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Room-temperature phosphorescence (RTP) has tremendous potential in optics and photonics. Unlike fluores-
cence, RTP has substantial afterglow signals even after the excitation light is removed, which allows for extended
acquisition times and higher signal-to-noise ratio under time-gated bioimaging. However, conventional RTP
materials, both metal-containing and metal-free organic compounds, typically have limited photostability and
inherent toxicity, making them unsuitable for long-term biological applications. Here, we report metal- and
organic fluorophore-free silica nanoparticles (SNPs) that facilitate long-lived phosphorescence and exhibit RTP
for high-contrast bioimaging. Polycondensation of silicon precursors and silyl biphenyls forms biphenyl-doped
SNPs (bSNPs), and thermal decomposition of biphenyl moieties generates optically active defects in the
biphenyl-bonded silicate network. The calcined bSNPs (C-bSNPs) have RTP-related biphenyl defects composed of
carbon impurities, corresponding to spectroscopic measurements and ab initio calculations. Facile surface
functionalization of defect-engineered C-bSNPs with tumor-targeting peptides while maintaining long-lived RTP
allows for tissue autofluorescence-free in vivo bioimaging for cancer diagnosis, surpassing the limitations of
continuous-wave imaging.

state (Sp) to stabilize the energy level as a form of light emission [1,2].
Occasionally, the photoexcited electrons undergo spin conversion to the

1. Introduction

Upon light absorption in semiconducting materials, electrons are
excited from their fundamental ground state (Sp) to a singlet excited
state (Sy), and the photoexcited electrons are spontaneously transited to
the lowest excited (S;1) state via internal conversion. Fluorescence is a
radiative de-excitation process from the excited state (S;) to the ground

triplet (T;) state through intersystem crossing (ISC), followed by radi-
ative de-excitation to the ground state (Sp) [3]. This process called
phosphorescence exhibits extended emissive decay lifetimes in the range
of milliseconds to hours, in contrast to fluorescence which lasts for
nanoseconds. Hence, phosphorescence is of considerable interest in
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optoelectronics [4-7], anticounterfeiting [8], and biological imaging
[9-13]. However, phosphorescence is typically observed at extremely
low temperature, which significantly limits its practical application.

In this regard, room-temperature phosphorescence (RTP) has
attracted significant attention over the past few decades [14,15]. Rare-
earth metals are used as a key component for RTP materials to facilitate
ISC; however, they have several disadvantages including high cost,
acute toxicity, and reduced stability against moisture. To develop metal-
free RTP materials, various photo-active materials such as organic flu-
orophores and supramolecular structures have been adopted and
extensively investigated [16-25]. The general strategy for achieving
metal-free RTP involves suppressing the organic fluorophore vibrations
to restrict the nonradiative thermal decay pathways, thereby facilitating
the triplet state radiative decay [26-30]. As such, metal-free RTP is
typically observed in rigid structures (crystalline states or solid-state
blends) that can effectively suppress vibration. To date, several RTP
materials have been developed by embedding fluorophores in host
matrices such as poly(methyl methacrylate), poly(vinyl alcohol), and
silica [10,31-35].

One of the attractive biomedical applications of RTP materials is
employing them as a luminescent probe in imaging-guided diagnostics,
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which allows for noninvasive detection of diseases such as cancer and
infection [36-42]. The long-lived excited state of RTP enables to facil-
itate the precise tracking of the luminescent probes with time-gated
imaging systems, in which short-lived tissue autofluorescence is
completely eliminated, thereby resulting in background-free bioimaging
[43]. However, realizing long-lived RTP in aqueous phases remains
challenging owing to the high dissolved oxygen concentration in water
and free molecular motion, both of which results in RTP quenching of
triplet excitons [44]. Furthermore, the use of typical organic
fluorophore-based RTP in bioimaging is limited because of the possi-
bility of fluorophore leakage from the host matrix and lack of long-term
stability [45,46]. Therefore, a novel design strategy for metal- and
organic-fluorophore-free materials is necessary, particularly to achieve
water-stable RTP for high-contrast bioimaging.

Herein, we report defect-engineered silica nanoparticles (SNPs) that
exhibit unprecedentedly noticeable RTP without use of metal activators
or organic fluorophores. Using silyl biphenyls as an additive to the
Stober method producing SNPs, the biphenyl-doped silica nanoparticles
(bSNPs) are readily synthesized, which are then calcined at high tem-
perature. Thermal decomposition of the biphenyl groups during the
calcination process generates optically active defects in the silicate

a
o o -0 % o
oo A !, |_- A §
- 0-8i_)—(_)-Si-0™ Stiring
. A\ ~0 ~ 24 h
Tetraethyl orthosilicate 4,4'-Bis(triethoxysilyl)
(TEOS) -1,1"-biphenyl (BTBP)
3 / \ -
si L ' J~ - |
J " d L ‘g/ / v/ '
Dioxasilyrane Silylene Oxygen defect center (ODC) Carbon-related defects
b c . d
e f g h
— bSNP = = Si-C
- — C-bSNP| & = | = Si0
= S~ >
8 8 8
£ § 2
7] - (72}
S g 5
= S |— DbSNP £
= | — C-bSNP
T, TR T ) L e e ey | y : g

T ) T b T T
3600 2700 1800 900
Wavenumber (cm-')

10 20 30 40 50 60 70 80
2 Theta (deg.)

I I T I
104 102 100 98
Binding energy (eV)

I
104 102 100 98
Binding energy (eV)

Fig. 1. Chemical structure and characteristics of C-bSNPs. (a) Schematic illustration depicting synthesis process of bSNPs and C-bSNPs, and corresponding chemical
structures in the defects. (b) Photographic images of C-bSNPs after ceasing UV (365 nm) irradiation under ambient condition at room-temperature. (c) TEM and (d)
HRTEM images of C-bSNPs. (e) XRD patterns and (f) ATR-FTIR spectra of bSNPs and C-bSNPs. High-resolution XPS spectra of Si 2p of (g) bSNPs and (h) C-bSNPs.
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network, which is the origin of ISC inducing RTP. The large steric hin-
drance of the biphenyl groups in the bSNPs is responsible for the optical
defects in the calcined bSNPs (C-bSNPs). Controlled calcination process
is demonstrated to reveal the stable RTP of C-bSNPs, in which the nature
of the defect structure is thoroughly investigated including spectroscopy
and ab initio calculations. Facile surface chemistry of the C-bSNPs al-
lows biochemical modification with a tumor-homing peptides to target
cancer cells in vitro and in vivo. Finally, tumor-homing C-bSNPs show
great biocompatibility and a novel diagnostic capability that clearly
visualizes cancer with high-contrast wusing in vivo tissue
autofluorescence-free bioimaging system.

2. Results and discussion
2.1. Morphological and chemical structures of C-bSNPs

To synthesize the C-bSNPs, we first prepared bSNPs as intermediates
via the polycondensation of tetraethyl orthosilicate (TEOS) and 4,4'-bis
(triethoxysilyl)-1,1-biphenyl (BTBP). With the introduction of BTBP
into the modified Stober method, generation of specific silica defect sites
was expected within the bSNPs owing to the large steric hindrance of the
biphenyls (Fig. 1a). Subsequently, the bSNPs were placed in a muffle
furnace and heated at 500 °C for 8 h to yield defect-engineered C-bSNPs.
The resulting C-bSNPs powders emitted strong phosphorescence lasting
several seconds after ultraviolet (UV) radiation in room-temperature
(Fig. 1b and Movie S1), which was sufficiently bright to be seen by
the naked eyes. Transmission electron microscopy (TEM) showed that
the bSNPs exhibited narrow size distribution centered at ~320 nm in
diameter with a uniformly spherical morphology (Fig. Sla and b). The C-
bSNPs maintained spherical shape and size after the calcination process
(Fig. 1c), ensuring the morphological stability while retaining the
original size determined by the modified Stober method. It should be
also noted that the high-resolution TEM (HRTEM) showed that the
nanoparticles (NPs) exhibited amorphous structures both prior to and
post heat treatment (Fig. 1d and Slc). X-ray diffraction (XRD) analysis
was further performed to determine the crystal structures of the bSNPs
and C-bSNPs, and both XRD patterns exhibited broad diffraction spectra
with a wide peak centered at 20 = 23° (Fig. le), suggesting amorphous
silica formation, corresponding to the HRTEM. Thus, neither the pres-
ence of the co-precursor (BTBP) nor the calcination process affected the
crystalline structure of the silica NPs.

Attenuated total reflectance Fourier transform infrared (ATR-FTIR)
spectroscopy was then performed to investigate the chemical structure
of the synthesized SNPs (Fig. 1f). The ATR-FTIR spectra exhibited vi-
bration peaks corresponding to Si-O-Si asymmetric (approximately
1053 cm™!) and symmetric (approximately 800 cm ™) stretching, thus
confirming that the primary component of the NPs was the silica matrix.
However, the signals corresponding to the Si-OH asymmetric bending
(approximately 1631 cm™!) and stretching (approximately 940 cm™?)
and OH bending (approximately 1450 cm ') and stretching
(3500-3000 ¢cm~!) were diminished after calcination. The significant
reduction in the number of hydroxide groups suggests the elimination of
surface silanol groups during calcination.

X-ray photoelectron spectroscopy (XPS) analysis determined the
elemental composition of the b-SNPs and C-bSNPs to reveal the calci-
nation effects on the chemical structure of silica. The survey spectra of
both bSNPs and C-bSNPs showed evident O 1s, C 1s, Si 2s, and Si 2p
signals (Fig. S2a), and the high-resolution XPS spectra of Si 2p of the
bSNPs and C-bSNPs showed the transition of Si-C to SiOx after calci-
nation (Fig. 1g and h). The Si 2p pattern of the bSNPs exhibited a peak
(with a binding energy of 100.7 eV) that could be deconvoluted into two
peaks, with an intense peak at 99.8 eV corresponding to the Si atoms of
the silicate (Si—Cs) groups and a comparatively less intense peak at
100.9 eV corresponding to the Si atoms of the SiOx groups. In compar-
ison, the XPS patterns of the C-bSNPs positively shifted by approxi-
mately 0.5 eV as the number of Si atoms in the SiOx groups increased
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and that in the silicate decreased. The high-resolution XPS spectra of C
1s of both the bSNPs and C-bSNPs (Fig. S2b) showed C=C peaks (283.9
eV and 283.0 eV), a C-C and C-H bonding peak (286.4 eV) of biphenyl
groups, and a C-Si bonding peak (282.5 eV). However, the overall C
content decreased after calcination, indicating the calcination-induced
destruction of biphenyl groups which are chemically bound to the sil-
ica matrix. The XPS patterns of O 1s suggest that the O content increased
by approximately 1.7 times after calcination because the Si atoms,
which became unstable owing to Si-C bond breakage, was combined
with oxygen during calcination in air (Fig. S2c). The bSNPs exhibited a
peak at 529.8 eV and a shoulder at 530.6 eV, whereas the C-bSNPs
exhibited a peak at approximately 530.4 eV. This indicates that the O-Si
groups (529.5 eV) were significantly reduced and that the number of
Si-O-Si groups (530.7 eV) increased. The reduction in the O-Si groups is
assumed to be associated with the reduction in the number of Si-OH
groups induced by calcination. To further analyze the chemical struc-
ture, thermogravimetric analysis (TGA) and gas chromatography (GC)
were also performed. The mass of the bSNPs drastically decreased until
the temperature rose to approximately 175 °C owing to the evaporation
of the absorbed water within the sample (Fig. S3a). Subsequently, no
change in the mass was observed until 250 °C, and the mass decreased
again from 250 °C to 500 °C. Mass spectroscopy combined with GC (GC/
MS) was conducted on the gas generated within this range, and the
chemical substances, such as benzaldehyde and 4-acryloylphenol, are
responsible for the thermal decomposition of biphenyl groups (Fig. S3b).

2.2. Optical properties of C-bSNPs

The effect of calcination was further examined using UV-visible
(UV-Vis) absorption spectroscopy (Fig. 2a). For the bSNPs, an absorp-
tion band was observed at ~265 nm, attributed to the n — ©* transition
in the biphenyl benzenes, while the peak was diminished for the C-
bSNPs, indicating the thermal decomposition of biphenyls. As the
binding states were altered by calcination, the bSNPs and C-bSNPs
exhibited different optical properties, thus we further investigated the
influence of organic molecules and silica defects in the silica matrix in
terms of the fluorescence properties. The fluorescence emission (FLep,)
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Fig. 2. Optical properties of C-bSNPs. (a) UV-Vis absorbance spectra of bSNPs
and C-bSNPs. (b) FL.p, spectra (Aex = 270 nm) and (c) PPy, spectra (Aex = 230
nm) of bSNPs and C-bSNPs, respectively. The magnified FL¢,, and PPy, spectra
in the range of 300-600 nm are shown in the insets. (d) TRPL signal of C-bSNPs
in the phosphorescence time domain (Aex = 264 nm; Aey, = 480 nm). Note that
a.u. stands for arbitrary unit.
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intensity, measured at an excitation wavelength (Aex) of 270 nm,
decreased after calcination (Fig. 2b). Based on a comparison with the
FLem spectrum of the precursor BTBP (Fig. S4), the FL¢, band at 320 nm
was evidently from the biphenyl molecules. Because this energy state is
typically destroyed after calcination, it is reasonable to infer that the
biphenyl molecule did not significantly contribute to the FL.p, of the C-
bSNPs. The FL.y, peak at approximately 470 nm did not significantly
decrease after calcination but slightly increased (Fig. 2b). Given that the
silylene and dioxasilyrane defect pairs contribute to the development of
excitation bands at 245 nm and 370 nm, respectively [47], the fluo-
rescence excitation (FLey) spectra were examined at an emission wave-
length (Aem) of 470 nm. As indicated in Fig. S5a, these excitation bands
became relatively notable after calcination. This indicates that defect
pairs were generated by the thermal degradation of biphenyls at 500 °C
and that these defects primarily affected the 470 nm FLey, of the C-
bSNPs. Phosphorescence spectroscopic analysis indicates that the C-
bSNPs exhibited strong phosphorescence emission (PP.p,) ranging from
approximately 450 to 500 nm (Fig. 2c), which is related to the phos-
phorescence excitation (PPey) peak at 275 nm (Fig. S5b). Because such
PP, was almost unobserved in the bSNPs, it could be proposed that the
structural and chemical transition of the silica matrix induced by
calcination leads the ISC of photoexcited to triplet states.

To investigate the effects of the biphenyl co-precursor, SNPs were
synthesized without BTBP, and calcined at identical condition with the
C-bSNPs to prepare the C-SNPs. UV-Vis absorption spectra showed no
significant difference prior to and after calcination (Fig. S6a), due to
absence of the n-bonding components in the silica matrix. Furthermore,
negligible FLey, and PP, were observed for both the SNPs and C-SNPs
(Fig. S6b—e). The results emphasize that the unique optical properties of
the C-bSNPs were inferred to be related to the structural changes
resulting from the thermal decomposition of the biphenyl groups.
Markedly weak PPy, signal observed for the C-SNPs is presumably due
to intrinsic carbon moieties, such as ethoxy groups from TEOS or carbon
substances from air, which turned to structural changes with the thermal
decomposition.

Time-resolved photoluminescence (TRPL) spectroscopy was per-
formed to investigate the radiative recombination dynamics. TRPL sig-
nals of the bSNPs and C-bSNPs were measured in the fluorescence time
domain of 0-50 ns (Fig. S7). The choice of Aex (264 nm and 374 nm) and
Aem (360 nm and 480 nm) aimed to closely align with the wavelengths
corresponding to the energies of biphenyl-related states and silica
defect-related states, respectively. The average FLep, lifetime (tayg) of the
particles under the probe wavelengths related to the biphenyl-related
states remained unchanged after calcination (Table S1 and Fig. S7a),
indicating that no spin-orbit coupling occurred in the remaining
biphenyl molecules of the C-bSNPs. This implies that the ISC of the bi-
phenyls to the triplet state was significantly unfavorable and that the
phosphorescence of the C-bSNPs did not originate from the biphenyls. In
contrast, increased FL, lifetime was observed after calcination under
the probe wavelengths corresponding to silica defect-related states
(Table S1 and Fig. S7b), indicating that the fluorescence energy states
increased owing to silica defect formation. To investigate the phos-
phorescence carrier dynamics and lifetime, TRPL signals of the C-bSNPs
in the phosphorescence time domain of 0-30 s were measured at Aex =
264 nm and Aex = 480 nm (corresponding to the PP, peak wavelength),
as depicted in Fig. 2d. The average PP, lifetime was determined as 3.8 s
through a single exponential fit. Furthermore, the quantum yield was
measured to be 26.51 % at Aex = 270 nm using an integrating sphere
instrument, comparable to that of transition metal complexes and
organic fluorophores. To the best of our knowledge, the defect structure
of silica corresponding to this phosphorescence energy state has not
been previously investigated.

2.3. Physicochemical origin of phosphorescence in C-bSNPs

Extensive investigations were further conducted to verify the origin
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of long-lived phosphorescence. First, hydrolysis experiments were per-
formed to reveal the influence of the silica network and embedded
organic species (e.g., biphenyl) molecular defects on the optical char-
acteristics. Silica structures readily decompose through hydrolysis under
alkaline condition, particularly at high pH [48]. Because the C-bSNPs
predominantly comprise Si—O bonds, the luminescent characteristics are
changed upon exposure to an alkaline solution containing NaOH.

To decompose the Si-O network and remove the embedded organic
species, the C-bSNPs were treated with a NaOH solution (pH ~14) for
20 min. During this process, the Si-O bonds were cleaved by excessive
hydroxyl ions at high pH, and the embedded organic species such as
biphenyls were released from the silica network. Subsequently, the
released organic species were separated from the product by centrifu-
gation, leaving only the silica pellet (NaOH-treated C-bSNP) to be
collected. The fluorescence spectra of the NaOH-treated C-bSNP show a
significant decrease at 320 nm, corresponding to the BTBP fluorescence
peak, confirming the removal of embedded biphenyl molecules
(Fig. S8a). In addition, Raman spectrum of C-bSNPs detected only
background luminescence signals and no signal appeared in the D and G
band regions, indicating the absence of crystalline carbonaceous species
(Fig. S8b). Consequently, the potential contribution of the biphenyl
groups or organic species to the optical properties could be completely
ruled out through this experiment.

The FLe, spectra measured at Aex = 370 nm, which is closer to the
excitation band of the silica defects, further support the association of
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the fluorescence changes with silica defects as the FL.p, intensity at 470
nm was noticeably reduced after hydrolysis of silica networks (Fig. 3a).
As previously mentioned, this excitation band (~370 nm) is attributed
to the 470 nm FL¢p, resulting from intrinsic silica defects (silylene and
dioxasilyrane defect pairs). Because these defects also comprise Si-O
bonds, their decomposition was also expected with hydrolysis at alka-
line condition, supporting the reduction in FL¢y, centered at 470 nm.
However, unlike the fluorescence, the phosphorescence showed no
significant change (Fig. 3b). Considering that phosphorescence is pre-
served under the same conditions, two conclusions can be drawn: (i) the
phosphorescence does not originate from organic species, but rather
from a defect site within the silica network, and (ii) the defect site
contributing to the phosphorescence is expected to be comprised with
Si—C bonds, not the Si—O bond-based intrinsic silica defects, since the C-
bSNPs only contain Si, O, and C atoms.

The effect of the calcination temperatures on the fluorescence and
phosphorescence properties of the C-bSNPs was then investigated. As
shown in Fig. 3¢, d and S9, the FLp, significantly decreased with calci-
nation, while PPy, gradually increased upon calcination temperature
increase of up to 700 °C. Interestingly, at temperatures above 700 °C,
both the fluorescence and phosphorescence states were practically
diminished, and the resulting product became identical to pure SNPs,
implying that the defect structure was unstable at these calcination
temperatures. In addition, the quantum yields for C-bSNPs after calci-
nation at different temperate were correspondingly matched with the
PP, (Table S2). Consequently, we inferred that the thermal decompo-
sition of the biphenyl groups embedded in the silica network generated a
unique type of defect site comprising a Si-C bond and that this defect
essentially initiated the RTP of metal- and fluorophore-free silica NPs.

To investigate the phosphorescence properties with respect to the
amount of BTBP precursor, the C-bSNPs were synthesized with different
amounts of BTBP (e.g., 0.25, 2, 5, and 10 times higher than that for the
C-bSNPs, which is denoted as C-bSNP( 25), C-bSNP(3), C-bSNP(s), and C-
bSNP(1(), respectively). The C-bSNPs exhibited the highest phospho-
rescence intensity among others (Fig. S10), and the intensity decreased
with the increased BTBP while slightly reduced at C-bSNP(g 25). To
determine the reason behind this observation, TEM imaging revealed
that a high BTBP/TEOS ratio resulted in the agglomeration of silica
particles (Fig. S11a). Such clustering may hinder phosphorescence car-
rier recombination, thus substantially reducing the phosphorescence
intensity. Interestingly, an onion-like lattice structure, similar to that of
biphenylene-bridged organosilica (Fig. S11b), was also observed in the
sample before the calcination of C-bSNP(;) [49]. Furthermore, the TEM
image of C-bSNP(1¢y depicts a unique lattice spacing of 0.48 nm after
calcination, which is inconsistent with those of organosilica and crys-
talline silica (Fig. S11c). This unique lattice spacing is likely direct ev-
idence of the structural changes resulting from the thermal
decomposition of the biphenyl groups. Therefore, we concluded that
after bSNP calcination, the empty site from which the biphenyl group
was removed exhibited a unique structure distinct from that of general
silica, and phosphorescence-related defects comprising Si-C bonds were
generated at this site.

2.4. Computational analysis on the origin of phosphorescence

Experimental findings on the optical properties of C-bSNPs revealed
a new absorption band (at ~265 nm) derived by addition of BTBP
precursor into TEOS-based Stober solution to form bSNPs (Fig. 2a). In
addition, the XPS results also imply that carbon-related defects in the C-
bSNPs might be associated with the newly formed absorption band
(Fig. 1g). However, the precise structure of the defects that contribute to
this absorption band and their roles in the phosphorescence of the C-
bSNPs remain unclear. In this regard, density functional theory (DFT)
calculations were further performed to investigate the origin of the
phosphorescence in the C-bSNPs. Potential intrinsic defect structures
and carbon-related defect structures of SiO, were modeled based on
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previous research (Fig. S12) [50-52], and the simulated absorbance
spectra of the defect structures were compared with the experimentally
observed absorbance spectra of the C-bSNPs (Fig. S13). The DFT-
calculated absorbance spectrum of pure silica (SNPs) was in good
agreement with the experimental results (Fig. S13a). For the intrinsic
defect structures of silica, such as oxygen deficient center (ODC), peroxy
bridge (POL), and silanol (Si-O-H), no specific absorption peaks were
observed (Fig. S13b-d). However, for all carbon-related defect struc-
tures, an absorption peak appeared near 265 nm (Fig. S13e-h), implying
that carbon defect formation owing to the introduction of BTBP as a
precursor can be the phosphorescence origin of C-bSNPs.

We then investigated the phosphorescence mechanism of C-bSNPs
using DFT calculations. For phosphorescence to occur, the luminescence
of a substance commences with electron-hole pair formation through
the absorption of incident light (route (1) in Fig. 4a), followed by energy
release in the form of light or heat. When the photoexcited electron is
rapidly relaxed from excited state (ES) to ground state (GS), light
emission occurs (route (2) in Fig. 4a). However, the photoluminescence
mechanism can be altered by the formation of defect-induced mid-gap
trap states because excited electrons can be captured by these trap states
during relaxation. There are two possible scenarios in this context. The
first scenario is that the captured electrons may be thermally activated
and de-captured to the conduction band, potentially causing thermally
activated delayed fluorescence (route (3) in Fig. 4a) [53], but such
fluorescence was not observed in our system (Fig. S6d). It means that the
de-captured electrons might be relaxed to the trap states or followed
non-radiative recombination. Therefore, both recombination and cap-
ture processes might be possible for phosphorescence in C-bSNPs,
resulting in phosphorescence with a longer wavelength than that of
fluorescence (route (4) in Fig. 4a) [54-56]. Accordingly, we investigated
the band structures of the promising carbon-related defect structures
above (Fig. S13e-h), and the DFT analysis supports that carbon defects
introduce new trap states with two transition levels (Fig. 4c-e)
compared with the band structure of pure SiO; (Fig. 4b). The transition
levels in interstitial carbon defect (2.30 eV), C-C defect (2.37 eV), and
0C20, (2.65 eV) are in good agreement with the experimentally
observed emission peak at 470 nm (2.64 eV) (Fig. 2¢). Furthermore, the
electronic charge densities of the trap states revealed that two transition
levels are associated with carbon defects (Fig. S13i-1). Finally, the for-
mation of trap states induced by carbon defects led to the phosphores-
cence of C-bSNPs.

2.5. Biofunctionalization and in vitro cancer targeting

The C-bSNPs can be readily utilized as biomedical imaging probes
because of their uniform morphology, facile surface chemistry, and
distinct optical properties. To demonstrate their potential for imaging-
guided cancer diagnostics, water-dispersibility and tumor-targeting
capability were enhanced by surface functionalization of C-bSNPs.
Amine functionalization with 3-aminopropyltriethoxysilane (APTES),
followed by carboxylation with succinic anhydride, allows the further
modification with a tumor-targeting peptide while retaining the phos-
phorescence in an aqueous environment (Fig. 5a). Among the various
tumor-targeting moieties such as peptides, aptamers, and antibodies, we
used a prototypic RPARPAR peptide which specifically recognizes
neuropilin-1 (NRP-1) receptor, followed by intracellular uptake through
receptor-mediated endocytosis [57-60]. NRP-1 is a multifunctional
ligand involved in the signal transduction of various endogenous cyto-
kines and is highly expressed on various tumor cell surfaces that can be
targeted by C-end rule (CendR) peptides [61].

The RPARPAR peptide-functionalized C-bSNPs (pep-C-bSNPs) was
prepared using molecular conjugation between the carboxylic acid
groups on C-bSNPs and the N-terminal aminohexanoic acid of the pep-
tide via a conventional EDC/NHS coupling reaction (Fig. 5a). Next,
specific binding affinity of pep-C-bSNPs to SW-480 cells, an NRP-1-
positive human colorectal cancer cell line, was observed through
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Fig. 4. Theoretical phosphorescence mechanism of C-bSNPs obtained via DFT calculations. (a) Schematic illustration of the band structure including the photo-
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defect structures.

confocal microscopy, whereas the C-bSNPs lacking RPARPAR peptide
functionalization exhibited negligible cellular uptake (Fig. 5b). In
addition, the reduced uptake of pep-C-bSNPs through NRP-1 receptor
pre-blocking by treatment with free RPARPAR peptides for 30 min prior
to pep-C-bSNP introduction to SW-480 cells further supported the hy-
pothesis that the RPARPAR peptide leads to targeted pep-C-bSNP de-
livery to SW-480 cells (Fig. S14). In addition, negligible cytotoxicity of
both C-bSNPs and pep-C-bSNPs at elevated concentrations of up to 200
um/mL was verified, despite biphenyl doping and defect sites, in
accordance with the biocompatible characteristics of typical SNPs
(Fig. S15). Comparing to other organic phosphorescent probes such as
9,9'-(6-iodophenoxy-1,3,5-triazine-2,4-diyl)bis(9H-carbazole) and
cyanine dye-based bioorganic nanoparticles, the C-bSNPs showed
remarkable biocompatibility as in vivo imaging probe [62-66]. There-
fore, the silica nanoparticles were supposed to maintain the intrinsic
non-toxic biocompatibility even after doping and calcination process.

2.6. Time-gated afterglow phosphorescence imaging for in vivo cancer
diagnostics

By employing the cancer-targeting luminescent probe, one can
facilitate imaging-guided cancer diagnostics or therapeutics as high
accumulation at a suspected tumorous tissue is realized with the tar-
geted imaging probe. However, tissue autofluorescence is one of the
most critical challenges in fluorescence-based bioimaging systems
because the intrinsic biological components, such as mitochondria,

lysosomes, and lipids, comprise endogenous fluorophores that typically
absorb light and emit substantial tissue autofluorescence, thereby
reducing the visibility of exogenous fluorescent probes. Time-gated
imaging is an alternative method for visualizing the emission signals
of exogenous probes by capturing the emissive light at a delay time after
excitation rather than using continuous-wave excitation [67]. Long-
lived afterglow signals enable late time gating to eliminate back-
ground noise and interference. In this study, both C-bSNPs and pep-C-
bSNPs demonstrated concentration-dependent signal intensity in time-
gated afterglow imaging (Fig. 6a). In particular, the phosphorescence
characteristics of the two NPs remained comparable even after peptide
conjugation. Considering the sufficiently long phosphorescence lifetime
of C-bSNPs compared with the nanosecond-scale lifetime of tissue
autofluorescence, the persistent emission from C-bSNPs was well
differentiated in the time domain from signals associated with endoge-
nous fluorophores and tissue autofluorescence using time-gated after-
glow imaging. Delayed afterglow images acquired 10 s after excitation
showed strong evidence of long-lived phosphorescence signals, whereas
the autofluorescence of background tissue completely disappeared
owing to its shorter lifetime (<approximately 10 ns) in mice (Fig. 6b). In
contrast, conventional fluorescence imaging performed under
continuous-wave excitation exhibited emission signals indistinguishable
from the substantial tissue autofluorescence.

Time-gated afterglow phosphorescence imaging of human colorectal
cancer xenografts was then demonstrated in a mouse model via intra-
tumoral injections of C-bSNPs (Fig. 6¢). The afterglow phosphorescence
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Fig. 5. In vitro cancer cell targeting with pep-C-bSNPs. (a) Schematics of pep-C-bSNPs. (b) Confocal laser scanning microscopy images of SW-480 cells treated for 4 h

with medium (control), C-bSNPs, and pep-C-bSNPs (20 ug/mL). Scale bars: 10 um.

of C-bSNPs was readily displayed at the tumor site with a conventional
in vivo imaging system (IVIS) in the luminescence mode following UV
light irradiation (Aex = 365 nm). In addition, the afterglow phospho-
rescence signals exhibited a delay-time-dependent intensity (Fig. 6d).
Long-lived phosphorescence of C-bSNPs was acquired up to 40 s after
switching off the light, which was highly beneficial in eliminating the
tissue autofluorescence in the time-gated imaging system, and this step
can be readily adopted when using conventional fluorescence imaging/
optical tomography instruments. Although the intensity of UV excitation
light diminishes significantly due to absorption by the tissue beyond a
few millimeters, the present autofluorescence-free bioimaging elimi-
nates unavoidable background noise in fluorescence-based in vivo op-
tical imaging. Therefore, the RTP-based in vivo bioimaging can be
adopted to distinguish the biological components of interest at least
underneath the skin and is able to obtain clear visualization despite the
short penetration depth of UV excitation and blue emission. Time-gated
afterglow imaging of the tumor tissues further confirmed the presence of
C-bSNPs in the tumor and demonstrated the effectiveness of time-gated
afterglow imaging of C-bSNPs in ex vivo tissues (Fig. 6e). Although the
short penetration depth and potential toxicity of UV light irradiation
might limit the use of C-bSNPs as an imaging prove, the time-gated
imaging provides a means of highly luminescent visualization as it
only requires a very short exposure time (<10 s) while eliminating noisy
tissue autofluorescence.

Finally, potential cancer diagnostics using the time-gated afterglow
imaging and pep-C-bSNPs was assessed using intravenously injected
circulating C-bSNPs as a diagnostic imaging probe. Systemic adminis-
tration of pep-C-bSNPs revealed gradual increase in luminescence signal
corresponding to the timely accumulation at the tumor site, whereas a
negligible signal was detected at bare C-bSNPs administrated mice,
through time-gated afterglow imaging of a human colorectal cancer
xenograft mouse model (Fig. 6f). Notably, intravenously injected NPs
passively accumulate in tumor tissues owing to the enhanced perme-
ability and retention (EPR) effect. In this study, the capability of C-
bSNPs to target tumors was negligible under passive accumulation via
the EPR effect, whereas a significant amount of pep-C-bSNPs was
observed with the active targeting strategy. Ex vivo tumor tissue imag-
ing clearly demonstrated the superior targeting capability of the pep-C-
bSNPs and corresponded to the results obtained from the time-gated
afterglow imaging of live tumor-bearing mice (Fig. 6g and Fig. S16).
Moreover, we also found non-specific accumulation of both NPs at other
major organs including liver, spleen, and lung while negligible signals
were detected from in vivo live imaging due to the limited penetration
depth of light. Despite the significant targeting capability of pep-C-
bSNPs (>1.5 %) compared to bare C-bSNPs (<0.4 %), majority of NPs
were still passively accumulated in the liver and spleen rather than the
tumor. However, the imaging-based cancer diagnosis utilizing the RTP
and afterglow imaging system is potentially useful to detect very early
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from two mice for each group at 8 h post injection.

stage of cancers by observing small extents of targeted NPs in vivo.
Because of the limited tissue penetration depth of UV excitation and
blue emission, the afterglow time-gated imaging is only eligible to
visualize subcutaneous or ex vivo tissues rather than deep tissue live
imaging. Nevertheless, autofluorescence-free afterglow imaging using
C-bSNPs can be further extended to study in vivo cancer targeting,
accumulation, and biodegradation at deep tissue level with appropriate
imaging settings such as intravital or endoscopic imaging systems,
where superior signal-to-noise ratio is required by eliminating sub-
stantial tissue autofluorescence [68,69]. In addition, UV irradiation
employed in the present study exhibits negligible DNA damage, as
native DNA poorly absorbs the light at this range (315-400 nm) [70]. In
addition, due to the high QY (~26.51 %), the excitation light irradiation
can be minimized to avoid any adverse effect such as DNA damage and

mutation caused by UV exposure. In fact, the UV excitation power (~1.6
mW/cm?) was less than 10-fold lower than the maximum power expo-
sure (MPE) permissible for skin irradiation (18 mW/cm?) [71]. Despite
the potential limitations using UV light as an excitation light source,
exceptionally long-lived phosphorescence of C-bSNPs in room temper-
ature is promising to clearly visualize the imaging probe at least near the
skin and(or) superficial tissues without concerns of cytotoxicity, com-
parable to literatures [72-75].

Further validation revealed no obvious cytotoxicity of C-bSNPs in the
histological evaluation of major organs 7 d post injection. After staining
with hematoxylin and eosin (H&E), no significant tissue damage or
inflammation was observed in either C-bSNP- or pep-C-bSNP —injected
mice compared with the saline group (Fig. S17). As we found no evi-
dence of residual silica in histological analysis in major organs, the



H. Chang et al.

nanoparticles were supposed to be cleared and completely removed
from the tissues. Overall, the results indicate that pep-C-bSNPs are a
nontoxic, effective imaging probe for diagnosing tumors through
noninvasive time-gated afterglow imaging. Compared to conventional
organic dyes, such as FITC and Cy5.5 for bioimaging, C-bSNPs have
superior features to eliminate the tissue autofluorescence background
while exhibiting high quantum yield. By using near-infrared-emitting
dyes such as Cy5.5, the tissue autofluorescence could be reduced.
However, the short circulation half-life due to rapid renal clearance
leads to less potency for specific targeting in vivo (Fig. S18). Moreover,
the colloidal stability of C-bSNPs were acceptable to be administrated in
high concentration in PBS (20 mg/mL) as it reaches a stable dispersion
of lower concentration (1.25 mg/mL) in the blood stream with an in-
jection rate of 6.6 uL/s. Following the intravenous administration, the
NPs were supposed to distribute evenly throughout the body while
maintaining colloidal stability, indicating no significant concern
regarding aggregation or dispersity in vivo (Fig. S19).

3. Conclusion

In this study, we report defect-engineered silica NPs as a metal- and
organic-fluorophore-free novel RTP material. bSNPs are synthesized via
modified Stober method with TEOS and BTBP as co-precursors, and
carbon-related defects in the silica network are generated by controlled
calcination. Carbon-related defects are the origin of long-lived phos-
phorescence via intersystem crossing. Under excitation light irradiation,
the calcined bSNPs (C-bSNPs) emit bright green (480 nm) RTP lasting
over 10 s and is visible to the naked eye. Considering the results of the
chemical analyses and theoretical calculations, the thermal decompo-
sition of the biphenyl groups embedded into the silica network is
inferred to have generated multiple defect structures containing Si-C
bonds. These carbon-related defect structures, including interstitial C,
C-C, and OC30 defect structures, generate the sub-bandgap trap states
that permit triplet excitons. The rigid silica network effectively prevents
the quenching of triplet excitons by oxygen and moisture, thereby
facilitating the production of C-bSNPs with long-lived RTP. In addition,
RTP is stably retained in an aqueous environment even after tumor-
targeting peptide conjugation. Finally, we show that potential cancer
diagnostics using the time-gated afterglow imaging system and tumor-
homing RPARPAR peptide-functionalized C-bSNPs (pep-C-bSNPs). Tis-
sue autofluorescence-free bioimaging is achieved as a beneficial tool for
high-contrast imaging-based cancer diagnostics, which is useful by
adopting long-lived phosphorescence lasting over 30 s. This work not
only paves the way for the design and preparation of sustainable and
reproducible RTP materials but also provides guidance for their bio-
logical applications and translational medicine. We also believe that our
theoretical approaches hold potential for screening defect structures,
facilitating the design of advanced RTP materials.

4. Materials and methods
4.1. Materials

TEOS (99.0 %), BTBP (90 %), (3-aminopropyl)triethoxysilane (99
%), succinic anhydride (>99 %), ammonium hydroxide solution (28 %
NH;j in Hy0, >99.99 %), and N,N-dimethylformamide (99.8 %) were
purchased from Sigma-Aldrich (St. Louis, MO), while ethanol (95 %)
was obtained from Duksan Pure Chemicals (Ansan, Korea). The RPAR-
PAR peptide, with an aminohexanoic acid linker on the N-terminal
group, was synthesized by Peptron (Daejeon, Korea). N-Hydrox-
ysulfosuccinimide sodium salt (sulfo-NHS) and N-(3-dimethylamino-
propyl)-N-ethylcarbodiimide hydrochloride (EDC) were procured from
Sigma-Aldrich. All the solutions were prepared using triple-distilled
water, and all the chemicals were used without further purification.
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4.2. Synthesis of silica nanoparticles (SNPs), biphenyl-doped SNPs
(bSNPs), C-SNPs, and calcined bSNPs (C-bSNPs)

Ethanol (100 mL), ammonium hydroxide solution (6 mL, 28 %), and
distilled water (2 mL) were mixed in a 250 mL glass beaker and stirred
for 30 min at room temperature. Next, 1.2 mL of TEOS was added to the
mixed solution, and the solution was vigorously stirred at room tem-
perature for 24 h to obtain SNPs. For bSNPs, 8.4 uL. of BTBP was added to
the solution with TEOS. Following the reaction, the synthesized SNPs
and bSNPs were centrifuged at 6000 rpm for 20 min and the superna-
tants were decanted, purified with ethanol three times by centrifugation,
and subsequently dried in a vacuum oven at 60 °C. The refined SNPs and
bSNPs were annealed at 500 °C for 8 h in a muffle furnace in air to
produce C-SNPs and C-bSNPs, respectively.

4.3. Controlling synthetic parameters related with optical properties

First, 100 mg of C-bSNPs was dissolved in 10 mL of water; subse-
quently, 2 M NaOH solution (10 mL) was added dropwise. The mixture
was heated to 100 °C and stirred for 20 min. The translucent solution
turned transparent as the reaction progressed. Following the reaction,
the solution was centrifuged at 6000 rpm for 10 min, washed three times
with ethanol, and dried at 60 °C overnight. The C-bSNPs were consid-
ered to decompose successfully when no particulate settlement was
observed for 1 h. To investigate the effect of the calcination temperature
on the fluorescence and phosphorescence properties of C-bSNPs, bSNPs
were prepared using the same synthesis method and calcined at different
temperatures (300, 400, 600, 700, and 800 °C) for the same duration (8
h). To investigate the optical properties considering the precursor
amount, a series of bSNPs with different concentrations of BTBP pre-
cursor were prepared. BTBP amounts of 3.36, 16.8, 33.6, and 84 uL were
added along with TEOS, and the resultant materials were calcined at
500 °C for 8 h using a muffle furnace to yield C-bSNPq 5, C-bSNP (), C-
bSNP(s), and C-bSNP(1), respectively (Fig. S20). Note that the C-bSNPs
calcined at 500 °C were chosen for in vitro and in vivo demonstration
because the phosphorescence intensity at 360 nm excitation wave-
length, corresponding to the UV irradiation wavelengths used for
afterglow imaging, does not significantly increase beyond 500 °C
(Fig. S21). Considering practical uses with cost-effective and scalable
synthesis process, C-bSNPs calcined at 500 °C were also feasible for
further bioimaging applications.

4.4. Characterization

For the TEM observation, first, 1 mg of the sample was dispersed in 1
mL of methanol by sonication and then dropped onto a lacey carbon
grid. TEM was performed using a JEM-2100F instrument (at an accel-
erating voltage of 200 kV) equipped with a Cs corrector. ATR-FTIR
spectroscopy was performed using a Nicolet iS50 FTIR spectrometer
(Thermo Scientific). Powder XRD was performed using a D8 Advance X-
ray diffractometer (TRIO/TWIN, Bruker) with Cu Ka radiation at 40 kV
and 40 mA. XPS was performed using a Nexsa (Thermo Fisher) instru-
ment with an Al Ka X-ray source (1486.6 eV). GC/MS was performed on
an Agilent HP 7890 gas chromatograph combined with combined with
an Agilent 5977E mass selective detector. UV-Vis absorption spectros-
copy was performed on samples in an aqueous solution (0.15 mg/mL)
using a Scinco S3100 UV-Vis spectrometer equipped with Hellma An-
alytics QS-grade quartz cuvettes (111-QS). Photoluminescence (fluo-
rescence/phosphorescence) spectroscopy was performed on a Jasco FP-
8500 fluorometer with samples in the powder form. The absolute
quantum yield was measured using a Jasco ILF-835 integrating sphere
(Fig. S22). The sample, in powder form, was ground with a mortar,
transferred into a 3-mm-thick quartz cuvette, and placed on the rack
inside the integrating sphere. After pre-exposing the sample to 270 nm
excitation for 5 min, absorptance and PL emission were measured. The
results were analyzed using Jasco Spectra Manager II Version 2 software
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(Table S2). The photoluminescence decay times were measured using a
Fluorolog (3-series Horiba) instrument with a time-correlated single-
photon counter.

4.5. Computational analysis

DFT calculations were performed using the Vienna ab initio Simu-
lation Package (VASP) [76,77]. Exchange-correlation energies were
treated using the Perdew-Burke-Ernzerhof functional based on the
generalized gradient approximation [78]. A plane-wave expansion with
a cutoff energy of 400 eV was applied with 3 x 3 x 2 Monkhorst-Pack k-
point sampling of the Brillouin zone for 2 x 2 x 2 supercells of pure and
defective a-quartz SiOy [79]. The geometries were relaxed using a
conjugate gradient algorithm until the forces on all unconstrained atoms
dropped below 0.03 eV/A. The convergence criterion was set at 10~ eV.
All the optimized structures were visualized by VESTA [80]. The ab-
sorption spectra were obtained using the frequency-dependent complex
dielectric function [81,82].

4.6. Biofunctionalization of C-bSNPs

COOH functionalization for endowing C-bSNPs with both water
solubility and peptide conjugation was performed through sequential
surface chemistry according to a literature [83,84]. C-bSNPs (100 mg)
were dispersed in ethanol (100 mL) through sonication, and then
aqueous NaOH (6 mL, 28 %) and distilled water (2 mL) were added to
the solution. After the solution was stirred for 30 min, 0.3 mL of APTES
was added, and the reaction solution was further stirred for 24 h. The
resulting NH,-functionalized C-bSNPs were rinsed three times with N,N-
dimethylformamide and water, respectively. The C-bSNP powder was
then dispersed in 20 mL of DMF, and a succinic anhydride solution (0.1
M, 20 mL) was subsequently added dropwise, followed by stirring for 24
h at room temperature. After washing three times with ethanol, COOH-
functionalized C-bSNPs were obtained. To conjugate the tumor-homing
peptide, an aliquot (1 mL) of the COOH-functionalized C-bSNPs (1 mg/
mL in PBS) was sequentially treated with 5 mg sulfo-NHS, 2.8 uL of EDC,
and 45 pL of RPARPAR peptide (1 mg/ml in deionized water) under
vigorous agitation (1000 rpm) at room temperature for 6 h. The peptide-
conjugated C-bSNPs (pep-C-bSNPs) were purified using centrifugation
and washed three times with PBS. Finally, the stock solution of pep-C-
bSNP was stored in the dark at 4 °C until use.

4.7. Invitro cellular uptake

Human colorectal cancer cells (SW-480, ATCC, USA) were seeded
onto Nunc eight-well chambered coverglass (Thermo Scientific) at a
density of 2 x 10* cells/well and allowed to grow at a temperature of
37 °C with 5 % CO; for 24 h. The culture medium was replaced with
RPMI 1640 medium (Gibco) containing C-bSNPs or pep-C-bSNPs at a
concentration of 20 pg/mL. After 4 h of incubation, the cells were
washed with PBS and stained with SYTO deep red nucleic acid (Invi-
trogen) to visualize the nuclei. Confocal laser scanning microscopy
(ZEISS LSM780) was employed for the cellular uptake analysis using
ZEN 3.4 (blue edition) software.

4.8. In vitro viability

To evaluate the in vitro cytotoxicity of the synthesized nanoparticles,
SW-480 cells were treated with either C-bSNPs or pep-C-bSNPs at
elevated concentrations. The cells were seeded in a 96-well plate at 5 x
10* cells per well and incubated for 12 h in a 37 °C, 5 % CO; incubator.
Subsequently, the cell culture medium was replaced with 100 uL of fresh
medium (no phenol red) containing C-bSNPs or pep-C-bSNPs at various
concentrations (0.2, 0.4, 0.6, 0.8, and 1.0 mg/mL) and incubated for 6 h.
The cell viability was determined by CCK-8 assay, where 5 uL of CCK-8
solution was added to each well, and the cells were further incubated for

10

Chemical Engineering Journal 493 (2024) 152529

30 min. The absorbance at 450 nm was measured using a microplate
reader, and the relative cell viability was quantitatively analyzed
through comparison with nontreated cells.

4.9. Experimental animals and xenograft models

Female BALB/c nude mice (six weeks old) were purchased from
Orient Bio (Korea) and treated in accordance with the guidelines of the
Institutional Animal Care and Use Committee (IACUC) at Ulsan National
Institute of Science and Technology (#UNISTIACUC-22-28). For the in
vivo xenograft mouse model, SW-480 cells (5 x 10° cells) were diluted
in 60 pL of Hank’s balanced salt solution and immersed in 60 pL of
Matrigel (BD Bioscience), and subcutaneously injected into the right
flank of the mice.

4.10. Time-gated afterglow phosphorescence imaging

For the initial demonstration of afterglow imaging in vivo, C-bSNPs
(100 pL) were subcutaneously injected into the abdomen of living mice
at various concentrations (0.2, 0.4, 0.6, and 0.8 mg/mL). Time-gated
afterglow images were acquired using the IVIS in the bioluminescence
mode promptly after light irradiation by a handheld UV lamp (365 nm).
For intratumoral injection, C-bSNPs (50 pL, 8 mg/mL) were directly
injected into the tumorous region of the mice of SW-480 bearing xeno-
grafts. In the time-gated imaging, afterglow signals were acquired using
the IVIS in various time domain. The delay time was manually
controlled by adjusting the start time of the IVIS acquisition. For the
systemic administration of C-bSNPs and imaging-guided cancer diag-
nosis, both C-bSNPs and pep-C-bSNPs (100 uL, 20 mg/mL) were intra-
venously injected through the tail vein of the SW-480 xenograft mouse
model. Time-gated afterglow images were acquired using the IVIS at a
delay time of 10 s.

4.11. H&E staining

Major organs of the mice in three groups were collected and fixed
with 10 % neutral buffered formalin. The organs were then embedded in
paraffin and sectioned at 6 um thickness, and then stained with hema-
toxylin and eosin staining (H&E). Furthermore, the tumor tissues were
collected for H&E staining to evaluate the histopathological changes.
The images of these sections were observed using a microscope.
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