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Spatially resolved subcellular protein–
protein interactomics in drug-perturbed 
lung-cancer cultures and tissues

Shuangyi Cai    1,9, Thomas Hu1,2,9, Abhijeet Venkataraman1,3, 
Felix G. Rivera Moctezuma4,5, Efe Ozturk    1,2,3, Nicholas Zhang1,5, 
Mingshuang Wang    1,3, Tatenda Zvidzai1, Sandip Das    1, Adithya Pillai1, 
Frank Schneider6,7, Suresh S. Ramalingam7,8, You-Take Oh7,8, Shi-Yong Sun7,8 & 
Ahmet F. Coskun    1,5,7 

Protein–protein interactions (PPIs) regulate signalling pathways and cell 
phenotypes, and the visualization of spatially resolved dynamics of PPIs would 
thus shed light on the activation and crosstalk of signalling networks. Here we 
report a method that leverages a sequential proximity ligation assay for the 
multiplexed profiling of PPIs with up to 47 proteins involved in multisignalling 
crosstalk pathways. We applied the method, followed by conventional 
immunofluorescence, to cell cultures and tissues of non-small-cell lung 
cancers with a mutated epidermal growth-factor receptor to determine the 
co-localization of PPIs in subcellular volumes and to reconstruct changes in the 
subcellular distributions of PPIs in response to perturbations by the tyrosine 
kinase inhibitor osimertinib. We also show that a graph convolutional network 
encoding spatially resolved PPIs can accurately predict the cell-treatment status 
of single cells. Multiplexed proximity ligation assays aided by graph-based deep 
learning can provide insights into the subcellular organization of PPIs towards 
the design of drugs for targeting the protein interactome.

Lung cancer is one of the leading causes of death, and non-small-cell 
lung cancer (NSCLC) accounts for 80% of lung cancer. One subgroup 
of patients with NSCLC harbouring epidermal growth-factor receptor 
(EGFR) mutation can benefit from EGFR tyrosine kinase inhibitors 
(TKIs), particularly osimertinib1. Despite there being advances in 
improving progression-free survival and overall survival, people 
can still develop acquired drug resistance due to the activation and 
crosstalk among signalling pathways. Hence, resolving the signal-
ling dynamics and PPIs involved in EGFR-dependent cancer cell  

growth has become an important step to solving the problem of 
osimertinib resistance.

Phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)/
mammalian target of rapamycin (mTOR) signalling is known as a key 
downstream pathway of EGFR, mediating resistance to EGFR TKIs2. The 
PI3K/AKT/mTOR pathway is commonly activated in NSCLC, and it also 
involves the development of chemoresistance in NSCLC by mediating 
with cluster of differentiation 147 (CD147)3. Another downstream path-
way of EGFR, the mitogen-activated protein kinase (MEK)/extracellular 
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iseqPLA visualizes the PPIs across AKT/mTOR, MEK/ERK and YAP/TEAD 
pathways in NSCLC EGFRm cell cultures and EGFRm frozen mouse 
tissue samples. Multiplexed spatial PPI dynamics studies under drug 
perturbations require computational frameworks for correlative and 
predictive modelling. Therefore, we demonstrated spatial PPI graph 
neural networks (spPPI-GNN) leveraging graph convolutional networks 
for single-cell-level prediction of drug perturbation from spatial PPI 
networks. Moreover, we performed correlative analysis approaches 
for quantifying PPI event co-localization and graph-based PPI networks 
with different protein markers.

Results
Multiplexed PPI detection using iseqPLA
To detect complex signalling interaction networks, we designed ise-
qPLA to provide highly sensitive maps of many PPIs in both cells and 
tissues (frozen or formalin-fixed paraffin-embedded (FFPE)). The detec-
tion can be either indirect or direct. For the detection of one PPI using 
direct labelling, the cells need to be stained with two primary antibodies 
targeting two different proteins or proteins phosphorylated at different 
sites19,20. These primary antibody pairs are conjugated to one of the PLA 
probes, one to PLUS and another to MINUS (Supplementary Fig. 2a). The 
PLA probe contains a unique oligonucleotide, is attached to the heavy 
chain of the primary antibody and permits the detection of PPIs in situ 
with a distance <20–40 nm at endogenous protein levels21. For indi-
rect labelling where the oligonucleotides are conjugated to secondary 
antibodies, when the proteins of interest interact with each other, the 
DNA probes from two antibodies hybridize and ligate to form circular 
DNA21. Amplified circular DNA can be visualized using fluorescence 
microscopy. The commercial PLA detection kit allows us to visualize 
and quantify the individual PPI. We advanced the current PLA technique 
to overcome the limitation on the number of protein pairs that can be 
detected by the conventional microscope. iseqPLA can detect multiple 
PPIs by utilizing iterative cycles of labelling, imaging, treating with 
DNase I/Nuclease P1 and relabelling (Fig. 1a and Supplementary Fig. 2b). 
The oligonucleotides on primary antibodies are removed using DNase 
I/Nuclease P1. iseqPLA utilizes commercial DuoLink PLA or Navinci 
assays to detect highly multiplexed subcellular protein interaction 
maps. This iterative process can be repeated to create multiplexed 
signalling interaction maps in the same single cell. There are several 
ways to multiplex the PPI detection process. We could detect one pair 
of PPIs per cycle (Supplementary Fig. 3) or detect three pairs of PPIs 
per cycle using multicolour detection (Supplementary Fig. 4). Also, by 
utilizing a multispectral microscope, we could achieve the detection 
of more than 3 pairs of PPIs per cycle (Supplementary Fig. 5).

iseqPLA profiles multiple PPIs and their subcellular distributions in 
single cells. By incorporating the localization information of organelles 
and proliferation proteins using rapid multiplexed immunofluores-
cence (RapMIF) (Fig. 1a)22, iseqPLA visualizes the protein associates 
across AKT/mTOR, MEK/ERK and YAP/TEAD pathways at subcellular 
levels in NSCLC EGFRm cell cultures and frozen mouse tissue samples. 
iseqPLA experiments of cell cultures treated with osimertinib dem-
onstrate the PPI dynamics and responses involved in the signalling 
pathways. The spPPI-GNN framework successfully predicts the cell 
perturbation states from the underlying PPI network graph created 
using PPI event distances. To validate our model, we compared our 
spPPI-GNN model with traditional machine learning (ML) models 
using PPI event counts, a multilayer perception (MLP) model using 
PPI counts and a multi-instance learning (MIL) model using multilayer 
perception (Fig. 1b).

We evaluated the sensitivity, specificity and batch consistency of 
iseqPLA, as well as the effect of osimertinib on protein baseline or PPI 
level (Extended Data Fig. 1a). To investigate the sensitivity of PLA, the 
kinetic change in PPI expression was measured in response to a range 
of 12-h osimertinib treatments in HCC827 EGFRm NSCLC cells (Sup-
plementary Fig. 6a,b). Cyclin D1/cyclin-dependent kinases 4 (Cdk4) 

signal-regulated kinase (ERK) signalling pathway, has been studied 
to delay or prevent acquired resistance to osimertinib. The crosstalk 
among these pathways is commonly measured by using western blot, 
flow cytometry, cell viability and apoptosis assays (Supplementary 
Fig. 1)1. The function of both pathways is widely described; however, 
the interaction between AKT/mTOR and ERK is still unclear. It has been 
demonstrated that reactivation of ERK1/2 occurs following EGFR TKI 
treatment, contributing to acquired resistance to osimertinib. The 
combination of EGFR TKI, osimertinib and MEK/ERK inhibitors could 
prevent the reactivation of ERK1/2 with a greater initial apoptotic 
response1.

However, cancer relapse still develops due to the activation 
of yes-associated protein (YAP)/transcriptional coactivator with 
PDZ-binding motif (TAZ) activity, which are components of the Hippo 
pathway4. The Hippo pathway, a tumour-suppressive signalling path-
way, could function as a resistant mechanism to EGFR and ERK/MEK 
inhibitors in EGFR mutant (EGFRm) NSCLC. In the absence of Hippo 
signalling, the inactivated large tumour suppressor kinase (Lats 1/2) 
results in the activation and translocation of YAP/TAZ into the nucleus, 
promoting the transcription of growth-related genes5,6 (Supplementary 
Fig. 1). The interaction of YAP and transcriptional enhanced associate 
domain 1 (TEAD1) can be directly inhibited by verteporfin (VP)7,8. Thus, 
mechanisms of action on drug perturbations of PPI binding targets 
could serve as an alternative strategy to overcome multipathway resist-
ance to osimertinib.

Inhibition in the ERK pathway may upregulate YAP/TAZ as a 
compensatory pathway. YAP can remain active upon inhibition of 
EGFR TKIs and EGFR/MEK inhibitors, and promote the cells to enter 
a senescence-like dormant state in the absence of EGFR downstream 
signalling in EGFRm NSCLC4. However, the crosstalk between the two 
pathways, especially the interaction between ERK and YAP/TAZ, is 
still unclear. Thus, unravelling the complexity of the PPIs or crosstalk 
among pathways at the subcellular level using a multiplex imaging 
approach is necessary to identify the signalling networks and spatial 
dynamics.

A protein-interaction network using affinity-purification mass 
spectrometry has been developed to map out physical associations 
among 90 tyrosine kinases9. Although this approach reveals previously 
unexplored EGFR network oncogenesis in lung cancer, the sample prep-
aration with peptide extraction causes loss of spatial features in signal-
ling. Also, PPIs have shown a capability in screening EGFR-dependent 
cancers using single-molecule pull-down and co-immunoprecipitation 
techniques. However, the single-molecule co-immunoprecipitation 
approach is limited to snap-frozen samples only10. Förster resonance 
energy transfer (FRET) has been used to detect PPIs on the basis of the 
energy transfer from a donor molecule to an acceptor molecule conju-
gated to antibodies. However, FRET requires the genetic modification 
of two proteins11,12.

We overcome these limitations by directly targeting endogenous 
proteins using a proximity ligation assay (PLA). This method utilizes 
rolling cycle amplification (RCA) and permits the detection of PPIs. PLA 
is compatible with low-affinity antibodies to increase the sensitivity 
of biomarker detection with higher signal-to-noise ratios (SNRs)13. It 
also exhibits improved sensitivity and specificity for localizing pro-
teins than western blot, sandwich enzyme-linked immunosorbent 
assay (ELISA)14. PLA has been used to investigate homodimerization 
and crosstalk between proteins15–17. Proximity sequencing (Prox-seq) 
has been developed, combining PLA with single-cell RNA sequenc-
ing, to quantify mRNAs, proteins and protein complexes18. However, 
high-throughput tools are needed to analyse the spatial context of 
PPIs. The signalling proteins display location-dependent functions in 
cells and tissues. In our study, we developed a multiplexed PLA assay, 
which we termed ‘intelligent’ sequential proximity ligation assay (ise-
qPLA), allowing us to detect multiple PPIs on the same sample and 
reveal the spatial PPI dynamics under different drug perturbations. 
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Fig. 1 | Schematic illustration of iseqPLA for subcellular spatial-signalling 
networks. a, Schematic of iseqPLA combined with RapMIF in cell cultures or 
tissues. PPIs in either cell cultures or tissue samples are detected using iseqPLA. 
Each PPI is detected by primary antibodies conjugated with oligonucleotides. 
Between cycles, the probes are removed using the enzyme. Following n cycles, 
multiple PPIs are measured at the subcellular level in single cells. RapMIF is then 
utilized to visualize proliferation, signalling and organelle markers. b, Spatial PPI 

graph construction. (i) Counting using machine learning models, where each 
cell PPI count is used as model input to predict without spatial information. (ii) 
Multi-instance learning at the cell level with a multilayer perception network, 
where PPIs are treated as a bag of instances without spatial information. (iii) 
The proposed spPPI-GNN network that utilizes single-cell spatial PPI graph 
for prediction, where the PPI spatial graphs are used as input for the model 
prediction. Created with BioRender.com.
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PPI decreased as the osimertinib concentration was increased from 0 
to 100 nM, indicating that osimertinib inhibits cell cycle progression 
and proliferation (Extended Data Fig. 1b and Supplementary Fig. 6c). 
However, the decreasing trend was moderate for SRY-Box transcription 
factor 2 (Sox2)/Octamer-binding transcription factor 4 (Oct4), 
phosphor-p90 Ribosomal S6 Kinase (p-p90RKS)/Nuclear factor kappa 
B (NF-kB) and BCL2-interacting mediator of cell death (Bim)/translo-
case of outer membrane (Tom20) due to the lower copy numbers of 
PPIs, which are sensitive to PPI binding fluctuations.

To measure and quantify the specificity of the multicolour PLA, 
we performed Bim/Tom20 PPI on HCC827AR/BimKO cells, which are 
osimertinib-resistant cells with Bim knockout, and HCC827AR empty 
vector as a control (Supplementary Fig. 7a and Dataset 1). The Bim 
intensity was also measured using immunofluorescence (IF) (Supple-
mentary Fig. 7b). A reduction in Bim/Tom20 PPI counts was observed 
in the cytosol of HCC827AR/BimKO cells (Extended Data Fig. 1c and 
Supplementary Fig. 7c). The few positive signals of Bim/Tom20 in 
HCC827AR/BimKO cells may come from the stochastic binding of 
the Bim primary antibody in the nucleus. Nucleus IF staining of Bim 
in HCC827AR/BimKO cells also confirmed the IF noisy staining of the 
Bim antibody (Supplementary Fig. 7b,c). Overall, the downregulation 
of Bim/Tom20 PPIs and Bim mean intensity in HCC827AR/BimKO 
cells indicates the specificity of PLA (Extended Data Fig. 1c and Sup-
plementary Fig. 7c). To evaluate the specificity of single-colour PLA 
(Supplementary Dataset 2), HCC827 cells were also stained with the 
anti-p-ERK-PLUS probe, then anti-YAP MINUS probe, followed by a 
positive control, Cyclin E/cyclin-dependent kinases 2 (Cdk2) (Sup-
plementary Fig. 7d). Negative results from the staining of only PLUS or 
MINUS probes validated the specificity of PLA (Supplementary Fig. 7e).

To investigate whether osimertinib inhibits the baseline protein 
expression or the PPI, we performed IF to visualize and quantify the 
baseline protein levels and utilized PLA to measure the correspond-
ing PPI counts in untreated and osimertinib-treated HCC827 cells 
(Extended Data Fig. 1a and Supplementary Fig. 8). Osimertinib effec-
tively inhibited the expression of Sox2/Oct4 interactions; however, 
there was no effect on the baseline protein expression level (Extended 
Data Fig. 1d). This indicates that osimertinib may affect the PPI without 
changing the baseline expression of proteins. However, osimertinib 
inhibits cyclin D1 but upregulates CDK4, resulting in the unchanged 
interaction between the two proteins (Extended Data Fig. 1d). Cyclin 
D1 expression levels fluctuate across the cell cycle, while CDK4 remains 
relatively consistent. The interaction between cyclin D1 and CDK4 plays 
a key role in the S-phase cell cycle progression23. The cyclin D1/CDK4 
pair could be a potential target for combinatorial treatment of osimer-
tinib. Osimertinib as a TKI can directly inhibit EGFR phosphorylation, 
thereby altering the dynamics of the downstream signal cascades, 
AKT/mTOR, ERK/MEK and Hippo pathways. Whether the baseline 
protein levels or the interactions involved in the signal cascades are 
perturbed in response to osimertinib treatment needs further study 
and statistical support.

To examine the batch consistency of iseqPLA, we performed two 
cycles of iseqPLA using multicolour detection in a total of 4 pairs of 
protein interactions (Cycle 1: Sox2/Oct4 and NF-kB/p-P90rsk; Cycle 2: 
cyclin D1/CDK4 and Bim/Tom20) on HCC827 cells across two batches 
(Supplementary Fig. 9a,b). Between cycles, the signals were removed 
using nuclease P1 (Supplementary Fig. 9a,b). Cells at passages 10 and 
21 from different batches demonstrated a similar trend across four 
PPIs (Extended Data Fig. 1e and Supplementary Fig. 9c), indicating the 
batch consistency of iseqPLA.

Highly multiplexed spatial PPI networks in EGFRm cells
To reconstruct the signalling networks and PPI in EGFRm cells under 
drug perturbations, iseqPLA was used to profile 5 PPIs involved in the 
AKT/mTOR, MEK/ERK and YAP/TEAD pathways in the NSCLC EGFRm 
osimertinib-sensitive cell line, HCC827 cells. DNase I was used to remove 

probes between cycles. In our study, we first investigated whether the 
EGFR pathways would be affected by osimertinib in HCC827 cells, even-
tually affecting cell proliferation and growth. HCC827 cells were treated 
with and without 100 nM osimertinib for 6, 12 and 24 h (Supplementary 
Fig. 10a). The clinically achievable steady-state plasma concentration 
of osimertinib is ~500 nM in patients with EGFRm NSCLC receiving an 
80 mg day−1 dosage24. The concentration of 100 nM osimertinib should 
fall within the expected range of steady-state plasma levels of osimer-
tinib and has been selected to ensure sufficient inhibition of the target 
pathway to mimic clinically relevant dosing levels. p-ERK was used to 
indicate the efficacy of osimertinib treatment. P-ERK was suppressed 
initially after a 6-h treatment; however, osimertinib even increased 
p-ERK after a 12-h treatment (Supplementary Fig. 10b and Dataset 3), 
suggesting that osimertinib may exert transient inhibitory effects on 
the MEK/ERK pathway. To reveal the PPI dynamics under osimertinib 
treatment, we performed iseqPLA on HCC827 cells treated with and 
without 100 nM osimertinib for 12 h. To determine the best staining 
conditions for both RapMIF and iseqPLA, we performed titrations on 
each antibody in the multiplexed panel. IF was performed to evaluate 
antibody staining using two different dilution rates (Supplementary 
Figs. 11 and 12). We compared the SNRs of these IF images and used the 
conditions with higher SNRs for either iseqPLA or RapMIF experiments 
(Supplementary Table 1). The staining dilutions were consistent with 
the manufacturer-suggested dilution range.

By using iseqPLA, we showed and compared PPI dynamics among 
proteins including YAP/TEAD1, cyclin E/CDK2, p-ERK/cellular myelo-
cytomatosis (c-Myc), myeloid cell leukaemia sequence 1 (Mcl-1)/Bcl-2 
antagonist killer 1 (Bak) and p-AKT/mTOR (Supplementary Fig. 13). 
The PPI distributions were visualized using their spatial localization. 
Each node represents one detected PPI event, and for each single cell, 
a spatial graph of PPI events was constructed using Delaunay triangula-
tion (see Methods) which captures the underlying spatial neighbour-
ing information of PPI events. The cell boundary was obtained from 
segmentation on the p-EGFR signalling protein (Fig. 2a).

We first examined the effect of osimertinib on cell apoptosis and 
proliferation by comparing the cyclin E/CDK2 and Mcl-1/Bak interac-
tions. MCL-1 is known as an anti-apoptotic factor, and it can be phos-
phorylated by ERK, resulting in enhanced proteasome-dependent 
degradation. Osimertinib downregulates Mcl-1, thereby enhancing 
cell apoptosis25. Mcl-1 can sequester Bak activity via direct interaction, 
thereby preventing cell apoptosis26. The interaction between Mcl-1 
and Bak is related to the inhibition of cell apoptosis. After osimertinib 
treatment, the cells did not exhibit a significant change in the Mcl-1/
Bak interaction in either the cytoplasm or the whole cell (Fig. 2b, Sup-
plementary Figs. 14 and 15a and Dataset 4). However, osimertinib effec-
tively inhibited the interaction between cyclin E and CDK2 (Fig. 2b and 
Supplementary Fig. 15a), which functions in initiating the S phase and 
cell proliferation27.

We next determined the effects of osimertinib on EGFR-related 
signalling pathways. Osimertinib as an inhibitor to EGFR downreg-
ulated the p-AKT/mTOR pathway reducing the interactions in the 
cytoplasm (Supplementary Fig. 15a). Osimertinib can induce the deg-
radation of c-Myc, which regulates cell growth and proliferation in 
EGFRm-sensitive cells, and ERK can phosphorylate c-Myc at S62 linked 
to c-Myc’s stabilization28. However, the inhibitory effect is limited in 
osimertinib-resistant cell lines, and the upregulation of c-Myc is related 
to acquired resistance to osimertinib28. In terms of the YAP/TEAD1 path-
way, YAP can remain active under EGFR TKIs and EGFR/MEK inhibitions 
contributing to tumour dormancy in EGFRm NSCLC4. We observed 
that after treatment, the cells exhibited significantly increased the 
interactions of YAP/TEAD1 and P-ERK/c-Myc (Fig. 2b), indicating that 
osimertinib may change the signalling dynamics by upregulating the 
YAP and ERK pathways to compensate for EGFR inhibition. Previous 
studies examining the effect of osimertinib on p-ERK using western 
blot demonstrated the inhibitory role of osimertinib on p-ERK for up 
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to 24 h using western blot1. However, western blot measures the total 
protein level, which is different from the protein interactions where 
proteins function in active forms.

To resolve the spatial proteomics and PPIs, we also integrated Rap-
MIF into our panel22. RapMIF was utilized to detect the localization of 
distinct organelles (such as Golgi: wheat germ agglutinin (WGA), endo-
plasmic reticulum: Concanavalin A, mitochondria: TOM20, nucleus: 
DAPI). The organelle information can be associated with the distribution 
of PPIs from iseqPLA to identify the subcellular localization of PPIs (recep-
tors, cytosol or nucleus) in individual cells (Fig. 2c). The PPI co-expression 
confirmed the localization of Mcl-1/Bak interactions in mitochondria 
with high co-expression of TOM20 (Fig. 2d). We also observed the 
co-expression of cyclin E/CDK2 and ki67 in the nucleus (Fig. 2d, Supple-
mentary Fig. 15b and Dataset 5). All three markers are related to cellular 
proliferation and they are highly correlated with each other in colorectal 
carcinoma29. Also, iseqPLA revealed the co-localization of Mcl-1/Bak and 
p-AKT/mTOR PPIs (Fig. 2d). This is potentially due to the regulation of the 
AKT pathway in mitochondria-mediated functions such as redox states, 
apoptosis and metabolism30.

We investigated the distribution of PPI events as predictive features 
to respond to drug treatment by training graph-based models to predict 
the treatment output on the basis of the PPI-event counts. We developed 
SpPPI-GNN, a predictive pipeline built on experimentally identified 
PPI events of interest, facilitated by iseqPLA and RapMIF. The primary 
objective is to predict cellular treatment states and extract distinctive 
PPI spatial subcellular graphs indicative of treatment states, enhancing 
our understanding of the impact of drugs on cellular pathways.

Current graph neural network (GNN) models focus on predict-
ing protein interactions from amino-acid sequences. Models such as 
GraphPPIS31 and SGPPI32 are designed to predict PPI probabilities. In 
summary, spPPI-GNN is tailored to address inquiries at the cellular 
level, whereas GraphPPIS and SGPPI are designed for inquiries at the 
protein level (Supplementary Fig. 16). Other GNN models are designed 
for cellular-level tasks, such as PLA_GNN33 for predicting subcellular 
protein mislocation using a graph of proteins, spaGNN34 for predict-
ing cell identity with RNA graphs, as well as newly developed GNN for 
pathway analysis tasks35.

SpPPI-GNN encodes intracellular PPIs as nodes and utilizes Delau-
nay triangulation for spatial location to form edges (Methods and 
Extended Data Fig. 2a). The subcellular spatial graph is used in the graph 
neural network forward step by combining the graph neural network 
level and the neighbouring node embedding. Finally, all PPI event node 
information is combined using a graph pooling layer for predicting 
cell-level treatment information. The raw count of PPI events provides 
a comprehensive characterization of cellular state, and subcellular PPI 
spatial graphs contain important information on the underlying PPI 
spatial distribution (Extended Data Fig. 2b,c). Moreover, we compared 
various GNN layers, hidden layer sizes, number of layers and graph 
pooling layers to comprehensively compare the different models 
(Methods, Supplementary Fig. 17a and Datasets 6 and 7). The sensitivity 
of each parameter was examined by holding all other hyperparameters 
constant and varying only one hyperparameter at a time (Supplemen-
tary Fig. 18a and Table 2). The sensitivity analysis focused on various 
hyperparameters, including graph pooling methods, hidden layer 
sizes, the number of layers, graph types and the comparison between 
two-dimensional (2D) and 3D graphs, providing a comprehensive view 
of the model’s robustness and adaptability to parameter changes. The 
resulting area under the curve (AUC) scores were calculated by taking 
the mean of the scores across different parameter settings, ensuring a 
comprehensive evaluation of each model’s performance. The analysis 
demonstrated a large variation in model AUC scores when adjusting 
the pooling layer hyperparameter.

We benchmarked the spPPI-GNN model prediction AUC score 
with machine learning (ML) models on mean PPI event counts per cell, 
multilayer perception (MLP) models on mean PPI event counts per 

cell and a multi-instance-learning (MIL) MLP model on subcellular PPI 
event information without spatial graph (Methods). The AUC scores 
show that spPPI-GNN models outperform ML, MLP and MIL models in 
predicting cell treatment states from subcellular information (Fig. 2e).

Scaling up the profiling of signalling networks
To confirm the feasibility of scaling up the PPI detection, we profiled 9 
PPIs in HCC827 cells treated with and without osimertinib for 12 h. The 
cells were profiled with 2 cycles of multicolour detection, followed by 
5 cycles of single colour detection of PPIs (YAP/TEAD1, cyclin E/CDK2, 
p-ERK/c-Myc, p-AKT/mTOR, Mcl-1/Bak). The multicolour detection 
allows us to detect 2 to 3 pairs of PPIs in a single cycle. RapMIF was 
performed to detect organelle locations, cell proliferation and tumour 
cells, followed by iseqPLA. The PPI distribution in every single cell can 
be visualized using the spatial network (Supplementary Figs. 19 and 20).

We observed that the later cycles of iseqPLA in the 9-PPI dataset, 
such as TEAD1/YAP and cyclin E/CDK4, exhibited much fewer signals. 
This is important because DNase I digests DNA that is connected to 
proteins in the nucleus, especially transcription factors. To minimize 
the DNase I effect on nuclear proteins, we changed the order of PPI 
detections and observed that TEAD1/YAP and cyclin E/CDK4 PPIs were 
not affected in the first two cycles (Supplementary Fig. 13). We observed 
that multicolour PPI detection was less sensitive to DNase I and bleach-
ing, and we were able to redetect the residuals of PPIs after 6× treatment 
with DNase I and bleaching (Supplementary Fig. 21).

To preserve the quality of single-colour PPI detection, nuclease 
P1 as an alternative reagent to DNase I to digest single-strand DNA 
was tested on 5 pairs of PPIs using single-colour detection in HCC827 
untreated cells (Supplementary Fig. 22). Nuclease P1 concentra-
tions ranging from 1:500 to 1:100 worked effectively in removing 
single-stranded DNAs bound to fluorophores. In addition to nuclease 
P1, we also demonstrated that shortening the DNase I incubation from 
4 to 2 h can still remove the oligos and fluorophores. Dimethylsulfoxide 
(DMSO) stripping solution exhibited practicability in deactivating 
the signals36. By restaining the samples with another set of PPIs, we 
confirmed the feasibility of multiplexing PPIs using nuclease P1 and 
DMSO stripping approaches. We also observed that nuclease P1 has a 
lower effect on phalloidin by preserving its phenotype compared with 
DNase I and DMSO.

Therefore, we further scaled up iseqPLA using nuclease P1 to 
detect 13 PPIs in HCC827 cells treated with and without osimertinib 
for 12 h. The cells were profiled with 4 cycles of multicolour and then 
5 cycles of single-colour detection, followed by multiplexed immu-
nofluorescence (Fig. 3a,b and Supplementary Fig. 23). Compared 
with DNase I, nuclease P1 better preserves the nuclear structure (Sup-
plementary Fig. 24). However, we observed some blobs (larger than a 
typical PPI dot size) in the nucleus, which were digitally identified and 
corrected in PPI reconstructions.

In addition to cyclin E/CDK2, cyclin D1/CDK4 was used to detect the 
G1/S transition in the cell cycle37. Osimertinib exhibited an inhibitory 
effect on cyclin D1/CDK4 (Fig. 3c). Orthogonal assays confirmed the 
multiplexed PPI signals and the efficacy of the osimertinib treatment. 
Similar upregulation patterns of p-ERK/c-Myc after treatment in 13-PPI 
data were demonstrated (Fig. 3c) compared with 5-PPI data. Osimer-
tinib inhibited p-ERK and c-Myc baseline-level expression (Extended 
Data Fig. 3a,b). The downregulation of p-ERK after osimertinib treat-
ment in HCC827 cells was further demonstrated by Luminex data 
(Extended Data Fig. 3c,d) of the cell lysates. The upregulation of p-ERK 
shown in the IF results may be due to the heterogeneity of expression of 
p-ERK in the subpopulation of HCC827 cells (Supplementary Fig. 10b). 
P-ERK/c-Myc interactions displayed heterogeneous distribution in 
the HCC827 cells (Extended Data Fig. 3e and Supplementary Fig. 25). 
P-ERK/c-Myc PPI events were quantified across several regions of inter-
est (ROIs), and the coefficient of quartile variation demonstrated 
the dispersion of PPI event distribution in each ROI (Supplementary 
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Fig. 3 | Quantification, co-expression and modelling of 34-plex profiling 
for 13 PPIs and 8 signalling and organelle markers in HCC827. a, Schematic 
illustration of 34-plex iseqPLA. HCC827 cells with and without 12-h 100-nM 
osimertinib treatment were stained with 4 cycles of multicolour PLA and 5 cycles 
of single-colour PLA, followed by cell phenotyping. The total cell number is  
1,029 for untreated and 978 for treated cells. Created with BioRender.com.  
b, Top left: visualization of 5 PPIs overlaid with p-EGFR and DAPI. Bottom: 
network analysis of 13 PPIs across 9 cycles in HCC827 cells without treatment and 
with 100 nM osimertinib for 12 h. Each node presents a PPI event, and Delaunay 
triangulation was performed to connect nodes. The cell boundary in red is 
p-EGFR IF staining. The overlay of signalling, proliferation and organelle markers 
is illustrated. c, Comparison of PPI counts in osimertinib-treated and untreated 

HCC827 cells. The separate PPI counts comparison in cytosol and nuclei is shown 
in Supplementary Fig. 28a. Statistical testing was performed using two-sided 
Mann–Whitney Wilcoxon test (****P ≤ 0.0001). d, Top: normalized co-expression 
of 13 PPIs with the mean intensity of 7 protein markers in single cells. The 
normalized co-expression in cytosol and nuclei is shown in Supplementary Fig. 28b.  
Bottom: two examples of co-expression of PPIs represented in scatter dots, 
and Cox IV in untreated and treated HCC827 cells. e, Comparison of AUC scores 
between the spPPI-GNN, ML, MIL and MLP models for prediction of single-cell 
treatment status in the 13-PPI dataset. GCN and GraphConv layer-based spPPI-
GNN show the best overall scores. Box plots in c: median (horizontal line inside 
box), 25th and 75th percentiles (box), 25th and 75th percentiles ±1.5 times the 
interquartile range (whiskers). Bar graphs in e: mean ± 95% CI.

Fig. 25b,c and Dataset 8). To validate the p-ERK/c-Myc interaction, we 
performed co-immunoprecipitation (co-IP) on p-ERK and c-Myc in 
HCC827 cells, demonstrating the upregulation of p-ERK/c-Myc inter-
actions after osimertinib treatment (Extended Data Fig. 3b). We also 
examined the interaction between p-p90RSK and NF-κB p65. P-p90RSK 
as an ERK substrate phosphorylates p65 at S276 in an ERK-dependent 
manner, leading to inflammation response38. Osimertinib effectively 
inhibited the PPIs of NF-κB/p-p90RSK. Sox2 as a transcription factor 
can be incorporated with Oct4 to maintain stem-like properties. The 
downregulation of sox2/oct4 demonstrates the inhibitory effect of osi-
mertinib in EGFRm-sensitive cells (Fig. 3c, Supplementary Figs. 26–28a 
and Dataset 9). However, it has been found that osimertinib-resistant 
EGFRm NSCLC cell lines express high levels of sox2 and increased 
autophagy39,40. To evaluate cell apoptosis, in addition to Mcl-1/Bak, 
we also profiled the interaction between Tom20 and Bim. Bim as a 
pro-apoptotic Bcl-2-family protein can interact with Tom20 inde-
pendent of the binding to anti-apoptotic proteins41. Tom20 protein 
is inserted in the outer mitochondria membrane (OMM) and may 
function in the regulation of Bim localization into mitochondria. 
Reduced interactions between Tom20 and Bim were observed after 
12 h of osimertinib treatment (Fig. 3c). However, Bim may translo-
cate into OMM without TOM receptors and Tom20 also mediates the 
transfer of anti-apoptotic Bcl-2 proteins into mitochondria41,42. More 
studies are needed to conclude whether osimertinib enhances cell 
apoptosis in HCC827 cells. Osimertinib inhibited the interaction of 
EGFR/Grb2 (Fig. 3c). The interaction between EGFR and Growth-factor 
receptor-bound protein 2 (Grb2) is required for EGFR mutant cells sur-
vival, and it is related to sensitivity to EGFR inhibition43. The binding of 
Tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) to 
Death receptor 5 (DR5) can trigger cell apoptosis44. However, there was 
no significant difference in TRAIL/DR5 and AKT/Forkhead box protein 
O1 (FOXO1) PPI counts after osimertinib treatment (Fig. 3c and Sup-
plementary Fig. 28a). FoxOs regulate cell cycle arrest and apoptosis. 
The direct phosphorylation of FoxOs by AKT can result in FoxOs inac-
tivation and accumulation in the cytoplasm45. The non-significance of 
AKT/FoxO1 interaction may indicate the minimal effect of EGFR TKI on 
p-AKT and FoxO1 interaction (Fig. 3c)46. AKT inhibitors could effectively 
inhibit AKT and FoxO1 (ref. 46). We observed low PPI events from SIRT1/
p53 (Fig. 3c and Supplementary Fig. 28a). Tumour protein p53 (P53) is 
a tumour suppressor that promotes apoptosis. Sirtuin 1 (SIRT1) might 
act as a tumour promoter by directly inhibiting p53 through the dea-
cetylation of p53. Hypoxia can upregulate the expression of SIRT1, and 
the long-term hypoxia may contribute to the resistance to osimertinib 
in NSCLC cells47. The low PPI events may be due to the opposite stain-
ing patterns of SIRT1 and p53, cytosolic IF signals of SIRT1 and nuclear 
staining of p53, resulting in the negative results of SIRT1/P53 PPI. These 
results further confirmed the specificity of PLA.

Cyclin E/CDK2 co-localizes in the Golgi with high co-expression 
of NBD-C6 (Fig. 3d, Supplementary Fig. 28b and Datasets 7 and 10). 
Cyclin E regulates the transition from the G1 to the S phase in the cell 
cycle. The activity of cyclin E can be directly regulated by RhoBTB3, a 
Golgi-localized and -associated protein. The direct interaction between 

cyclin E and RhoBTB3 mediates the ubiquitylation and turnover of 
cyclin E during the S phase48. Also, the co-expression between p-AKT/
mTOR and NBD-C6 in cytosol demonstrates the potential regulation of 
mTOR signalling by Golgi (Fig. 3d). Golgi can modulate mTOR activity 
in several ways, including downregulating autophagy by activating 
mTOR, and Golph2, a Golgi protein, has been found to promote mTOR 
activity through the PI3K/AKT pathway49.

Similarly, we compared ML, MLP and ML with spPPI-GNN models 
for the prediction of drug treatment from both the subcellular infor-
mation and PPI quantification (Supplementary Fig. 17b and Dataset 
11). Using the same parameter search method as previously described, 
integrating the spatial graphs with PPI quantification achieved a better 
model performance, with a higher AUC score in spPPI-GNN models 
(Methods and Fig. 3e). We also conducted sensitivity analysis of the 
parameters used in different models in the 13-PPI data (Supplemen-
tary Fig. 18b and Table 2). The variation in the model AUC scores when 
adjusting the pooling layer hyperparameter is smaller with 13 PPIs 
than with 5 PPIs.

We performed a similar data analysis on 9-PPI datasets and 
obtained similar results (Supplementary Figs. 29 and 30). However, 
we obtained distinct downregulation patterns for p-ERK/c-Myc after 
treatment in 9-PPI data (Extended Data Fig. 4a) compared with 5-PPI 
data. This is probably due to the subpopulation heterogeneity among 
cells, and p-ERK/c-Myc exhibited a relatively higher expression level 
in the 5-PPI dataset from the uniform manifold approximation and 
projection (UMAP; highlighted in red in Extended Data Fig. 4b). From 
the image, we observed the Cytochrome C oxidase subunit 4I1 (Cox IV), 
a mitochondria marker that co-localizes with Bim/Tom20 PPI (Supple-
mentary Fig. 31a), confirming the location of Bim/Tom20 interaction 
in mitochondria. Due to the non-uniform signals of Cox IV in the large 
ROI, we filtered out the Cox IV positive regions for co-expression and 
correlation analysis. No co-localization was observed between Bim/
Tom20 and Cox IV (Supplementary Fig. 31b,c and Datasets 12 and 13). 
This is potentially due to the large-scale normalization overlooking 
the co-expression variety. We performed the co-expression analysis 
between 5 relatively highly expressed PPIs and 8 protein markers and 
confirmed the co-localization between Bim/Tom20 and Cox IV (Sup-
plementary Fig. 31d and Dataset 14).

Similarly, we compared ML, MLP and ML with spPPI-GNN models 
for the prediction of cell drug perturbation from subcellular informa-
tion (Supplementary Fig. 17c and Datasets 15 and 7). Using the same 
parameter search method as previously described, we obtained the 
prediction AUC score using PPI events spatial graphs (Methods). The 
overall prediction results showed higher AUC using spPPI-GNN com-
pared with other benchmark models (Supplementary Fig. 31e and 
Dataset 16). The sensitivity of various parameters regarding model 
prediction variability was also calculated (Supplementary Fig. 18c and 
Table 2). Overall, the pooling layer hyperparameter displayed a higher 
sensitivity compared with other hyperparameters.

We also visualized the small groups of interconnections among PPIs 
using network motifs in the 5 and 9-PPI datasets. These network motifs 
are statistically significant patterns within large spatial-signalling 
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networks. We observed increased regulation of p-ERK/c-Myc PPI 
activity after osimertinib treatment in motif 9 (p-ERK/c-Myc and 
p-ERK/c-Myc), and the PPI of p-ERK/c-Myc occupies a large pro-
portion in the network (Supplementary Fig. 32a and Dataset 17),  
which suggests that p-ERK/c-Myc may be the main effector of osimer-
tinib. Also, more interactions between p-ERK/c-Myc and TEAD1/YAP 
were observed after treatment in a three-node motif 17 (Tead1/Yap 
and Tead1/Yap and p-ERK/c-Myc). This indicates that osimertinib may 
potentially increase the crosstalk between the ERK and YAP pathways. 
It has been found that with the combination of ERK and osimertinib 
treatment, the cells can still survive with upregulated YAP activity4. 
In the 9-PPI dataset, the autoregulation of cyclin D1/CDK2 in motif 0 
and motif 45 was inhibited by osimertinib treatment (Supplementary 
Fig. 32b and Dataset 18), indicating suppressed cell cycle progression. 
Also, we observed downregulation of the interaction between sox2/
oct4 and cyclin D1/CDK4 in both two-node (motif 2) and three-node 
interaction motifs (motif 47). Sox2 is highly expressed while repressing 
the expression of cyclin D1 in stem cells50. The reduced interactions may 
indicate the potential role of osimertinib in regulating stem-cell-like 
properties and cell proliferation. Dissecting the spatial networks into 
subgraph motifs reveals the organization of signalling networks. These 
small functional building blocks reflect that the interactions between 
PPIs are not random, which provides important clues to identify poten-
tial biomarkers for targeting signalling crosstalk.

To characterize the importance of subcellular spatial PPI event 
neighbourhood information and the number of PPI events detected, we 
benchmarked the performance of multiple machine learning and graph 
neural network models using 3D information (Fig. 4a) and compared 
the classification performance levels of drug responses on the basis of 
the number of detected PPI dots in the entire iseqPLA data (Fig. 4b). 
By processing all z-stack images in 3D, we captured all the PPI events 
across the z-dimension and combined them into a single PPI event by 
detecting the best focus plane and using a radius search algorithm 
(Methods and Supplementary Figs. 33 and 34). We compared the overall 
single-cell PPI event statistics between 2D and 3D information, verify-
ing the reproducible distribution of the iseqPLA data (Supplementary 
Fig. 35 and Dataset 19).

The overall AUC score is higher when comparing the 13-PPI dataset 
with the 9-PPI and 5-PPI datasets. This better performance indicates 
the importance of a higher PPI target number for improving the sepa-
ration of cell treatment state for the prediction pipeline (Fig. 4b). We 
also systematically compared the performance of 2D, 3D and 2D-3D 
fusion models, enabling a comprehensive evaluation of how varying 
levels of spatial data impact modelling at the cellular level (Fig. 4c). Our 
analysis revealed that in the highest-performing models—specifically 
the 9PPI-GraphConv, 13PPI-GCN and 13PPI-GAT—the 2D-3D fusion 
model demonstrated a notable improvement in cross-validated AUC 
scores compared with models utilizing either 2D or 3D data alone. This 
suggests that integrating multidimensional data can enhance model 
accuracy and robustness.

Moreover, it is important to note that the hyperparameters were 
originally tuned for the 3D models during the evaluation of the 2D-3D 
fusion model. This indicates that the overall performance of the 2D-3D 
fusion model could be further optimized by a comprehensive bench-
marking of all relevant hyperparameters. In our methodology, the 
2D-3D fusion was implemented through the concatenation of embed-
dings obtained post-graph pooling layer. Future research could explore 
alternative methods of domain fusion to more effectively integrate 
2D and 3D information. Techniques such as early fusion, where data 
are combined at the initial stages, or late fusion, where final decisions 
are combined, could be investigated. In addition, advanced fusion 
strategies such as attention mechanisms or multitask learning could 
be applied to dynamically weight and integrate the complementary 
information from 2D and 3D domains, potentially leading to consid-
erable improvements in model performance. Leveraging techniques 

such as multiple dropouts, Gaussian noise and F-correction51 for feature 
selection using graph convolutional networks can further optimize 
model performance in high-dimensional, low-sample-size datasets, 
underscoring the importance of feature selection and model optimiza-
tion in these contexts.

The total space and time complexity of the GNN model can be 
analysed by considering the operations performed in each layer across 
the entire network52. We demonstrated that as the number of layers and 
hidden layer size increase, the space and time complexity increases 
(Supplementary Fig. 36 and Dataset 20). The time and space complexity 
with respect to hidden layer size follows a quadratic trend, while time 
and space complexity with respect to the number of layers follows a 
linear trend.

Drug perturbing PPIs in EGFRm NSCLC cells
The study of the effect of osimertinib in NSCLC is limited to conven-
tional approaches such as western blot and IF53. PPIs are potential drug 
targets and information on how osimertinib affects PPI expression 
levels is still lacking in the field. Osimertinib as the EGFR TKI can directly 
inhibit EGFR expression; however, it could also change the downstream 
signalling pathways by indirectly altering the baseline protein expres-
sion or the PPI expression. To investigate the PPI under direct drug 
perturbation, we demonstrated the effect of VP, a YAP/TEAD inhibitor, 
on YAP/TEAD1 interaction7,8. HCC827 cells were treated with 0, 1 and 
10 µM for 24 h54, and the cells were profiled with 2 cycles of Duolink 
PLA (YAP/TEAD1, EGFR/GRB2, TRAIL/DR5), followed by 2 cycles of 
Navinci (Sox2/Oct4, epithelial cadherins (E-cadherin)/β-catenin) and 
cell phenotyping markers (phalloidin, p-EGFR and Ki67) (Fig. 5a,b and 
Supplementary Table 3). Navinci is another PPI detection approach 
based on PLA. We demonstrated the compatibility of Duolink PLA 
and Navinci in iseqPLA. Nuclease P1 was used to remove probes. The 
overall PPI counts of YAP/TEAD1 between untreated and 1 µM treated 
cells were similar (Fig. 5c). Cells treated with 10 µM had an increased 
total number of YAP/TEAD1 dots (Fig. 5c and Extended Data Fig. 5a); 
however, fewer YAP/TEAD1 PPI dots occurred in the nucleus, with a 
lower nucleus ratio (Fig. 5d). Nuclei ratio was calculated on the basis 
of the ratio of PPI counts in the nucleus to the total PPIs per cell. YAP 
can translocate to the nucleus to activate TEAD transcription, and 
VP can induce the translocation of YAP1 and TEAD4 from the nucleus 
to the cytoplasm55–57. Our results demonstrated the effect of VP on 
the translocation of YAP/TEAD1 in HCC827 cells. Ki67 density, a new 
image-based morphological indicator, was also quantified by dividing 
the ki67 positive regions in the nucleus by the nuclear size (Extended 
Data Fig. 5b). We did not observe a decrease in ki67 density after drug 
treatment; however, the cell density was lower in 10 µM treated sam-
ples compared with both 1 µM and untreated cells. VP, the first small 
molecular inhibitor of YAP, can inhibit tumour proliferation and YAP 
activity. However, it is also limited by poor solubility and stability, and 
can result in Hippo-independent effects58,59. Since E-cadherin/β-catenin 
displayed an IF-like phenotype, we further quantified its mean intensity 
(Fig. 5c). E-cadherin/β-catenin functions in maintaining cell–cell con-
tact, and the loss of E-cadherin facilitates the development of epithe-
lial mesenchymal transition60. VP increased E-cadherin/β-catenin PPI 
counts (Fig. 5c), potentially promoting cell–cell contact. Nevertheless, 
the mechanism by which VP influences other PPIs within EGFR-related 
pathways remains elusive. Further studies are required to elucidate 
whether VP can serve as a potential therapeutic target.

Multiple PLA assays generate 47-plex protein profiles
To explore more PPI detection approaches other than Duolink PLA, 
we multiplexed 5 PPIs (Sox2/Oct4, E-cadherin/β-catenin, cell divi-
sion cycle-25C (Cdc25c)/p38, proline-rich tyrosine kinase 2 (PYK2)/
proto-oncogene c-Src (SRC), phosphor-Janus kinase (p-Jak2)/signal 
transducer and activator of transcription 3 (Stat3)), followed by cell 
phenotyping (phalloidin, p-EGFR and Ki67) in HCC827 cells treated with 

http://www.nature.com/natbiomedeng


Nature Biomedical Engineering

Article https://doi.org/10.1038/s41551-024-01271-x

and without 100 nM osimertinib for 12 h using the Navinci approach 
(Fig. 6a,b). Nuclease P1 was used to remove probes. We explored PPI 
involved in the calcium influx61. Calcium homoeostasis regulates cell 
proliferation, migration and cancer. Studying PPI events related to 

calcium influx can reveal potential therapeutic targets. PYK2 can sense 
calcium influx, and the binding of Src to PYK2 primes the phosphoryla-
tion of PYK2 and subsequent downstream signalling activation such 
as cell migration62–64. However, studies on the effect of osimertinib in 
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Fig. 4 | Predictive models in 2D and 3D of 5, 9 and 13 PPIs in HCC827 cells.  
a, 3D PPI spatial graph network representations at the single-cell level in HCC827 
cells of 5 PPIs (top) and 13 PPIs (bottom). Axes labels indicate coordinates (x-y-z) 
of individual PPIs in pixel units. The colour of the node corresponds to the PPI 
type, and white edges correspond to the neighbouring node using Delaunay 
triangulation. b, Comparison of spPPI-GNN AUC scores across the 5, 9 and 13-PPI 

datasets. The 13-PPI dataset showed better prediction AUC scores than the 9 and 
5-PPI datasets. Statistical testing was performed using independent-samples 
t-test with Bonferroni correction (***0.0001 < P ≤ 0.001, ****P ≤ 0.0001).  
c, Comparison of predictive model performance between the 2D PPI model, 3D 
PPI model and 2D-3D fusion model for 9 (left graph) and 13 (right graph)  
PPI dataset. Bar graphs are mean ± 95% CI.
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comparison in cytosol and nuclei is shown in Extended Data Fig. 5a.  
d, Comparison of nuclei ratio of PPI counts between VP-treated and unteated 
HCC827 cells. The nuclei ratio was calculated on the basis of the ratio of PPI 
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nuclei ratio equals 0.5. Statistical testing was performed using two-sided Mann–
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PYK2/Src are still lacking. Another pair of PPIs involved in cell migra-
tion is E-cadherin/β-catenin. Since the E-cadherin/β-catenin PPI events 
were too dense, we quantified the PPI events by calculating their mean 
intensity. Osimertinib inhibits the interaction between E-cadherin and 
β-catenin (Fig. 6c). Jak/STAT3 is another downstream pathway of EGFR. 
p-Jak2 (Y1007 + Y1008) can phosphorylate and activate STAT3, resulting 
in the activation of the JAK/STAT3 pathway65. The constitutive activation 
of the JAK/STAT3 pathway plays an important role in priming cancer 
development66. Osimertinib increased the p-Jak/Stat3 interactions 
(Fig. 6c). P38 could inhibit Cdc25c through direct phosphorylation, 
resulting in cell cycle arrest in G2 (ref. 67). The increase in Cdc25c/p38 
PPI counts indicates the potential role of osimertinib in promoting 
cell cycle arrest (Fig. 6c). Sox2/Oct4, a common pair between Navinci 
and Duolink PLA, exhibited similar downregulation after osimertinib 
treatment (Fig. 6c). Cells treated with osimertinib displayed decreased 
ki67 density compared with untreated cells (Extended Data Fig. 5c).

The capability to integrate Duolink PLA with Navinci was demon-
strated in HCC827 cells treated with the VP drug (Fig. 5). To explore 
indirect PLA on cell cultures, HCC827 cells treated with and without 
osimertinib were incubated with 5 pairs of primary antibodies in 1 cycle, 
each containing one anti-rabbit and one anti-mouse antibody. The 
combined 5-PPI profiles were obtained using anti-rabbit and anti-mouse 
secondary antibodies conjugated to PLUS/MINUS probes (Fig. 6d,e). 
Nuclease P1 effectively removed PLUS/MINUS probes. The cdc25c/
p38 PPI events were decreased after osimertinib (Fig. 6f). The sec-
ondary antibodies from the indirect Duolink PLA may interfere with 
the binding of cdc25c and p38 primary antibodies. Thus, the order of 
direct and indirect PLA may need to be optimized within iseqPLA. To 
calculate the PPI signal more accurately, we further quantified the mean 
pixel intensity of the combined 5-PPI events by dividing the total pixel 
intensity by the total number of dots (Fig. 6f). By combining Navinci 
and Duolink direct and indirect PLA, the PPI panels could be expanded 
from 13 to 22 PPIs, comprising a total of 44 protein profiles that include 
13 Duolink direct PPIs, 5 Duolink indirect PPIs and 4 Navinci PPIs. Follow-
ing iseqPLA, cell phenotypes can be resolved using phalloidin, p-EGFR 
and Ki67, achieving a 47-plex protein profile. Similar to fluorescence 
in situ hybridization of cellular heterogeneity and gene expression 
programmes (FISHnCHIPs), which can image ~2–35 co-expressed genes 
in tissues simultaneously68, indirect PLA enables the profiling of a group 
of proteins with similar functions concurrently, resulting in co-localized 
spatial expression patterns. Abnova Corporation offers 594 pairs for 
PPIs, enabling us to achieve a 1,000-plex protein profiling capability.

Spatial-signalling PPI networks in lung cancer tissues
To verify the feasibility of detecting PPIs in situ, we investigated ise-
qPLA on HCC827-derived mouse xenografts (CDX). The iseqPLA on 
cell culture resolves the PPI at the subcellular level; however, it fails to 
consider the architecture of cellular distributions. Our study utilized 
iseqPLA on the tissue to generate single-cell signalling maps within the 
context of the tumour microenvironment.

HCC827-derived xenografts in mice were treated with and without 
osimertinib for a sustained period, and OCT sections were obtained 

to compare the emergence of resistance. Osimertinib was given to 
mice daily. HCC827 xenografts in mice receiving osimertinib treat-
ment were effectively inhibited for the first week. The tumour almost 
disappeared after a 5-day osimertinib treatment. As treatment contin-
ued, the tumour grew back and larger, indicating the development of 
acquired resistance to osimertinib. Therefore, in our study, iseqPLA 
was performed on mouse HCC827-cell-derived xenograft tissues in 
the presence of osimertinib treatment for 1 week and 2 months, rep-
resenting responders and non-responders. We detected the dynamics 
of 5 PPIs related to organelle localization, proliferation markers and 
gene expression (Fig. 7a and Supplementary Fig. 37). Between cycles, 
nuclease P1 was used to remove probes. Pan-cytokeratin (panCK) was 
utilized to help differentiate tumour regions. The nearest-pixel method 
was utilized to assign PPI signals to the nearest cell with incomplete 
cell segmented regions (Fig. 7b). We found that osimertinib enhanced 
p-ERK/c-Myc while downregulating p-AKT/mTOR PPIs after the 2-month 
treatment (Fig. 7c). This indicates that mice became less sensitive to 
osimertinib and even developed acquired resistance to osimertinib, 
functioning as non-responders after the 2-month treatment (Fig. 7c, 
Supplementary Fig. 38 and Dataset 21). Also, mouse tissues treated 
with osimertinib for 2 months expressed more panCK-positive cells. 
The downregulation of cyclin E/CDK2 in 1-week osimertinib-treated 
mice also indicates inhibited cell cycle progression (Fig. 7c).

A spatial network was used to visualize the PPI distributions at 
the single-cell level in the mouse xenograft tissues (Fig. 7d). Similarly 
to other benchmarks, we compared the overall model performance in 
determining the overall treatment condition of tumour cells by looking 
at the pan-cytokeratin staining (Methods and Fig. 7e). That is, from IF 
staining, we classified cells expressing pan-cytokeratin-positive cells 
and filtered out all cells not expressing pan-cytokeratin staining. Next, 
we used spPPI-GNN to predict the treatment length between the spatial 
PPI networks extracted from those pan-cytokeratin-positive cells. The 
spPPI-GNN model outperformed other benchmarked models for pre-
dicting the treatment state at the single-cell level from human tissues.

To investigate the clinical relevance of our spatial-signalling 
interactomics approach, we performed iseqPLA on patient tissues 
with EGFRm NSCLC osimertinib responder and non-responder cells 
including 2 cycles of multicolour (Sox2/Oct4, NF-κB/p-P90rsk, cyclin 
D1/CDK4, TRAIL/DR5) and 1 cycle of single-colour (cyclin E/CDK2) 
detection, followed by immunofluorescence staining to phenotype 
immune cells (Cluster of differentiation 20 (CD20), Clusters of dif-
ferentiation 4 (CD4), Clusters of differentiation 8 (CD8)), tumour cells 
(panCK) and cell boundary (phalloidin, Concanavalin A, WGA) (Fig. 8a 
and Supplementary Fig. 39a). Between cycles, nuclease P1 effectively 
removed the probes. Sox2/Oct4 PPI was upregulated in patients who 
responded to osimertinib treatment (Supplementary Fig. 39b and 
Dataset 22). Integrating both IF and haematoxylin and eosin (H&E) 
images of responder tissue at the single-cell level, we identified stroma, 
tumour and immune regions, and quantified the PPI events per cell in 
these regions (Methods, Fig. 8b,c and Supplementary Fig. 39c). The cell 
type distributions were further visualized using spatial neighbourhood 
maps in responder tissue (Fig. 8c and Supplementary Fig. 40a–c). Each 

Fig. 6 | Multiple PLA assays generated 47-plex protein profiles in HCC827 
cells. a, Schematic illustration of the workflow for 13-plex iseqPLA. HCC827 cells 
with and without 12-h 100-nM osimertinib treatment were stained with 5 cycles of 
Navinci PLA, followed by cell phenotyping (phalloidin, p-EGFR and Ki67). Created 
with BioRender.com. b, Visualization of 5 PPIs represented in scatter dots 
overlaid with DAPI. The white boundary is a combined mask from phalloidin and 
p-EGFR. The total cell numbers are 742 and 506 for untreated and osimertinib-
treated cells, respectively. c, Left: comparison of PPI counts between osimertinib-
treated and untreated HCC827 cells. Right: mean intensity of E-cadherin/β-
catenin. d, Schematic illustration of the workflow for 15-plex iseqPLA. HCC827 
cells with and without 12-h 100-nM osimertinib treatment were stained with 1 
cycle of Duolink indirect PLA containing 5 PPIs, followed by 1 cycle of Navinci and 

then cell phenotyping (phalloidin). Created with BioRender.com. e, Visualization 
of combined 5 PPIs and 1 Navinci PPI represented in scatter dots overlaid with 
DAPI. The white boundary is a mask from phalloidin. The total cell numbers are 
612 and 615 for untreated and osimertinib-treated cells, respectively. f, Left: 
quantification of 2 cycles of PPIs per cell between treated and untreated HCC827 
cells. Right: mean pixel intensity of combined 5 pairs in untreated and treated 
HCC827 cells. The mean pixel intensity was calculated by dividing the total pixel 
intensity by the total number of dots at the single-cell level. Statistical testing was 
performed using two-sided Mann–Whitney Wilcoxon test (****P ≤ 0.0001). Box 
plots: median (horizontal line inside box), 25th and 75th percentiles (box), 25th 
and 75th percentiles ±1.5 times the interquartile range (whiskers).
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Fig. 7 | Quantification and modelling of 16-plex profiling for 5 PPIs and 6 
organelle signalling markers in HCC827-cell-derived mouse xenografts. 
a, Visualization of 5 PPIs represented in scatter dots followed by 6-protein IF 
staining in HCC827-cell-derived mouse xenografts, treated with osimertinib for 
1 week and 2 months separately. Seven panels demonstrate 5 pairs of PPIs and two 
IF markers (p-EGFR and Ki67) in the top two rows, and the subsequent four panels 
indicate four IF markers (PanCK, Golph4, ConA (Concanavalin A) and WGA) in the 
bottom two rows. b, Schematic showing the nearest-pixel method for assigning 
PPI signals to the nearest cell with incomplete cell segmented regions. Created 
with BioRender.com. c, PPI quantification comparison in pan-cytokeratin-
positive regions between mice treated with osimertinib for 1 week and 2 months. 

Separate comparison of PPI counts in pan-cytokeratin-positive regions in cytosol 
and nuclei is shown in Supplementary Fig. 38. The total cell numbers are 18,429 
and 25,790 for 1-week and 2-month osimertinib-treated tissues. Statistical testing 
was performed using two-sided Mann–Whitney Wilcoxon test (****P ≤ 0.0001).  
d, Illustration of the PPI network in tissues at the subcellular level in two FOVs.  
e, Comparison of AUC scores between the spPPI-GNN, ML, MIL and MLP models 
for prediction of single-cell treatment status in the mouse xenograft dataset. 
GCN and GINConv layer-based spPPI-GNN show the best overall scores. Box plots 
in c: median (horizontal line inside box), 25th and 75th percentiles (box), 25th 
and 75th percentiles ±1.5 times the interquartile range (whiskers). Bar graphs in e: 
mean ± 95% CI.
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node in the neighbourhood map represents one cell. The colour of the 
node represents different cell types including stroma, immune, tumour 
and other cells. The neighbouring map was constructed using a radius 
search of 20 µm69. The PPI counts per cell in regions with and with-
out immune neighbours in the responder tissue were also compared 
(Fig. 8d and Extended Data Fig. 6a). PPI counts per stromal or immune 
cell with immune neighbours did not display a significant difference; 
however, Sox2/Oct4 per tumour cell with no immune neighbours dis-
played slightly higher interactions (Fig. 8d and Extended Data Fig. 6a). 
Due to the low copy number of PPI events in FFPE tissues, we compared 
the PPI density in lymphocytes and tumour-enriched regions among 
the responder and non-responder tissues (Fig. 8e, Extended Data 
Fig. 6b and Supplementary Fig. 40d). The identification of lymphocytes 
and tumour-enriched regions was based on the H&E images. In the 
patient who developed resistance to osimertinib, there was a noticeable 
reduction in the Sox2/Oct4 interactions, accompanied by an upregula-
tion of NF-kB/p-P90RSK interaction in the tumour-enriched regions 
(Fig. 8e). In addition, we observed an elevation in the TRAIL/DR5 PPI 
events in the lymphocyte-enriched regions of the non-responder tissue 
(Extended Data Fig. 6b). However, some regions in the non-responder 
biopsy tissue exhibited warping during the process of collection. To 
comprehensively understand the dynamics of these protein interac-
tions, further investigations using high-quality clinical tissues and 
more tissue samples are needed.

To demonstrate the feasibility of detecting PPIs using a 
super-resolved microscope, we compared the iseqPLA detected by a 
widefield microscope vs a Zeiss 900A with an Airy scan. The negative 
control with one MINUS probe alone confirmed the validity of the 
iseqPLA protocol (Supplementary Fig. 41).

Discussion
We have shown an image-based multiplexing approach to detect PPI 
at the subcellular level. The iterative processes of ligation, amplifica-
tion, imaging and DNase treatment allowed us to detect 9 PPIs in cell 
cultures and 5 PPIs in tissues. We evaluated sensitivity, specificity and 
batch consistency, as well as whether the drug affects protein baseline 
or PPI levels. We showed the feasibility of integrating iseqPLA with 
RapMIF to profile both PPIs and signalling, proliferation and organelle 
markers. The upregulation of Tead1/YAP and p-ERK/c-Myc PPIs after 
osimertinib treatment in HCC827 cells may indicate the activation of 
YAP and the p-ERK pathway as compensatory pathways to EGFR inhibi-
tion. The co-expression analysis evaluated the co-localization of signal-
ling markers with organelles. Also, we observed that DNase interfered 
with phalloidin signalling in HCC827 cells. Therefore, a combination of 
p-EGFR, concanavalin A and WGA was used for cell segmentation. DNase 
digests both single-strand and double-strand DNA in the nucleus, sug-
gesting that it may change the localization of proteins connected with 
DNA and reduce PPI detection in later cycles. To reduce the negative 
effect of DNase on PPI detection, we further conducted experiments 

examining the effects of nuclease P1 and DMSO stripping solution on 
deactivating oligos and fluorophores. Nuclease P1 and DMSO exhibited 
comparable effects on digesting DNA as DNase. Nuclease P1 targeting 
only single-strand DNA serves as a good alternative to nuclease P1. 
Also, it preserves decent staining of phalloidin, indicating that it has 
minimal effect on changing the localization and structure of proteins.

Various approaches have been employed to assess the specificity 
and sensitivity of PLA. Overall, PLA exhibited higher specificity and 
sensitivity than other immune-PCR and ELISA assays. The specificity 
is dependent on the quality of primary antibodies. If the antibody lacks 
specificity for the target, it may bind with the non-specific target, yield-
ing false positives. Alternative sequencing-based protein identification 
approaches, such as chromatin immunoprecipitation followed by 
sequencing (ChIP-seq) and cellular indexing of transcriptomes and 
epitopes by sequencing (CITE-seq), can quantify both the transcription 
factors and proteins. However, the data quality relies on the antibodies 
used70,71. Also, CITE-seq is limited to tagging surface proteins70. Prox-seq 
combines PLA with single-cell sequencing, enabling the quantification 
of gene expression, protein expression and PPIs18. Despite its effec-
tiveness, Prox-seq is an antibody-based approach, limiting its ability 
to available reagents and antibody quality. Therefore, implementing 
technical controls on the primary antibodies is essential. Also using 
monoclonal antibodies as primary antibodies can greatly enhance 
sensitivity and specificity72. In addition, several factors such as cell 
seeding density, cell number and the heterogeneity of single cells may 
influence the PPI counts.

To better incorporate spatial information into our predictive 
model, we transformed our single-cell PPI events into graphs and 
developed spPPI-GNN, a predictive pipeline for determining the drug 
treatment outcome from single-cell PPI data. We benchmarked our 
spPPI-GNN predictive pipeline using spatial PPI graphs with ML, MLP 
and MIL models, and showed that spatial information plays an impor-
tant role in improving the prediction of single-cell states. We also 
showed that 3D graphs of PPI resulted in better cell-state predictive 
abilities compared with 2D graphs of PPI, while the 2D-3D fusion models 
could enhance the AUC compared to 3D data only.

Moreover, we tested the scalability of our spPPI-GNN model by 
applying it to various data types such as cell culture, mouse xenograft 
and patient tissues with various numbers of PPI targets. Moreover, we 
benchmarked the ability of spPPI-GNN to predict cell surface prox-
imity data on the basis of the protein count with a higher number of 
features (more than 1,000)73. We tested our spPPI-GNN algorithm 
on a cell surface protein detection assay73 (Supplementary Fig. 42). 
This assay is a DNA-sequencing-based method for single-cell analy-
sis to quantify protein abundance and spatial proximity at the cell 
surface using antibody oligonucleotide conjugates. The 3D spatial 
co-localization of protein abundance is represented in 3D spherical 
coordinates. To visualize the Pixelgen data, we extracted the 3D surface 
neighbouring information by using a 3D spherical surface Delaunay 

Fig. 8 | Quantification of 17-plex profiling for 5 PPIs and 7 organelle 
signalling markers in patients with EGFRm NSCLC. a, Schematic illustration 
of the workflow for 17-plex iseqPLA. One responder and one non-responder 
patient tissues were stained with 5 cycles of PLA, followed by cell phenotyping 
including immune, tumour, signalling and segmentation markers. Created with 
BioRender.com. b, Quantification of PPI counts per cell in the stroma, tumour 
and immune regions in the responder tissue. The total cell numbers are 188, 884 
and 1,614 in the immune, stroma and tumour regions, respectively. Statistical 
testing was performed using independent-samples t-test with Bonferroni 
correction (****P ≤ 0.0001). c, Illustrations of H&E image overlaid with 5 PPIs 
(top left), H&E image overlaid with cell type masks (top right), the PPI event 
scatter dots with cell boundary (bottom left) and spatial neighbourhood maps 
of cell types constructed using a 20 μm radius (bottom right). Each node in the 
neighbourhood map represents one cell. The colour of the node represents 
different cell types including stroma, immune, tumour and other cells. Example 

images of a larger FOV are shown in Supplementary Fig. 40. d, Quantification 
of PPI counts for tumour cells with and without immune cell neighbours in the 
responder tissue. The total cell numbers are 318 and 1,296 in the regions with 
and without immune cell neighbours. Statistical testing was performed using 
independent-samples t-test with Bonferroni correction. e, Left: comparison 
of the density of PPI counts in tumour-enriched regions between responders 
and non-responders. Right: example images of 5 PPIs expression in tumour-
enriched regions. Col 1: visualization of 5 PPIs in tumour-enriched regions. Col 
2: distributions of Sox2/Oct4 PPI in red. Col 3: distributions of NF-kB/p-P90RSK 
PPIs in green. A comparison of the density of PPI counts in lymphocyte-enriched 
regions is shown in Extended Data Fig. 6b. The total cell numbers are 19 in the 
selected regions of both non-responder and responder tissues. Statistical testing 
was performed using independent-samples t-test (****P ≤ 0.0001). Box plots and 
violin plots: median (horizontal line inside box), 25th and 75th percentiles (box), 
25th and 75th percentiles ±1.5 times the interquartile range (whiskers).
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triangulation algorithm from control and stimulated T cells (Supple-
mentary Fig. 42a and Dataset 23). Each node corresponds to an area of 
the cell surface where multiple protein targets are quantified. We have 
shown examples of the normalized protein count for HLA-ABC, CD45 
and CD8 markers. We benchmarked the overall prediction of T-cell 
states and showed better AUC scores when using spPPI-GNN and the 
corresponding 3D graph representation. The nature of graph-based 

learning from the spPPI-GNN data allows the scaling of application 
of the pipeline to multiple high-plex spatial omics data sources, such 
as subcellular RNA FISH imaging or cell-level spatial transcriptomic 
imaging, and various prediction tasks such as treatment response or 
state predictions. One limitation of this pipeline is the dependence on 
high-quality data and event detection that might lead to batch effect 
during the pipeline. Moreover, it is difficult to combine various data 
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modalities as well as unseen or unmatching feature sets. Despite these 
limitations, spPPI-GNN is a unique pipeline for predicting cell-level 
state using subcellular level spatial information, providing an analysis 
beyond raw count difference analysis.

To select the PPI of interest, a bioluminescence resonance energy 
transfer (BRET)-based differential PPI discovery platform can be 
performed to reveal the differential interactions between wild-type 
NSCLC and EGFRm NSCLC cells. This quantitative high-throughput 
PPI screening platform can detect direct PPI with a proximity of 
<10 nm74. By comparing the PPI between wild-type and mutant cells, 
novel mutation-directed PPIs that function in potential alternative 
signalling pathways can be discovered. The selected PPIs are involved 
in the EGFRm-related signalling pathways. The selection includes the 
upstream, downstream and effectors in the AKT/mTOR, ERK/MEK and 
YAP/TEAD1 pathways. They not only indicate the activity of the signal-
ling pathway, but they also demonstrate the cell response including 
cell proliferation and apoptosis in response to drug perturbations. The 
selection of PPIs in our panel is based on literature review, the OncoPPi 
and Bioplex interactome networks.

Another method to determine potential PPIs is to prescreen 
interesting pairs using affinity-purification mass spectrometry. The 
underlying bait–prey pairs can be selectively purified and quanti-
fied by mass-spectrometry analysis. This can help us determine the 
interactome of target proteins between mutant and wide-type cells 
to understand the EGFRm-resistant mechanisms. The potential target 
proteins include p-AKT, ERK and YAP. Owing to the unknown biological 
questions involved in the signalling cascades, it is hard to determine 
one pair of proteins that do not interact with each other at all. To exam-
ine the specificity of iseqPLA, we could use protein knockout as our 
negative control.

There are emerging PPI assays and technologies, including 
co-IP75,76, PROPER-seq77, pull-down assays78,79, yeast two-hybrid 
(Y2H)80,81, far-western blotting82, tandem mass spectrometry83, protein 
microarray84, APEX85,86, BioID87, TurboID88, FRET89, BRET90 and Onco-
PPI74. However, most of them are limited to bulk level or by the degree 
of scalability. The conventional PPI-detection approaches using MS 
cause the loss of spatial information owing to the sample-preparation 
step and to peptide extraction91. Unlike Co-IP, PLA preserves the spatial 
information of proteins without cell lysis and can be performed on both 
cell cultures and tissues. The efficiency of detection can be improved 
using UnFold probes, which prevent the cross-reactive detection of 
irrelevant proteins using a hairpin loop structure14. Via iseqPLA, the 
sequential imaging and labelling of PPIs allow for the large-scale profil-
ing of protein interactions at the single-cell level.

In summary, iseqPLA illustrates the feasibility of multiplexing 
PLA and detecting multiple PPI distributions at the subcellular level. 
It also shows the value of modelling drug-treatment outcomes with 
graph-based PPI inputs, which integrates both the quantification and 
spatial information of protein interactions. This predictive model 
would predict treatment outcomes via signalling-network inputs 
and overcome the limitation of a lack of spatial details when using 
bulk-signalling assays.

Methods
Cells
A549 cells were used for antibody optimization. The cells were seeded 
on coverslips treated with 0.01% poly-l-lysine in a 6-well plate overnight 
in a 37 °C incubator. A549 was purchased from ATCC. NSCLC-sensitive 
cell line, HCC827 was provided by Dr Sun Shi-yong (Emory University). 
HCC827 cells were seeded on coverslips in a 6-well plate overnight, 
followed by osimertinib treatment.

Drugs
Osimertinib was provided by Dr Sun Shi-yong (Emory University) 
at 10 mM concentration. HCC827 cells were treated with 100 nM 

osimertinib at different time points in a 37 °C incubator. The cells 
were then fixed and permeabilized with 1.6% formaldehyde in 1×PBS for 
10 min at r.t. and 0.5% Triton X-100 for 10 min at r.t., respectively. The 
cells were then blocked using a cell staining medium (CSM) containing 
0.5% BSA and 0.02% sodium azide in PBS. The effect of osimertinib on 
p-ERK(T202/Y204) was assessed. HCC827 cells were stained with p-ERK 
overnight, followed by 1-h incubation of secondary antibodies at r.t. and 
10 min DAPI staining. The cells were then imaged at ×40 magnification, 
and the intensity levels were analysed. For the multiplexing experi-
ment, HCC827 cells were treated with 100 nM osimertinib for 12 h in 
a 37 °C incubator, followed by iseqPLA. The coverslip was mounted 
on an acrylic holder for multiple cycles of staining. Verteporfin was 
purchased from MCE at a 10 mM concentration. HCC827 cells were 
treated with 0, 1 and 10 µM VP for 24 h. Following fixation and permea-
bilization, the cells were profiled with iseqPLA. The corresponding PPI 
counts were quantified and compared.

Tissues
HCC827-derived mouse xenografts were provided by Dr Sun Shi-yong 
(Emory University). Animal studies were conducted with the approval 
of the Institutional Animal Care and Use Committee (PROTO201700718) 
of Emory University. The mice were treated with osimertinib for either 
1 week or 2 months. Osimertinib was given to mice daily via oral gav-
age at 10 mg kg−1 dose. Mice were then euthanized and the tumour 
was embedded in OCT for sectioning. The OCT tissues were fixed in 
acetone, rehydrated, permeabilized in 0.4% Triton X-100 and blocked, 
ready for multiplexed experiments.

Patient tissues were collected from Emory University. The use of 
human specimens was approved by the Institutional Review Board of 
Emory University (IRB00098377). iseqPLA analysis was conducted 
on two distinct samples: a resection responder tissue, which demon-
strated responsiveness to osimertinib as the primary treatment, and a 
biopsy non-responder tissue that exhibited no response to osimertinib 
as the initial line of treatment.

Antibodies
In our study, a total of 53 antibodies were used. Seventeen PPIs target-
ing the AKT/mTOR, MEK/ERK and YAP/TEAD1, JAK/STAT, senescence 
and calcium influx pathways including TEAD1 (12292BF, Cell Signaling 
Technology (CST)), YAP (ab172373, Abcam), cyclin E (sc-247, Santa Cruz 
Biotechnology), CDK2 (sc-6248, Santa Cruz), p-ERK (T202 + Y204) 
(ab242418, Abcam), c-Myc (5605BF, CST), p-AKT (Ser473) (4060BF, 
CST), mTOR (2983BF, CST), Mcl-1 (66157BF, CST), Bak (12105BF, CST), 
cyclin D1 (66467, CST), CDK4 (23972, CST), NF-κB p65 (69994SF, CST), 
p-p90RSK (Ser380) (11989BF, CST), Bim (26184SF, CST), Tom20 (sc-
17764, Santa Cruz), Oct4 (ab240358, Abcam), Sox2 (ab243909, Abcam), 
p53 (46565SF, CST), SIRT1 (ab233398, Abcam), EGFR (26038SF, CST), 
Grb2 (ab227117, Abcam), FoxO1 (29336SF, CST), AKT (4691BF, CST), 
Trail (3219BF, CST), DR5 (ab251269, Abcam), p-JAK2 (Y1007 + Y1008) 
(AB219728, Abcam), Stat3 (AB171359, Abcam), Cdc25c (AB232553, 
Abcam), p38 (9212BF, CST), E-cadherin (96743SF, CST), β-catenin 
(ab196204, Abcam), Pyk2 (AB228477, Abcam) and Src (AB269563, 
Abcam). Five PPIs were evaluated using indirect Duolink PLA: CDK4 
(1:1,200) and CDKN1B (1:50) (Abnova DI0295); AKT1 (1:1,200) and SRC 
(1:50) (Abnova DI0453); FGFR1 (1:1,200) and PIK3R1 (1:50) (Abnova 
DI0315); CDC42 (1:1,200) and CASP3 (1:50) (Abnova DI0581); STK11 
(1:1,200) and PRKAA2 (1:50) (Abnova DI0500). Ten protein markers 
were used for RapMIF, including p-EGFR (Y1068) (ab205827, Abcam), 
Tom20 (sc-17764, Santa Cruz), Ki67 (ab283699, Abcam), pan-cytokeratin 
(53-9003-82, Invitrogen), Golph4 (ab197595, Abcam), NBD-C6 (N22651, 
Thermofisher), Cox IV (ab197491, Abcam), phalloidin (A34055, Ther-
moFisher), wheat germ agglutinin (WGA, W32466, ThermoFisher) and 
Concanavalin A (C11252, ThermoFisher). For RapMIF, the antibodies 
were either purchased in preconjugated versions or conjugated with 
Alexa Fluor 488, 555 or 647 using the Lightning-Link Rapid Conjugation 
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kit (ab236553, ab269820, ab269823). For iseqPLA, the carrier-free anti-
bodies were preconjugated with Duolink Probemaker (single colour: 
DUO92009 Sigma; multicolour: DUO96020 Sigma). Five PPIs (Sox2/
Oct4, Β-catenin/E-cadherin, Cdc25c/p38, PYK2/SRC, p-Jak2/Stat3) were 
conjugated to NaveniLink (NL.050). Before conjugation, the concen-
trations of the antibodies were measured using Nanodrop to ensure 
the required antibody amount was within the range. All antibodies 
involved in signalling pathways were first tested using IF in A549 cells. 
For unconjugated antibodies, IF testing was done overnight at 4 °C or 
at r.t. for 1 h. To improve the staining quality, titrations were performed 
on antibodies, and IF was evaluated at two different dilution rates. To 
optimize the antibody conditions, A549 cells were seeded on cover-
slips for antibody staining, followed by DAPI (62248, ThermoFisher). 
For IF staining on tissue, the antibodies and Hoechst 33342 (H3570, 
ThermoFisher) were diluted in a protein block buffer (DAKO, X0909).

iseqPLA on cell cultures
For single-colour detection, each coverslip prepared with cells was 
stained with multiple PPIs with one PPI per cycle. The cells were fixed 
and permeabilized, ready for the following staining steps: (1) blocking 
the sample with Duolink blocking solution; (2) incubating it with one 
pair of proteins, conjugated to one PLUS and one MINUS oligonucleo-
tide at 4 °C overnight. The antibodies were diluted in Duolink antibody 
diluent at the preferred dilution rate; (3) incubating the sample with 
ligase for 30 min at 37 °C; (4) amplifying the signals for 100 min at 
37 °C; and (5) staining the sample with DAPI. The sample was then 
ready for imaging.

For multicolour detection, after permeabilization, the cells under-
went the following steps: (1) blocking the sample with Duolink blocking 
solution; (2) incubating it with two pairs of proteins, conjugated to one 
pair of oligonucleotides at 4 °C overnight. The antibodies were diluted 
in Duolink antibody diluent at the preferred dilution rate; (3) incubating 
the sample with ligase for 30 min at 37 °C; (4) amplifying the signals for 
100 min at 37 °C; (5) incubating the sample with the detection buffer 
for 30 min at 37 °C; and(6) staining the sample with DAPI. The sample 
was then ready for imaging.

For indirect PLA, anti-rabbit and anti-mouse secondary antibodies 
conjugated to oligonucleotide PLUS/MINUS probes were used to target 
primary antibodies. After cell fixation and permeabilization, the cells 
were ready for the following steps: (1) blocking the sample with Duolink 
blocking solution; (2) incubating it with one pair of primary antibodies, 
one from rabbit and one from mouse. The antibodies were diluted in 
Duolink antibody diluent at the preferred dilution rate; (3) incubating 
the sample with anti-rabbit and anti-mouse secondary antibody PLUS/
MINUS probes for 1 h at 37 °C; (4) incubating the sample with ligase 
for 30 min at 37 °C; (5) amplifying the signals for 100 min at 37 °C; 
and (6) staining the sample with DAPI. The sample was then ready for 
imaging. After imaging, the samples were incubated with DNase at a 
1:50 dilution rate for 4 h at r.t., followed by 3× 30% formamide washes 
and 3× 1×PBS washes.

DNase
After acquiring the images of iseqPLA, the samples were incubated 
with DNase I (4716728001, Sigma) at a 1:50 dilution rate for 4 h at r.t., 
followed by 3× 30% formamide washes and 3× 1×PBS washes.

Navinci on cell cultures
The cells were fixed and permeabilized, ready for the following staining 
steps: (1) blocking the sample with Block NT; (2) incubating it with one 
pair of proteins, conjugated to one ARM 1 and one ARM 2 oligonucleo-
tide at 4 °C overnight. The antibodies were diluted in Diluent 1 NT at the 
preferred dilution rate; (3) incubating the sample with Enzyme 1 NT in 
buffer 1 for 30 min at 37 °C; (4) incubating the sample with Enzyme 2 
NT in buffer 2 for 90 min at 37 °C; and (5) staining the sample with DAPI. 
The sample was then ready for imaging.

iseqPLA on tissues
iseqPLA is compatible with tissues mounted on slides. The staining set-
tings were the same as those for iseqPLA in cell cultures. We skipped the 
blocking step between cycles for tissue multiplexing to avoid hiding 
the signals. The tissue samples were mounted with 10% glycerol made 
in 1×PBS. We covered the slide using a 24 × 50 mm No. 1 coverslip (3322, 
Thermo Scientific) to prevent evaporation during imaging. To de-coverslip 
the sample after imaging, we placed the slide in a vertical jar containing 
1×PBS for ~10 min, and the coverslip was released due to gravity.

RapMIF
Following iseqPLA, RapMIF was performed to profile pan-cytokeratin, 
ki67, Tom20, p-EGFR, Golph4, Bim, Concanavalin A, phalloidin and 
WGA. The settings were the same as those described previously22. 
Between cycles, the fluorophores were deactivated using a 3% H2O2 and 
20 mM NaOH mixture made up in 1×PBS for 1 h at r.t. in the presence of 
white light, followed by 3× 1×PBS washes (for cell cultures: 3% H2O2 and 
20 mM NaOH; for tissues: 4.5% H2O2 and 24 mM NaOH). For tissue mul-
tiplexing, after IF staining, we performed H&E staining at the last cycle.

Nuclease P1 stripping
Nuclease P1 was examined as an alternative to DNase I. Following the 
imaging of PPI, the samples were incubated with nuclease P1 for 30 min 
at 37 °C. The samples were then washed with 20 mM EDTA three times, 
followed by 3× 1×PBS washes.

H2 buffer
We added 30 ml of 5 M NaCl solution, 10 ml of 1 M Tris (pH 7.5), 0.943 ml 
of Triton X-100, 2.03 g of MgCl2·6H2O and 0.02% (w/v) NaN3 to 960 ml 
of double-distilled H2O36.

DMSO stripping solution
DMSO was also tested to remove oligos and PLA signals. Following the 
imaging of PPI, the samples were incubated with hybridization buffer 
(100 ml of DMSO with 400 ml of H2 buffer) for 1 min, followed by strip-
ping buffer (62.5 ml of H2 buffer to 187.5 ml of DMSO) for 10 min at r.t. 
We then washed the samples three times with 1×PBS36.

Imaging
A widefield microscope, Keyence BZ-X810, was used for fluorescence 
and brightfield imaging. The fluorescent signals were detected by five 
filters with an excitation spectrum of 360 nm (Alexa Fluor), 488 nm 
(FITC), 555 nm (TRITC), 590 nm (Texas red) and 647 nm (Cy5). The 
exposure time was varied, but the exposure time for each marker across 
control and drug-treated HCC827 cells was consistent. The sample of 
cells grown on the coverslip was imaged using a ×40 oil lens for multi-
ple ROIs, and each ROI was imaged across 25–30 z-stacks with 0.4 µm 
per stack. The whole slide tissue was imaged using a ×20 dry lens, and 
each ROI was imaged using autofocus with a ×40 oil lens across 25–30 
z-stacks with 0.4 µm per stack. The resolutions for the ×20 dry lens 
and ×40 oil lens were 0.37742 µm per pixel and 0.18872 µm per pixel, 
respectively.

Sensitivity
HCC827 cells were cultured and seeded on a 96-well plate, followed by 
no treatment or a 12-h osimertinib treatment at 5, 10, 25 and 100 nM. 
The cells were then fixed and ready for iseqPLA experiments. The cells 
were profiled with two cycles of iseqPLA (Cycle 1: Sox2/Oct4, p-p90RSK/
NF-kB; Cycle 2: cyclin D1/CDK4, Bim/Tom20), followed by segmentation 
markers. Nuclease P1 was used to remove probes between cycles. The 
PPI counts were quantified.

Specificity
The HCC827AR/BimKO and HCC827AR/vector-only cells were cultured 
and seeded on a 96-well plate. The cells were then fixed using 1.6% 
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paraformaldehyde, ready for experiments. Following permeabilization 
and blocking, cells were stained with Bim/Tom20 and Sox2/Oct4 PPIs 
overnight. Following ligation, amplification and detection, the signals 
were imaged using a microscope. Cell phenotyping was performed 
using segmentation markers. Cells from the same batch were also 
stained with Bim using indirect IF. Quantification of PPI and IF staining 
of Bim antibody in cytosol and nucleus were performed.

HCC827 cells were stained with three cycles of PPI: anti-p-ERK 
PLUS probe only, anti-Yap MINUS probe only and cyclin E/CDK2 pair. 
Between cycles, the signals were removed using nuclease P1.

Baseline vs PPI
The HCC827 cells were cultured and seeded on a 96-well plate, fol-
lowed by no treatment or a 12-h 100-nM osimertinib treatment. The 
cells were then fixed using 1.6% paraformaldehyde, ready for experi-
ments. Due to the limitation that most of the antibodies used in the 
panel are from rabbit, we measured the protein baseline levels using 
indirect immunofluorescence on different wells. Subsequently, the 
corresponding PPI counts were measured using PLA. The cells were 
stained with segmentation markers (Concanavalin A, phalloidin and 
WGA) for cell mask identification.

Batch difference
HCC827 cells from two batches were cultured and seeded on the same 
96-well plate, followed by no treatment or a 12-h 100-nM osimertinib 
treatment. The cells were then fixed, ready for iseqPLA experiments. 
The cells were profiled with two cycles of iseqPLA (Cycle 1: Sox2/Oct4, 
p-p90RSK/NF-kB; Cycle 2: cyclin D1/CDK4, Bim/Tom20), followed 
by segmentation markers. Nuclease P1 was used to remove probes 
between cycles. The PPI counts were quantified based on the cell mask.

Co-immunoprecipitation
The antibodies were first validated using western blot. HCC827 cells 
were treated with 100 nM osimertinib for 8 and 12 h, and then lysated 
for co-IP. C-Myc proteins were pulled down using c-Myc (CST, 9402S), 
followed by staining of p-ERK (CST, 9106S). Normal rabbit IgG (CST, 
2729S) served as a negative control.

Luminex
HCC827 cells were lysed using Bio-Plex Cell Lysis kit (171304011) and 
stored at −80 °C. Cell lysate (1 µg) was diluted in assay buffer (provided 
in the multiplex assay) and analysed using the Milliplex MAP 9-Plex 
Multi-Pathway Magnetic Bead Signaling Kit Multiplex assay (Millipore 
Sigma, 48-680MAG). P-CREB, p-JNK, p-NFκB, p-p38, p-ERK1/2, p-Akt, 
p-p70S6K, p-STAT3 and p-STAT5 measurements were read using a 
MAGPIX Luminex instrument (Luminex).

Image processing
For 2D maximum projection images, we used stitched images provided 
by the BZ-X810 Analyser. We used the Hoechst channel from each cycle 
to register the images using a phase cross-correlation algorithm. For 
3D per z-stack image processing, we stitched ROI images of 1,024 pixels 
by using a 30% overlap ratio, utilizing a code based on ASHLAR92. After 
stitching, we registered all cycle images per z-stack as the microscope 
captures each ROI z-stack image at once.

Cell segmentation
We used two distinct methods for single-cell segmentation of cell 
culture and tissue images. For cell culture images, we used the Cell-
pose93 deep learning algorithm, whereas for tissue images we used 
the Mesmer94 algorithm from the Deepcell95 package for single-cell 
segmentation. Single cells in cell culture are more homogeneous with 
more defined cell boundaries, whereas cells in mouse tissue exhibited 
more variation in cell shape and size. We chose Cellpose for cell culture 
data and Mesmer for tissue data because the two algorithms were 

pretrained on corresponding data modalities. We used Hoechst for 
nuclei segmentation and p-EGFR as a cytosolic marker.

Cell phenotyping in tissue samples
HCC827-derived mouse xenograft cells were classified by the mean 
expression level of the pan-cytokeratin marker to differentiate can-
cer cells from normal mouse cells. Patient tissue sample cells were 
classified by combining IF phenotyping and an H&E cell classifier. We 
performed H&E staining at the last cycle in the patient tissue after IF 
staining. After registration and single-cell segmentation using the 
Deepcell algorithm, we first classified cells on the basis of their IF 
expression level. Cells expressing low staining for all markers were 
classified as ‘others’. Next, using a pretrained Hover-Net model96, we 
segmented and classified cells using H&E images into immune, stromal 
and cancer cells. Using the segmented cell centroids from H&E images, 
we matched each cell into the IF modalities and relabelled all ‘other’ 
class cells from the new H&E images. This allowed us to utilize the best 
available information from both the IF and H&E modalities.

PPI detection
PPI signals were detected using a custom algorithm leveraging a tra-
ditional image processing pipeline. More specifically, each PPI image 
was preprocessed as follows: images were first transformed using a 
top-hat filter of 3-pixel size to reduce the noise around PPI signals, then 
Laplacian of Gaussian images was used to detect bright local maxima 
as PPI signals. In 3D images, we filtered out double detection of PPIs at 
the same position in consecutive z-stacks. After detecting all the PPI 
locations in 3D, we looked at PPIs within a 2.5-pixel radius (0.045 μm) by 
creating a PPI neighbourhood graph of 2.5-pixel radius threshold and 
obtained all connected components in the graph. Finally, we extracted 
the mean position of the unique connected components in the graph 
as identified unique PPI signals in 3D. A 2.5-pixel radius was chosen 
empirically by comparing the number of PPIs detected as well as their 
spatial representation.

PPI cell assignment in tissue samples
In the mouse tissue data, the cell membrane segmentations do not 
capture the whole cell area. To avoid loss of PPI information due to 
cell segmentation error, we used a nearest-distance-based assignment 
method to assign the PPI signal detected that is not in any cell segmen-
tation mask. For each PPI signal not in any segmented cell region, we 
looked at the nearest cell mask pixel; if the distance was lower than a 
user-defined value, we assigned it to the cell to which the nearest cell 
mask pixel belonged.

Spatial graph construction
For each detected PPI in a cell, we extracted the corresponding 2D or 3D 
localization and assigned a node in the created graph. The node labels 
were assigned by creating a one-hot encoding of the corresponding 
PPI detected for the node. Delaunay triangulation was used to create 
edges connecting the nodes in the graph and therefore create a PPI 
spatial graph for each cell. The models were trained in a multi-instance 
learning framework, that is, a cell label for each instance was assigned 
on the basis of the cell treatment condition of a group. For the cell-level 
spatial graphs, we used a radius search of 20 μm to determine neigh-
bouring cells. That is, after single-cell segmentation, we calculated all 
cells within a 20 μm distance between their centroids and considered 
them as neighbouring cells.

SpPPI-GNN model. For the graph neural network, we used a multilayer 
network consisting of graph convolutional layers of 16–64 embedding 
size. The input of the model was the generated PPI graph for each cell 
with node feature represented by the PPI one-hot encoding. Each layer 
transformed the input as the following function: Hl+1 = f(WlHlA∗), where 
l is the corresponding layer, f is the activation function, Hl  the node 
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embedding matrix, Wl the weight matrix of the layer l, and A∗ the spec-
tral normalized adjacency matrix. The spectral normalized adjacency 
matrix was obtained using the following formula: A∗ = D−

1
2 AD

1
2, where 

A is the corresponding adjacency matrix and D is the degree matrix of 
A. We benchmarked different graph layers’ backbones (GCN97, GAT98, 
GINConv99, GraphConv100 and SAGEConv101) for optimal prediction in 
the validation set for 5-PPI, 9-PPI and 13-PPI data. Moreover, we bench-
marked various hyperparameters for optimal parameter selection, 
such as the number of layers (2, 3 or 4) and the size of hidden layers (16, 
32 or 64). The node embeddings were then aggregated by a pooling 
layer. Similarly, we benchmarked various pooling layers to investigate 
the best way of incorporating node-level features: mean, maximum, 
sum, global attention102 and gated attention. Finally, two dense layers 
were then used to obtain prediction at the cell level (that is, graph-level 
prediction).

2D-3D fusion model
The 2D-3D fusion model utilized the 3D data in graph representation, 
with an edge characterizing the spatial distance between detected 
PPI events, and the corresponding maximum projected 2D data in 
graph representation, with an edge characterizing the spatial dis-
tance between PPI events projected on the same plane. To combine 
the 2D and 3D information, we used two spPPI-GNN models that took 
as input the 2D and 3D representations, respectively. We combined the 
graph-level embedding using concatenation or a tensor decomposition 
fusion module via Kronecker Product103 with a gating-based attention 
mechanism104 for cell-level prediction.

Multi-instance learning baseline
A multilayer perception baseline was used to compare our spPPI-GNN 
network. In the same multi-instance learning framework, we assigned 
a class label from the cell treatment condition. The input of the model 
was the generated PPI graph for each cell with node feature represented 
by the PPI one-hot encoding. Here we used stacked dense layers of 
embedding size 16 for the 5-PPI dataset and embedding size 32 for the 
9-PPI dataset to obtain a node embedding. Each layer transformed the 
input as the following function: Hl+1 = f(WlHl), where l is the correspond-
ing layer, f is the activation function, Hl the node embedding matrix and 
Wl the weight matrix of the layer l. Finally, the node embeddings were 
then aggregated by a pooling layer, and two dense layers were then used 
to obtain a prediction at the cell level (that is, graph-level prediction).

Machine learning baseline
Several machine learning models, including naïve Bayes, random for-
est, AdaBoost, decision tree, support vector machine (SVM) and gradi-
ent boosting, logistic regression and MLP, were used as a baseline on 
a total number of PPI events. We used the scikit-learn Python library 
with default setting when training and testing these machine learning 
models. We benchmarked these models using the total number of PPI 
events per whole cell (1) and divided by subcellular regions (2) (nuclei/
cytosol). Therefore, the input is the sum of each PPI class in (1) the whole 
cell or divided by (2) cytosol and nuclei regions. The model output is 
the predicted treatment condition.

Complexity of GNN models
The total space and time complexity of the GNN model can be analysed 
by considering the operations performed in each layer across the entire 
network52. Each GNN layer involves three primary operations: feature 
transformation, neighbourhood aggregation and activation. For fea-
ture transformation, which involves a dense matrix multiplication 
between the node features and the weight matrix, the time complexity 
is O(NF2), where N is the number of nodes and F is the number of features 
per node. The neighbourhood aggregation step, which combines 
features from neighbouring nodes, has a time complexity of O(N2F ) for 
dense graphs. The activation function applied element-wise to the 

node features adds a negligible time complexity of O(NF ). Thus, the 
total time complexity per layer for dense graphs is O(NF2 + N2F ), and 
for L layers, it becomes O(LNF2 + LN2F ). The space complexity includes 
storing the node features, weight matrices and the adjacency matrix. 
The node features require O(NF) space, the weight matrix requires O(F2) 
space, and the dense adjacency matrix needs O(N2)  space. Conse-
quently, the space complexity per layer is O(NF + F2 + N2) , and for L 
layers, the total space complexity is O(L(NF + F2) + N2).

To analyse the complexity of the GNN model, we calculated the 
time and space complexities using the formulas LN2F + LNF2 (time) and 
N2 + LF2 + LNF  (space). We varied L (number of layers) and F (hidden 
size) while keeping N constant at 90. For each combination of L and F, 
the complexities were computed and plotted. The graph illustrates 
how increasing the number of layers and features affects the compu-
tational steps and memory usage. Specific values of L and F were high-
lighted with markers to show their exact impact on the model’s 
performance. We chose N = 90 because it is the mean number of nodes 
of the graphs in all datasets.

Pixelgen data
The data were collected from the Pixelgen database (https://software.
pixelgen.com/datasets/cd20-rituximab-v1.0-immunology-I). Periph-
eral blood mononuclear cell samples were stimulated into phyto-
haemagglutinin (PHA) blasts with PHA-L, followed by 10 ng ml−1 of 
interleukin-2 for 5 days at 37 °C. The cells were added to plates coated 
with 5 µg ml−1 of human ICAM-1 (CD54) His-tag Fc Chimera Recombi-
nant Protein (A42523) for 2 h. The aliquots of cells were treated with and 
without 10 ng ml−1 of regulated upon activation, normal T cell expressed 
and secreted (RANTES) or CCL5 at 37 °C for 1 h.

Prediction metrics. To compare the models’ prediction abilities, we 
used a 5-fold cross-validation setting by separating the dataset into an 
80% training set and a 20% validation set. We used the receiver operat-
ing characteristic AUC score as a metric to evaluate the data prediction 
in the validation sets.

Statistical testing. The details of statistical tests employed in each 
case are provided in the figure captions. All P values were corrected for 
multiple testing and the statistical testing method is indicated in the 
figure captions. We used the following convention to indicate signifi-
cance with asterisks: ***(0.001 > P > 0.0001) and ****(P ≤ 0.0001). Exact 
P values that are greater than 0.001 are shown on the plots.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The main data supporting the results of this study are available within 
the paper and its Supplementary Information. The statistics needed 
to recreate the figures are provided as Source Data. The raw data are 
available in figshare105. Source data are provided with this paper.

Code availability
The custom codes used in the study are available in GitHub106.
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Extended Data Fig. 1 | Evaluation and quantification of iseqPLA properties 
in HCC827 cells. a, Visualization of the workflow evaluating PLA sensitivity, 
specificity, baseline vs PPI, and batch consistency in HCC827 cells. Following 
different treatments, the cells were stained with PLA or IF. The detailed 
experimental designs are in Supplementary Fig. 6a, 7a, 8a, and 9a, Created 
with BioRender.com. b, The comparison of PPI counts in HCC827 cells between 
those treated with a range of Osimertinib for 12 hours. The detailed results are 
in Supplementary Fig. 6. c, The comparison of PPI counts in two HCC827AR 
cells. The detailed results are in Supplementary Fig. 7. d, The comparison of PPI 

counts in HCC827 cells between those treated with and without Osimertinib. 
The baseline levels of 4 proteins in HCC827 cells with and without treatment 
were quantified on the right panel. The detailed results are in Supplementary 
Fig. 8. e, The comparison of PPI counts from 4 pairs in HCC827 cells from two 
batches treated with and without 12-hour Osimertinib. The detailed results are 
in Supplementary Fig. 9. Statistical testing was performed using Mann Whitney 
Wilcoxon Test two-sided (***: 0.0001 < p <= 0.001, ****: p < =0.0001). Box plots 
and violin plots: median (horizontal line inside box), 25th and 75th percentiles 
(box), 25th and 75th percentiles ±1.5 times the interquartile range (whiskers).
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Extended Data Fig. 2 | Schematics showing the graphical implementation 
of spatial neighbouring information. a, Schematic showing the PPI events 
spatial information incorporated in the graph representation of PPI spatial 
neighbourhood. During each step of the spPPI-GNN, from the spatial graph, each 
PPI neighbour’s embedding is incorporated until a global cell-level embedding 

is extracted and used for prediction. Created with BioRender.com. b, Example 
of cell PPI events spatial graph showing similar PPI event type density with 
different PPI event neighbours’ distribution. This shows a spatial distribution 
heterogeneity of PPI events at the subcellular level. c, Line plot showing the 
variation of PPI type neighbouring count across cells (x-axis: cell ID) showed in b.
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Extended Data Fig. 3 | Orthogonal validation of p-ERK/c-Myc interaction and 
expression in HCC827 cells. a, Schematic illustration of measuring p-ERK/c-Myc 
interaction using co-IP and PLA, Created with BioRender.com. b, Top Panel of 
western blots depicted results of co-IP of p-ERK and c-Myc in c-Myc pull-down 
samples. The cells were treated with 100 nM Osimertinib for 0, 8 12 hours. N-IgG 
served as a negative control for co-IP. The bottom panel demonstrated the results 
of p-ERK, c-Myc, and GAPDH expression run on different gels from the same 
HCC827 cell lysate. GAPDH was used as a negative control. P-ERK expressions 
at short and long exposure were shown in the gel. c, Workflow of measuring 
9 phosphorylated proteins in HCC827 cells using Luminex. Created with 

BioRender.com. d, Quantification of 9 phosphorylated proteins in HCC827 cells 
treated with and without 12-hour 100 nM Osimertinib was shown in the heatmap 
and bar graph. Bar graphs are shown as mean ± 1 SD. e, Quantification of p-ERK/c-
Myc PPI counts in different ROIs with a high, low, and medium expression of 
p-ERK/c-Myc in HCC827 cells. The right graph shows the cumulative density 
which measures the percentage of cells expressing different numbers of 
p-ERK/c-Myc events per cell across three ROIs. The detailed statistics for each 
ROI are shown in Supplementary Fig. 25. Box plots: median (horizontal line inside 
box), 25th and 75th percentiles (box), 25th and 75th percentiles ±1.5 times the 
interquartile range (whiskers).
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Extended Data Fig. 4 | Quantification of 26-plex profiling for 9 PPIs and 8 
signalling and organelle markers in HCC827. a, The comparison of PPI counts 
in HCC827 whole cells, nuclei, and cytosol between those treated with and 
without Osimertinib. Statistical testing was performed using Mann Whitney 
Wilcoxon Test two-sided (***: 0.0001 < p <= 0.001, ****: p < =0.0001). The total 

cell numbers are 836 and 655 for untreated and Osimertinib-treated cells in the 
comparison of PPI count per cell. b, UMAP visualizes the similarity of p-ERK/c-
Myc counts in the 5PPI and 9PPI datasets. Box plots: median (horizontal line 
inside box), 25th and 75th percentiles (box), 25th and 75th percentiles ±1.5 times 
the interquartile range (whiskers).
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Extended Data Fig. 5 | Quantification of PPIs and Ki67 in HCC827 cells. a, The 
PPI count comparison in cytosol and nuclei is separately shown in the figure. 
The HCC827 cells were treated with VP at 0, 1, and 10 µM for 24 hours. b, The 
comparison of Ki67 density in HCC827 cells treated with and without VP. Ki67 
density was calculated by dividing the Ki67 positive regions by the nuclear size.  

c, The comparison of Ki67 density in HCC827 cells treated with and without 100 nM 
Osimertinib for 12 hours. Statistical testing was performed using Mann Whitney 
Wilcoxon Test two-sided (***: 0.0001 < p <= 0.001, ****: p < =0.0001). Box plots and 
violin plots: median (horizontal line inside box), 25th and 75th percentiles (box), 
25th and 75th percentiles ±1.5 times the interquartile range (whiskers).
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Extended Data Fig. 6 | PPI counts per cell and PPI density in patient tissues. 
a, Quantification of PPI counts per stromal, per immune cell with immune 
neighbours, and PPI counts per tumour cell with tumour neighbours at the 
single cell level in the responder tissue. Statistical testing was performed using 
t-test independent samples with Bonferroni correction (***: 0.0001 < p <= 0.001, 
****: p < =0.0001). b, Comparison of the density of PPI counts in lymphocyte-
enriched regions between responders and non-responders. A plot with a wider 
y-axis range is in Supplementary Fig. 40d to show the complete individual data 

points. Example images of 5 PPIs expression in lymphocyte-enriched regions are 
shown on the right. The first column is the visualization of 5 PPIs in lymphocyte-
enriched regions. The second column displays the distributions of Sox2/Oct4 
PPI in red. The third column exhibits the distributions of NF-kB/p-P90RSK PPIs 
in green. Statistical testing was performed using t-test independent samples 
(***: 0.0001 < p <= 0.001, ****: p < =0.0001). Box plots and Violin plots: median 
(horizontal line inside box), 25th and 75th percentiles (box), 25th and 75th 
percentiles ±1.5 times the interquartile range (whiskers).

http://www.nature.com/natbiomedeng


1

nature portfolio  |  reporting sum
m

ary
April 2023

Corresponding author(s): Ahmet Coskun

Last updated by author(s): Aug 23, 2024

Reporting Summary
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Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection Keyence Microscope BZ-X810 software was used for data collection. Python was used for data analysis.

Data analysis The custom codes used in the study are available at https://github.com/coskunlab/iseqPLA.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

The main data supporting the results of this study are available within the paper and its Supplementary Information. The statistics needed to recreate the figures 
are provided as Source Data. The raw data are available from figshare at https://figshare.com/s/d58cb4376bb235c74ee6.
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Research involving human participants, their data, or biological material
Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation), 
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender The human specimens were obtained from male patients. Sex was not considered in the study design.

Reporting on race, ethnicity, or 
other socially relevant 
groupings

The human specimens were from White non-Hispanic men. Race, ethnicity and other socially relevant groupings were not 
considered in the study design.

Population characteristics –

Recruitment –

Ethics oversight The use of human specimens was approved by the Institutional Review Board of Emory University (IRB00098377). 

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size Sample sizes were chosen on the basis of the availability of biological specimens and resources.

Data exclusions No data were excluded.

Replication 5 common pairs across 3 datasets in HCC827 cells.

Randomization The study was not randomized, because it focused on specific cell lines and tissue samples with unique characteristics.

Blinding The study was not blinded, because of the nature of experimental procedures.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Plants

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Antibodies
Antibodies used The vendors and catalogue numbers of the antibodies used are listed in Methods.
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Validation The optimization of the antibody-staining conditions is described in Methods. Supplementary table 1 provides the dilution-rate 
optimization.
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