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Protein-protein interactions (PPIs) regulate signalling pathways and cell
phenotypes, and the visualization of spatially resolved dynamics of PPIs would
thus shed light on the activation and crosstalk of signalling networks. Here we
reportamethod that leverages a sequential proximity ligation assay for the
multiplexed profiling of PPIs with up to 47 proteins involved in multisignalling
crosstalk pathways. We applied the method, followed by conventional
immunofluorescence, to cell cultures and tissues of non-small-cell lung

cancers with amutated epidermal growth-factor receptor to determine the
co-localization of PPIs in subcellular volumes and to reconstruct changesin the
subcellular distributions of PPIs in response to perturbations by the tyrosine
kinase inhibitor osimertinib. We also show that a graph convolutional network
encodingspatially resolved PPIs can accurately predict the cell-treatment status
of single cells. Multiplexed proximity ligation assays aided by graph-based deep
learning can provide insights into the subcellular organization of PPIs towards

the design of drugs for targeting the proteininteractome.

Lung cancer is one of the leading causes of death, and non-small-cell
lung cancer (NSCLC) accounts for 80% of lung cancer. One subgroup
of patients with NSCLC harbouring epidermal growth-factor receptor
(EGFR) mutation can benefit from EGFR tyrosine kinase inhibitors
(TKIs), particularly osimertinib’. Despite there being advances in
improving progression-free survival and overall survival, people
canstill develop acquired drug resistance due to the activation and
crosstalk among signalling pathways. Hence, resolving the signal-
ling dynamics and PPIs involved in EGFR-dependent cancer cell

growth has become an important step to solving the problem of
osimertinib resistance.

Phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)/
mammalian target of rapamycin (mTOR) signalling is known as a key
downstream pathway of EGFR, mediating resistance to EGFR TKIs>. The
PI3K/AKT/mTOR pathway is commonly activated inNSCLC, and it also
involves the development of chemoresistance in NSCLC by mediating
with cluster of differentiation 147 (CD147)°. Another downstream path-
way of EGFR, the mitogen-activated protein kinase (MEK)/extracellular
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signal-regulated kinase (ERK) signalling pathway, has been studied
to delay or prevent acquired resistance to osimertinib. The crosstalk
among these pathways is commonly measured by using westernblot,
flow cytometry, cell viability and apoptosis assays (Supplementary
Fig.1)". The function of both pathways is widely described; however,
theinteraction between AKT/mTOR and ERK is stillunclear.Ithasbeen
demonstrated that reactivation of ERK1/2 occurs following EGFR TKI
treatment, contributing to acquired resistance to osimertinib. The
combination of EGFR TKI, osimertinib and MEK/ERK inhibitors could
prevent the reactivation of ERK1/2 with a greater initial apoptotic
response’.

However, cancer relapse still develops due to the activation
of yes-associated protein (YAP)/transcriptional coactivator with
PDZ-binding motif (TAZ) activity, which are components of the Hippo
pathway*. The Hippo pathway, a tumour-suppressive signalling path-
way, could function as a resistant mechanism to EGFR and ERK/MEK
inhibitors in EGFR mutant (EGFRm) NSCLC. In the absence of Hippo
signalling, the inactivated large tumour suppressor kinase (Lats 1/2)
resultsin theactivation and translocation of YAP/TAZ into the nucleus,
promoting the transcription of growth-related genes>® (Supplementary
Fig.1). Theinteraction of YAP and transcriptional enhanced associate
domain1(TEADI) canbe directly inhibited by verteporfin (VP)"%, Thus,
mechanisms of action on drug perturbations of PPI binding targets
couldserve asanalternative strategy to overcome multipathway resist-
ance to osimertinib.

Inhibition in the ERK pathway may upregulate YAP/TAZ as a
compensatory pathway. YAP can remain active upon inhibition of
EGFR TKIs and EGFR/MEK inhibitors, and promote the cells to enter
a senescence-like dormant state in the absence of EGFR downstream
signalling in EGFRm NSCLC*. However, the crosstalk between the two
pathways, especially the interaction between ERK and YAP/TAZ, is
still unclear. Thus, unravelling the complexity of the PPIs or crosstalk
among pathways at the subcellular level using a multiplex imaging
approachis necessary to identify the signalling networks and spatial
dynamics.

A protein-interaction network using affinity-purification mass
spectrometry has been developed to map out physical associations
among 90 tyrosinekinases’. Although this approach reveals previously
unexplored EGFR network oncogenesis inlung cancer, the sample prep-
aration with peptide extraction causes loss of spatial featuresin signal-
ling. Also, PPIs have shown a capability in screening EGFR-dependent
cancers using single-molecule pull-down and co-immunoprecipitation
techniques. However, the single-molecule co-immunoprecipitation
approach is limited to snap-frozen samples only™. Forster resonance
energy transfer (FRET) hasbeen used to detect PPIs on the basis of the
energy transfer from adonor molecule to anacceptor molecule conju-
gated toantibodies. However, FRET requires the genetic modification
of two proteins™",

We overcome these limitations by directly targeting endogenous
proteins using a proximity ligation assay (PLA). This method utilizes
rolling cycle amplification (RCA) and permits the detection of PPIs. PLA
is compatible with low-affinity antibodies to increase the sensitivity
of biomarker detection with higher signal-to-noise ratios (SNRs)". It
also exhibits improved sensitivity and specificity for localizing pro-
teins than western blot, sandwich enzyme-linked immunosorbent
assay (ELISA)™. PLA has been used to investigate homodimerization
and crosstalk between proteins” ™. Proximity sequencing (Prox-seq)
has been developed, combining PLA with single-cell RNA sequenc-
ing, to quantify mRNAs, proteins and protein complexes’. However,
high-throughput tools are needed to analyse the spatial context of
PPIs. The signalling proteins display location-dependent functionsin
cells and tissues. In our study, we developed a multiplexed PLA assay,
which we termed ‘intelligent’ sequential proximity ligation assay (ise-
qPLA), allowing us to detect multiple PPIs on the same sample and
reveal the spatial PPl dynamics under different drug perturbations.

iseqPLA visualizes the PPIs across AKT/mTOR, MEK/ERK and YAP/TEAD
pathways in NSCLC EGFRm cell cultures and EGFRm frozen mouse
tissue samples. Multiplexed spatial PPl dynamics studies under drug
perturbations require computational frameworks for correlative and
predictive modelling. Therefore, we demonstrated spatial PPl graph
neural networks (spPPI-GNN) leveraging graph convolutional networks
for single-cell-level prediction of drug perturbation from spatial PPI
networks. Moreover, we performed correlative analysis approaches
for quantifying PPlevent co-localization and graph-based PPI networks
with different protein markers.

Results

Multiplexed PPl detection usingiseqPLA

To detect complex signalling interaction networks, we designed ise-
qPLA to provide highly sensitive maps of many PPIs in both cells and
tissues (frozen or formalin-fixed paraffin-embedded (FFPE)). The detec-
tion canbeeitherindirect or direct. For the detection of one PPlusing
directlabelling, the cells need to be stained with two primary antibodies
targeting two different proteins or proteins phosphorylated at different
sites'*?°. These primary antibody pairs are conjugated to one of the PLA
probes, oneto PLUS and another to MINUS (Supplementary Fig. 2a). The
PLA probe contains a unique oligonucleotide, is attached to the heavy
chainofthe primary antibody and permits the detection of PPIsin situ
with a distance <20-40 nm at endogenous protein levels?. For indi-
rectlabelling where the oligonucleotides are conjugated to secondary
antibodies, when the proteins of interest interact with each other, the
DNA probes from two antibodies hybridize and ligate to form circular
DNAZ. Amplified circular DNA can be visualized using fluorescence
microscopy. The commercial PLA detection kit allows us to visualize
and quantify theindividual PP1. We advanced the current PLA technique
to overcome the limitation on the number of protein pairs that can be
detected by the conventional microscope.iseqPLA candetect multiple
PPIs by utilizing iterative cycles of labelling, imaging, treating with
DNase I/Nuclease P1and relabelling (Fig. 1a and Supplementary Fig. 2b).
The oligonucleotides on primary antibodies are removed using DNase
I/Nuclease P1.iseqPLA utilizes commercial DuoLink PLA or Navinci
assays to detect highly multiplexed subcellular protein interaction
maps. This iterative process can be repeated to create multiplexed
signalling interaction maps in the same single cell. There are several
ways to multiplex the PPl detection process. We could detect one pair
of PPIs per cycle (Supplementary Fig. 3) or detect three pairs of PPIs
per cycleusing multicolour detection (Supplementary Fig. 4). Also, by
utilizing a multispectral microscope, we could achieve the detection
of more than 3 pairs of PPIs per cycle (Supplementary Fig. 5).

iseqPLA profiles multiple PPIs and their subcellular distributionsin
single cells. By incorporating the localizationinformation of organelles
and proliferation proteins using rapid multiplexed immunofluores-
cence (RapMIF) (Fig. 1a)*?, iseqPLA visualizes the protein associates
across AKT/mTOR, MEK/ERK and YAP/TEAD pathways at subcellular
levelsin NSCLC EGFRm cell cultures and frozen mouse tissue samples.
iseqPLA experiments of cell cultures treated with osimertinib dem-
onstrate the PPl dynamics and responses involved in the signalling
pathways. The spPPI-GNN framework successfully predicts the cell
perturbation states from the underlying PPl network graph created
using PPl event distances. To validate our model, we compared our
spPPI-GNN model with traditional machine learning (ML) models
using PPl event counts, a multilayer perception (MLP) model using
PPl counts and a multi-instance learning (MIL) model using multilayer
perception (Fig. 1b).

We evaluated the sensitivity, specificity and batch consistency of
iseqPLA, as well as the effect of osimertinib on protein baseline or PPI
level (Extended Data Fig. 1a). To investigate the sensitivity of PLA, the
kinetic change in PPl expression was measured in response to a range
of 12-h osimertinib treatments in HCC827 EGFRm NSCLC cells (Sup-
plementary Fig. 6a,b). Cyclin D1/cyclin-dependent kinases 4 (Cdk4)
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Fig.1|Schematicillustration of iseqPLA for subcellular spatial-signalling
networks. a, Schematic of iseqPLA combined with RapMIF in cell cultures or
tissues. PPIs in either cell cultures or tissue samples are detected using iseqPLA.
Each PPlis detected by primary antibodies conjugated with oligonucleotides.
Between cycles, the probes are removed using the enzyme. Following n cycles,
multiple PPIs are measured at the subcellular level in single cells. RapMIF is then
utilized to visualize proliferation, signalling and organelle markers. b, Spatial PP1

graph construction. (i) Counting using machine learning models, where each
cell PPl count is used as model input to predict without spatial information. (ii)
Multi-instance learning at the cell level with a multilayer perception network,
where PPIs are treated as a bag of instances without spatial information. (iii)
The proposed spPPI-GNN network that utilizes single-cell spatial PPIgraph

for prediction, where the PPl spatial graphs are used as input for the model

prediction. Created with BioRender.com.
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PPl decreased as the osimertinib concentration was increased from O
to 100 nM, indicating that osimertinib inhibits cell cycle progression
and proliferation (Extended Data Fig. 1b and Supplementary Fig. 6c).
However, the decreasing trend was moderate for SRY-Box transcription
factor 2 (Sox2)/Octamer-binding transcription factor 4 (Oct4),
phosphor-p90 Ribosomal S6 Kinase (p-p90RKS)/Nuclear factor kappa
B (NF-kB) and BCL2-interacting mediator of cell death (Bim)/translo-
case of outer membrane (Tom20) due to the lower copy numbers of
PPIs, which are sensitive to PPl binding fluctuations.

To measure and quantify the specificity of the multicolour PLA,
we performed Bim/Tom20 PPl on HCC827AR/BimKO cells, which are
osimertinib-resistant cells with Bim knockout, and HCC827AR empty
vector as a control (Supplementary Fig. 7a and Dataset 1). The Bim
intensity was also measured using immunofluorescence (IF) (Supple-
mentary Fig. 7b). Areduction in Bim/Tom20 PPl counts was observed
in the cytosol of HCC827AR/BimKO cells (Extended Data Fig. 1c and
Supplementary Fig. 7c). The few positive signals of Bim/Tom20 in
HCC827AR/BimKO cells may come from the stochastic binding of
the Bim primary antibody in the nucleus. Nucleus IF staining of Bim
in HCC827AR/BimKaO cells also confirmed the IF noisy staining of the
Bim antibody (Supplementary Fig. 7b,c). Overall, the downregulation
of Bim/Tom20 PPIs and Bim mean intensity in HCC827AR/BimKO
cells indicates the specificity of PLA (Extended Data Fig. 1c and Sup-
plementary Fig. 7c). To evaluate the specificity of single-colour PLA
(Supplementary Dataset 2), HCC827 cells were also stained with the
anti-p-ERK-PLUS probe, then anti-YAP MINUS probe, followed by a
positive control, Cyclin E/cyclin-dependent kinases 2 (Cdk2) (Sup-
plementary Fig. 7d). Negative results from the staining of only PLUS or
MINUS probes validated the specificity of PLA (Supplementary Fig. 7e).

To investigate whether osimertinib inhibits the baseline protein
expression or the PPI, we performed IF to visualize and quantify the
baseline protein levels and utilized PLA to measure the correspond-
ing PPI counts in untreated and osimertinib-treated HCC827 cells
(Extended Data Fig. 1a and Supplementary Fig. 8). Osimertinib effec-
tively inhibited the expression of Sox2/Oct4 interactions; however,
there was no effect onthe baseline protein expression level (Extended
DataFig.1d). Thisindicates that osimertinib may affect the PPl without
changing the baseline expression of proteins. However, osimertinib
inhibits cyclin D1 but upregulates CDK4, resulting in the unchanged
interaction between the two proteins (Extended Data Fig. 1d). Cyclin
Dlexpressionlevels fluctuate across the cell cycle, while CDK4 remains
relatively consistent. The interactionbetween cyclin D1and CDK4 plays
akeyrole in the S-phase cell cycle progression®. The cyclin D1/CDK4
pair could be a potential target for combinatorial treatment of osimer-
tinib. Osimertinib as a TKI can directly inhibit EGFR phosphorylation,
thereby altering the dynamics of the downstream signal cascades,
AKT/mTOR, ERK/MEK and Hippo pathways. Whether the baseline
protein levels or the interactions involved in the signal cascades are
perturbed in response to osimertinib treatment needs further study
and statistical support.

To examine the batch consistency of iseqPLA, we performed two
cycles of iseqPLA using multicolour detection in a total of 4 pairs of
proteininteractions (Cycle1: Sox2/Oct4 and NF-kB/p-P90rsk; Cycle 2:
cyclin D1/CDK4 and Bim/Tom20) on HCC827 cells across two batches
(Supplementary Fig. 9a,b). Between cycles, the signals were removed
using nuclease P1 (Supplementary Fig. 9a,b). Cells at passages 10 and
21 from different batches demonstrated a similar trend across four
PPIs (Extended Data Fig.1e and Supplementary Fig. 9c), indicating the
batch consistency of iseqPLA.

Highly multiplexed spatial PPl networks in EGFRm cells

To reconstruct the signalling networks and PPlin EGFRm cells under
drug perturbations, iseqPLA was used to profile 5 PPIs involved in the
AKT/mTOR, MEK/ERK and YAP/TEAD pathways in the NSCLC EGFRm
osimertinib-sensitive cellline, HCC827 cells. DNasel was used to remove

probes between cycles. Inour study, we firstinvestigated whether the
EGFR pathways would be affected by osimertinib in HCC827 cells, even-
tually affecting cell proliferation and growth. HCC827 cells were treated
with and without 100 nM osimertinib for 6,12 and 24 h (Supplementary
Fig.10a). Theclinically achievable steady-state plasma concentration
of osimertinib is ~500 nMin patients with EGFRm NSCLC receiving an
80 mg day dosage”*. The concentration of 100 nM osimertinib should
fall within the expected range of steady-state plasmalevels of osimer-
tiniband has beenselected to ensure sufficient inhibition of the target
pathway to mimic clinically relevant dosing levels. p-ERK was used to
indicate the efficacy of osimertinib treatment. P-ERK was suppressed
initially after a 6-h treatment; however, osimertinib even increased
p-ERK after a12-h treatment (Supplementary Fig. 10b and Dataset 3),
suggesting that osimertinib may exert transient inhibitory effects on
the MEK/ERK pathway. To reveal the PPl dynamics under osimertinib
treatment, we performed iseqPLA on HCC827 cells treated with and
without 100 nM osimertinib for 12 h. To determine the best staining
conditions for both RapMIF and iseqPLA, we performed titrations on
eachantibody inthe multiplexed panel. IF was performed to evaluate
antibody staining using two different dilution rates (Supplementary
Figs.11and 12). We compared the SNRs of these IF images and used the
conditions with higher SNRs for eitheriseqPLA or RapMIF experiments
(Supplementary Table 1). The staining dilutions were consistent with
the manufacturer-suggested dilution range.

By usingiseqPLA, we showed and compared PPl dynamics among
proteins including YAP/TEAD], cyclin E/CDK2, p-ERK/cellular myelo-
cytomatosis (c-Myc), myeloid cell leukaemia sequence 1 (Mcl-1)/Bcl-2
antagonist killer 1 (Bak) and p-AKT/mTOR (Supplementary Fig. 13).
The PPl distributions were visualized using their spatial localization.
Eachnode represents one detected PPl event, and for each single cell,
aspatial graph of PPlevents was constructed using Delaunay triangula-
tion (see Methods) which captures the underlying spatial neighbour-
ing information of PPI events. The cell boundary was obtained from
segmentation on the p-EGFR signalling protein (Fig. 2a).

We first examined the effect of osimertinib on cell apoptosis and
proliferation by comparing the cyclin E/CDK2 and Mcl-1/Bak interac-
tions. MCL-1is known as an anti-apoptotic factor, and it can be phos-
phorylated by ERK, resulting in enhanced proteasome-dependent
degradation. Osimertinib downregulates Mcl-1, thereby enhancing
cellapoptosis®. Mcl-1can sequester Bak activity via direct interaction,
thereby preventing cell apoptosis®. The interaction between Mcl-1
and Bakis related to the inhibition of cell apoptosis. After osimertinib
treatment, the cells did not exhibit a significant change in the Mcl-1/
Bakinteractionin either the cytoplasm or the whole cell (Fig. 2b, Sup-
plementaryFigs.14 and 15a and Dataset 4). However, osimertinib effec-
tively inhibited the interaction between cyclin Eand CDK2 (Fig.2b and
Supplementary Fig.15a), which functionsininitiating the S phase and
cell proliferation?.

We next determined the effects of osimertinib on EGFR-related
signalling pathways. Osimertinib as an inhibitor to EGFR downreg-
ulated the p-AKT/mTOR pathway reducing the interactions in the
cytoplasm (Supplementary Fig. 15a). Osimertinib caninduce the deg-
radation of c-Myc, which regulates cell growth and proliferation in
EGFRm-sensitive cells, and ERK can phosphorylate c-Myc at S62 linked
to c-Myc’s stabilization®®. However, the inhibitory effect is limited in
osimertinib-resistant celllines, and the upregulation of c-Mycis related
toacquired resistance to osimertinib®, In terms of the YAP/TEAD1 path-
way, YAP canremainactive under EGFR TKIs and EGFR/MEK inhibitions
contributing to tumour dormancy in EGFRm NSCLC*. We observed
that after treatment, the cells exhibited significantly increased the
interactions of YAP/TEAD1 and P-ERK/c-Myc (Fig. 2b), indicating that
osimertinib may change the signalling dynamics by upregulating the
YAP and ERK pathways to compensate for EGFR inhibition. Previous
studies examining the effect of osimertinib on p-ERK using western
blot demonstrated the inhibitory role of osimertinib on p-ERK for up
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Fig.2| PPl networks, co-expression analysis and predictive models of 16-plex
profiling for 5 PPIs and 6 signalling and organelle markers in HCC827 cells.

a, Columns from left: Col. 1: the large field-of-view (FOV) demonstrates the network
analysis of 5PPIsacross 5 cyclesin HCC827 cells without treatment and with

100 nM osimertinib treatment for 12 h. The total cell number is 951 for untreated
and 560 for treated cells. Col. 2: examples of networks inindividual cells. Each
node presents a PPl event and Delaunay triangulation was performed to connect
nodes. Col. 3: distribution of 5 PPIs in raw images; the red outline is the p-EGFR.
Col.4:the cellboundary in magentais p-EGFRIF staining. b, Quantification of

PPl countsin HCC827 cells treated with and without osimertinib. The separate

PPl counts comparison in cytosol and nucleiis shown in Supplementary Fig.15a.
Statistical testing was performed using two-sided Mann-Whitney Wilcoxon test
(***P<0.0001). ¢, Dataanalysis workflow. The expression and spatial distribution

Model

of protein markers, as well as the localization of PPIs, were detected using iseqPLA
and RapMIF. The mean expression of these proteins in each PPl neighbouring
window withasize of 5in radius was calculated. Created with BioRender.com.

d, Normalized co-expression of 5 PPIs with the mean intensity of 6 protein markers
insingle cells. The normalized co-expressionin cytosol and nucleiis shownin
Supplementary Fig.15b. The images at the bottom show two examples of the co-
expression of ki67 and cyclin E/cdk2 PPl represented in scatter dots from untreated
and osimertinib-treated HCC827 cells. e, Comparison of AUC scores between

the spPPI-GNN, ML, MIL and MLP models for prediction of single-cell treatment
statusin the 5-PPl dataset. GCN and GraphConv layer-based spPPI-GNN show the
best overall scores. Box plots in b: median (horizontal line inside box), 25th and
75th percentiles (box), 25th and 75th percentiles +1.5 times the interquartile range
(whiskers). Bar graphs in e:mean + 95% CI.
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to 24 h using western blot'. However, western blot measures the total
protein level, which is different from the protein interactions where
proteins functioninactive forms.

Toresolve the spatial proteomics and PPIs, we also integrated Rap-
MIF into our panel®. RapMIF was utilized to detect the localization of
distinct organelles (such as Golgi: wheat germ agglutinin (WGA), endo-
plasmic reticulum: Concanavalin A, mitochondria: TOM20, nucleus:
DAPI). The organelleinformation canbe associated with the distribution
of PPIsfromiseqPLA toidentify the subcellularlocalization of PPIs (recep-
tors, cytosol or nucleus) inindividual cells (Fig. 2c). The PPl co-expression
confirmed the localization of Mcl-1/Bak interactions in mitochondria
with high co-expression of TOM20 (Fig. 2d). We also observed the
co-expression of cyclin E/CDK2 and ki67 in the nucleus (Fig. 2d, Supple-
mentary Fig.15b and Dataset 5). All three markers are related to cellular
proliferation and they are highly correlated with each otherin colorectal
carcinoma®. Also, iseqPLA revealed the co-localization of Mcl-1/Bak and
p-AKT/mTORPPIs (Fig. 2d). This is potentially due to the regulation of the
AKT pathway in mitochondria-mediated functions such asredox states,
apoptosis and metabolism™.

We investigated the distribution of PPl events as predictive features
torespond to drugtreatment by training graph-based models to predict
the treatment output onthe basis of the PPI-event counts. We developed
SpPPI-GNN, a predictive pipeline built on experimentally identified
PPl events of interest, facilitated by iseqPLA and RapMIF. The primary
objectiveisto predict cellular treatment states and extract distinctive
PPIspatial subcellular graphsindicative of treatment states, enhancing
our understanding of the impact of drugs on cellular pathways.

Current graph neural network (GNN) models focus on predict-
ing protein interactions from amino-acid sequences. Models such as
GraphPPIS® and SGPPI** are designed to predict PPI probabilities. In
summary, spPPI-GNN is tailored to address inquiries at the cellular
level, whereas GraphPPIS and SGPPI are designed for inquiries at the
proteinlevel (Supplementary Fig.16). Other GNN models are designed
for cellular-level tasks, such as PLA_GNN? for predicting subcellular
protein mislocation using a graph of proteins, spaGNN** for predict-
ing cell identity with RNA graphs, as well as newly developed GNN for
pathway analysis tasks™.

SpPPI-GNN encodes intracellular PPIs as nodes and utilizes Delau-
nay triangulation for spatial location to form edges (Methods and
Extended DataFig.2a). Thesubcellular spatialgraphis usedinthe graph
neural network forward step by combining the graph neural network
level and the neighbouring node embedding. Finally, all PPl event node
information is combined using a graph pooling layer for predicting
cell-level treatmentinformation. The raw count of PPl events provides
acomprehensive characterization of cellular state, and subcellular PPI
spatial graphs contain important information on the underlying PPI
spatial distribution (Extended Data Fig. 2b,c). Moreover, we compared
various GNN layers, hidden layer sizes, number of layers and graph
pooling layers to comprehensively compare the different models
(Methods, Supplementary Fig.17a and Datasets 6 and 7). The sensitivity
of each parameter was examined by holding all other hyperparameters
constantand varying only one hyperparameter atatime (Supplemen-
tary Fig. 18a and Table 2). The sensitivity analysis focused on various
hyperparameters, including graph pooling methods, hidden layer
sizes, the number of layers, graph types and the comparison between
two-dimensional (2D) and 3D graphs, providing acomprehensive view
ofthe model’s robustness and adaptability to parameter changes. The
resulting area under the curve (AUC) scores were calculated by taking
the mean of the scores across different parameter settings, ensuring a
comprehensive evaluation of each model’s performance. The analysis
demonstrated a large variation in model AUC scores when adjusting
the pooling layer hyperparameter.

We benchmarked the spPPI-GNN model prediction AUC score
with machine learning (ML) models on mean PPl event counts per cell,
multilayer perception (MLP) models on mean PPl event counts per

celland amulti-instance-learning (MIL) MLP model on subcellular PPI
event information without spatial graph (Methods). The AUC scores
show that spPPI-GNN models outperform ML, MLP and MIL modelsin
predicting cell treatment states from subcellularinformation (Fig. 2e).

Scaling up the profiling of signalling networks

To confirmthe feasibility of scaling up the PPl detection, we profiled 9
PPIsin HCC827 cells treated with and without osimertinib for12 h. The
cells were profiled with 2 cycles of multicolour detection, followed by
5cycles of single colour detection of PPIs (YAP/TEAD], cyclin E/CDK2,
p-ERK/c-Myc, p-AKT/mTOR, Mcl-1/Bak). The multicolour detection
allows us to detect 2 to 3 pairs of PPIs in a single cycle. RapMIF was
performed to detect organelle locations, cell proliferation and tumour
cells, followed by iseqPLA. The PPl distributioninevery single cell can
bevisualized using the spatial network (Supplementary Figs.19 and 20).

We observed that the later cycles of iseqPLA in the 9-PPl dataset,
such as TEAD1/YAP and cyclin E/CDK4, exhibited much fewer signals.
This is important because DNase I digests DNA that is connected to
proteinsin the nucleus, especially transcription factors. To minimize
the DNase I effect on nuclear proteins, we changed the order of PPI
detections and observed that TEAD1/YAP and cyclin E/CDK4 PPIs were
notaffectedinthefirsttwo cycles (Supplementary Fig.13). We observed
that multicolour PPl detection was less sensitive to DNase I and bleach-
ing,and we were able to redetect the residuals of PPIs after 6x treatment
with DNase  and bleaching (Supplementary Fig. 21).

To preserve the quality of single-colour PPI detection, nuclease
P1 as an alternative reagent to DNase I to digest single-strand DNA
was tested on 5 pairs of PPIs using single-colour detectionin HCC827
untreated cells (Supplementary Fig. 22). Nuclease P1 concentra-
tions ranging from 1:500 to 1:100 worked effectively in removing
single-stranded DNAs bound to fluorophores. Inaddition to nuclease
P1, we also demonstrated that shortening the DNase lincubation from
4to2 hcanstillremove the oligos and fluorophores. Dimethylsulfoxide
(DMSO) stripping solution exhibited practicability in deactivating
the signals®®. By restaining the samples with another set of PPIs, we
confirmed the feasibility of multiplexing PPIs using nuclease P1 and
DMSO stripping approaches. We also observed that nuclease P1has a
lower effect on phalloidin by preserving its phenotype compared with
DNase land DMSO.

Therefore, we further scaled up iseqPLA using nuclease P1to
detect 13 PPIs in HCC827 cells treated with and without osimertinib
for 12 h. The cells were profiled with 4 cycles of multicolour and then
5 cycles of single-colour detection, followed by multiplexed immu-
nofluorescence (Fig. 3a,b and Supplementary Fig. 23). Compared
with DNase I, nuclease P1better preserves the nuclear structure (Sup-
plementary Fig. 24). However, we observed some blobs (larger thana
typical PPl dot size) inthe nucleus, which were digitally identified and
corrected in PPIreconstructions.

Inadditiontocyclin E/CDK2, cyclin D1/CDK4 was used to detect the
G1/S transition in the cell cycle”. Osimertinib exhibited an inhibitory
effect on cyclin D1/CDK4 (Fig. 3¢). Orthogonal assays confirmed the
multiplexed PPIsignals and the efficacy of the osimertinib treatment.
Similar upregulation patterns of p-ERK/c-Myc after treatment in 13-PPI
data were demonstrated (Fig. 3c) compared with 5-PPI data. Osimer-
tinib inhibited p-ERK and c-Myc baseline-level expression (Extended
Data Fig. 3a,b). The downregulation of p-ERK after osimertinib treat-
ment in HCC827 cells was further demonstrated by Luminex data
(Extended DataFig.3c,d) of the cell lysates. The upregulation of p-ERK
showninthelF results may be due to the heterogeneity of expression of
p-ERKinthe subpopulation of HCC827 cells (Supplementary Fig.10b).
P-ERK/c-Myc interactions displayed heterogeneous distribution in
the HCC827 cells (Extended Data Fig. 3e and Supplementary Fig. 25).
P-ERK/c-Myc PPl events were quantified across several regions of inter-
est (ROIs), and the coefficient of quartile variation demonstrated
the dispersion of PPl event distribution in each ROI (Supplementary
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Fig.25b,c and Dataset 8). To validate the p-ERK/c-Myc interaction, we
performed co-immunoprecipitation (co-IP) on p-ERK and c-Myc in
HCC827 cells, demonstrating the upregulation of p-ERK/c-Myc inter-
actions after osimertinib treatment (Extended Data Fig. 3b). We also
examined theinteraction between p-p90ORSK and NF-kB p65. P-p90RSK
asan ERK substrate phosphorylates p65at S276 in an ERK-dependent
manner, leading to inflammation response’®. Osimertinib effectively
inhibited the PPIs of NF-kB/p-p90RSK. Sox2 as a transcription factor
can be incorporated with Oct4 to maintain stem-like properties. The
downregulation of sox2/oct4 demonstrates theinhibitory effect of osi-
mertinib in EGFRm-sensitive cells (Fig. 3¢, Supplementary Figs.26-28a
and Dataset 9). However, it has been found that osimertinib-resistant
EGFRm NSCLC cell lines express high levels of sox2 and increased
autophagy***°. To evaluate cell apoptosis, in addition to Mcl-1/Bak,
we also profiled the interaction between Tom20 and Bim. Bim as a
pro-apoptotic Bcl-2-family protein can interact with Tom20 inde-
pendent of the binding to anti-apoptotic proteins*. Tom20 protein
is inserted in the outer mitochondria membrane (OMM) and may
function in the regulation of Bim localization into mitochondria.
Reduced interactions between Tom20 and Bim were observed after
12 h of osimertinib treatment (Fig. 3c). However, Bim may translo-
cate into OMM without TOM receptors and Tom20 also mediates the
transfer of anti-apoptotic Bcl-2 proteins into mitochondria***. More
studies are needed to conclude whether osimertinib enhances cell
apoptosis in HCC827 cells. Osimertinib inhibited the interaction of
EGFR/Grb2 (Fig.3c). Theinteraction between EGFR and Growth-factor
receptor-bound protein 2 (Grb2) is required for EGFR mutant cells sur-
vival, anditisrelated to sensitivity to EGFR inhibition*. The binding of
Tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) to
Deathreceptor 5 (DRS5) can trigger cell apoptosis**. However, there was
nosignificant differencein TRAIL/DR5 and AKT/Forkhead box protein
01 (FOXO01) PPI counts after osimertinib treatment (Fig. 3¢ and Sup-
plementary Fig. 28a). FoxOs regulate cell cycle arrest and apoptosis.
The direct phosphorylation of FoxOs by AKT can resultin FoxOsinac-
tivation and accumulationin the cytoplasm®. The non-significance of
AKT/FoxOlinteraction may indicate the minimal effect of EGFR TKI on
p-AKT and FoxOl interaction (Fig. 3c)*’. AKT inhibitors could effectively
inhibit AKT and FoxOl (ref. 46). We observed low PPl events from SIRT1/
p53 (Fig. 3c and Supplementary Fig. 28a). Tumour protein p53 (P53) is
atumour suppressor that promotes apoptosis. Sirtuin1 (SIRT1) might
act as a tumour promoter by directly inhibiting p53 through the dea-
cetylation of p53. Hypoxia can upregulate the expression of SIRT1, and
thelong-term hypoxia may contribute to the resistance to osimertinib
in NSCLC cells*”. The low PPI events may be due to the opposite stain-
ing patterns of SIRT1and p53, cytosolic IF signals of SIRT1and nuclear
staining of p53, resultingin the negative results of SIRT1/P53 PPI. These
results further confirmed the specificity of PLA.

Cyclin E/CDK2 co-localizes in the Golgi with high co-expression
of NBD-C6 (Fig. 3d, Supplementary Fig. 28b and Datasets 7 and 10).
Cyclin E regulates the transition from the G1 to the S phase in the cell
cycle. The activity of cyclin E can be directly regulated by RhoBTB3, a
Golgi-localized and -associated protein. The directinteraction between

cyclin E and RhoBTB3 mediates the ubiquitylation and turnover of
cyclin E during the S phase*®. Also, the co-expression between p-AKT/
mTOR and NBD-Céin cytosol demonstrates the potential regulation of
mTOR signalling by Golgi (Fig. 3d). Golgi can modulate mTOR activity
in several ways, including downregulating autophagy by activating
mTOR, and Golph2, a Golgi protein, hasbeen found to promote mTOR
activity through the PI3K/AKT pathway*’.

Similarly, we compared ML, MLP and ML with spPPI-GNN models
for the prediction of drug treatment from both the subcellular infor-
mation and PPI quantification (Supplementary Fig. 17b and Dataset
11). Using the same parameter search method as previously described,
integrating the spatial graphs with PPl quantification achieved a better
model performance, with a higher AUC score in spPPI-GNN models
(Methods and Fig. 3e). We also conducted sensitivity analysis of the
parameters used in different models in the 13-PPI data (Supplemen-
tary Fig.18band Table 2). The variationin the model AUC scores when
adjusting the pooling layer hyperparameter is smaller with 13 PPIs
thanwith 5 PPIs.

We performed a similar data analysis on 9-PPI datasets and
obtained similar results (Supplementary Figs. 29 and 30). However,
we obtained distinct downregulation patterns for p-ERK/c-Myc after
treatment in 9-PPI data (Extended Data Fig. 4a) compared with 5-PPI
data. Thisis probably due to the subpopulation heterogeneity among
cells, and p-ERK/c-Myc exhibited a relatively higher expression level
in the 5-PP1 dataset from the uniform manifold approximation and
projection (UMAP; highlighted in red in Extended Data Fig. 4b). From
theimage, we observed the Cytochrome C oxidase subunit 411 (Cox1V),
amitochondria marker that co-localizes with Bim/Tom20 PPI (Supple-
mentary Fig. 31a), confirming the location of Bim/Tom20 interaction
inmitochondria. Due to the non-uniform signals of Cox IV in thelarge
ROI, we filtered out the Cox IV positive regions for co-expression and
correlation analysis. No co-localization was observed between Bim/
Tom20 and Cox IV (Supplementary Fig. 31b,c and Datasets 12 and 13).
This is potentially due to the large-scale normalization overlooking
the co-expression variety. We performed the co-expression analysis
between 5 relatively highly expressed PPIs and 8 protein markers and
confirmed the co-localization between Bim/Tom20 and Cox IV (Sup-
plementary Fig. 31d and Dataset 14).

Similarly, we compared ML, MLP and ML with spPPI-GNN models
for the prediction of cell drug perturbation from subcellularinforma-
tion (Supplementary Fig. 17c and Datasets 15 and 7). Using the same
parameter search method as previously described, we obtained the
prediction AUC score using PPl events spatial graphs (Methods). The
overall prediction results showed higher AUC using spPPI-GNN com-
pared with other benchmark models (Supplementary Fig. 31e and
Dataset 16). The sensitivity of various parameters regarding model
prediction variability was also calculated (Supplementary Fig.18cand
Table 2). Overall, the pooling layer hyperparameter displayed a higher
sensitivity compared with other hyperparameters.

Wealso visualized the small groups ofinterconnectionsamong PPls
using network motifsinthe 5and 9-PPl datasets. These network motifs
are statistically significant patterns within large spatial-signalling

Fig. 3| Quantification, co-expression and modelling of 34-plex profiling

for 13 PPIs and 8 signalling and organelle markers in HCC827. a, Schematic
illustration of 34-plex iseqPLA. HCC827 cells with and without 12-h100-nM
osimertinib treatment were stained with 4 cycles of multicolour PLA and 5 cycles
of single-colour PLA, followed by cell phenotyping. The total cell number is
1,029 for untreated and 978 for treated cells. Created with BioRender.com.

b, Top left: visualization of 5 PPIs overlaid with p-EGFR and DAPI. Bottom:
network analysis of 13 PPIs across 9 cycles in HCC827 cells without treatment and
with100 nM osimertinib for 12 h. Each node presents a PPl event, and Delaunay
triangulation was performed to connect nodes. The cell boundary inred is
p-EGFRIF staining. The overlay of signalling, proliferation and organelle markers
isillustrated. ¢, Comparison of PPl counts in osimertinib-treated and untreated

HCC827 cells. The separate PPl counts comparison in cytosol and nuclei is shown
inSupplementary Fig. 28a. Statistical testing was performed using two-sided
Mann-Whitney Wilcoxon test (****P < 0.0001).d, Top: normalized co-expression
of13 PPIs with the meanintensity of 7 protein markers in single cells. The
normalized co-expressionin cytosol and nucleiis shown in Supplementary Fig. 28b.
Bottom: two examples of co-expression of PPIs represented in scatter dots,

and Cox IVin untreated and treated HCC827 cells. e, Comparison of AUC scores
between the spPPI-GNN, ML, MIL and MLP models for prediction of single-cell
treatment status in the 13-PPI dataset. GCN and GraphConv layer-based spPPI-
GNN show the best overall scores. Box plotsin c: median (horizontal line inside
box), 25th and 75th percentiles (box), 25th and 75th percentiles +1.5 times the
interquartile range (whiskers). Bar graphsin e: mean + 95% CI.
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networks. We observed increased regulation of p-ERK/c-Myc PPI
activity after osimertinib treatment in motif 9 (p-ERK/c-Myc and
p-ERK/c-Myc), and the PPI of p-ERK/c-Myc occupies a large pro-
portion in the network (Supplementary Fig. 32a and Dataset 17),
which suggests that p-ERK/c-Myc may be the main effector of osimer-
tinib. Also, more interactions between p-ERK/c-Myc and TEAD1/YAP
were observed after treatment in a three-node motif 17 (Teadl/Yap
and Teadl/Yap and p-ERK/c-Myc). This indicates that osimertinib may
potentially increase the crosstalk between the ERK and YAP pathways.
It has been found that with the combination of ERK and osimertinib
treatment, the cells can still survive with upregulated YAP activity®.
In the 9-PPI dataset, the autoregulation of cyclin D1/CDK2 in motif O
and motif45was inhibited by osimertinib treatment (Supplementary
Fig.32band Dataset18), indicating suppressed cell cycle progression.
Also, we observed downregulation of the interaction between sox2/
oct4 and cyclin D1/CDK4 in both two-node (motif 2) and three-node
interaction motifs (motif47). Sox2is highly expressed while repressing
the expression of cyclin Dlinstem cells®. The reduced interactions may
indicate the potential role of osimertinib in regulating stem-cell-like
properties and cell proliferation. Dissecting the spatial networks into
subgraph motifs reveals the organization of signalling networks. These
small functional building blocks reflect that theinteractions between
PPIsare not random, which providesimportant clues to identify poten-
tial biomarkers for targeting signalling crosstalk.

To characterize the importance of subcellular spatial PPl event
neighbourhood informationand the number of PPl events detected, we
benchmarked the performance of multiple machine learning and graph
neural network models using 3D information (Fig. 4a) and compared
the classification performance levels of drug responses on the basis of
the number of detected PPl dots in the entire iseqPLA data (Fig. 4b).
By processing all z-stack images in 3D, we captured all the PPl events
across the z-dimension and combined them into a single PPl event by
detecting the best focus plane and using a radius search algorithm
(Methods and Supplementary Figs. 33 and 34). We compared the overall
single-cell PPl event statistics between 2D and 3D information, verify-
ingthereproducible distribution of the iseqPLA data (Supplementary
Fig.35and Dataset 19).

Theoverall AUCscoreis higher when comparing the 13-PPI dataset
with the 9-PPl and 5-PPI datasets. This better performance indicates
theimportance of a higher PPl target number for improving the sepa-
ration of cell treatment state for the prediction pipeline (Fig. 4b). We
also systematically compared the performance of 2D, 3D and 2D-3D
fusion models, enabling a comprehensive evaluation of how varying
levels of spatial dataimpact modelling at the cellular level (Fig. 4c). Our
analysis revealed thatin the highest-performing models—specifically
the 9PPI-GraphConv, 13PPI-GCN and 13PPI-GAT—the 2D-3D fusion
model demonstrated a notable improvement in cross-validated AUC
scores compared with models utilizing either 2D or 3D data alone. This
suggests that integrating multidimensional data can enhance model
accuracy and robustness.

Moreover, itisimportant to note that the hyperparameters were
originally tuned for the 3D models during the evaluation of the 2D-3D
fusion model. This indicates that the overall performance of the 2D-3D
fusion model could be further optimized by acomprehensive bench-
marking of all relevant hyperparameters. In our methodology, the
2D-3D fusion was implemented through the concatenation of embed-
dings obtained post-graph pooling layer. Future research could explore
alternative methods of domain fusion to more effectively integrate
2D and 3D information. Techniques such as early fusion, where data
are combined at the initial stages, or late fusion, where final decisions
are combined, could be investigated. In addition, advanced fusion
strategies such as attention mechanisms or multitask learning could
be applied to dynamically weight and integrate the complementary
information from 2D and 3D domains, potentially leading to consid-
erable improvements in model performance. Leveraging techniques

suchas multiple dropouts, Gaussian noise and F-correction® for feature
selection using graph convolutional networks can further optimize
model performance in high-dimensional, low-sample-size datasets,
underscoring theimportance of feature selection and model optimiza-
tionin these contexts.

The total space and time complexity of the GNN model can be
analysed by considering the operations performed in each layer across
the entire network™. We demonstrated that as the number of layers and
hidden layer size increase, the space and time complexity increases
(Supplementary Fig.36 and Dataset 20). The time and space complexity
withrespect to hidden layer size follows a quadratic trend, while time
and space complexity with respect to the number of layers follows a
linear trend.

Drug perturbing PPIsin EGFRm NSCLC cells

The study of the effect of osimertinib in NSCLC is limited to conven-
tional approaches such as western blot and IF®, PPIs are potential drug
targets and information on how osimertinib affects PPl expression
levelsisstill lackingin the field. Osimertinib as the EGFR TKI can directly
inhibit EGFR expression; however, it could also change the downstream
signalling pathways by indirectly altering the baseline protein expres-
sion or the PPl expression. To investigate the PPl under direct drug
perturbation, we demonstrated the effect of VP,a YAP/TEAD inhibitor,
on YAP/TEAD1 interaction”®, HCC827 cells were treated with 0, 1and
10 puM for 24 h**, and the cells were profiled with 2 cycles of Duolink
PLA (YAP/TEADI, EGFR/GRB2, TRAIL/DRS), followed by 2 cycles of
Navinci (Sox2/Oct4, epithelial cadherins (E-cadherin)/p-catenin) and
cell phenotyping markers (phalloidin, p-EGFR and Ki67) (Fig. 5a,b and
Supplementary Table 3). Navinci is another PPl detection approach
based on PLA. We demonstrated the compatibility of Duolink PLA
and Navinci in iseqPLA. Nuclease P1 was used to remove probes. The
overall PPl counts of YAP/TEAD1 between untreated and 1 uM treated
cells were similar (Fig. 5¢). Cells treated with 10 uM had an increased
total number of YAP/TEADI dots (Fig. 5c and Extended Data Fig. 5a);
however, fewer YAP/TEAD1 PPl dots occurred in the nucleus, with a
lower nucleus ratio (Fig. 5d). Nuclei ratio was calculated on the basis
of the ratio of PPl counts in the nucleus to the total PPIs per cell. YAP
can translocate to the nucleus to activate TEAD transcription, and
VP caninduce the translocation of YAP1and TEAD4 from the nucleus
to the cytoplasm*>~’. Our results demonstrated the effect of VP on
the translocation of YAP/TEAD1in HCC827 cells. Ki67 density, a new
image-based morphologicalindicator, was also quantified by dividing
the ki67 positive regions in the nucleus by the nuclear size (Extended
DataFig. 5b). We did not observe a decrease in ki67 density after drug
treatment; however, the cell density was lower in 10 pM treated sam-
ples compared with both 1 uM and untreated cells. VP, the first small
molecular inhibitor of YAP, can inhibit tumour proliferation and YAP
activity. However, itis also limited by poor solubility and stability, and
canresultinHippo-independent effects®*. Since E-cadherin/B-catenin
displayed anIF-like phenotype, we further quantified its mean intensity
(Fig. 5¢c). E-cadherin/B-catenin functions in maintaining cell-cell con-
tact, and the loss of E-cadherin facilitates the development of epithe-
lial mesenchymal transition®. VP increased E-cadherin/B-catenin PPI
counts (Fig. 5¢), potentially promoting cell-cell contact. Nevertheless,
the mechanism by which VP influences other PPIs within EGFR-related
pathways remains elusive. Further studies are required to elucidate
whether VP can serve as a potential therapeutic target.

Multiple PLA assays generate 47-plex protein profiles

To explore more PPl detection approaches other than Duolink PLA,
we multiplexed 5 PPIs (Sox2/Oct4, E-cadherin/B-catenin, cell divi-
sion cycle-25C (Cdc25c¢)/p38, proline-rich tyrosine kinase 2 (PYK2)/
proto-oncogene c-Src (SRC), phosphor-Janus kinase (p-Jak2)/signal
transducer and activator of transcription 3 (Stat3)), followed by cell
phenotyping (phalloidin, p-EGFR and Ki67) in HCC827 cells treated with

Nature Biomedical Engineering


http://www.nature.com/natbiomedeng

Article

https://doi.org/10.1038/s41551-024-01271-x

a HCCB827 untreated cells

[

r

1

1

|

I
s
i

A

b
0.0035 0.0184
— ——  0.0052 0.0054
0.0084 0.0038
0.00M
0.024 0.13
1.0 4 — — 0.1549 0.0115
0.0166 o 0.0031
[t
o
=)
<
0.8
0.6 -
o
R
& N o
° S
&
\/0g
Model
¢ 9 PPI
0.95
* 2D
0.90 + 3D
¢ Fusion
¢ 0.85 1 oD
2 0.80 1 3D
M Fusion
0.75 1
0.70 - N N . N
\ N
A\ ‘\000 &® o V\OO(\
O@Q [
Model

Fig. 4 |Predictive modelsin2D and 3D of 5, 9 and 13 PPIs in HCC827 cells.

a, 3D PPIspatial graph network representations at the single-cell level in HCC827
cells of 5 PPIs (top) and 13 PPIs (bottom). Axes labels indicate coordinates (x-y-z)
ofindividual PPIs in pixel units. The colour of the node corresponds to the PP1
type, and white edges correspond to the neighbouring node using Delaunay
triangulation. b, Comparison of spPPI-GNN AUC scores across the 5,9 and 13-PPI
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datasets. The 13-PPl dataset showed better prediction AUC scores than the 9 and
5-PPl datasets. Statistical testing was performed using independent-samples
t-test with Bonferroni correction (***0.0001 < P < 0.001, ***P < 0.0001).

¢, Comparison of predictive model performance between the 2D PPImodel, 3D
PPImodel and 2D-3D fusion model for 9 (left graph) and 13 (right graph)

PPl dataset. Bar graphs are mean + 95% CI.

and without 100 nM osimertinib for 12 h using the Navinci approach
(Fig. 6a,b). Nuclease P1 was used to remove probes. We explored PPI
involved in the calcium influx®. Calcium homoeostasis regulates cell
proliferation, migration and cancer. Studying PPl events related to

calciuminflux canreveal potential therapeutic targets. PYK2 can sense
calciuminflux, and the binding of Src to PYK2 primes the phosphoryla-
tion of PYK2 and subsequent downstream signalling activation such
as cell migration®®**, However, studies on the effect of osimertinib in
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Fig. 5| Evaluation of drug perturbing PPIs using VP drug in HCC827 cells.

a, Schematicillustration of Duolink PLA and Navinci on HCC827 cells. HCC827
cellswith1pMand 10 pM VP treatment for 24 h were stained with 2 cycles of
Duolink PLA and 2 cycles of Navinci, followed by cell phenotyping. Created with
BioRender.com.b, Visualization of 5 PPIs represented in scatter dots overlaid

with DAPI. The white boundary is acombined mask from phalloidin and p-EGFR.
Thetotal cellnumbers are 496, 574 and 265 for untreated, 1 puM and 10 pM treated
cells. ¢, Left: comparison of PPl counts between VP-treated and unteated HCC827

cells. Right: mean intensity of E-cadherin/B-catenin. The separate PPl counts
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comparisonin cytosol and nucleiis shown in Extended Data Fig. 5a.

d, Comparison of nuclei ratio of PPl counts between VP-treated and unteated
HCC827 cells. The nuclei ratio was calculated on the basis of the ratio of PP1
countsin the nucleus to the total PPIs per cell. The red line indicates where the
nuclei ratio equals 0.5. Statistical testing was performed using two-sided Mann-

Whitney Wilcoxon test (***0.0001 < P < 0.001, ***P < 0.0001). Box plots in c and
d: median (horizontal line inside box), 25th and 75th percentiles (box), 25thand
75th percentiles 1.5 times the interquartile range (whiskers).
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PYK2/Src are still lacking. Another pair of PPIs involved in cell migra-
tionis E-cadherin/B-catenin. Since the E-cadherin/f3-catenin PPl events
were too dense, we quantified the PPl events by calculating their mean
intensity. Osimertinib inhibits the interaction between E-cadherin and
B-catenin (Fig. 6¢).Jak/STAT3 is another downstream pathway of EGFR.
p-Jak2 (Y1007 +Y1008) can phosphorylate and activate STAT3, resulting
inthe activation of the JAK/STAT3 pathway®’. The constitutive activation
of the JAK/STAT3 pathway plays animportant role in priming cancer
development®®. Osimertinib increased the p-Jak/Stat3 interactions
(Fig. 6¢). P38 could inhibit Cdc25c through direct phosphorylation,
resultingin cell cycle arrestin G2 (ref. 67). The increase in Cdc25¢/p38
PPI counts indicates the potential role of osimertinib in promoting
cell cycle arrest (Fig. 6¢). Sox2/0Oct4, acommon pair between Navinci
and Duolink PLA, exhibited similar downregulation after osimertinib
treatment (Fig. 6¢). Cells treated with osimertinib displayed decreased
ki67 density compared with untreated cells (Extended Data Fig. 5c).
The capability to integrate Duolink PLA with Navinci was demon-
strated in HCC827 cells treated with the VP drug (Fig. 5). To explore
indirect PLA on cell cultures, HCC827 cells treated with and without
osimertinib wereincubated with 5pairs of primary antibodiesin1lcycle,
each containing one anti-rabbit and one anti-mouse antibody. The
combined 5-PPI profiles were obtained using anti-rabbit and anti-mouse
secondary antibodies conjugated to PLUS/MINUS probes (Fig. 6d,e).
Nuclease P1 effectively removed PLUS/MINUS probes. The cdc25c/
p38 PPl events were decreased after osimertinib (Fig. 6f). The sec-
ondary antibodies from the indirect Duolink PLA may interfere with
the binding of cdc25c¢ and p38 primary antibodies. Thus, the order of
direct and indirect PLA may need to be optimized within iseqPLA. To
calculate the PPIsignal more accurately, we further quantified the mean
pixel intensity of the combined 5-PPl events by dividing the total pixel
intensity by the total number of dots (Fig. 6f). By combining Navinci
and Duolink direct and indirect PLA, the PPl panels could be expanded
from13to 22 PPIs, comprising atotal of 44 protein profiles thatinclude
13 Duolink direct PPIs, 5 Duolinkindirect PPIs and 4 Navinci PPIs. Follow-
ingiseqPLA, cell phenotypes can be resolved using phalloidin, p-EGFR
and Ki67, achieving a 47-plex protein profile. Similar to fluorescence
in situ hybridization of cellular heterogeneity and gene expression
programmes (FISHNCHIPs), which canimage ~2-35 co-expressed genes
intissues simultaneously®®, indirect PLA enables the profiling of agroup
of proteins with similar functions concurrently, resulting in co-localized
spatial expression patterns. Abnova Corporation offers 594 pairs for
PPIs, enabling us to achieve a1,000-plex protein profiling capability.

Spatial-signalling PPI networks in lung cancer tissues
To verify the feasibility of detecting PPIs in situ, we investigated ise-
qPLA on HCC827-derived mouse xenografts (CDX). The iseqPLA on
cellculture resolves the PPl at the subcellular level; however, it fails to
consider the architecture of cellular distributions. Our study utilized
iseqPLA onthetissue to generate single-cell signalling maps within the
context of the tumour microenvironment.

HCC827-derived xenografts in mice were treated with and without
osimertinib for a sustained period, and OCT sections were obtained

to compare the emergence of resistance. Osimertinib was given to
mice daily. HCC827 xenografts in mice receiving osimertinib treat-
ment were effectively inhibited for the first week. The tumour almost
disappeared after a 5-day osimertinib treatment. As treatment contin-
ued, the tumour grew back and larger, indicating the development of
acquired resistance to osimertinib. Therefore, in our study, iseqPLA
was performed on mouse HCC827-cell-derived xenograft tissues in
the presence of osimertinib treatment for 1 week and 2 months, rep-
resenting responders and non-responders. We detected the dynamics
of 5 PPIs related to organelle localization, proliferation markers and
gene expression (Fig. 7a and Supplementary Fig. 37). Between cycles,
nuclease P1was used to remove probes. Pan-cytokeratin (panCK) was
utilized to help differentiate tumour regions. The nearest-pixel method
was utilized to assign PPI signals to the nearest cell with incomplete
cellsegmented regions (Fig. 7b). We found that osimertinib enhanced
p-ERK/c-Mycwhile downregulating p-AKT/mTOR PPIs after the 2-month
treatment (Fig. 7c). This indicates that mice became less sensitive to
osimertinib and even developed acquired resistance to osimertinib,
functioning as non-responders after the 2-month treatment (Fig. 7c,
Supplementary Fig. 38 and Dataset 21). Also, mouse tissues treated
with osimertinib for 2 months expressed more panCK-positive cells.
The downregulation of cyclin E/CDK2 in 1-week osimertinib-treated
mice also indicates inhibited cell cycle progression (Fig. 7c).

A spatial network was used to visualize the PPl distributions at
the single-cell level in the mouse xenograft tissues (Fig. 7d). Similarly
to other benchmarks, we compared the overallmodel performancein
determiningthe overall treatment condition of tumour cells by looking
at the pan-cytokeratin staining (Methods and Fig. 7e). That is, from IF
staining, we classified cells expressing pan-cytokeratin-positive cells
and filtered outall cells not expressing pan-cytokeratin staining. Next,
we used spPPI-GNN to predict the treatment length between the spatial
PPInetworks extracted from those pan-cytokeratin-positive cells. The
spPPI-GNN model outperformed other benchmarked models for pre-
dicting the treatment state at the single-cell level from human tissues.

To investigate the clinical relevance of our spatial-signalling
interactomics approach, we performed iseqPLA on patient tissues
with EGFRm NSCLC osimertinib responder and non-responder cells
including 2 cycles of multicolour (Sox2/0Oct4, NF-kB/p-P90rsk, cyclin
D1/CDK4, TRAIL/DRS) and 1 cycle of single-colour (cyclin E/CDK2)
detection, followed by immunofluorescence staining to phenotype
immune cells (Cluster of differentiation 20 (CD20), Clusters of dif-
ferentiation 4 (CD4), Clusters of differentiation 8 (CD8)), tumour cells
(panCK) and cellboundary (phalloidin, Concanavalin A, WGA) (Fig. 8a
and Supplementary Fig. 39a). Between cycles, nuclease P1 effectively
removed the probes. Sox2/Oct4 PPl was upregulated in patients who
responded to osimertinib treatment (Supplementary Fig. 39b and
Dataset 22). Integrating both IF and haematoxylin and eosin (H&E)
images of responder tissue at the single-cell level, weidentified stroma,
tumour and immune regions, and quantified the PPl events per cellin
these regions (Methods, Fig. 8b,c and Supplementary Fig.39c). The cell
typedistributions were further visualized using spatial neighbourhood
mapsinresponder tissue (Fig. 8cand Supplementary Fig.40a-c). Each

Fig. 6 | Multiple PLA assays generated 47-plex protein profiles in HCC827
cells. a, Schematicillustration of the workflow for 13-plex iseqPLA. HCC827 cells
withand without 12-h100-nM osimertinib treatment were stained with 5 cycles of
Navinci PLA, followed by cell phenotyping (phalloidin, p-EGFR and Ki67). Created
with BioRender.com.b, Visualization of 5 PPIs represented in scatter dots
overlaid with DAPI. The white boundary is acombined mask from phalloidin and
p-EGFR. The total cell numbers are 742 and 506 for untreated and osimertinib-
treated cells, respectively. ¢, Left: comparison of PPl counts between osimertinib-
treated and untreated HCC827 cells. Right: mean intensity of E-cadherin/(3-
catenin. d, Schematicillustration of the workflow for 15-plex iseqPLA. HCC827
cells with and without 12-h 100-nM osimertinib treatment were stained with 1
cycle of Duolink indirect PLA containing 5 PPIs, followed by 1 cycle of Navinciand

then cell phenotyping (phalloidin). Created with BioRender.com. e, Visualization
of combined 5 PPIs and 1 Navinci PPl represented in scatter dots overlaid with
DAPI. The white boundary is amask from phalloidin. The total cell numbers are
612 and 615 for untreated and osimertinib-treated cells, respectively. f, Left:
quantification of 2 cycles of PPIs per cell between treated and untreated HCC827
cells. Right: mean pixel intensity of combined 5 pairsin untreated and treated
HCC827 cells. The mean pixel intensity was calculated by dividing the total pixel
intensity by the total number of dots at the single-cell level. Statistical testing was
performed using two-sided Mann-Whitney Wilcoxon test (****P < 0.0001). Box
plots: median (horizontal line inside box), 25th and 75th percentiles (box), 25th
and 75th percentiles +1.5 times the interquartile range (whiskers).
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Fig. 7| Quantification and modelling of 16-plex profiling for 5 PPIs and 6
organelle signalling markers in HCC827-cell-derived mouse xenografts.

a, Visualization of 5 PPIs represented in scatter dots followed by 6-protein IF
staining in HCC827-cell-derived mouse xenografts, treated with osimertinib for
1week and 2 months separately. Seven panels demonstrate 5 pairs of PPIs and two
IF markers (p-EGFR and Ki67) in the top two rows, and the subsequent four panels
indicate four IF markers (PanCK, Golph4, ConA (Concanavalin A) and WGA) in the
bottom two rows. b, Schematic showing the nearest-pixel method for assigning
PPIsignals to the nearest cell with incomplete cell segmented regions. Created
with BioRender.com. ¢, PPl quantification comparison in pan-cytokeratin-
positive regions between mice treated with osimertinib for 1 week and 2 months.
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Separate comparison of PPl counts in pan-cytokeratin-positive regions in cytosol
and nucleiis shown in Supplementary Fig. 38. The total cell numbers are 18,429
and 25,790 for 1-week and 2-month osimertinib-treated tissues. Statistical testing
was performed using two-sided Mann-Whitney Wilcoxon test (****P < 0.0001).

d, lllustration of the PPI network in tissues at the subcellular level in two FOVs.

e, Comparison of AUC scores between the spPPI-GNN, ML, MIL and MLP models
for prediction of single-cell treatment status in the mouse xenograft dataset.
GCN and GINConv layer-based spPPI-GNN show the best overall scores. Box plots
inc:median (horizontal line inside box), 25th and 75th percentiles (box), 25th
and 75th percentiles +1.5 times the interquartile range (whiskers). Bar graphsin e:
mean +95%CI.
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nodeinthe neighbourhood map represents one cell. The colour of the
noderepresents different cell types including stroma, immune, tumour
and other cells. The neighbouring map was constructed using aradius
search of 20 pm*®’. The PPI counts per cell in regions with and with-
outimmune neighbours in the responder tissue were also compared
(Fig. 8d and Extended Data Fig. 6a). PPl counts per stromal orimmune
cell withimmune neighbours did not display a significant difference;
however, Sox2/0ct4 per tumour cell with noimmune neighbours dis-
played slightly higher interactions (Fig. 8d and Extended Data Fig. 6a).
Due to the low copy number of PPl eventsin FFPE tissues, we compared
the PPl density in lymphocytes and tumour-enriched regions among
the responder and non-responder tissues (Fig. 8e, Extended Data
Fig. 6band Supplementary Fig.40d). The identification of ymphocytes
and tumour-enriched regions was based on the H&E images. In the
patientwho developed resistance to osimertinib, there wasanoticeable
reductioninthe Sox2/Oct4 interactions,accompanied by an upregula-
tion of NF-kB/p-P90ORSK interaction in the tumour-enriched regions
(Fig. 8e). In addition, we observed an elevation in the TRAIL/DR5 PPI
eventsinthelymphocyte-enriched regions of the non-responder tissue
(Extended DataFig. 6b). However, someregionsin the non-responder
biopsy tissue exhibited warping during the process of collection. To
comprehensively understand the dynamics of these protein interac-
tions, further investigations using high-quality clinical tissues and
more tissue samples are needed.

To demonstrate the feasibility of detecting PPIs using a
super-resolved microscope, we compared the iseqPLA detected by a
widefield microscope vs a Zeiss 900A with an Airy scan. The negative
control with one MINUS probe alone confirmed the validity of the
iseqPLA protocol (Supplementary Fig. 41).

Discussion

We have shown an image-based multiplexing approach to detect PPI
at the subcellular level. The iterative processes of ligation, amplifica-
tion, imaging and DNase treatment allowed us to detect 9 PPIs in cell
culturesand 5PPIsin tissues. We evaluated sensitivity, specificity and
batch consistency, as well as whether the drug affects protein baseline
or PPl levels. We showed the feasibility of integrating iseqPLA with
RapMIF to profile both PPIs and signalling, proliferation and organelle
markers. The upregulation of Teadl/YAP and p-ERK/c-Myc PPIs after
osimertinib treatment in HCC827 cells may indicate the activation of
YAP and the p-ERK pathway as compensatory pathways to EGFR inhibi-
tion. The co-expression analysis evaluated the co-localization of signal-
ling markers with organelles. Also, we observed that DNase interfered
with phalloidin signallingin HCC827 cells. Therefore, acombination of
p-EGFR, concanavalin Aand WGA was used for cell segmentation. DNase
digests bothsingle-strand and double-strand DNA in the nucleus, sug-
gesting thatit may change thelocalization of proteins connected with
DNA and reduce PPl detection in later cycles. To reduce the negative
effect of DNase on PPl detection, we further conducted experiments

examining the effects of nuclease P1and DMSO stripping solution on
deactivating oligos and fluorophores. Nuclease P1and DMSO exhibited
comparable effects on digesting DNA as DNase. Nuclease P1targeting
only single-strand DNA serves as a good alternative to nuclease P1.
Also, it preserves decent staining of phalloidin, indicating that it has
minimal effect on changing the localization and structure of proteins.

Various approaches have been employed to assess the specificity
and sensitivity of PLA. Overall, PLA exhibited higher specificity and
sensitivity than other immune-PCR and ELISA assays. The specificity
isdependentonthe quality of primary antibodies. If the antibody lacks
specificity for the target, it may bind with the non-specific target, yield-
ingfalse positives. Alternative sequencing-based protein identification
approaches, such as chromatin immunoprecipitation followed by
sequencing (ChIP-seq) and cellular indexing of transcriptomes and
epitopes by sequencing (CITE-seq), can quantify both the transcription
factors and proteins. However, the data quality relies on the antibodies
used’®”, Also, CITE-seqis limited to tagging surface proteins™. Prox-seq
combines PLA with single-cell sequencing, enabling the quantification
of gene expression, protein expression and PPIs'. Despite its effec-
tiveness, Prox-seq is an antibody-based approach, limiting its ability
to available reagents and antibody quality. Therefore, implementing
technical controls on the primary antibodies is essential. Also using
monoclonal antibodies as primary antibodies can greatly enhance
sensitivity and specificity’ In addition, several factors such as cell
seeding density, cellnumber and the heterogeneity of single cells may
influence the PPl counts.

To better incorporate spatial information into our predictive
model, we transformed our single-cell PPl events into graphs and
developed spPPI-GNN, a predictive pipeline for determining the drug
treatment outcome from single-cell PPl data. We benchmarked our
spPPI-GNN predictive pipeline using spatial PPl graphs with ML, MLP
and MIL models, and showed that spatial information plays animpor-
tant role in improving the prediction of single-cell states. We also
showed that 3D graphs of PPl resulted in better cell-state predictive
abilities compared with 2D graphs of PPI, while the 2D-3D fusion models
could enhance the AUC compared to 3D data only.

Moreover, we tested the scalability of our spPPI-GNN model by
applyingitto various datatypessuch as cell culture, mouse xenograft
and patient tissues with various numbers of PPl targets. Moreover, we
benchmarked the ability of spPPI-GNN to predict cell surface prox-
imity data on the basis of the protein count with a higher number of
features (more than 1,000)”. We tested our spPPI-GNN algorithm
on a cell surface protein detection assay’® (Supplementary Fig. 42).
This assay is a DNA-sequencing-based method for single-cell analy-
sis to quantify protein abundance and spatial proximity at the cell
surface using antibody oligonucleotide conjugates. The 3D spatial
co-localization of protein abundance is represented in 3D spherical
coordinates. To visualize the Pixelgen data, we extracted the 3D surface
neighbouring information by using a 3D spherical surface Delaunay

Fig. 8| Quantification of 17-plex profiling for 5 PPIs and 7 organelle
signalling markers in patients with EGFRm NSCLC. a, Schematic illustration
ofthe workflow for 17-plexiseqPLA. One responder and one non-responder
patient tissues were stained with 5 cycles of PLA, followed by cell phenotyping
includingimmune, tumour, signalling and segmentation markers. Created with
BioRender.com. b, Quantification of PPl counts per cell in the stroma, tumour
and immune regions in the responder tissue. The total cell numbers are 188, 884
and1,614 in the immune, stroma and tumour regions, respectively. Statistical
testing was performed using independent-samples ¢-test with Bonferroni
correction (***P < 0.0001). ¢, lllustrations of H&E image overlaid with 5 PPIs
(top left), H&E image overlaid with cell type masks (top right), the PPl event
scatter dots with cell boundary (bottom left) and spatial neighbourhood maps
of cell types constructed using a20 um radius (bottom right). Each node in the
neighbourhood map represents one cell. The colour of the node represents
different cell types including stroma, immune, tumour and other cells. Example

images of alarger FOV are shown in Supplementary Fig. 40. d, Quantification

of PPI counts for tumour cells with and without immune cell neighbours in the
responder tissue. The total cell numbers are 318 and 1,296 in the regions with
and withoutimmune cell neighbours. Statistical testing was performed using
independent-samples ¢-test with Bonferroni correction. e, Left: comparison

of the density of PPl counts in tumour-enriched regions between responders
and non-responders. Right: example images of 5 PPIs expression in tumour-
enriched regions. Col 1: visualization of 5 PPIs in tumour-enriched regions. Col
2: distributions of Sox2/Oct4 PPlin red. Col 3: distributions of NF-kB/p-P9ORSK
PPIsin green. Acomparison of the density of PPl counts in lymphocyte-enriched
regionsis shown in Extended Data Fig. 6b. The total cellnumbers are19 in the
selected regions of both non-responder and responder tissues. Statistical testing
was performed using independent-samples ¢-test (****P < 0.0001). Box plots and
violin plots: median (horizontal line inside box), 25th and 75th percentiles (box),
25thand 75th percentiles +1.5 times the interquartile range (whiskers).
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triangulation algorithm from control and stimulated T cells (Supple-
mentary Fig.42aand Dataset 23). Each node corresponds to an area of
the cell surface where multiple protein targets are quantified. We have
shown examples of the normalized protein count for HLA-ABC, CD45
and CD8 markers. We benchmarked the overall prediction of T-cell
states and showed better AUC scores when using spPPI-GNN and the
corresponding 3D graph representation. The nature of graph-based

learning from the spPPI-GNN data allows the scaling of application
ofthe pipeline to multiple high-plex spatial omics data sources, such
as subcellular RNA FISH imaging or cell-level spatial transcriptomic
imaging, and various prediction tasks such as treatment response or
state predictions. One limitation of this pipeline is the dependence on
high-quality data and event detection that might lead to batch effect
during the pipeline. Moreover, it is difficult to combine various data
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modalities as well as unseen or unmatching feature sets. Despite these
limitations, spPPI-GNN is a unique pipeline for predicting cell-level
state using subcellular level spatial information, providing an analysis
beyond raw count difference analysis.

Toselect the PPl of interest, abioluminescence resonance energy
transfer (BRET)-based differential PPI discovery platform can be
performed to reveal the differential interactions between wild-type
NSCLC and EGFRm NSCLC cells. This quantitative high-throughput
PPI screening platform can detect direct PPl with a proximity of
<10 nm”™. By comparing the PPl between wild-type and mutant cells,
novel mutation-directed PPIs that function in potential alternative
signalling pathways can be discovered. The selected PPIs are involved
inthe EGFRm-related signalling pathways. The selection includes the
upstream, downstream and effectorsin the AKT/mTOR, ERK/MEK and
YAP/TEAD1 pathways. They not only indicate the activity of the signal-
ling pathway, but they also demonstrate the cell response including
cell proliferation and apoptosisinresponse to drug perturbations. The
selection of PPIsin our panelis based on literature review, the OncoPPi
and Bioplex interactome networks.

Another method to determine potential PPls is to prescreen
interesting pairs using affinity-purification mass spectrometry. The
underlying bait-prey pairs can be selectively purified and quanti-
fied by mass-spectrometry analysis. This can help us determine the
interactome of target proteins between mutant and wide-type cells
tounderstand the EGFRm-resistant mechanisms. The potential target
proteinsinclude p-AKT, ERK and YAP. Owing to the unknown biological
questions involved in the signalling cascades, it is hard to determine
one pair of proteins that do notinteract with each other at all. Toexam-
ine the specificity of iseqPLA, we could use protein knockout as our
negative control.

There are emerging PPI assays and technologies, including
co-IP™>”, PROPER-seq”’, pull-down assays’®’°, yeast two-hybrid
(Y2H)5°® far-westernblotting®?, tandem mass spectrometry®, protein
microarray®*, APEX®%¢, BiolD¥, TurbolD®, FRET*’, BRET’° and Onco-
PPI™*. However, most of themare limited to bulk level or by the degree
of scalability. The conventional PPI-detection approaches using MS
cause the loss of spatial information owing to the sample-preparation
stepand to peptide extraction”. Unlike Co-IP, PLA preserves the spatial
information of proteins without celllysis and can be performed onboth
cell cultures and tissues. The efficiency of detection can be improved
using UnFold probes, which prevent the cross-reactive detection of
irrelevant proteins using a hairpin loop structure. Via iseqPLA, the
sequentialimaging and labelling of PPIs allow for the large-scale profil-
ing of protein interactions at the single-cell level.

In summary, iseqPLA illustrates the feasibility of multiplexing
PLA and detecting multiple PPI distributions at the subcellular level.
It also shows the value of modelling drug-treatment outcomes with
graph-based PPlinputs, whichintegrates both the quantification and
spatial information of protein interactions. This predictive model
would predict treatment outcomes via signalling-network inputs
and overcome the limitation of a lack of spatial details when using
bulk-signalling assays.

Methods

Cells

A549 cells were used for antibody optimization. The cells were seeded
oncoverslipstreated with 0.01% poly-L-lysinein a 6-well plate overnight
ina37 °Cincubator. A549 was purchased from ATCC. NSCLC-sensitive
cellline, HCC827 was provided by Dr Sun Shi-yong (Emory University).
HCC827 cells were seeded on coverslips in a 6-well plate overnight,
followed by osimertinib treatment.

Drugs
Osimertinib was provided by Dr Sun Shi-yong (Emory University)
at 10 mM concentration. HCC827 cells were treated with 100 nM

osimertinib at different time points in a 37 °C incubator. The cells
were then fixed and permeabilized with1.6% formaldehyde in 1xPBS for
10 minatr.t. and 0.5% Triton X-100 for 10 min atr.t., respectively. The
cellswere thenblocked using a cell staining medium (CSM) containing
0.5%BSA and 0.02% sodium azide in PBS. The effect of osimertinib on
p-ERK(T202/Y204) was assessed. HCC827 cells were stained with p-ERK
overnight, followed by 1-hincubation of secondary antibodies atr.t.and
10 min DAPIstaining. The cells were thenimaged at x40 maghnification,
and the intensity levels were analysed. For the multiplexing experi-
ment, HCC827 cells were treated with 100 nM osimertinib for 12 hiin
a37°Cincubator, followed by iseqPLA. The coverslip was mounted
on an acrylic holder for multiple cycles of staining. Verteporfin was
purchased from MCE at a10 mM concentration. HCC827 cells were
treated with 0,1and 10 uM VP for 24 h. Following fixation and permea-
bilization, the cells were profiled withiseqPLA. The corresponding PPI
counts were quantified and compared.

Tissues

HCC827-derived mouse xenografts were provided by Dr Sun Shi-yong
(Emory University). Animal studies were conducted with the approval
of the Institutional Animal Care and Use Committee (PROT0201700718)
of Emory University. The mice were treated with osimertinib for either
1week or 2 months. Osimertinib was given to mice daily via oral gav-
age at 10 mg kg™ dose. Mice were then euthanized and the tumour
was embedded in OCT for sectioning. The OCT tissues were fixed in
acetone, rehydrated, permeabilized in 0.4% Triton X-100 and blocked,
ready for multiplexed experiments.

Patient tissues were collected from Emory University. The use of
human specimens was approved by the Institutional Review Board of
Emory University (IRBO0098377). iseqPLA analysis was conducted
on two distinct samples: a resection responder tissue, which demon-
strated responsiveness to osimertinib as the primary treatment, and a
biopsy non-responder tissue that exhibited no response to osimertinib
as theinitial line of treatment.

Antibodies

Inour study, atotal of 53 antibodies were used. Seventeen PPIs target-
ing the AKT/mTOR, MEK/ERK and YAP/TEAD], JAK/STAT, senescence
and calciuminflux pathways including TEAD1 (12292BF, Cell Signaling
Technology (CST)), YAP (ab172373, Abcam), cyclin E (sc-247,Santa Cruz
Biotechnology), CDK2 (sc-6248, Santa Cruz), p-ERK (T202 + Y204)
(ab242418, Abcam), c-Myc (5605BF, CST), p-AKT (Ser473) (4060BF,
CST), mTOR (2983BF, CST), Mcl-1 (66157BF, CST), Bak (12105BF, CST),
cyclinD1(66467, CST), CDK4 (23972, CST), NF-kB p65 (69994SF, CST),
p-p90RSK (Ser380) (11989BF, CST), Bim (26184SF, CST), Tom20 (sc-
17764, Santa Cruz), Oct4 (ab240358, Abcam), Sox2 (ab243909, Abcam),
p53 (46565SF, CST), SIRT1 (ab233398, Abcam), EGFR (26038SF, CST),
Grb2 (ab227117, Abcam), FoxO1 (29336SF, CST), AKT (4691BF, CST),
Trail (3219BF, CST), DRS5 (ab251269, Abcam), p-JAK2 (Y1007 + Y1008)
(AB219728, Abcam), Stat3 (AB171359, Abcam), Cdc25c (AB232553,
Abcam), p38 (9212BF, CST), E-cadherin (96743SF, CST), 3-catenin
(ab196204, Abcam), Pyk2 (AB228477, Abcam) and Src (AB269563,
Abcam). Five PPIs were evaluated using indirect Duolink PLA: CDK4
(1:1,200) and CDKN1B (1:50) (Abnova D10295); AKT1(1:1,200) and SRC
(1:50) (Abnova DI0453); FGFR1 (1:1,200) and PIK3R1 (1:50) (Abnova
DI0315); CDC42 (1:1,200) and CASP3 (1:50) (Abnova DI0581); STK11
(1:1,200) and PRKAA2 (1:50) (Abnova DI0500). Ten protein markers
were used for RapMIF, including p-EGFR (Y1068) (ab205827, Abcam),
Tom20 (sc-17764, Santa Cruz),Ki67 (ab283699, Abcam), pan-cytokeratin
(53-9003-82, Invitrogen), Golph4 (ab197595, Abcam), NBD-C6 (N22651,
Thermofisher), Cox IV (ab197491, Abcam), phalloidin (A34055, Ther-
moFisher), wheat germ agglutinin (WGA, W32466, ThermoFisher) and
Concanavalin A (C11252, ThermoFisher). For RapMIF, the antibodies
were either purchased in preconjugated versions or conjugated with
AlexaFluor 488, 555 or 647 using the Lightning-Link Rapid Conjugation
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kit (ab236553,ab269820,ab269823). ForiseqPLA, the carrier-free anti-
bodies were preconjugated with Duolink Probemaker (single colour:
DU092009 Sigma; multicolour: DUO96020 Sigma). Five PPIs (Sox2/
Oct4,B-catenin/E-cadherin, Cdc25¢/p38, PYK2/SRC, p-Jak2/Stat3) were
conjugated to NaveniLink (NL.050). Before conjugation, the concen-
trations of the antibodies were measured using Nanodrop to ensure
the required antibody amount was within the range. All antibodies
involved in signalling pathways were first tested using IF in A549 cells.
For unconjugated antibodies, IF testing was done overnight at 4 °C or
atr.t.for1h. Toimprove the staining quality, titrations were performed
on antibodies, and IF was evaluated at two different dilution rates. To
optimize the antibody conditions, A549 cells were seeded on cover-
slips for antibody staining, followed by DAPI (62248, ThermoFisher).
For IF staining on tissue, the antibodies and Hoechst 33342 (H3570,
ThermoFisher) were diluted in a protein block buffer (DAKO, X0909).

iseqPLA on cell cultures

For single-colour detection, each coverslip prepared with cells was
stained with multiple PPIs with one PPI per cycle. The cells were fixed
and permeabilized, ready for the following staining steps: (1) blocking
the sample with Duolink blocking solution; (2) incubating it with one
pair of proteins, conjugated to one PLUS and one MINUS oligonucleo-
tide at4 °Covernight. The antibodies were diluted in Duolink antibody
diluent at the preferred dilution rate; (3) incubating the sample with
ligase for 30 min at 37 °C; (4) amplifying the signals for 100 min at
37 °C; and (5) staining the sample with DAPI. The sample was then
ready forimaging.

For multicolour detection, after permeabilization, the cells under-
went the following steps: (1) blocking the sample with Duolink blocking
solution; (2) incubating it with two pairs of proteins, conjugated to one
pairof oligonucleotides at 4 °C overnight. The antibodies were diluted
inDuolink antibody diluent at the preferred dilutionrate; (3) incubating
the sample with ligase for 30 min at 37 °C; (4) amplifying the signals for
100 min at 37 °C; (5) incubating the sample with the detection buffer
for30 minat37 °C; and(6) staining the sample with DAPI. The sample
was then ready for imaging.

Forindirect PLA, anti-rabbit and anti-mouse secondary antibodies
conjugated to oligonucleotide PLUS/MINUS probes were used to target
primary antibodies. After cell fixation and permeabilization, the cells
wereready for the following steps: (1) blocking the sample with Duolink
blocking solution; (2) incubating it with one pair of primary antibodies,
one from rabbit and one from mouse. The antibodies were diluted in
Duolink antibody diluent at the preferred dilution rate; (3) incubating
the sample with anti-rabbit and anti-mouse secondary antibody PLUS/
MINUS probes for 1 h at 37 °C; (4) incubating the sample with ligase
for 30 min at 37 °C; (5) amplifying the signals for 100 min at 37 °C;
and (6) staining the sample with DAPI. The sample was then ready for
imaging. After imaging, the samples were incubated with DNase at a
1:50 dilution rate for 4 hatr.t., followed by 3x 30% formamide washes
and 3x 1xPBS washes.

DNase

After acquiring the images of iseqPLA, the samples were incubated
with DNase I (4716728001, Sigma) at a1:50 dilutionrate for4 hatr.t.,
followed by 3x 30% formamide washes and 3x 1xPBS washes.

Navincion cell cultures

The cellswere fixed and permeabilized, ready for the following staining
steps: (1) blocking the sample with Block NT; (2) incubating it with one
pair of proteins, conjugated toone ARM1and one ARM 2 oligonucleo-
tideat4 °Covernight. The antibodies were diluted in Diluent INT at the
preferred dilutionrate; (3) incubating the sample with Enzyme 1NTin
buffer 1for 30 min at 37 °C; (4) incubating the sample with Enzyme 2
NTinbuffer2for 90 minat37 °C; and (5) staining the sample with DAPI.
The sample was then ready for imaging.

iseqPLA on tissues

iseqPLA is compatible with tissues mounted on slides. The staining set-
tings were the same as those for iseqPLA in cell cultures. We skipped the
blocking step between cycles for tissue multiplexing to avoid hiding
the signals. The tissue samples were mounted with 10% glycerol made
in IxPBS. We covered the slide using a 24 x 50 mm No. 1 coverslip (3322,
ThermoScientific) to prevent evaporation duringimaging. To de-coverslip
the sample after imaging, we placed the slide in a vertical jar containing
1xPBS for ~10 min, and the coverslip was released due to gravity.

RapMIF

FollowingiseqPLA, RapMIF was performed to profile pan-cytokeratin,
ki6é7, Tom20, p-EGFR, Golph4, Bim, Concanavalin A, phalloidin and
WGA. The settings were the same as those described previously®.
Between cycles, the fluorophores were deactivated using a3%H,0,and
20 mM NaOH mixture made up in1xPBS for1 hatr.t.in the presence of
white light, followed by 3x 1xPBS washes (for cell cultures: 3% H,0, and
20 mM NaOH; for tissues: 4.5% H,0,and 24 mM NaOH). For tissue mul-
tiplexing, after IF staining, we performed H&E staining at the last cycle.

Nuclease P1stripping

Nuclease P1 was examined as an alternative to DNase I. Following the
imaging of PPI, the samples were incubated with nuclease P1for 30 min
at37 °C.Thesamples were then washed with20 mM EDTA three times,
followed by 3x 1xPBS washes.

H2 buffer

We added 30 mlof 5 M NaClsolution, 10 mlof1 M Tris (pH7.5),0.943 ml
of Triton X-100, 2.03 g of MgCl,-6H,0 and 0.02% (w/v) NaN3 to 960 ml
of double-distilled H,0%.

DMSO stripping solution

DMSOwas also tested to remove oligos and PLA signals. Following the
imaging of PPI, the samples were incubated with hybridization buffer
(100 ml of DMSO with 400 ml of H2 buffer) for 1 min, followed by strip-
ping buffer (62.5 ml of H2 buffer to 187.5 ml of DMSO) for 10 min atr.t.
We then washed the samples three times with 1xPBS*,

Imaging

A widefield microscope, Keyence BZ-X810, was used for fluorescence
and brightfield imaging. The fluorescent signals were detected by five
filters with an excitation spectrum of 360 nm (Alexa Fluor), 488 nm
(FITC), 555 nm (TRITC), 590 nm (Texas red) and 647 nm (Cy5). The
exposure time was varied, but the exposure time for each marker across
control and drug-treated HCC827 cells was consistent. The sample of
cellsgrown onthe coverslip wasimaged using a x40 oil lens for multi-
ple ROIs, and each ROl was imaged across 25-30 z-stacks with 0.4 um
per stack. The whole slide tissue was imaged using a x20 dry lens, and
each ROlwasimaged using autofocus with a x40 oil lens across 25-30
z-stacks with 0.4 pm per stack. The resolutions for the x20 dry lens
and x40 oil lens were 0.37742 pm per pixel and 0.18872 pum per pixel,
respectively.

Sensitivity

HCC827 cells were cultured and seeded on a 96-well plate, followed by
no treatment or a 12-h osimertinib treatment at 5, 10, 25 and 100 nM.
Thecellswere then fixed and ready for iseqPLA experiments. The cells
were profiled with two cycles of iseqPLA (Cycle 1: Sox2/Oct4, p-p90RSK/
NF-kB; Cycle 2: cyclin D1/CDK4, Bim/Tom20), followed by segmentation
markers. Nuclease P1 was used to remove probes between cycles. The
PPI counts were quantified.

Specificity
The HCC827AR/BimKO and HCC827AR/vector-only cells were cultured
and seeded on a 96-well plate. The cells were then fixed using 1.6%
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paraformaldehyde, ready for experiments. Following permeabilization
and blocking, cells were stained with Bim/Tom20 and Sox2/Oct4 PPIs
overnight. Following ligation, amplification and detection, the signals
were imaged using a microscope. Cell phenotyping was performed
using segmentation markers. Cells from the same batch were also
stained with Bim usingindirect IF. Quantification of PPland IF staining
of Bim antibody in cytosol and nucleus were performed.

HCC827 cells were stained with three cycles of PPI: anti-p-ERK
PLUS probe only, anti-Yap MINUS probe only and cyclin E/CDK2 pair.
Between cycles, the signals were removed using nuclease P1.

Baseline vs PPI

The HCCB827 cells were cultured and seeded on a 96-well plate, fol-
lowed by no treatment or a 12-h 100-nM osimertinib treatment. The
cells were then fixed using 1.6% paraformaldehyde, ready for experi-
ments. Due to the limitation that most of the antibodies used in the
panel are from rabbit, we measured the protein baseline levels using
indirect immunofluorescence on different wells. Subsequently, the
corresponding PPI counts were measured using PLA. The cells were
stained with segmentation markers (Concanavalin A, phalloidin and
WGA) for cell mask identification.

Batch difference

HCC827 cells from two batches were cultured and seeded on the same
96-well plate, followed by no treatment or a 12-h 100-nM osimertinib
treatment. The cells were then fixed, ready for iseqPLA experiments.
The cellswere profiled withtwo cycles ofiseqPLA (Cycle 1: Sox2/Oct4,
p-p90RSK/NF-kB; Cycle 2: cyclin D1/CDK4, Bim/Tom20), followed
by segmentation markers. Nuclease P1 was used to remove probes
between cycles. The PPl counts were quantified based on the cell mask.

Co-immunoprecipitation

The antibodies were first validated using western blot. HCC827 cells
were treated with 100 nM osimertinib for 8 and 12 h, and then lysated
for co-IP. C-Myc proteins were pulled down using c-Myc (CST, 9402S),
followed by staining of p-ERK (CST, 9106S). Normal rabbit IgG (CST,
2729S) served as a negative control.

Luminex

HCC827 cells were lysed using Bio-Plex Cell Lysis kit (171304011) and
stored at-80 °C. Cell lysate (1 pg) was diluted in assay buffer (provided
in the multiplex assay) and analysed using the Milliplex MAP 9-Plex
Multi-Pathway Magnetic Bead Signaling Kit Multiplex assay (Millipore
Sigma, 48-680MAG). P-CREB, p-JNK, p-NFkB, p-p38, p-ERK1/2, p-Akt,
p-p70S6K, p-STAT3 and p-STAT5 measurements were read using a
MAGPIX Luminex instrument (Luminex).

Image processing

For 2D maximum projectionimages, we used stitched images provided
by the BZ-X810 Analyser. We used the Hoechst channel from each cycle
to register the images using a phase cross-correlation algorithm. For
3D per z-stack image processing, we stitched ROlimages of 1,024 pixels
by usinga30% overlap ratio, utilizing acode based on ASHLAR"?. After
stitching, we registered all cycleimages per z-stack as the microscope
captures each ROl z-stack image at once.

Cell segmentation

We used two distinct methods for single-cell segmentation of cell
culture and tissue images. For cell culture images, we used the Cell-
pose” deep learning algorithm, whereas for tissue images we used
the Mesmer®* algorithm from the Deepcell”® package for single-cell
segmentation. Single cells in cell culture are more homogeneous with
more defined cell boundaries, whereas cells in mouse tissue exhibited
more variationin cell shape and size. We chose Cellpose for cell culture
data and Mesmer for tissue data because the two algorithms were

pretrained on corresponding data modalities. We used Hoechst for
nuclei segmentation and p-EGFR as a cytosolic marker.

Cell phenotyping in tissue samples

HCC827-derived mouse xenograft cells were classified by the mean
expression level of the pan-cytokeratin marker to differentiate can-
cer cells from normal mouse cells. Patient tissue sample cells were
classified by combining IF phenotyping and an H&E cell classifier. We
performed H&E staining at the last cycle in the patient tissue after IF
staining. After registration and single-cell segmentation using the
Deepcell algorithm, we first classified cells on the basis of their IF
expression level. Cells expressing low staining for all markers were
classified as ‘others’. Next, using a pretrained Hover-Net model®®, we
segmented and classified cells using H&E images into immune, stromal
and cancer cells. Using the segmented cell centroids from H&E images,
we matched each cell into the IF modalities and relabelled all ‘other’
class cells fromthe new H&E images. This allowed us to utilize the best
available information from both the IF and H&E modalities.

PPldetection

PPI signals were detected using a custom algorithm leveraging a tra-
ditional image processing pipeline. More specifically, each PPlimage
was preprocessed as follows: images were first transformed using a
top-hatfilter of 3-pixel size to reduce the noise around PPIsignals, then
Laplacian of Gaussian images was used to detect bright local maxima
as PPIsignals. In 3D images, we filtered out double detection of PPIs at
the same position in consecutive z-stacks. After detecting all the PPI
locationsin 3D, welooked at PPIs within a 2.5-pixel radius (0.045 pum) by
creating a PPI neighbourhood graph of 2.5-pixel radius threshold and
obtained all connected componentsinthe graph. Finally, we extracted
the mean position of the unique connected components in the graph
as identified unique PPI signals in 3D. A 2.5-pixel radius was chosen
empirically by comparing the number of PPIs detected as well as their
spatial representation.

PPI cell assignment in tissue samples

In the mouse tissue data, the cell membrane segmentations do not
capture the whole cell area. To avoid loss of PPl information due to
cell segmentation error, we used a nearest-distance-based assignment
method to assign the PPIsignal detected thatis notin any cell segmen-
tation mask. For each PPI signal not in any segmented cell region, we
looked at the nearest cell mask pixel; if the distance was lower than a
user-defined value, we assigned it to the cell to which the nearest cell
mask pixel belonged.

Spatial graph construction

Foreachdetected PPlina cell, we extracted the corresponding 2D or 3D
localization and assigned anodein the created graph. The node labels
were assigned by creating a one-hot encoding of the corresponding
PPl detected for the node. Delaunay triangulation was used to create
edges connecting the nodes in the graph and therefore create a PPI
spatial graph for each cell. The models were trained in amulti-instance
learning framework, thatis, a cell label for each instance was assigned
onthebasis of the cell treatment condition of a group. For the cell-level
spatial graphs, we used a radius search of 20 pm to determine neigh-
bouring cells. That s, after single-cell segmentation, we calculated all
cellswithina20 pm distance between their centroids and considered
them as neighbouring cells.

SpPPI-GNN model. For the graph neural network, we used amultilayer
network consisting of graph convolutional layers of 16-64 embedding
size. The input of the model was the generated PPl graph for each cell
withnode feature represented by the PPl one-hot encoding. Each layer
transformed the input as the following function: H*+' = fAW!'H'A*), where
lis the corresponding layer, fis the activation function, H' the node
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embedding matrix, W!the weight matrix of the layer [, and A*the spec-
tral normalized adjacency matrix. The spectral normalized adjacency
matrix was obtained using the following formula: A* = D™2AD>, where
Aisthe corresponding adjacency matrix and Dis the degree matrix of
A.We benchmarked different graph layers’ backbones (GCN”’, GAT®,
GINConv?”’, GraphConv'*° and SAGEConv'”) for optimal predictionin
the validation set for 5-PPI, 9-PPland 13-PPl data. Moreover, we bench-
marked various hyperparameters for optimal parameter selection,
such asthe number of layers (2,3 or 4) and the size of hidden layers (16,
32 or 64). The node embeddings were then aggregated by a pooling
layer. Similarly, we benchmarked various pooling layers to investigate
the best way of incorporating node-level features: mean, maximum,
sum, global attention'*and gated attention. Finally, two dense layers
were then used to obtain predictionat the celllevel (thatis, graph-level
prediction).

2D-3D fusion model

The 2D-3D fusion model utilized the 3D datain graph representation,
with an edge characterizing the spatial distance between detected
PPl events, and the corresponding maximum projected 2D datain
graph representation, with an edge characterizing the spatial dis-
tance between PPI events projected on the same plane. To combine
the 2D and 3D information, we used two spPPI-GNN models that took
asinputthe2D and 3D representations, respectively. We combined the
graph-level embedding using concatenation or atensor decomposition
fusionmodule viaKronecker Product'® with a gating-based attention
mechanism'® for cell-level prediction.

Multi-instance learning baseline

A multilayer perception baseline was used to compare our spPPI-GNN
network. In the same multi-instance learning framework, we assigned
aclass label from the cell treatment condition. The input of the model
was thegenerated PPIgraphforeach cell withnode feature represented
by the PPl one-hot encoding. Here we used stacked dense layers of
embedding size 16 for the 5-PPI dataset and embedding size 32 for the
9-PPldataset to obtain anode embedding. Each layer transformed the
input as the following function: H*! = f(W'H"), where lis the correspond-
inglayer, fis the activation function, Hthe node embedding matrix and
Ww!the weight matrix of the layer /. Finally, the node embeddings were
thenaggregated by a poolinglayer, and two dense layers were then used
to obtaina prediction at the cell level (that is, graph-level prediction).

Machine learning baseline

Several machinelearning models, including naive Bayes, random for-
est, AdaBoost, decision tree, support vector machine (SVM) and gradi-
ent boosting, logistic regression and MLP, were used as a baseline on
atotal number of PPl events. We used the scikit-learn Python library
with default setting when training and testing these machine learning
models. We benchmarked these models using the total number of PPI
events per whole cell (1) and divided by subcellular regions (2) (nuclei/
cytosol). Therefore, theinputisthe sumofeach PPIclassin (1) the whole
cell or divided by (2) cytosol and nuclei regions. The model output is
the predicted treatment condition.

Complexity of GNN models

Thetotal space and time complexity of the GNN model can be analysed
by considering the operations performed in each layer across the entire
network>?. Each GNN layer involves three primary operations: feature
transformation, neighbourhood aggregation and activation. For fea-
ture transformation, which involves a dense matrix multiplication
betweenthe node features and the weight matrix, the time complexity
is O(NF?), where Nis the number of nodes and Fis the number of features
per node. The neighbourhood aggregation step, which combines
features from neighbouring nodes, has atime complexity of O(N?F)for
dense graphs. The activation function applied element-wise to the

node features adds a negligible time complexity of ONF). Thus, the
total time complexity per layer for dense graphs is O(NF? + N?F), and
for L layers, it becomes O(LNF? + LN?F). The space complexity includes
storing the node features, weight matrices and the adjacency matrix.
The node features require O(NF)space, the weight matrix requires O(F2)
space, and the dense adjacency matrix needs O(NV?) space. Conse-
quently, the space complexity per layer is O(NF + F> + N?), and for L
layers, the total space complexity is O(L(NF + F?) + N?).

To analyse the complexity of the GNN model, we calculated the
time and space complexities using the formulas LN?F + LNF?(time) and
N + LF? + LNF (space). We varied L (number of layers) and F (hidden
size) while keeping N constant at 90. For each combination of L and F,
the complexities were computed and plotted. The graphiillustrates
how increasing the number of layers and features affects the compu-
tational steps and memory usage. Specific values of L and Fwere high-
lighted with markers to show their exact impact on the model’s
performance. We chose N=90 because it is the mean number of nodes
ofthe graphsin all datasets.

Pixelgendata

The datawere collected from the Pixelgen database (https://software.
pixelgen.com/datasets/cd20-rituximab-v1.0-immunology-I). Periph-
eral blood mononuclear cell samples were stimulated into phyto-
haemagglutinin (PHA) blasts with PHA-L, followed by 10 ng mI™ of
interleukin-2 for 5 days at 37 °C. The cells were added to plates coated
with 5 pg ml™ of human ICAM-1 (CD54) His-tag Fc Chimera Recombi-
nant Protein (A42523) for 2 h. The aliquots of cells were treated with and
without10 ng mI™ of regulated upon activation, normal T cell expressed
and secreted (RANTES) or CCL5at37 °Cfor1h.

Prediction metrics. To compare the models’ prediction abilities, we
used a5-fold cross-validation setting by separating the datasetintoan
80%training setand a20% validation set. We used the receiver operat-
ing characteristic AUC score as ametric to evaluate the data prediction
inthe validation sets.

Statistical testing. The details of statistical tests employed in each
caseare providedinthe figure captions. All Pvalues were corrected for
multiple testing and the statistical testing method is indicated in the
figure captions. We used the following convention to indicate signifi-
cance with asterisks: ***(0.001 > P> 0.0001) and ****(P < 0.0001). Exact
Pvalues that are greater than 0.001 are shown on the plots.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The maindata supporting the results of this study are available within
the paper and its Supplementary Information. The statistics needed
to recreate the figures are provided as Source Data. The raw data are
available in figshare'®. Source data are provided with this paper.

Code availability
The custom codes used in the study are available in GitHub'*®.
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Extended Data Fig. 1| Evaluation and quantification ofiseqPLA properties
inHCC827 cells. a, Visualization of the workflow evaluating PLA sensitivity,
specificity, baseline vs PP, and batch consistency in HCC827 cells. Following
different treatments, the cells were stained with PLA or IF. The detailed
experimental designs are in Supplementary Fig. 6a, 7a, 8a,and 9a, Created
with BioRender.com. b, The comparison of PPl counts in HCC827 cells between
those treated with a range of Osimertinib for 12 hours. The detailed results are
in Supplementary Fig. 6. ¢, The comparison of PPl counts in two HCC827AR
cells. The detailed results are in Supplementary Fig. 7.d, The comparison of PPI

counts in HCC827 cells between those treated with and without Osimertinib.
The baseline levels of 4 proteins in HCC827 cells with and without treatment
were quantified on the right panel. The detailed results are in Supplementary
Fig. 8. e, The comparison of PPl counts from 4 pairs in HCC827 cells from two
batches treated with and without 12-hour Osimertinib. The detailed results are
inSupplementary Fig. 9. Statistical testing was performed using Mann Whitney
Wilcoxon Test two-sided (***: 0.0001 < p <= 0.001, ****: p < =0.0001). Box plots
and violin plots: median (horizontal line inside box), 25th and 75th percentiles
(box), 25th and 75th percentiles +1.5 times the interquartile range (whiskers).
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Extended Data Fig. 2| Schematics showing the graphical implementation

of spatial neighbouring information. a, Schematic showing the PPl events
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PPIneighbour’s embeddingisincorporated until a global cell-level embedding

3
is extracted and used for prediction. Created with BioRender.com. b, Example
of cell PPl events spatial graph showing similar PPl event type density with
different PPl event neighbours’ distribution. This shows a spatial distribution
heterogeneity of PPl events at the subcellular level. ¢, Line plot showing the
variation of PPl type neighbouring count across cells (x-axis: cell ID) showed inb.
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Reporting on sex and gender The human specimens were obtained from male patients. Sex was not considered in the study design.
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Life sciences study design
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Sample size Sample sizes were chosen on the basis of the availability of biological specimens and resources.

Data exclusions  No data were excluded.

Replication 5 common pairs across 3 datasets in HCC827 cells.

Randomization  The study was not randomized, because it focused on specific cell lines and tissue samples with unique characteristics.

Blinding The study was not blinded, because of the nature of experimental procedures.
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Antibodies

Antibodies used The vendors and catalogue numbers of the antibodies used are listed in Methods.




Validation The optimization of the antibody-staining conditions is described in Methods. Supplementary table 1 provides the dilution-rate
optimization.
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