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Abstract. We prove an asymptotic expansion for the eigenvalues and eigenfunctions of
Schrédinger-type operator with a confining potential and with the principle part of a periodic elliptic
operator in divergence form. We compare the spectrum to the homogenized operator and characterize
the corrections up to arbitrarily high order.
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1. Introduction.

1.1. Motivation and informal summary of results. In this paper, we are
interested in asymptotic expansions of eigenvalues and eigenfunctions of the operator
(1.1) Lo:=-V-a(z)V+W,
where a(-) is a Z%-periodic, uniformly elliptic coefficient field valued in the d x d
symmetric matrices; W is a confining potential that is quadratic at infinity; and € > 0
is a small parameter.

The classical theory of periodic homogenization asserts that, as € — 0, the be-
havior of the elliptic operator L. is well approximated by the constant-coefficient
homogenized operator

(1.2) Lo:=-V-aV+W,

where a is a constant symmetric matrix called the homogenized matrix. Owing to
the growth of W at infinity, both the operators £. and £y have a compact resolvent
and therefore have a discrete collection of eigenvalues, which we denote by {\. ;};en
in the case of L. and {A ;}jen in the case of L£y. These sequences are arranged in
nondecreasing order, repeated according to multiplicity, and increase to infinity as
the index j — oo. The classical theory of homogenization implies that A. ; = Ao ; as
¢ — 0 for each fixed j, with convergence of the corresponding eigenspaces in L?(R%)
(see [6, 7]). In this paper, we are concerned with obtaining quantitative information
concerning this convergence.

We would ideally like to obtain asymptotic expansions in the parameter €, hope-
fully identifying the next-order terms in the expansion. Moreover, we are interested
in estimates that are quantitative in both parameters j and e, to identify precisely
how high in the spectrum our expansions are valid for, as a function of ¢.
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Such questions have been previously addressed in the context of Dirichlet and
Neumann eigenvalue problems in bounded domains. In [5], the authors prove the
estimate

(1.3) |Aej — Aoj| < CsAg{’;‘.

for a constant C' that does not depend on j. For identifying the next-order terms in the
context of boundary value problems, the geometry of the boundary and its interaction
with the periodic lattice plays an important role. The works [10, 8] characterize the
limit points of )‘”;& as € — 0, for a simple eigenvalue Ao ; of —V -aV with homo-
geneous Dirichlet boundary conditions.! The authors in [10] demonstrate numerically
that, for a planar domain that has faces with rational directions, the possible subse-
quential limits of the first-order correction to the eigenvalue @ as € — 0 can, in
general, be a continuum; the authors in [8] provide a representation formula for the
possible subsequential limits of w as € — 0, in terms of subsequential limits of
corrector equations with oscillating boundary conditions. Thus, in general polygonal
domains, it is not possible to identify the O(e) term in an asymptotic expansion due
to the behavior of solutions in boundary layers.

In smooth, uniformly convex domains, the results in [9] and [13] identify the
O(e) term in the expansion of A, ; in terms of the solutions of the boundary-layer
problem, with an error of O(¢*?) in d > 2 and O(¢”*) in two dimensions, where the
implicit constants depend also on j. These results use quantitative estimates for the
boundary layer problem in homogenization proved in [4, 3, 11, 12]. To go further in
the analysis and understand the higher-order terms in the expansion, a finer analysis
of the boundary layer problem is required, beyond the current state of the art.

Our motivation for considering the Schrédinger-type operator £. in (1.1) and
posing the eigenvalue problems in the whole space is to circumvent the need to un-
derstand boundary layers and thereby give a more complete asymptotic expansion.
The role of the quadratically growing potential W is to provide localization for the
eigenfunctions and compactness of the resolvent.

Given a simple eigenvalue ) ; of the operator £y defined in (1.1), with corre-
sponding normalized eigenfunction ¢g ;, we exhibit asymptotic expansions for A ;
and 1. ; of the form

P
Aej=Xoj+ Y ePup+0(e)

p=2
and

p p—k

.
e =003+ S 3V Tty (7 7) 4O,

p=2 k=2m=0

where the sequences {4} {,>23 € R and {U, } (>0} € L*(R?) are constructed explicitly
and depend on j but not on ¢ and the functions X, ,, , are correctors that contain
the e-scale wiggles in the eigenfunction. The implicit norm in the expansion of . ;
is the strong H'(R?) norm.

The expansions are valid for any P € N, but we should be more explicit about
the error term O(eF'*1). The term is actually

IThere is also an unpublished manuscript in the website of Vogelius that deals with the homo-
geneous Neumann boundary condition case, with similar conclusions.

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 05/10/25 to 128.122.149.92 . Redistribution subject to STAM license or copyright; see https://epubs.siam.org/terms-privacy

1772 SCOTT ARMSTRONG AND RAGHAVENDRA VENKATRAMAN
8)\8/7 ?

7(Ao,5) log<75(:\\:;)>’

and where the constant C' does not depend on j, p, or € and (Ao ;) denotes the
spectral gap between )\ ; and the nearest eigenvalue of £y that is not equal to g ;:

P41
) , where P <clog

CV(/\O,J‘)(

(1.4) Y(Xo,;) :==min{[ Aok — Ao j| : Aok # Ao} -

The point of restricting P as above is that, without this restriction, the implicit
constant in the O(e+1) term actually grows doubly exponentially in P, which renders
the estimate useless. Note that this estimate coincides with (1.3) in the case P = 0.
We remark that some dependence on the spectral gap is necessary and occurs even in
perturbation theory in finite dimensions (i.e., matrices). See Theorem 1.3 below for
the precise statement.

The expansion above is not standard in homogenization. This is a reflection of
the fact that, to our knowledge, higher-order expansions have only been used pre-
viously in the periodic (or stationary) setting. Here, however, the potential creates
some macroscopic dependence of the coefficients, and the higher-order expansion must
intertwine this dependence with the small scales. Indeed, at higher order (unlike at
first order), the large macroscopic scale will interact with the microscopic scale, and
this interaction is what is captured by the correctors x,_ ,,  when the parameter
k is at least 2. It is due to the presence of these terms in the expansion (which we
believe are necessary) that the parameter P in the expansion above cannot exceed
clog|loge|.

It should be remarked that the expansion is valid in the case P = 1, when we have

2,3
Ce* X4

Aej — Ao — b0 || ey < ——2
| €,J 07]|+H1/)87] ¢0,J ‘H (Rd) > ’Y()\O,j) s

where 9. ; € L*(R?) is the eigenfunction of L. associated with eigenvalue A. ; nor-
malized such that [, e jdo,;dz = 1. In particular, the O(g) term vanishes. This is
due to the simple fact that the leading-order correction to the homogenized operator,
represented by the (symmetric part of the) third-order homogenized tensor, is zero.

Our methods yield similar expansions in the case of eigenvalues of £y with mul-
tiplicity, but these asymptotic expansions become difficult to describe in complete
generality. It is necessary to describe the entire perturbed eigenspace at once, and
the multiplicities can bifurcate (or not) at any higher-order level, leaving us with
many different cases to enumerate. For simplicity, we present a result in Theorem 1.5
that gives a complete asymptotic expansion in the case that the eigenspace bifurcates
at the level of €2 (we do this by the assumption that a particular matrix has distinct
eigenvalues).

1.2. Statements of the main results. Throughout the paper, d > 2 denotes
the spatial dimension, 6 € (1,00) is the ellipticity ratio, and we fix positive constants
A,Ag>0and A_ < A,. We consider a coefficient field a(-) : R? — R4*? satisfying the
following properties:

(15) a;; = aj; Vi,jE{l,...7d},

(1.6) €12 < (a(x)€,8) <O€)* VEER? ae. xeRY

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 05/10/25 to 128.122.149.92 . Redistribution subject to STAM license or copyright; see https://epubs.siam.org/terms-privacy

SPECTRUM OF PERIODIC SCHRODINGER OPERATORS 1773
and
(1.7) a(r+z2)=a(x) VzeZ ae zecR%

We assume the potential W € C>°(R?) satisfies, for all x € R?,

(1.8) IVEW ()] < RIAF(1 + |2?)2 39 vk eN,
and
(1.9) A_|zP<W () <Ay,

Throughout, we denote
data:= (d,0, A, Ao, Ay, A_).

So, when we say that a constant C' depends on data, we mean that it depends on the
parameters (d,0,A, Ao, Ay, A_).

The hypotheses (1.5), (1.6), and (1.9) imply that, for every ¢ > 0, setting a.(-) :=
a(z), the Schrédinger operator

L.:=-V-a.V+W(x)

is a positive operator that has discrete spectrum in L?(R?). To be precise, the eigen-
values of L. can be put into a sequence {Asyj}?il C (0,00), with As; < Ac jy1 for
every j € Ny and A ; — 400 as j — o0o. These eigenvalues evidently have no finite
cluster points and are repeated according to multiplicity, with every eigenvalue hav-
ing finite multiplicity. Associated to these eigenvalues {). ;}32, are eigenfunctions
{¢ej}52, € H'(RY) that may be assumed to be orthonormal in L?(R?).

We let a denote the homogenized matrix corresponding to a(-) in the standard
theory of periodic homogenization. It satisfies that same uniform ellipticity estimate
(1.6), and the operator Ly defined in (1.2) captures the leading-order asymptotics of
the operators L. as e — 0. We arrange the eigenvalues of £( in a nondecreasing se-
quence {Ag,;}32; C (0,00), with eigenvalues repeated according to (finite) multiplicity,
with Ao j — 00 as j — oo. Associated to the eigenvalues {)o ;}32, are L?-normalized
eigenfunctions of Lo, denoted by {¢o,;}32,. For any eigenvalue Ao ; of Lo, we define
the spectral gap v(Ao ;) as in (1.4).

We organize our results in four theorems: Theorems 1.1 and 1.4 give the first-
order expansions for simple and multiple eigenvalues, respectively, and their associated
eigenfunctions to errors that are O(g?), with dependence of the prefactor on the eigen-
value. Theorems 1.3 and 1.5 present the higher-order expansions for the eigenvalues
and eigenfunctions associated to simple and multiple eigenvalues, respectively.

THEOREM 1.1. Fiz j € N such that Ao ; is a simple eigenvalue of Ly. There exist
constants c(data) € (0,1] and C(data) < oo such that, if € satisfies

(1.10) 0<e<ey(Xo )Ny’
then the jth eigenvalue A ; of L. is simple and satisfies the estimate

(1.11) ey — A y<C€2AgJ-
' o Aoal S50
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moreover, if we let 1. ; denote the corresponding eigenfunction for A ; normalized
according to

(112) / z/}g’j¢07j diC:].,
Rd
then we have the estimate
Ce2\3
1)/ - 0,
(1.13) H¢e,j - (¢0,j +eVo,; 'X( )(E)) ||H1(Rd) < WO,])]

Remark 1.2. The condition (1.10) is optimal with respect to the homogenization

regime. Indeed, the estimate (1.3) asserts that the eigenvalues of the £, operator do
not deviate from those of Ly by more than Ce\/ 3 The condition (1.10) essentially
guarantees that so long as this deviation does not exceed the spectral gap of Ly at the
eigenvalue \g ;, then the eigenvalues of the homogenized operator approximate those
of the heterogeneous operator to quadratic order.
The previous result, which expands a simple eigenvalue to a precision of roughly
€2, is a special case of our next result, which provides a higher-order expansion to
a precision of roughly e¢!°8l1°g¢l " This higher-order expansion is given in terms of
certain objects—mnamely, the homogenized tensors @y m , correctors x, ,, , and the
sequences of corrections to the eigenvalues {u}r>2 and eigenfunctions {Uy}r>o—
which are defined in section 4 via a recursive construction.

THEOREM 1.3. Under the hypotheses of Theorem 1.1, there exist constants
c(data) € (0,1] and C(data) > 1 such that, if € >0 satisfies (1.10) and we define

ey’
P:= |clog log( z )‘ :
7(Xo.j)

P
)\g = )\()’j + Zsp,u,”
p p—k

¢0,]+ZEPZZVmUk X, ,mk(x f)

p=2 k=2m=0

along with

then the jth eigenvalue A. ; of L. is simple, and its associated eigenfunction . ; of
L. normalized according to (1.12) admits the asymptotic expansion

1
¥(Aoj)

where the modulus p: (0,1) — (0,00) is defined by

~ eNy?
(e = Fel 10y = wellinn) <o S5,

,O(t) = thlog|logt\ )
Concerning multiple eigenvalues, once again, we offer two theorems: The analog of
Theorem 1.1 is in Theorem 1.4 below, where we provide the first-order expansions

for N > 1 eigenvalue—eigenfunction pairs of L. that coalesce into a single eigenvalue
of the homogenized operator Ly of high multiplicity N. The analog of Theorem 1.3
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is Theorem 1.5, which contains the high-order asymptotic expansion for multiple
eigenvalues. For these theorems, we make a simplifying assumption that a certain
symmetric matrix that arises in the analysis has distinct eigenvalues, which ensures
that the eigenspace bifurcates into N distinct branches. This is the matrix D given
in (5.2). We expect that this assumption is generic, although certainly not always
satisfied. In the case it is not satisfied, one needs to study another such symmetric
matrix that occurs at a higher-order level in the expansion. For a general result, one
needs to study all possible splittings of the eigenspace at all possible levels in the
analysis, which is something we do not attempt to describe fully here.

THEOREM 1.4. Fiz j € N such that Ao ; is a multiple eigenvalue of Lo of multiplic-
ity N 2 1, labeled such that )\07]' = /\0,j+1 == )\07]'_,_]\[_1. Let {¢O,j+r}r:0,“.,]\f—1 be
an orthonormal basis for the associated eigenspace. Assume that the N-by-N symmet-
ric matriz D defined in (5.2) has N distinct eigenvalues. Then, there exist constants
c(data) € (0,1] and C(data) < oo such that, if € satisfies

(1.14) 0<e<ey(Ao )Ny,
then, for each r=0,...,N —1,
Ce®\

Ao s — X0 < — ).
‘ €,J+r 013+7"| X 7(>\O,j) )

moreover, there exists an orthogonal matriz E € RN*N with E = (e”) such that, if we
normalize the associated eigenfunctions (and relabel them using V. j4r,r=0,...,N —

1) according to

(1.15) / Ve j4rdo,j+s dT =€,
]Rd
then we have the estimate
Nl 213
Ce= D3
(1.16) Ve jtr — Z et (Vooj4r +eVojir: X(l)(é)) < )\70’] .
5=0 H1(RY) 7( o,j)

Our final result concerns a higher-order asymptotic expansion for the spectrum
of L. near an eigenvalue of Ly with multiplicity.

THEOREM 1.5. Under the hypotheses of Theorem 1.4, there exist constants
c(data) € (0,1] and C(data) > 1 such that, if the matric E = (€}); s=0,.. N—1 IS
as in Theorem 1.4, € >0 satisfies (1.10), and we define

R I ¥
along with
P
Xejir = Noj + Z&?pﬂp,ﬁm
p=2

p p—k

P
xT
wei=Uogir+3 "D 3 V" Ukiir  Xptmer (I’ E)’

p=2 k=2m=0
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then, for each r = 0,...,N — 1, the eigenvalues A ji, of L. and their associated
eigenfunctions, {. j1, YN20" of L. normalized according to (1.15), admit the asymp-
totic expansion

1 ~ N
Aej — A - ) < !
'7()\0,j) (' €,j el + ||¢6,J ws”Hl(]R”)> p('Y(/\O,j>) )

where the modulus p: (0,1) — (0,00) is defined by
p(t) — thlog|logt\ )

While the above results have been stated in the periodic case, the analysis extends to
the stochastic setting. In that case, we would need to use the optimal quantitative
estimates for correctors (see, for instance, [2, 1] and the references therein), and it
would be necessary to stop the expansion after a finite-order P depending on the
dimesion d and the rate of decorrelations of the random coefficient field (since the
correctors do not exist after a certain finite order in the random setting).

2. Preliminaries.

2.1. The first- and second-order homogenized tensors. We introduce the
first- and second-order correctors and their associated homogenized tensors a, a®
and prove a symmetry property of a® | which will play a crucial role in our analysis.
These correctors, as well as the first and third homogenized tensors, will arise in our
infinite-order expansion subsequently; however, for the time being, we prefer to set
some notation that is less heavy (and is well known) to experts in homogenization.

For each e € R?, we let x! € H'(T?) denote the first-order corrector, that is, the
unique mean-zero periodic solution of

(2.1) —V-a(e—|—in):O, <Xik>:O.
The homogenized tensor a is defined by the formula
ae:=(a(e+Vyl)), eeR

We let g. denote the difference between the flux of the corrector and the homogenized
flux:

g.:=ale+Vy!l)—ae.
We introduce an associated stream matrix s., which is skew symmetric and satisfies
(2.2) V- Se =8 (in coordinates, Jz,8¢ij = 8e,;)
and whose ijth entry s, ;; is defined as the unique mean-zero H 1(T4) solution of
(2.3) —Aseij = 0z,8e,i — 02,8, (8ei) =0.

We call s.;; a fluz corrector. It is clear from (2.3) that s. is skew symmetric. To
check the condition (2.2), apply 9., to both sides of (2.3), sum over 4, and use (2.1)
to obtain, in the sense of distributions,

(24) —A(V . Se)j = _Age,j~

Since both g, ; and V - s, are of zero mean, it follows that they are equal.
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We also introduce the second-order corrector. Later on, we will introduce it as
a two-tensor—valued, mean-zero, periodic field x(; this means that it is indexed by
two indices, say, {X§j®€k }?’kzl defined to be the unique mean-zero H'(T?) solution
to

2 1 1
~V-aVxg g, = V- (aejxe, —Se.€5) -
Introducing the third-order homogenized tensor

=(3) . _ 2 1 1
aijk E (avXej(X)ek + A€j X, — Se, ej)i )

the preceding equation asserts that the vector field

(3)

1 —
€j —a;516

2 1
aVXej@e,c +ae;jXe, — Se,

is mean-zero and divergence free; it then follows, as before, that there exists a skew-

symmetric tensor field s¢;ge, such that

1 =(3)

(v : Sej@(ik)i = (ain@ek + aerik - Sekej)i - a”k .

The following lemma collects a fundamental symmetry property of the third-order
homogenized tensor at®).

LEMMA 2.1. For each i,j,k € {1,...,d}, setting
(3) (3)

~@3)s . _ Fijk + Aigj
we have the identity
—(3)s , =(3)s | =(3),
(2.5) agj,)cs+a;k)is+a,(€if:0.

Proof. Utilizing the equations for the first- and second-order correctors, along
with the skew symmetry of s} , we find that

—(3),s
Qagjlz; = <a(vxgj®ek + vxgk(@ej) : ei> + <ai1€X(15j + al]Xi,k>

= (VX% 00 T ViXeroe;-aVXe,) + (ikXe, +aijXe, )
= (=m0, X¢, - Xep — @m0, Xe, - Xe,)
(@m0, XL XL, + AP, XE XL )+ 2l
The desired identity follows by cyclically summing over i, j, and k. ]

2.2. Zeroth-order estimates for eigenvalues. The following proposition,
which gives a first estimate for the rate of convergence of the eigenvalues of L. toward
those of Ly, is a straightfoward modification of the results in [5]; it forms an ingre-
dient in the proofs of all of our theorems. While the result in that paper lies in the
setting of homogenization of the Dirichlet eigenvalues of periodic elliptic operators in
bounded domains, the proof, which is based on Courant’s minimax characterization of
the eigenvalues, adapts readily to our setting. This basic estimate provides an upper
bound for how much eigenvalues of £. can move relative to those of L£y. We recall
that {\: ;}32; (vesp., {Ao,;}72,) denote the eigenvalues of L. (resp., Lo) written in
nondecreasing order. For each eigenvalue X\ ; of £y we recall that (Ao ;) denotes
the associated the spectral gap of Ao ; (see (1.4) for the definition). The following
proposition can be readily proved as in [5], and we omit the proof.
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PROPOSITION 2.2. There exists C1 > 0 independent of € and k such that, for each
k€N and for every e >0, we have

(26) |/\5,]‘ - )\07j| < Clé‘)\é/j .

3. Estimates for analyticity.

3.1. Elliptic estimates. The goal of this section is to derive exponential decay
estimates for eigenfunctions to the operator

LoU:=-V-avVU +W(-)U.

Let A > 0 be an eigenvalue of Ly, corresponding to eigenfunction U, with||U]||2 =1
so that

(3.1) -V -avVU + WU = AU.

LEMMA 3.1. Let A be an eigenvalue of Lo, and let f € C>® N L?(R?) be such
that fRd fox=0 for every eigenfunction ¢ associated to \. There exist a(data) > 0,
C1(data) > 0, and C(data) >0 such that the following holds: For every solution u of
(3.2) (Lo—MNu=f inR?

we have the estimate

/ (A+ \x|2)”ezH|Vmu\2dx+/ A+ [2]2)"Le2H |V Ly d
Rd "’E|>Rn,>\

(3.3) <S((m— 1)!)201“””*1[&’”_2/ 2H (A 4 [2[2) 02 da

. |z|<Rn A

m—1
+ ((m _ 1)‘)20?/\2 Z / 62H()\+ ‘m|2)n+mf£72|vff|2 dl‘,
=0 /R?

where H :RY — R is defined via H(zx) := a|z|? and
(3.4) Ry := C'max(v/n, V).

Proof. The proof is an induction argument on m € N.
The base case. Let n € C2°(R?) be a smooth function. We multiply (3.2) with
n?u and integrate on R? to arrive at

/ n*avVu-Vude+ [ W(z)n*u?de =X\ | n?u? dJU—|—/ n* fu da:—2/ nuaVu - V.
R R R R4

Rd
Using ellipticity of a and by Cauchy—Schwarz, we obtain
(3.5) / n?|Vul? dx g/ n*u*(\ — W (z)) + Cou?|Vn|* da + / 0 fudz

Rd Rd Rd
for some universal constant Cy (for instance, we can take Cy = 8). We use test
functions of the form n = ey for various choices of y € C2°(R?). The function H

will be chosen of the form H(x) := a|x|? for some small a = a(data) > 0. Inserting
this choice in the prior display, we find that, for any 6 > 0,
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2 2H 2 2 2H, 2 Co 2
xe\Vul*de+ | x“e"u® | W(x) — —|VH|" =\ dx
R4 R4 2

2
g/ eQHu2(|Vx\2+X2|VH|2)d:c+/ e 2 (f+9u2> dzx .
Rd R 0

We thus arrive at the main Caccioppoli estimate that we use for the rest of the proof:

(3.6) / X262H|Vu|2dx+/ X2e2Hu2(W(x)—@|VH|2—(A+0))
R4 R4 2 +

2
5/ e (u2|Vx|2+ fxz) dx .
Rd 0

Here, (z); denotes the positive part of z € R. From (1.9), we find that
W(z) = C|VH]? = (A +0) <Ay|z* —A<0

for all 6 > 0 if |2| < ﬁ =: Ro(\). In particular, the second term of (3.6) on the
left-hand side does not contribute on this ball centered at the origin.
We now make a choice of the 8, of the test function x, and of the exponential
weight H toward obtaining the desired estimate.
e We set 6= AT‘()\ +|z]?),
e we set H(x):=a|z|? for a sufficiently small so that AT’ > 2Cha?, and
e we set x(z) = (A + |z]|?)2wgr(z) for wg € C°(RY) with wgr(x) =1 for |z| <
R,wpr(x) =0 for |z| > 2R, and |Vwg(z)| < %, with [wr(z)| <1 for all 2 € RY.
Here, R > 1 is a parameter that we will send to infinity at the end of the
argument of the base case.
Then,

A+ 2" (A + 2"
2 R? '

IVxl* <
Inserting these choices into (3.6), we find
(3.7)
[ Ot Py ()e Tl de
Rd

+ /Rd()\+ |x|2)”w123(x)62Hu2 <W(x) — %\VHP - (A + % (>\+ |$2))>+ dx

2
2 ovn—1 20 (2, f 1 2yn 2H, 2
</Rdn()\+|x|) e (u —|—n2)d:c—|—R2/Rd()\+|x|)e u“dzx.

Now, if %|x|2 > %)\JrAO + A, which we rewrite as |z| > Ry (\) ~ VA > Ro(\), then,
choosing « > 0 small enough so that AT‘ > 2Cpa?, a short calculation shows that

G A A
W) = 2IVHP = (A 5= Ot o)) > A-lal?~Ao—2C0a? e ~A——= (0+[f?)
A
2 y()\‘*‘ %)

For any R, » > R1()\) (a specific choice will be made presently), the estimate (3.7)
then rewrites as
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/(A+|x|2)”wR62H|Vu|2dm
R4

A
+/ Azt ((A+|x|2)2n2)e2Hu2w%(:ﬂ) dx

|2 R » 8
5712/ (/\+‘ZC| )n 1 2H 2d:17+/ (/\—|—|.T|2)n7162Hf2d1‘

|z| <R A R4

1
— / Az e u? da .
Rd

+R2

Choosing R, x > R1()) so that W(A + R2 ,)? = n* and then sending R — oo, we
obtain

A_
/ A+ 2> e |\ Vul? de + — A+ |22t u? da
R

16 Ji|> R, 5
(38) §n2/ ()\+ “’E|2)n71€2HU2 +/ ()\+ |(E|2)n7162Hf2 dx
|| <R x Rd
holding for every n € Z. This completes the base case. We note that R, ) satisfies
Roya>Ri(A\)=CVA and R, »>Cvn.

The induction hypothesis. Suppose that, for each p € {1,...,m}, we have shown
that, for every n € Ny, there holds

/ ()\+|x\2)"62H|Vpu|2dx§Cf+p_1Ap_1((p—1)!)2/ (M| ?) " Pe2H 2 do
R |2|< R x
p—1
(3.9) +CfAz((p—l)!)zz/dezH()\+|x|2)”+(p’j)’1\ij|2dm.
=0/R

The induction step. Let o € Nj* denote a multi-index of length m. Because
f € C>®(R?) and a is a constant matrix, it follows that u € C>°(R?). Setting v := 0%u,
we apply a 9 derivative of (3.2) to find that v satisfies the PDE

(3.10) —V-aVo+W(@)v=Aw+0f — fa =1 Av+ F,,

where, by Leibniz rule and using (1.8), f, satisfies the bound

m

Ifa|<2<7>6fvv( )|[om Ju|<2( ) A (1 + [2|2)E@-D|wm—iy,

J=0

where we used (1.8) in the second inequality above. Applying the base case to (3.10),
we obtain

/ ()\—i—|x\2)"62H|Vm+1u|2dx—|—/ ()\+|$|2>n_1€2H|Vmu|2d.’B
R4 |T|>Rn,>\

(3.11)
< C{’/ A+ |z)?)" e |V u)? do + / A+ |z e | F, )2 da.
“L|<R,L A Rd

To complete the induction step, we must estimate the second term. By Cauchy—
Schwarz, since (ap + -+ am)? < (m+1)(ag + --- + a2,) for any (m + 1) positive
numbers ag, ..., a,,, we find, by the induction hypotheslb (3.9),
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(3.12)
/ (>\+|x|2)n7162H|Fa|2dl,
Rd
< / (At J22)m L e2H (07 2 4 | ful?) dr
]Rd

< [ O[T da
Rd

2
Fma )Y () G [ O ) e

=0

S/ 62H(>\+|$‘2)n_1€2H|vmf|2d$
Rd

+ (m+ 1) <C{L+m1Am1((m o 1)!)2/ €2H(>\+ |x‘2)n+m+1u2 dx
‘1|<Rn,k
+CP AP ((m Z/ O A Jaf?yrtrm=0- 1|vff|2dx)
_1\2
N (m—1)*m ACTFm=1 A= 2(m—2)!2/ H (A 4 [22) 1 de
4 || <R,

+ O A% (m - 2) 'QZ/ HO A |gf?yrt =m0 1|v4f|2dx)

(] ) e (cx s gy

X / ()\+|x\2)"71+m7j62Hu2 dx
|z|<Rn x

m—j—1

+C7 AP ((m—j—1)! Z / H(Ata|?)r—tHm==0= 1vff2dx>
£=0
Sm!20?+m/\m71/ €2H(>\+|x|2)n+m+1u2dx
|z|<Rn, A

m]20m+1A2Z/ )\+|I‘ n+m l— 1|Vﬁf|2dx

In the last line, we repeatedly used the fact that Y21, ¢/ ~ t9*! with the choice
t = (A + |z|?) to combine the various terms. The proof of the induction step, and
therefore that of the lemma, is complete. 0

Our next lemma concerns L? estimates for eigenfunctions, i.e., equations of (3.2)
with f = 0 with the weight e?". To this end, we let ¢y, as before, denote an L?—
normalized eigenfunction of Ly so that

(3.13) (Lo—A)pr=0 in R, [|¢al| p2(ray = 1.

COROLLARY 3.2. Let ¢y be an eigenfunction of Ly with eigenvalue A\ normalized
as in (3.13). Then, there exists co(data) >0 such that

/ ¢§\€2H der < €22 .
RI\BR, |
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Proof. We set f =0 in (3.3), along with the choice n =1 and m = 1. This yields

/ 62H¢§dx§/ TN+ [2?)?0R do SN | gldw=e* N,
[z|>Ri1, A |z|<Ri1 A R4

3.2. Spectral estimates. Next, we turn our attention to estimates on the prob-
lem

(3.14) (Lo =NV =1,

where A € 0(Ly) is a given eigenvalue with associated normalized eigenfunction ¢y,
which we assume simple for the time being, and f € C> N L?(R?) such that

/Rdf¢,\da::0.

Here and in what follows, we use o(Ly) to denote the spectrum of £y. Motivated by
the decay rates proven in Lemma 3.1, it is natural to measure the regularity of f using
weighted spaces with inverse Gaussian weights. Setting Ay := /A, we define, for any
A€ (L) and for any g € L2 N C>(RY),

(3.15)
gl

1 2\n|xom 2 2 2 v
msupsup oo ([ OV ) expalof? 201 ) o)

Here, we recall that the lengthscale R, x ~+/n is defined in (3.4).
We next give an analyticity estimate for solutions of (3.14). Recall that y(A\) >0
is the spectral gap, y(A) :=inf{|A — u|: p € (Lo) \ {A}}.

LEMMA 3.3. Let A be an eigenvalue of Lo and f € C°° N L*(R?) be such that
fRd for =0 for every eigenfunction ¢ associated to \. Then, for every solution u of

(Lo—Nu=f inR?

and for every © > C1, we have the estimate

1

[[ulllxe < Wlllf\l\x,e.

Proof. The proof proceeds by combining spectral information with Lemma 3.1.
Step 1. In this step, we obtain the spectral solution formula for u. Because
[ féx =0 for each eigenfunction ¢, associated with the eigenvalue ], it follows that

(Lo—Nu=f

admits a unique solution satisfying the normalization condition f upy = 0 for each
eigenfunction ¢, associated with eigenvalue A € o(Ly). It follows, therefore, that if

D SR T

neo(Lo)\{A}
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then

w= Z NJEL)\%'

nea(Lo)\{A}

Step 2. By Lemma 3.1, for any m € N, we obtain that, for any © > Cf,

1
Ontm AT (m — 1)In!
_ 1
—OntmAR (m —1)!n!

1/2
([ 3+l 19l explalel - 202 ). )

1/2
x [/ A+ |x\2)"\vmu|2dx+e*2aRi,x/ A+ |:E|2)”62H|Vmu|2dz]
|z|<Rn A |z|>Rn A

1
g A 2\n AvAL 2d
@n—i—mAg%(m _ 1)!71! |:/|93|<Rn,>\( + |:C| ) | u| €z
+ e 20R0 (m — 1)!2Cf+m_1Am72/ A+ [z[H)ntme2Hy2 da
|[z|<Rp A

m—1 1/2
+ (m— 1)!20{”A26_20‘Ri,x Z / €2H()\ + |x|2)n+m—l—2‘V€f|2 dCC:|
=0 /B!

1/2
< [/ u? dm]
R4
m—1 Can2 . o ) 1/2
+) oA (m — 1)l Md(A+ | [2) 1t m—i—12H | f 2 dx}
=0 m.

1/2
< [/ u2dx] e
Rd

Taking the supremum with respect to m,n € N on both sides, we arrive at

1/2
(3.16) lulle s | [ a2as] +llfilne.

It remains to estimate the L? norm of u. Toward this end, using the formula from
step 1 and Plancherel,

_ |ful? 1 1
/Rduzdx‘ D e AT Rp D 'f“'Q‘wA)?/wad‘””

nea(Lo)\{A} neT(Lo)\{A}

since [ f¢x = 0. The proof is concluded by observing that ||f[/zz < |||f]|[r,e and
combining this with (3.16). d

4. Expansions for simple eigenvalues and their eigenfunctions. In this
section, we consider the simpler case of a simple eigenvalue of the second-order ho-
mogenized operator £y and build an expansion for the corresponding eigenvalue and
eigenfunction for the heterogeneous operator L£.. Of course, this is only a very par-
ticular case of our main results, but the computations and the notation are much less
heavy and therefore easier to understand in this setting.

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 05/10/25 to 128.122.149.92 . Redistribution subject to STAM license or copyright; see https://epubs.siam.org/terms-privacy

1784 SCOTT ARMSTRONG AND RAGHAVENDRA VENKATRAMAN

4.1. First-order expansions for simple eigenvalues.
Proof of Theorem 1.1. Define

Ae i= Ao, +epij,

where p; ; is given by

pj 1:/ (@®: V0 (x)) - Voo ; () da
Rd
we also set

xr
We 1= (bO,j +elU; + EV((bO)j + EUl)j) . X(l) (g) ,

where we recall that U ; is the unique solution to the equation
(Lo = Ao )Un,; = o5 +8% : V36,

which is orthogonal in L? to ¢ ;. In step 1 below, we insert this ansatz above in the
PDE and compute, and, to alleviate notation, we suppress the dependence on j (the
index of the eigenvalue), which is fixed.

Step 1. By a direct computation (see, for instance, [2, Lemma 6.7]), we find that

d

~V-a*Vw.=-V-aV(¢y+elU;) + V- (Z(S; — Xe5a%) Vo, (¢o +€U1)> .
k=1

Using the equation for the second-order corrector equation, we can write the second
term as

d
v (Z(Sik — Xeya%) Vs, (o +€U1))

k=1
d
=V- ZaEXQ Vs, (¢0 +eln) Z (a*x2 +s5, — xe°a”) V20, (¢o +eUy) .
k=1

The first term on the right side is O(¢?). The second term on the right side can be
rewritten in terms of the second-order flux corrector as follows:

d

D (axZF +si, — X at) V20, (¢o +eUh)
k=1

(ax2f +55 —xbfa® —ea®) V20, (¢ +eU)

M=

=ea® V(¢ +el) +

ol
Il

1

=ea® : V3 (go+el1) + V- Y sV, (¢o +eUh) .

d
k=1

Therefore, we obtain that

—V-a°Vw, = -V -aV(¢o +el;) —ea® : V3(¢o +el)

d
(4.1) +V Y (@XEEV0,, —s5EV20,,) (0 +eln)

=:R.
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.We note that

IR:]|22 < C2([V?ollL2 + el V2Utl L2) + C (VP dollL2 + el VP Ui 2)

A2
<CEN+ 0?20
0 7(Xo)
We deduce that
213/ 3 )\5/2
4.2 Rl g1 2(gay < Ay )
(4.2) IV Rell -1 (rey < || Rell2(ray < Ce +Ce 5%
Next, we compute
(4.3) (W(w)—ﬂ = (W (@) = Ao)go + (W (x) = Ao)Ur + mUn) + S,
= 62(#1U1 +#1V(¢0+€U1) x(x/e))
+e((W V(go +clr) - xM(z/e))
=: S >+S<2

The term Sél) is clearly of order O(¢?) in L?(R9); explicitly,
IS 2 may < C2|pa | (1UL ]| 12 ey + IV o + eVUL L2 (ray )

<052)\3/2( 20"y a0 )
7(Ao) “300)

Concerning S§2)7 for each z € RY, we introduce the function z € H'(T?) to be the
unique mean zero solution to

(4.4)

—V, - aVyz(z,y) = (W(2) = Ao) Voo () - x(y).
This problem is well posed since (x(") (y)) = 0. We set z.(z) := £32(x, /) and compute
that
V-a'Vz. =&V, a°V,2+6°(V, - (a°Vaz) + Vi - a®Vy2) |
(4.5) +eV, -a*Vyz(z,2/e)
=58 (@, 1/e) — e(W () = Xo)Veo(x) - x(y) -

(. T/e)

By Proposition 4.1, for any a € N¢ and z € R4,
105 2 (2, )| 1 ray < ClO* (W () = Ao) Vo () - XV () | 2y
< Clo* (W (x) — o) Veo(z))]-
It follows that
1S9 (x, 2/e) || L2 (may < C*[| Auz (@, y)|| L2(rayx Low (1a) + €2 Ve V2 (@, Y) | L2 (Ret) x Low (1)
e2\3
Y(Ao)
Combining (4.1) through (4.6), we arrive at

(4.6) <CEN+C

(Lo =X (we —22) =V - Re+ 8D + 2(W () — M) VU; - x P (2/e) + 53
=V-R.+85..
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Here,

(4.7)
IV - Rell -1 (way + 1Se | 2 (rey

. 5 1 a5 .
< 052)\3/2+052)\§+053)\5/2+W (CE3N? + C2N\3 4 C3N3 + C®X\2) =:6.(No) -

Step 2. We write R. = Y ;2 ceie; and Se = > 7, S ipe;, where {¢.;}5°,
denote the eigenfunctions of £. normalized so that they form an orthonormal basis
of L?(R?). Similarly, we write w. — z. = oo deite ;- Then,

(Es - Xs)(ws - Zs) =V-R.+ S’a

together with (4.7), yields

(48) Z |d5,i
i=1

Now, as [. Ur¢o dz =0 by choice,

oo

2()\5,75 - XE)Q < Z |Cs,i|2 + |Ss,i‘2 < 65(>\0)2 .
=1

/wgdxz/ (o + U1 + V(6o + U1 - x D (@/e))2 dar < 1+ 6. (Mo)
R4 R4

so that, by Plancherel,
oo

(4.9) > lde i <14 6:(Mo).
i=1

Step 3. In this step, we restore notating the dependence of various quantities on
k and obtain an intermediate bound. By Proposition 2.2, for all € and j € N, we have

|)\5,i - )\O,i| < ClE)\g/j .

As |[he — Aol <elpryl < 50272,0)\8/3, it follows from the triangle inequality that, for
all i # j, we have

[Aei — Xe| = |Xo0,i — Ao,j + Xo,j — Ae + Ae,i — Aoyl
= 7(Xoj) —e(Cr+ 02,2,0))\8/; .

In particular, if € < %)3/2, it follows that
2(C2,2,0+C1) A

e Ref > 1002

-2
for all i # j. It follows that
S el < d:(Xo,5)*
il X .
oy 7(Xo,5)?
From (4.9), it then follows that
0(Xo,5)
dej > — 1| < =2
|| E,J| | 7()\0)]‘)2
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Therefore,

55()\0,3')2 2
1— dc(Xo,5)? S 256()\0’j) ’

v(Xo,5)?

‘)‘e,j - >‘€|2 <

This implies the estimate desired in (1.11). Finally, to prove (1.13), we note that the
eigenfunction 1. ; associated to the eigenvalue A, ;, which is normalized as in (1.12),
satisfies

(Lo —=Ac) (e — (we —22)) = (A\e = Acj)(we — 2:) + V- Re + S, .
Then, once again, by Plancherel’s theorem we find that

5e(No ;)2
Ve ; — (we — 22))? dw < de i) + |1 = |de 7] £ =25
[ s = (e =22 Dl 1 0o S

Similarly, the H' estimate is proven by differentiating the equation for ¢ ; — (w. —z.)
and estimating similarly using Plancherel.

Step 4. In order to complete the argument, we must show that p; , =0, and so,
Ui =0. Recall that

11k :/Rd a2 . boj(2)ds, b0 (z)dx.
By the symmetry of the Hessian, this means that
f g = /Rd @) + a2, B0, b0, dr=2 /Rd a2 | 60,0000 da .
Integrating by parts twice and then reindexing, we get
=2 /]R AR, 00,50r, 00,5 dr =2 /]R R, 000
and similarly,
Pk =2 /Rd 5;2’352,%¢0,j3zi¢0,j dz.
Adding and invoking Lemma 2.1, we find that

3u1,k=0.

It follows then that U; , =0, and hence, the conclusion of the theorem is obtained. O

The rest of this section develops the machinery and eventually proves the high-
order expansion for a simple eigenvalue A, ; of £. from a simple eigenvalue Ag; of
Lo (along with associated expansions for the eigenfunctions). In the remainder of
this section, because we work with a fixed simple eigenvalue Ao ; of Lo, we omit the
dependence on the index j, henceforth denoting Ag ; by Ao.

4.2. Formal expansion and heuristic derivation of the corrector equa-
tions. In this subsection, we give some heuristic computations to motivate our as-
ymptotic expansion. Let Ag be an eigenvalue of £y with eigenfunction wug, and we look
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for an eigenpair (uc, Ac) of the heterogeneous operator £. that admits the following
ansatz:

(4.10) )\5:>\0+Zsjﬂj:Z€jﬂj7
j=1 §=0
where, for convenience, we have set g := A\g and

=33 % ie“"a;tfk(x)xn,a,k(x,j)

k=0 m=0 |a|=m n=m

oo p p—k
(4.11) :ZZZ Z ePOSUr (%) Xp—k,a,k (m,j)

p=0k=0m=0|a|=m

The parameters {u; }jen will be determined together with the functions X, o.x(z,y),
called the correctors, which are periodic in the variable y. Note that the correctors
Xn,a,k are indexed by (n, o, k), where n, k € Ng and « is a multi-index. We also denote

Xn,m,k = (Xn,a,k)\a|:m >

which is a periodic function taking values in T™. We may then write the ansatz in
the second line of (4.11) in tensor notation as

c© p p—k

(4.12) we(a) = 3030 3 VU)X (32

p=0k=0m=0

We declare straightaway that the correctors will satisfy the following properties:
(4.13) Xo0k=1 VEeN and (xpakr) = 1(p—0,a=0} -

Since Xp,a,k only appears in (4.11) if p > || and if all the indices are nonnegative, we
also adopt the convention that

(414) p < |CY‘ - XP,Oé,k = O vpaaak

and that x; o, =0 if any index is negative. Throughout, if F(x,y) is a function that
is periodic in the variable y, then we denote by (F')(x) the mean of F(z,-) and set
(4.15) F(z,y) = F(z,y) — (F)(z).

To determine the correctors xgq,q.%, the parameters {yu;}, and the macroscopic func-
tions {Ug}, we proceed (informally) by plugging the ansatz for u® into the equation
L.uf = A.u.. First, we compute the right-hand side of the equation by multiplying
(4.10) and (4.11):

co oo p p—k
Aue@) =33 Y D w0 Uk(@)xp ko <I:)

j=0p=0k=0m=0 |a|=m

T

co p r—k
D3PI 3D DD P LA IS

p=07r=0k=0m=0|a|=m

o p p—k

(416) DI IP PELLACH Y CE)

p=0k=0m=0 |a|=m
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We turn to the computation of the left side of the equation, namely, L.u.. We first
compute the gradient Vu. in coodinates:

Oz uc ()

oo p p—k

S[CEEI)9 9 b SEIE NI

p=0k=0m=0 |a|=

"

Y=<
o p p—k

=>> > > (“f“az“Um)ayj Xo— sk (2, 9) + PO UL (2) X (2, 9)

p=0k=0m=0 |a|=m

+ EpagUk(x)aijp—k,a,k(xa y))

)

Y=<
c© p p—k

:ZZZ Z P90 UL ()

p=0k=0m=0 |a|=m

X (ay7 Xp—k,oz,k(w7y) + X;D—l—k,a—ej,k(xvy) + aszp—l—k,a,k(x7y)>

Yy==

In the last line, we reindexed two of the sums in order to make the common factor
eP~192U, appear in each of the three terms. This requires changing the bounds on
the summands, and the expression we have written actually has extra terms in the
sum because we did not change the bounds. However, the extra terms correspond to
Xp,a,k With either p = —1 or a = —e;. If we adopt the convention that x, o5 := 0 if
any index is negative, then the expression above is valid. We will play the same game
in our computations below.
We next compute

(V- aEVuE)( )

co p p—k
= Z (O +e710,) D > Zep LOSU(x)
i,j=1 p=0k=0m=0|a|=

X a;j (y) (ay] prk,a,k(xv y) + prlfk,ozfej,k(xv y) + aa:j prlfk,a,k(xv y))

y=2
co p p—k
=X 0> > U
p=0k=0m=0|a|=m
d
X (Vy “aVyXp—k,ak + Vy - aVeXp_1—kak + Za (ainpflfk,afej}k))
ij=1
oo p p—k
555 S S SERTANY
p= 0 k=0m= Ola‘—'rnl,j 1
x (ayj Xp—k,a.k T Xp—1—k,a—e;,k+0z; Xp—l—k,a,k)
oo p p—k
+> DD D U
p=0 k=0 m=0 |a|=m
d
X (Vm ~aVyXp—k,ak + V- aVaXp—1—kak + Zawi (ainp—l—k,a—ej,k))
i,j=1 t=2%
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Changing the bounds on the sums in order to factor out the common term e?~29% Uy,
we can write this expression as

(V-a.Vu.)(x)

co p p—k

IS P

p=0k=0m=0|a|=m

d
X (Vy “aVyXp—kak +Vy aVeXp-1-kak + E Oy, (Aij Xp—1-k,a—e; k)
1,5=1
d
+ § a;; (ayj Xp—1—k,a—e;,k + Xp—2—k,o¢—ej—e,3,k + a:cj Xp—Q—k,a—ei,,k>
ij=1

d
+Vi-aVyXp_1—kak + Vz-aVeXp—2-k,ak + Zazi (ainp2k,a6j,k:))

ij=1

x

Y=<

In order to simplify this expression, we introduce the vector field f, o x(x,y) with ith
entry given by

d

(fq,a,k>i = (aVqu,a,k)Z- + (anXq—l,a,k)i + Zainq—l,a—ej,k-
j=1

Substituting this expression into the previous display, we get

(V-a.Vue)(x)

oo p p—k

*ZZZ Z{_:p 28&Uk<v fp kak+v fplkak+zfp1ka e7,)

p=0k=0m=0|a|=

x

Y=z

Combining (4.16) with the previous display and also remembering the Wu, term, we
obtain

(4.17)

(~V-aV+W —A\)u
~ p p—k d

= Z Z Z Z P29, (—Vy A kak = Ve - fpo1 kak — pr—k,a—ei,k

p=0k=0m=0 |a|= i=1

+WXp—2—k7a,k: Z Hp—2—rXr— kak)

—
r=|a| c

Our ansatz would obviously be very good if the term inside parentheses on the right
side of (4.17) was zero (or at least very small), for every (p,a, k). But, before aiming
for such a lofty goal, we first insist that it be macroscopic, that is, independent of the
variable y. This is the same as demanding that it be equal to its mean over y € T<.
In view of (4.13), this is
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d
- vy . fp—k,a,k - vx : fp—l—k,a,k - pr—l—k,a—ei,k + WXp—2—k,o¢,k

=1
p—2
- E Mp—2—rXr—k,a,k

r=|a|

d
:7vx <p 1— kak Z p—1—k,a—e;,k >+W(x)1{p:k+2,a:0}
=1

p—2

- Z Hp—2—r1{r=f a=0} -

r=|a|
We can rewrite this, using the notation (4.15) and substituting ¢ =p — k, as

d
—Vy-aVyXgak=Vy-aVaeXg-1,ak + Z Oz, (ainqfl,afej,k)
ij=1
d
+ V- fq—l,a,k + qu—l,a—ei,k - W(Xq—2,oc,k - 1{q=2,\a|=0})
1=1
q+k—2
(4.18) + Z Mgtk—2—r (erk,a,k - 1{r:k,|a\:0}) .

r=|a|

This is the sequence of corrector equations we have been seeking. Observe that this
equation involves the constants {u; : k € {0,...,¢ + k —m — 2}, which are a priori
unknown. This is because these corrector equations have to be understood as coupled
to the macroscopic equations, which we introduce next. Define the homogenized
coefficients by

g0,k = (fgak) -

We note that a, , 1 is R%-valued and depends on the macroscopic variable z. Assuming
for the moment that the corrector equation (4.18) is satisfied, we insert it back into
(4.17) to obtain

(4.19)
—V-a.V+W—X\)u,
( )

oo p p—k d
_2 _ _
= E E § E eP agUk (_vx ‘Ap_1—k,a,k § Ap_1—k,a—e;,k

p=0k=0m=0 |a|]=m =1

p—2
+ W1p=k+2,\a|=0 - Z ,Ufp—2—r1r=k-,|oz=0>

c© p p—k
=—-V, ZZZ Z&‘paerl ,mka U;g—i-ZEPWU ZZEPMP LUk
p=0k=0m=0 |a|= p=0 k=0
%) p p—k
Seo(-v XX S s U | + WU - Zup 0.
p=0 k=0m=0 |a|=
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This is the macroscopic equation, or, to be more precise, it encodes a sequence of
macroscopic equations—one for every p € Ny:

p p—k

(4.20) AT D m kak 05U +WU,;*ZM,, 1 Up .

k=0m=0 |a|=m

If we can find {ur} and {Uy} solving the system (4.20), with correctors xg,q,x solving
(4.18), then we will be able to show that the function w. is close to a true eigenfunction
of the operator L., with eigenvalue close to ..

Before we consider the hierarchy of equations in (4.20) in more detail, we make
some remarks about the first few homogenized coefficients. First, for every k € N and
j€{1,...,d}, the corrector 1, r is the usual first-order corrector in homogenization
theory. In particular, it is independent of x and solves the equation

-V a(ej + le,ej,k) =0.

We deduce that, for each k € N, the (4,7)th entry of the usual homogenized matrix
a in elliptic homogenization theory is equal to the ¢th component of the coefficient
ay ¢, x defined above (which, in particular, does not depend on x):

a;; = (ﬁl,e,-,k)i-

Recalling also that pg = Ag, we may therefore write (4.20) as

(4.21)
p—1 p—k

-V -avy, —|—(W /\0U Vi ZZ ZapH ;mka Uy +Z/J,p LU .
k=0m=0 |a|=

This equation gives us hope that we can solve for U,, provided that we have already
determined Up,...,Up—1 and p1,..., 1y as well as @y o 1 for every (g, a, k) with 2 <
g+k<p+1and0<|a <qg—1. We will require that U be orthogonal to Uy in
L?(RY) for every k > 1:

(4.22) Uk(x)Up(z)de =0 Vk>1.
Rd

We can determine the values of {uy} requiring that (4.21) be solvable; that is,
the right side of (4.21) must be orthogonal to Uy. This yields a formula for p,:

p—1 p—k

:up:/ Mon—ZMp k/ UpUp = ZZ Z/ Apt1—k,a,k Oy Uk - Vi Up
R k=0 m=0 |a|—
This gives a formula for y, in terms of Uy, ...,U,—1 and the tensors a, o, with indices

(¢, o, k) satisfying 2<g+k<p+1land 0<|a|<qg-1.

4.3. Rigorous construction with estimates. In this subsection, we use the
foregoing formal argument to provide a rigorous inductive proof to show that the
higher-order correctors {X,,, )} and effective tensors {@, ,, x} are well defined for
q,m,k € Ny. This amounts to showing that we can solve the corrector equations in
some appropriate order so that all the terms on the right side have been already
previously defined.
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In this section, we employ tensor notation instead of the multi-index notation
from the previous section. All tensors are actually indexed by these multi-indices,
and the precise meaning of the (implicit) tensor contractions (sometimes denoted by
“”) can be inferred from the computations in the previous section. However, these
turn out to be not very important for the computations that follows, and so, for
convenience, we use the more compact tensor notation.

As in the rest of this section, we assume that )y is a simple eigenvalue of the
homogenized operator Ly := —V -aV + W and Uy is a corresponding eigenfunction
such that [|Upl|2(ray = 1.

Base case. We initialize the construction by making the following definitions for
the first few correctors and effective parameters:

e We set g := \o.
We take x5 =1, as well as £ 0., :=0 and @04 :=0, for every k € Ny.
Xq,0,k =0, as well as f; o, :=0 and @,,0,% :=0, for every ¢,k €N, k € Ny.
Xg,mk =0, as well as f; p, x := 0 and &g, 1 := 0, for every ¢,m,k € Ng with
m>q.
e We define X, for each k € Ny to be the usual first-order corrector in
classical periodic homogenization, that is, the solution of

(4.23) { -V,-aVyx; 1, =V, (a®1l) in T,

<X1,1,k> =0.
We also define

fl,l,k = a(I + val,l,k) and a1k = <f1717k>.

Observe that @ ; j corresponds to the usual homogenized matrix in classical
homogenization a. Note that X1,1.k fi 1,5, and @; 1,5 depend on neither the
index k nor the slow variable x.

e We define x5, :=0, as well as f2 1, :=0 and @z 1 5 := 0, for every k € N.

o We define X2;2,k for each k € Ny to be the solution of

(4.24)
—Vy- avaQ,g,k =V, (a® X1,1,k) +a®l+ aVyXLl,k —a;1, in Td,
<X2,2,k> =0.

We also define
foor:=aVyXaoor +a®Xxy 1, and azay:=(fa2k).

Note that X2,2,k is the second-order corrector and as o is the usual third-
order homogenized matrix in classical homogenization. In particular, X, 5 x,
5.0 1, and @z 2 1 depend on neither the index k nor the slow variable x, and
the symmetric part of @y 2 j vanishes.
Induction step. Let us suppose that, for some integer K € N, K > 2, we have defined
Xg,m, k> the associated fluxes f; m k, and homogenized coefficients a, ., for indices

(4.25) (g.m,k) € J(K):={(gm,k) :meNy,0<k<K,0<q<K+2—k},

as well as py and Uy, for every k € {0,..., K —2}. Note that, for K =2, we defined
these objects in the base case above.
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We then make the following definitions.

e We define pux_1 by

K-2K-k

(4.26) pae1i= 3 S [ @ VU VU,
k=0 m=1"R?
We define the macroscopic function Ux_1 to be the unique solution of
(4.27)
K-2 K-2K—k
(Lo—po)Uk-1= Y px1-kUs +V- > > Bx_pmn:V"Up inR?,
k=0 k=0 m=1

which is orthogonal to Uy in L?(R?). Note that this indeed uniquely deter-
mines Uk _; since px 1 was chosen above so that the right side of (4.27) is
orthogonal to the eigenspace of Ly corresponding to pi.

The functions Xy ,, x, as well as f2 ,,  and @z ., , have already been defined
in the base case above for every k and, in particular, for k= K + 1. The only
nonzero function among these is X 5 ,, which was defined in (4.24).

We define x, ,, s, for each (¢,m,k) € J(K+1)\J(K), ¢ # 2, to be the solution
of

(4.28)
- vy ’ avqu,m,k = vy : (a® qul,mfl,k) + vy ! av$Xq71,m,k
+ fq—l,m—l,k + vm . fq—l,m,k
q—2+k

o o . d
- W(x)Xq—2,m,k + Z Hg—24+k—rXr—km,k 1 T )
r=m-+k

<Xq,m,k:> =0.

Note that ¢ # 2 implies ¢ > 3, and thus, k£ < K. Therefore, all the terms on
the right side have been defined already by the induction hypothesis because
all the index triples belong to J(K') and the highest index i of p; that appears
in (4.28) is i = K — 1, which we have above defined in (4.26). Moreover, the
right side of the equation has zero mean, and so, the equation is uniquely
solvable. We then define

(429) fquJf = avIXq—l,m,k +a® Xq—l,m—l,k: + avaq,me
and then
(4.30) agm k() = (fgm k().

We have therefore defined X, ,, 1, the associated fluxes f; , k, and homogenized co-

efficients @y, for every (¢,m,k) € J(K + 1). By induction, this concludes the
construction of the correctors, homogenized tensors.

4.4. Regularity estimates. In this section, we study the regularity, with re-
spect to the slow variable x, of the objects defined above in section 4.3. This amounts

to going over the entire recursive construction, step by step, and estimating all x

derivatives of each newly defined object. This is a rather laborious and tedious but
straightforward process.
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The regularity of the effective homogenized tensors @, ., will follow from the
regularity of the fluxes f; ,, r, and the latter will be obtained rather easily from the
product rule and the regularity in z of the correctors X, ,, . The latter will be
obtained by repeatedly differentiating the equation for the correctors and using the
regularity of all objects previously defined. Fortunately, every term in (4.28), with
one exception, has only one factor with x dependence. The exception is the term
W ()X —2,m k> Which is simple to differentiate and estimate. Therefore, the compu-
tation is not overly involved.

We begin with a preliminary lemma that we repeatedly invoke in our bounds for
Xq,m.k and hence the corrections ag m k, px, and Uy.

LEMMA 4.1. Let ®:R% x T? =R be the unique periodic (in y) solution to

(4.31) -V,-avV, o=V, - F+G, (®(x,0)) =0,
where F,G € H},, (T, C>(R%)) with (G(x,-)) =0 for every x. Then, for every x € RY,
(4.32) IV 05 @(x, )| L2 (ray < C (105 F (2, -) || 22 (xay + 105 G (. )| L2 (pey )

for a universal constant C(6,d) >0 and for any multi-inder o € N{.

Proof. We set v:=02®, for any a € Nd. Then, it is clear that (v(z,-)) =0 by the
choice of normalization in ®. Moreover, v satisfies

(4.33) —V,-aVu=V, 0°F + °G.

Multiplying the equation by v, integrating by parts on T¢, and using the ellipticity of
a and Cauchy—Schwarz and Poincaré inequalities, we obtain the desired estimate. 0O

We are now ready to prove regularity estimates for each object constructed in
section 4.3.

PROPOSITION 4.2. There exists C(d,0) < oo such that, for every q,m,k € N with
m<gq,

\E
lpr] < Wexp(C’k“) )

3k

Az k+1
(434) |||UkH A, Ck S ’Y()\)k eXp(C ) ’
2\~ 3 (a1 ot _ exp(CY ™)
(q+ l)' fgﬂgd()‘+ ‘$| ) HV:EXq,m,k(xa )”Hl('ﬁ‘d) > 'Y(/\)(q727m)+ )

where we recall that v(\) is the spectral gap of the simple eigenvalue \.

Proof. We argue by induction, following the same procedure as in the construction
of the objects.

Step 1. We begin by noticing that each of the objects introduced in the “base
case” of the construction; in particular, for every (q,m,k) € J(2) and (¢,m,k) €
{(2,2,k) : k € N}, we have that estimates (4.34) are satisfied.

Turning to the induction step, we suppose that A, B € [1,00) and K € N are such
that, for every (¢,m, k) € J(K),
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3k

A2
x| < SOy exp(Ak+1) ,

3k

A2
(4.35) |||UkH A,BF < W eXp(Ak'H) 7
2y =40 g1 . exp(AT )
(q+ l)l wsélﬂgd()\+ “T| ) Hszq,m,k(‘xa )”Hl(']I‘d) < 'Y(/\)(Q_Q_m)+ )

with the last estimate holding for every [ € Ny. Recall that J(K) is defined in (4.25).
We will show that, if A and B are chosen sufficiently large, depending only on (d, ),
then the same estimates are valid for (q,m, k) € J(K + 1).

Step 2. We record estimates for f ,, . The claim is that, for every (¢,m,k) €
J(K), and for every [ € Ny,

(4.36)

. 2y~ 1(g-1) |l . I
T S O ) B V) 2oy € s

exp (Aquﬂc) .
Compute, using the induction hypothesis, for every (¢, m, k) € J(K),

||Vécf 7m7k(x)”L2(’H‘d)
! 1
< ‘lavm—i_qu—l,m,k”L?(’]l‘d) +a® VeXg—1.m—1.k

|2 (Ta) + Havyvixq,m,knm(ﬂrd)

<(g+! (A + [2]2) B (4712 xp (Aa—m+h=1)

1
7()\)('1*3*7”)4—

+(g+1-1) (A + [a[?) 201D oxp (AT HR)

SN @ 2=

1 2\ (g1 —m+k
W(A‘FW )2 )GXP(Aq )

1 L(g— —m
STy (A )2 exp(417E)

+(g+1)!

<C(g+1)!

This yields (4.36); moreover, by the definition in (4.30), the homogenized tensors then
satisfy

(4.37) Ad=mERY

‘ 2)=3la-D|ylg v
(Q+Z)!:élu§d()\+‘m| ) IVmaq,m,k(x)|gOﬂ)\)(q_g_mH exp/

Step 3. The estimate for px_1. By our induction hypothesis, we have

K-2 K—2
Z /~LK7171</ UrlUp| < Z | —1- x| Ukll L2 ray [|Uo || L2 (e
k=1 Rd k=1
K-2 3 3k
A E=1I=R)+ K—1-k k
< SO )E—T=k—T+k exp(A + A%)
k=1
AS(K-1) Ko
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We recall, by the energy bound, that ||VUpl|2(ra) < VX and next estimate

K-2K—-k

Z Z/ ax_kmk: VUL VU
k=0 m=17R?
K-2K—k 1
S HVUO||L2(]R2) Z Z </ |aKk,m7k|2|vak2>
k=0 m=1 R4
K-2K-k K—m 1/2
exp(A ) B
k=0 m=1 v Rd
K—2K—k Km
kA exp(4 )
<OVAY Y (BR)ERmps (K—k)!Qm!W(A)(K_k_m_QH|||U;€H|,\’Bk
k=0 m=1
K-—2K—k 1
14+2(K-2) A3 Am
<ONT2 ;O Z_;(K k)AL NG =T
><exp(AK*m+Ak+k(ka+m)logB+mlogA2)
CAsE=D 3 K—1 K—2 2
_WK (K1) exp(A T4+ AT K logB+KlogA2).

Using the triangle inequality and (4.26) and choosing B sufficiently large depending
on A, we have that

O3 (K1) X
1| < WQXP(A )-
Step 4. We estimate |||V - (@x—k,m.k : V"Ug)|||r,0 for each © > 0. We will show
that, for each m > 2,

IV - (@K —kmk: VULl co
1 Cm —k Am
(4.38) S CE==n exp(AXT™)|[|Uk|[1x,0 (CO)E AT (K — k 4+ m)!.

We have that

+1
l+1
Vl—‘rl(ﬁK—k,m,k} . VmUk) — Z ( +

)VJaK_k,mJC : Vl+m+1_]Uk.
J=0

We estimate the ||| -]||x,e norm of each term on the right side; by (4.37) in step 2, we
have

1/2
(/d(A + |x|2)n|vj5K—k,m,k|2|Vl+m+1*jUk|26Xp((oz|x|2 —ca\)4) d;z:>
R

AK—m)

= SO E—k=m=2)3 exp(

1/2
~ (/ (/\_|_ |x|2)n+K—k—j‘VZ+m+l—jUk’2eXp((a|x|2 —Cz/\)+) dx)
Rd

1
S SO ) E—k=—m=2) exp(

||| U] |x,0©"HEHHmAL=k=2] A\LEFMH1=T (4 )0 i) (I4m4-1—7)!.

AKfm)
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Substituting this estimate into the identity above and using the triangle inequality,
we obtain

1/2
</ A+ 12?)" |V @ty - VmU;€)|2 exp((alz|® — caN)1) da:)
R

+1

1/2
<Z(l+l)</ (A+eP) lvjaK_k,m,kf|vl+m“jUkIQexp<<w|2—CW+>d$)

1
S A E—k=m=2) exp(

AB=mY ||| n 0 (CO)YPHEF A=k ALEmA T (je ),

Taking the supremum over n and [ yields (4.38).
Step 5. The estimate for Ux_1. We apply Lemma 3.3 to (4.27) for Ux_1 and use
the triangle inequality to get

(4.39)
Uk -1lllx.ce
K—2K—k
<7 <Z|MK okl MTlve + D0 D IV @k ki V™ Uk)|||Ace>-
k=0 m=1
Recall, in the induction step, that we must estimate Ux_1 in the ||| - |||n,co norm

with the choice C' = B,0 = BX~2 50 that CO = BX~1. We estimate the second term
on the right side by

K—-2K-—k
S IV @k —kmk s VUl xcne
k=0 m=1

- 1

2K—k
— ,V(A)(K—k—m—2)+

IA

exp(AST)[U]]]x, 5+ (CB®) K FAS (K — k + m)!

~
[}

=
N

1
RTVCE Sl

>\2(K 2) 2
W(CBK )eXp(AKil‘FAKil)

exp <2AK1 + (K +2)1log(K +2) + £ log B) .

CBMYE=F A% exp(AK— 4+ AMT) (K — k+1)!

IA
i

=

K+1)!
F(K-2)
[ —
— ()\)K—Q

= | >

In the above, we tacitly used the inequality that ||| - |||y gx-1 < ||| - [[|x,p+ for any
k < K — 1. Once more, choosing B suitably large in terms of A, this completes the
induction step for estimating |||[Ux_1]||x px-1 since, from (4.39) using the triangle
inequality, we get

AS(K-2) X
H‘UK71|||/\,BK*1 < WQXP(A )
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Step 6. The estimates for x, ,,,  for (¢,m, k) € J(K+1). By Lemma 4.1, we have

Hvyvlazxq,m,lc<x")||L2(']I‘d)
< ||a ® vich—l,m—l,k(xv ')||L2(Td) + ||av§c+1Xq—l,m,k(I7 ')HL2(']I‘d)
+ ||V§ch—1,m—1,k(5177 ')HL?(W) + vacﬂfq—l,m,k(m» ')HL2(’]I‘d)
q—2+k

VLW X gm2m) (@ ) 2wy + D g2tk I VEXr— e (%) | L2 (7 -
r=m+k

Using the induction hypothesis and (4.36), we can bound the terms on the first two
lines by
(At faf?) 3D
y(\)a=m=2)+
The first term on the third line is bounded by

van(W&qflm,k)(xv ')||L2(1rd)
l
< Ol Z|VQW(JU) | ’|vi77]§(q—2,m,k(x7 ) HL2(Td)
j=0
1
<O (1 + 2P FRD (A [af?)Rla2 71D
j=0
L Ot faie
- ,y()\)(quf4)+
To prepare for the estimate of the second term on the third line, we first observe that,
for every re {m+k,...,q+k— 2},

exp (Aq_m+k) )

SOV a=m=4)5 exp (A7)

exp (Aq_m+k) .

|tq—24 k=l Ve — i () | L2 (7
_ A3 (a—2+k—7) 1
— fy()\)q73+k77’ ,y()\)(rfkfmf2)+
A+ [af?) 3o+ (4 4 [y ek

eXp(Aq-Hc—r—l +Ar—m)()\+ |x|2)%(r_k_l)

qg—m—1 q—m+k—2
< SOy exp(A + A )
_ (/\ + |1‘|2)%(Q7Z72) qg—m—1 q—m+k—2
= )i exp(A + A )
and then sum this over r € {m+k,..., g+ k — 2} to get
q—2+k
> tg—2ah—rlIVEX ko mk () L2 (rey
r=m-+k
(/\ + |$|2)%(q—l—2) qg—m—1 qg—m+k—2
<(g—m-—2) NMEE=D exp(A +A )
1 2\ 3 (g—1-2 —m+k
< oy O+ )30 D exp(ar ),

Combining the above displays yields

A+ PR
||vyV{vXq,m,k(‘rv ')HL2(11"1) < WGXP(A(J +k> .

This completes the induction step and the proof of the proposition. 0
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4.5. Higher-order expansions for simple eigenvalues. Given the explicit
construction of higher-order correctors {x, , 1 }, along with their homogenized tensors
agm,k, the sequence {p}x, and smooth functions {Uy}x, we are now ready to prove
Theorem 1.3 on the higher-order expansion of a simple eigenvalue.

Proof of Theorem 1.3. The proof of this theorem proceeds similarly to that of
Theorem 1.1, and we follow similar steps—naturally, the associated computations are
more involved.

We let P € N be an integer that will be fixed at the end of the proof.

Step 1. We set

Xei=Xo+eu+ - +elup

and
p p—k

P
we(z) = ZZ Z VU(%) : Xp— .k (:c, g) .

p=0 k=0 m=0

Then, the derivation leading up to (4.19) shows that

—V-a*Vuw, + (W(z) — A)we

P p—1 p+1—Fk
= er ((Eo—/\O)Up— > (V CY ok vakwpkUk)) +V - R.A4S.,

p=0 k=1 m=1

where, by Proposition 4.2, the functions R, and S. satisfy

)\3P/2
(440) ||Rs||L2(Rd) + ”SE”L?(Rd) < C€P% eXp(APJrl) .
7(Xo)
3/2
Step 2. We set d(g, \g) := %, which, by (1.10), is smaller than 1. To complete

the argument, it remains to minimize the function f(P) := 67 exp(AF*1) over P €
(1,00). Toward this goal, it is easily seen that f(P) — oo as P — oo and f(1) =
dexp(A%) = O(5). At an interior critical point, we must have f’(P)=0 so that

0= J;/((ﬁ)) =logd+ AF*11og A

so that the optimal choice P, namely,
1 [logd|

Py~ — )
log A ©8 log A

and correspondingly,

f(P,) =6F exp(APT1) = exp(Plogé + AFT1)
:exp(10g6 0g|10g5\ 10g6|>
log A log A log A
=exp(—|log d|log|log 4 ] + |log 4 8]) .

3/2
Tt follows that f(P.) < p(d(e, o)) = p(&) , where p(t) :=telogllog?l Tngserting this

7(Xo)
into (4.40), we obtain that

N2
||R€||L2(]Rd) + ||SgHL2(]Rd) < 7<>\0)p<7(/\00)) )

The proof is now completed exactly as in step 3 of Theorem 1.1. 0
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5. Expansions for highmultiplicity eigenvalues and their eigenfunctions.

5.1. First-order expansions for multiple eigenvalues. In this section, we
consider expansions for eigenvalues that are of high multiplicity. To be precise, let
Ao0,j = Ao, j+1 = **- = Ao j+N—1 be an eigenvalue of Ly of multiplicity /N > 1, and let
{ho.j+r 22t denote the associated eigenfunctions of Lo. Here, as usual, we have used
the enumeration of the eigenvalues of Ly in nondecreasing order, repeated according
to multiplicity. We seek to expand the eigenvalues {A57j+r}f:_(]1 of the operator L.
and their associated eigenfunctions. Toward this goal, we begin with a preliminary
lemma that we will crucially use.

Next, we define the matrix D via

(5.1)

d

Dy 122 / a3,¢,,0 " VP0,j1r0z,P0,j45dx + E / a3,0,005 G0,j+s - Voo, j+rdr.
5 R Rd
=1

|| =2
The next lemma collects properties of D that will be crucially used in the sequel.

LEMMA 5.1. The matriz D satisfies

(5.2) Dys = Z <X1,ek,OX1,ei,O> /Rd (W(x) - ﬂO)ark¢0,j+r($)azi¢0,j+s (7)dz.

d
i,k=1
In particular, D is symmetric.

Proof. Repeating the proof of Lemma 2.1—i.e., utilizing that when || =2, then
a3 0 is constant—and integrating by parts three times yields that the second group
of terms in D,.; evaluate to zero. It therefore remains to compute the first term. Using
the definition of the higher-order homogenized tensors, we have

53761',0 = <avyx3,e7¢,0> )

where the higher-order corrector x; ., o is the unique mean-zero (in y) solution to

Vy-aVxs,, 0= (W(x)— MO)Xl,ei,O :

Testing this equation (in the fast variable) with x; ., o and using the PDE satisfied
by the first-order corrector x; ., o yields

—(a3,e,,0)k = —€k - /W avaS,ei,O dy= /Td VXLek,o 'aVX:;,e,:,o dy

=~V (&) = 0) [ Xser0X1.c0 -

This completes the proof. 0
We are now ready to prove Theorem 1.4.

Proof of Theorem 1.4. We have shown in Lemma 5.1 that D is symmetric. Now,
we let 7 € {0,...,N — 1}, and let po jy, denote the rth eigenvalue of the matrix I
along with the eigenvector e” (by symmetry and our assumption, we can arrange the
K2 j+r in increasing order). We also define
N-1

Uojir = E €500,j+s -

s=0
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Here, € := (e],...,el) denotes the eigenvector of the matrix I associated to the
eigenvalue ps ;4. Then, clearly, LoUp jtr = Ao, ;Up,j+r and

1 r=s,
(5:3) /Rd Vogrlogee { 0 r#s.

As in the proof of Theorem 1.1, we let
Xejir =0 + 2z jir s
and we set
We jir = Ug jr + Uz jir +V(Uo jir + Uz j1v) - X(l)(g) ,

where Us ;1 is the unique solution to

2
(Lo = 10)Us jyr = 2 j4rUojir +Var Y > 830005 U jir,

m=1 \a|=m

which is orthogonal to each of {¢g j1s} N

We observe that, by choice of us ., such a solution exists for each r =0, ..., N—1.
By linearity, this solution is also orthogonal to {Ug j1,:7=0,...,N —1}.

Finally, as in the proof of Theorem 1.1, for fixed x € R%, we let Zjgr(T,-) T¢ — R?
denote the unique H'(T%) mean-zero solution to the PDE

V- aVzjn(e,y) = (W(z) = 20,5) VUosr - XM (1)

We then set z. jir(7) =324, (z,7/e). B
Step 2. In this step, we compute (L. — A:)we. Proceeding as in the proof of
Theorem 1.1, we find that

(La - Xs)(wa - Ze,j+7") = (‘60 - AO)UO,j—&-r
+ 52 ((L:O — )\O)UQ + (W(fE) — )\O)UQ — /.LQUO

2
Ve Y > as,mo@;:Uo)

m=1 |a|:m

d
+V- (Z Szk - Xé;fa€> vaxk (UO + €2U2)

k=1

2
+ &2V, - Z Z a3 o005 Uo

m=1|a|=m
+ 8 (W(x) = X0)VUz - XD (L) + (W () — Xo)2e v
— 3V (Uo +&2Us) - XV (£) — e pals .

By definition, the first two lines of the preceding display are zero. By the computa-
tions in Theorem 1.1 (specifically, those involving the second-order corrector equation
and leading up to (4.1)) and using the symmetry property of a® from Lemma 2.1,
we obtain that the third line rewrites in divergence form as V- R., with R, satisfying
the bound
5/2

A
||V . REHH—I(Rd) < ||R€||L2(Rd) < 052)\3/2 + 0537(0)\0) .
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Writing the term in the fourth line, which is in divergence form, as V - R., we
easily have the estimate

IV - Rel -1 (ray < C* Ao -

Finally, combining the fifth and sixth lines and denoting them by S, we estimate
similarly to (4.6)

2 2
S. CENE 4O
H HLQ(]Rd) € 0J+ (/\07])
Therefore, we can write
(5.4) (Le — Xe,j-&-r)(ws,jﬁ‘ — Ze jtr) =V 'Ee,j—&-r + gs,j+r7
with
2 3
3
||V RE j+r||H 1(re) t ”Se J+r||L2(]Rd CEQ)‘O@ + C (/\ )
0,7

In order to proceed as in step 2 of the proof of Theorem 1.1, we make some preliminary
observations about a convenient basis in which to solve (5.4). We note that, for any
r,s €4{0,...,N — 1}, in light of (5.3),

/ We, j+rWe, j+s dx
Rd
= /d (Uojtr +Us jir +V(Up jar +Un j1r) - XM (2))
R
X (Uo,j+5 + €U21j+s + EV(UOJ'+3 + 5U2J‘+s) . X(l)(ﬁ)) dx

:/ Uo,j+rUo,j+s d$+€(/ Uz,j+on,j+s+/ Uo,j+rU2,j+s>
R4 R4 Rd
+€(/dU0,j+rVU0,j+s' (L) + Uo s VUojitr - “(i)) +02(Xo,5);
R

with
&2 3

()‘OJ)

Now, by construction, [p, Us j4rUojts = 0 and [, U jirUszjrs = 0, and, for the
other O(g) term in the computation above, we observe that

16:(No )| < CAG% + o

/Rd Uo,j+rVUojts X (Z) + Unjss VUojir - X (2)
<e|Uo,j++VUo jit sl 1 (e HX(I) |71 (re) < 0 (Aoj) -

In light of (5.3), it then follows that the set {w. j ,}2 " is approximately orthogonal
in L2(R9):

(55) /d We, j4rWe, j4+s = 67‘3 + (55<)\0,j)2 .
R
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In order to complete the argument, we let {wE,jJrr}iV:Bl denote the eigenvalues of L.

associated with A j,...,A; j4+n—1, respectively, that are normalized according to the
conditions

/ ws,j+(‘z¢0,j+r dx = 62 .
R4

For each r,s €{0,...,N — 1}, we set

¢E,j+s dx

de jtr,j+s 12/ (We,jr — Zejopr) o
Rd l%e -+l L2 ey

Then, by the triangle inequality and (5.5), we find that

dj J+s
|df-:,j+r,j+s - §rs| < ’/ (ws,j-‘rr - Zs,j+7’) <€J+ - (ws,j—i-s - Zs,j+s)
R¢ I%e, i+l L2 (may
"/JE, +s
< H W — (We js — 2e jtr) +6e(Xo) -
€,j+sllL2(R%) L2(Rd)
From (5.4), we find that
N-1 _
> s = Aegir)?d2 11y j1s <0-(N0y)7
s=0
Combining the last two displays yields
- Ve itr
[Acjtr = Acjtr| <Oc(Xoj) | 1+ HW — (We,jr — Ze,j+r) :
57.7+T||L2(Rd) L2(Rd)

To complete the argument, we must estimate the convergence rates for the eigenfunc-
tions, and for this, let us note that

g 1/15,’ r
(Le—Aepjir) (H = (We jr — Ze,jtr)
1%e,j+rll L2 (RaY

we,j—&-r

I 4V Re jir + Sejtr
% j+rll 2 ®ay

= (/\e,j+r - Xe,j+r)

so that

w€7j+7"

H ] - < ‘)‘E,j-‘rT - Xe,j-&-r‘ + 55()\0,j)
l%e j+rll 2 (ReY

(We j4r — Ze,jtr) ‘
H(R?)

< 0:(Xo,j) (1 + stﬁr = (Wejtr — Ze jtr) ) +0:(Xo,j)-
”we,j-&-THLQ(Rd) L2(R4)
The proof is finished by buckling and using the triangle inequality. ]

5.2. Rigorous construction and estimates. As is well known from pertur-
bation theory, if Ao ; is an eigenvalue of £y with multiplicity N > 1, then we must
construct all N branches of eigenpairs splitting off of )¢ ; together since the branches
interact with each other. As in the simple case, our construction of the higher-order
branches will be inductive.
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Base case.

e For each s:={0,...,N — 1}, we set g := Ao; and let {¢g j1r} " denote
the N orthonormal eigenfunctions of £, associated to the eigenvalue Ag j;,
which is the jth eigenvalue of Ly in an enumeration of the eigenvalues in
nondecreasing order. In order to ease notation, we will largely suppress the
dependence on the index j in the remainder of this section.

e For all N branches, we initialize our construction by setting x o, = 1, and
we define £y o 5 :=0 and @ g := 0 for every k € Np.

® Xg0r:=0,as well as f; 0, :=0, and @y, := 0, for every ¢ € N, k € N.

® Xgmr =0, as well as fy 1 =0 and @y, 1 := 0 for every ¢,m,k € Ny with
m>q.

e We define X, for each k € Ny to be the usual first-order corrector in
classical periodic homogenization, that is, the unique solution of (4.23). Also,
we define

fl,l,k = a(I + val,l,k) and a1k i= <f1’11k> .

As usual, aj;; = a is the usual homogenized matrix of classical periodic
homogenization. Note that X ;j,fi,1, and @; ;1 depend on neither the
index k nor the slow variable x.

e We define x5, :=0, as well as f2 1, :=0 and @z 1 5 := 0, for every k € N.

o We define X2,/2,k for each k € Ny to be the unique mean-zero solution of (4.24)
and define fa 5 1, :=aVyXo 0, +a®@ Xy 1, and Az 21 1= (fa2%) -

e We define that

N-1
(5.6) Uo,j+r = Z €500,j+s

s=0
where {eg}fs;lo are the eigenfunctions of the symmetric matrix D, which
form an orthonormal basis of RY. We will denote the N eigenvalues of D by

{p2,jor }20H (we recall that Ao j = -+ = Ao j+n—1 and j denotes the lowest
index such that )Xo ; is an eigenvalue of Ly).

o We set p1 j4+» =0 and also set Uy j1, =0 for every r € {0,...,N —1}.
Induction step. Let us suppose that, for some integer K € N, K > 2, we have defined
Xg,m i, j+s+ the associated fluxes fy m i, j+s, and the homogenized coefficients ag m,k,j+s
for indices

(5.7)
(g;m,k)e J(K):={(¢,m,k) :meNy,0<k<K,0<¢g<K+2-k0<s<N-1}.

The higher-order correctors depend on the specific branch s, and this is the reason
for the last index in each of these objects, next to the three familiar ones from the
simple eigenvalue case.

Additionally, in the induction hypothesis, we assume that py_ ;s have been de-
fined for every k € {0,..., K —2},s€{0,..., N —1} along with macroscopic functions
Uy, j+s, and these functions satisfy the normalization conditions

/ Uk, j+5P0,j+r AT = Otk 5,7 ke{l,...,K —4},r,s€{0,...,N —1}.
Rd
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In the induction step, we give ourselves the task of determining the N branches
of macroscopic correctors at order {Ug 14, 20" and {ux 1410105, as well as
the normalization conditions ax_3 s+ for the function {UK_&S}S:_Ol. We point out
that, as we will explain below, the normalization conditions for a given stage arise
two stages further in the inductive construction as part of a solvability criterion.

Precisely, by the formal derivation of the homogenized equations, we recall that
Uk _1,j4+r must satisfy

(Lo = Xo)Uk—1,j+4r
K—2K—1—k

(58) = V:r . Z Z Z ag_ k,a k:jJr'ra Uk J+r + Z KK —-1—k ]JrrUk‘ j+r -

k=0 m=0 |a|=

Solvability for this PDE requires that the right-hand side of (5.8) be orthogonal to
each of {¢g 11} o' Imposing this and using (5.6) yields

K-3K-1-k

[Rdz Z Z AK —k,a,k,j+s v¢0,j+ta Uk,j—i—sdl‘

k=0 m=0 |a|=

N

= MK*I*]CJ“FS/ Uk,j+s¢07tdx+MK71,j+s/ Uo,sPo,¢ dx
R4 R4

+
=

2,5 / Uk 3,j4sP0,t dx .
Rd

Observe carefully that the terms corresponding to the index k = K — 2 do not appear
in the preceding display; this is because p1 ;45 = 0 for each s, and the homogenized
coefficients @g 4., vanish when |a| = 1 by the base case. Toward determining the
normalizations ax 3 s, let us write

Uk-3,j+s:=Uk—3j+s + E ag-3st¢0t, $=0,...,N—1.
=0

By the induction hypothesis, ID]K,?,JJFS7 which is the unique solution to the PDE for
. N—1 s . . . s .
Uk —3,j+s that is orthogonal to {¢o};_ , exists. Inserting this decomposition in the
preceding display yields the following problem for px_1 ¢ and {« K_37s,t}iv:61 :
QK _3,5,0 €5,0
(5.9) (D — p2,j+5) : = LK —1,j+s : +Fts,

XK -3 5,N—1 €s,N—1

where F;; € RV is defined via

K—4K-1-k
j+s . Z Z Z / (EK—k,a,k‘,j+s'V(bo,t)agUk,j-&-sdx
=1 m=0 |aj=—m’R?
K—4
+ MK -1—k,jts /Rd Uk, j+s®o,j+tdz.
k=1

At this point, we use our assumption that us ;4 is a simple eigenvalue of D for
each s € {0,..., N —1} and that the associated eigenvector is e, := (es,0,...,€5,ny-1)"
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Taking the inner product of (5.9) with the unit vector e; and using the symmetry of
D from Lemma 5.1, we find that

HK—1,j4+s = *Fj-&-s ‘€5,

By elementary linear algebra, since the right-hand side of (5.9) is orthogonal to
the kernel of D — po j4, it follows that we can invert (5.9) to find the undetermined
coefficients (aK73,s,t)‘]g\7ft;107 and, in turn, since Uk _3 is then uniquely determined, the
existence of Uk _1 j4r is obtained for each r=0,..., /N — 1. The macroscopic function
Uk _1 is nonunique up to an arbitrary function in the kernel of £y — \g, which, as
in the induction step, is determined as part of the solvability condition for Ug;.
Toward completing the inductive construction, we notice the following:

e The above argument uniquely determines, for each s € {0,...,N — 1},
tr—1,j+s € R. It also determines Ug_1 j1s € L?(R9), which is unique up
to addition of linear combinations of {¢g j i}

e Fixing s=0,...,N—1, the functions X, ,, 1., as well as f5 ,,, ;, and @z, 1, have
already been defined in the base case above for every k, and in particular for
k= K +1. The only nonzero object among these is x5 5 (and therefore only
ag2,%). Notice that these objects do not depend on s or on the macroscopic
variable x.

e We define, X, ,,, . 15 for each (¢,m, k) € J(K+1)\J(K),q#2,5€{0,...,N—
1} to be the unique solution of

= Vy aVyXgm k.j+s
= vy ' (a Y Xq—l,m—l,k7j+8) + Vy : avwXq—l,m,kJ-l-s

—+ fq—l,m—l,k,j+s + VI . fq—l,m,k‘,j-‘rs - W(x)i(q—lm,k,j—&-s
(5.10) ok
o . d
+ Z Hq—24+k—rj+sXr—k,m,k,j+s in T%,
r=m-+k

<Xq7m,k,j+s> =0.

Note that ¢ # 2 implies ¢ > 3, and thus, k& < K. Therefore, all the terms on
the right side have been defined already, by the induction hypothesis because
all the index triples belong to J(K') and the highest index i of p; that appears
in (4.28) is i = K — 1, which we have defined above in (4.26). Moreover, the
right side of the equation has zero mean, and so, the equation is uniquely
solvable. We then define

o s
(511) fq,m,k,,j—i—s i avl‘Xq—l,m,,k,j+s +a® Xq—l,m—l,k,j—Q—S + avaq,m,ka

and then

(5.12) g,k (7) = (fg,m k5 (25 ))-

This completes the inductive construction of all the objects we set out to
construct.
By easy modifications of the arguments in the proof of Proposition 4.2, we can prove
the following.

PROPOSITION 5.2. There exists C(d,0) < oo such that, for every q,m,k € N with
m < q and for each s€{0,...,N — 1},
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(5.13)

)\0
ik jis| < ———2—exp(C*T1)
sl S 50 T e (C)
3k
Ao k1
1005l cr < =525 exp(CH),

. 2\~ 3@ ot _ exp(C4 ")
(q ¥ l)' zsél]gd()‘oﬂ + |.Z“ ) ||va;Xq,m,k,j+s(x7 )HHl(']l‘d) < ,Y(Ao’j)(q_Q_m)Jr )

where we recall that y(Xo ;) is the spectral gap of the multiple eigenvalue Ao ;.

5.3. Higher-order expansions for multiple eigenvalues. We are finally in
a position to prove Theorem 1.5.

Proof of Theorem 1.5. The proof proceeds exactly like that of Theorem 1.3 and
is concluded like in the proof of Theorem 1.4. ]
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