gas in the unresolved CGM of galaxy-scale and cosmological 

simulations. In this context, the implications of modelling the 

unresolved cold clouds as a pressureless fluid are that we ignore 

any internal pressure forces in the cold cloud interiors. Also, by im- 

posing pressure equilibrium, we are ignoring any physical processes 

that introduce pressure anisotropies. For these reasons, the CGSM 

model is best suited for applications in which the internal pressure 

anisotropies and dynamics of individual cold clouds is dynamically 

unimportant. 
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By modelling cold gas a separate fluid, the CGSM model remo v es 

the prohibitively high-resolution requirements imposed by resolving 

the sharp density gradients between the cold and hot gas phases. 

Ho we ver, the CGSM still requires that the velocity gradients within 

each of the fluids are well resolved. 

4.2 Comparison to existing subgrid models 

In the last few years, there have been several new subgrid models 

to address the resolution challenges facing galaxy-scale simulations. 

Models such as the physically evolved winds (PhEW; Huang et al. 

2020 , 2022 ) and Arkenstone (Smith et al. 2024 ) specifically address 

the difficulties of accurately simulating multiphase galactic winds 

driven by supernova feedback. These approaches are moti v ated by 

the results of high-resolution, idealized simulations of ISM patches, 

which have shown that while multiphase outflows predominantly 

carry their energy in the hot gas phase, the bulk of their mass is 

in the cold gas phase (e.g. Li & Bryan 2020 ; Kim et al. 2020a , b ). 

Directly resolving this energy-mass partitioning is currently beyond 

the capabilities for galaxy simulations in a cosmological context. 

To o v ercome this limitation, the PhEW and Arkenstone models 

introduce a no v el type of wind particle during supernova feedback 

events. These wind particles, conceptually similar to the CGSM 

presented here, represent unresolved cold gas mass and engage 

in mass, momentum, and energy exchanges with the surrounding 

medium before they are ultimately recoupled with the ‘regular’ 

particles in the CGM. 

A key difference between the PhEW and Arkenstone models and 

the CGSM lies in the spatial extent and continuity of the cold gas 

subgrid prescription. In the PhEW and Arkenstone frameworks, 

cold wind particles are generated e xclusiv ely during superno va 

feedback events. Once these particles recouple with the regular 

gas, the capacity to model subgrid cold gas ceases. In contrast, the 

CGSM allo ws e very cell in the simulation to host arbitrarily small 

amounts of cold gas. This approach facilitates evolving a continuous 

distribution of subgrid cold gas throughout the entire simulation 

domain. Furthermore, the grid-based approach to the CGSM is 

particularly well suited for solving the conservation equations in 

low-density regions. 

4.3 Missing physics and future applications 

In this work, the CGSM intentionally omits certain physical pro- 

cesses, such as magnetic fields, conduction, turbulence, and cosmic 

rays, to focus on presenting a ‘proof of concept’ of the advantages 

of a subgrid approach in CGM simulations. While this missing 

physics w ould lik ely alter the quantitative aspects of the cold–hot 

gas interactions – such as the rate of thermal instability growth or the 

time-scales for cloud mass loss and accretion – the modular design 

of the CGSM makes it straightforward to incorporate changes to the 

expressions for ρ̇, ṗ , and ε̇ . Future modifications will incorporate 

new physics or reflect updated methodologies based on the latest 

high-resolution simulations, such as using a power law to model 

unresolved cold cloud sizes or accounting for the turbulent velocity 

dispersion of unresolved clouds within a cell. 

Importantly, changes to the quantitative details of the interaction 

terms do not compromise the qualitative advantages offered by 

the CGSM o v er standard hydrodynamics simulations in the low- 

resolution limit. The CGSM’s ability to (1) capture the gradual 

accretion of cold gas mass within a single cell, (2) generate smooth 

spatial distributions of cold gas, and (3) accommodate short cloud- 

destruction and growth time-scales remain fundamentally robust, 

irrespective of these potential updates. 

The assumption in the CGSM that subgrid cold gas clouds are 

significantly smaller than the typical CGM resolution ( �x ∼ 1 kpc) 

may not hold scenarios where extreme non-thermal pressure leads to 

the formation of significantly larger cold ‘clouds’ with characteristic 

sizes larger than ∼ 1 − 100 kpc, as seen in some CGM simulations 

that include cosmic ray physics (e.g. Salem, Bryan & Corlies 2016 ; 

Butsky & Quinn 2018 ; Buck et al. 2020 ; Ji et al. 2020 ; Butsky 

et al. 2022 ). Ho we ver, in such cases, the non-thermal pressure can 

be factored into the approximation of the expected cold cloud sizes, 

as demonstrated in Butsky et al. ( 2020 ). When cold clouds are large 

enough to be resolved at a given resolution, the CGSM does not need 

to be applied in that region, and the mass of the cold subgrid fluid 

would simply be zero. 

In future work, we plan to incorporate the missing physics 

described abo v e and calibrate the CGSM for use in cosmological 

zoom-in simulations. The combination of a cosmological context 

and physically moti v ated treatment of subgrid cold-gas physics will 

enable us to better determine the origin and impact of cold gas in 

a variety of contexts, including the CGM, galactic winds and mass 

accretion, as well as high-velocity clouds in our own Milky Way. 

5  SUMMARY  

In response to the challenge of resolving cold CGM gas in galaxy 

simulations, we introduce a two-fluid framework for modelling the 

subgrid physics of unresolved cold gas. The CGSM is designed 

to e xplicitly evolv e the total mass density and bulk momentum of 

unresolved cold gas cloudlets. It uses the properties of the resolved 

gas fluid to inform predictions about the physical state of cold gas. 

In this model, the unresolved cold fluid interacts with the resolved 

hot fluid, exchanging mass, momentum, and energy in accor- 

dance with the findings from high-resolution, idealized simulations 

(Fig. 1 ). 

The CGSM offers several distinct benefits over traditional hydro- 

dynamics methods in situations where the resolution is significantly 

lower than necessary to adequately resolve cold-gas structure. In 

contrast to traditional hydrodynamics simulations, which are limited 

to a single-phase, single-temperature gas within each cell, the CGSM 

allows for the presence of arbitrarily small amounts of cold gas 

throughout the simulation (Fig. 2 ). As a result, the CGSM is 

capable of producing more realistic spatial distributions of cold 

gas mass. This is in stark contrast to under-resolved traditional 

hydrodynamics simulations, which tend to accumulate cold gas mass 

in a limited number of large clouds, with sizes artificially inflated 

by the size of the low-resolution voxels (Fig. 3 ). Furthermore, where 

under-resolved hydrodynamics simulations predict artificially long 

cloud-destruction and accretion time-scales, the CGSM captures the 

expected behaviour of cold gas, even when operating at the same 

resolution (Figs 4 and 5 ). 

These findings suggest that in the limit of low resolution – as 

is typical in the haloes of galaxy-scale simulations – traditional, 

single-fluid hydrodynamic simulations may be unreliable tools for 

determining the origin and evolution of cold CGM gas. Even if the 

simulations converge on certain cold-gas metrics, such as the total 

cold gas mass, by artificially inflating cold-gas sizes and evolution 

time-scales, we cannot rule out that such simulations are finding the 

‘right answer’ for the wrong reasons. 

Certainly, opting for a subgrid model comes with its own set 

of trade-offs. Fundamentally, this approach introduces new simu- 

lation parameters that require precise tuning, nuanced resolution 
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requirements, and the assumption that the subgrid model accurately 

represents the ensemble of cold clouds. Using a subgrid model for 

cold CGM gas also means that the simulations cannot be used to 

study small-scale cold gas structure and e volution. Ho we ver, for 

simulations with a prohibitively large dynamic range of physical 

and temporal scales, the subgrid approach is una v oidable. For 

example, there is a strong precedent for using subgrid models of 

star formation and stellar feedback in galaxy-scale simulations. 

While such simulations cannot be used to study stellar evolution 

or supernova remnants, the subgrid approach has been invaluable 

for understanding the effects of star formation and stellar feedback 

on galaxy evolution. We are now faced with a similar trade-off in 

studying galactic haloes. 

For those seeking to study the flow of cool gas and its rela- 

tionship to galaxy evolution on cosmological scales, the subgrid 

model approach is likely inevitable. The alternative – inferring cold 

gas properties from simulations where the resolution elements are 

orders of magnitude larger than the actual cold gas structures –

is fundamentally flawed. Choosing the right approach hinges on a 

better understanding of which scales need to be resolved in order to 

accurately model cold-gas physics. Should it be determined that the 

required scales are small ( � pc) compared to the typical resolution in 

the simulated CGM ( � 100s pc), then directly resolving cold CGM 

gas would be computationally infeasible with current technologies. 

In anticipation of such a scenario and rather than waiting potentially 

decades for the requisite computational advancements, the CGSM 

offers a means to effectively model cold-gas physics within the 

limitations of current resolution capabilities. 

SOFTWARE  

The CGSM was implemented in the ENZO astrophysical simula- 

tion code (Bryan et al. 2014 ; Brummel-Smith et al. 2019 ). The 

analysis of the simulations relied heavily on the YT (Turk et al. 

2011 ), MATPLOTLIB (Hunter 2007 ), and NUMPY (Harris et al. 2020 ) 

packages for the PYTHON (Perez & Granger 2007 ) programming 

language. 
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AP PENDIX  A :  TESTS  O F  M O D E L  B E H AV I O U R  

In this section, we test the core functionality of the two-fluid model 

and its implementation in the ENZO astrophysical simulation code 

(Bryan et al. 2014 ; Brummel-Smith et al. 2019 ). 

In Fig. A1 , we demonstrate the advection of the two-fluid model 

in the presence of a shock. For this test, we set up a modified Sod 

shocktube with both the regular fluid and the unresolved cold fluid 

initialized to the same values described below. We simulate the 

shocktube in a 1D domain with x ∈ [ −0 . 5 , 0 . 5], resolved by 200 

cells. The initial conditions are given by ρg = 1 , ρ̄cl = 1 , and P g = 1 

for x f 0, and ρg = 0 . 125 , ρ̄cl = 0 . 125 , and P g = 0 . 1 for x g 0. 

The velocity of both the regular fluid and the cold subgrid fluid 

is initialized to zero everywhere. P g = ( γ − 1) ε is the thermal gas 

pressure with γ = 5 / 3. We evolve the shocktube for t = 0 . 2 internal 

time units. 

In the case of strong drag ( K drag = 1000), the analytic solution is 

given by the black dashed line. In this case, the simulated shocktube 

follows the analytic solution well. There is no analytic solution for the 

case of weak drag. Instead, we repeat the numerical test in Laibe & 

Price ( 2012a ) with K drag = 1 and plot the results in the bottom panel 

of Fig. A1 . The behaviour of the two fluids agrees well with the results 

in Paardekooper & Mellema ( 2006 ) and Laibe & Price ( 2012a ). 

In Fig. A2 , we demonstrate the performance of the drag coupling 

with a modified version of the dustybox test in Laibe & Price ( 2012a ). 

The physical setup of this problem is similar to that of the shocktube, 

only the gas properties are uniform throughout the entire space and 

the boundary conditions are periodic. The normal gas is initially at 

rest and the cold fluid is initialized with a velocity in the ˆ x -direction. 

If the cold and regular fluids are coupled through a drag coefficient, 

then the velocity of the cold gas will decrease o v er time as it imparts 

momentum on the regular gas. For this test, we consider the simplest 

case, in which the drag coefficient, K drag , is a constant. 

We simulate this process for a variety of different drag coefficients, 

K drag , and cold gas density ratios, ρ̄cl /ρg . In all cases, the initial hot 

gas density and the velocities of the two fluids are: ρg = 1 , v g = 

0 , and ̄v cl = 1. When testing the effect of the drag coefficient, we 

keep ρ̄cl /ρg = 1 constant and vary K drag ∈ [0 . 01 , 0 . 1 , 1 , 10 , 100]. 

When testing the effect of the cold gas density ratio, we fix K drag = 1 

and vary ρ̄cl /ρg ∈ [0 . 01 , 0 . 1 , 1 , 10 , 100]. 

Fig. A2 shows the time evolution of the cold gas velocities for 

a variety of different drag coefficients (top) and ratios of cold gas 

density to regular gas density (bottom). The black dotted lines show 

the analytic solutions, which agree with the simulation results in all 

cases. When the drag coefficient is low or the cold gas density is high 

relative to the hot gas density, the velocity of the cold gas remains 

relativ ely unchanged o v er time. When the drag coefficient is high or 

the cold gas density is low, the cold gas velocity quickly reaches its 

equilibrium velocity. 
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Figure A1. The distribution of the gas density , velocity , pressure, and specific thermal energy in a 1D modified SOD shocktube after t = 0 . 2 code time units, 

for two different drag coefficients. Top: when the drag coefficient is very high ( K drag = 1000), the cold and regular gas fluids move at the same velocity, 

following the analytic solution for a shocktube with a modified sound speed (black dashed line). Bottom: when the drag coefficient is only moderately strong 

( K drag = 1), the shock motion of the hot fluid imparts momentum to the cold gas fluid, but the two fluids are not fully coupled. Although there is no analytic 

solution for this regime, our results are consistent with those presented in Laibe & Price ( 2012a ). 
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Figure A2. The time evolution of cold gas velocity for a variety of different 

drag coefficients (top) and ratios of cold gas density to regular gas density 

(bottom). The black dotted lines show the analytic solutions, which agree 

with the simulation results in all cases. When the drag coefficient is low or 

the cold gas density is high relative to the hot gas density, the velocity of the 

cold gas remains relatively unchanged over time. When the drag coefficient 

is high or the cold gas density is low, the cold gas velocity quickly reaches its 

equilibrium velocity. 
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