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Abstract. We prove an asymptotic expansion for the eigenvalues and eigenfunctions of
Schrödinger-type operator with a confining potential and with the principle part of a periodic elliptic
operator in divergence form. We compare the spectrum to the homogenized operator and characterize
the corrections up to arbitrarily high order.
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1. Introduction.

1.1. Motivation and informal summary of results. In this paper, we are
interested in asymptotic expansions of eigenvalues and eigenfunctions of the operator

L" :=�r · a
� ·
"

�
r+W ,(1.1)

where a(·) is a Zd–periodic, uniformly elliptic coe�cient field valued in the d ⇥ d
symmetric matrices; W is a confining potential that is quadratic at infinity; and "> 0
is a small parameter.

The classical theory of periodic homogenization asserts that, as " ! 0, the be-
havior of the elliptic operator L" is well approximated by the constant-coe�cient
homogenized operator

L0 :=�r · ar+W ,(1.2)

where a is a constant symmetric matrix called the homogenized matrix. Owing to
the growth of W at infinity, both the operators L" and L0 have a compact resolvent
and therefore have a discrete collection of eigenvalues, which we denote by {�",j}j2N
in the case of L" and {�0,j}j2N in the case of L0. These sequences are arranged in
nondecreasing order, repeated according to multiplicity, and increase to infinity as
the index j !1. The classical theory of homogenization implies that �",j ! �0,j as
"! 0 for each fixed j, with convergence of the corresponding eigenspaces in L2(Rd)
(see [6, 7]). In this paper, we are concerned with obtaining quantitative information
concerning this convergence.

We would ideally like to obtain asymptotic expansions in the parameter ", hope-
fully identifying the next-order terms in the expansion. Moreover, we are interested
in estimates that are quantitative in both parameters j and ", to identify precisely
how high in the spectrum our expansions are valid for, as a function of ".
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SPECTRUM OF PERIODIC SCHRODINGER OPERATORS 1771

Such questions have been previously addressed in the context of Dirichlet and
Neumann eigenvalue problems in bounded domains. In [5], the authors prove the
estimate

���",j � �0,j
��C"�

3/2

0,j(1.3)

for a constant C that does not depend on j. For identifying the next-order terms in the
context of boundary value problems, the geometry of the boundary and its interaction
with the periodic lattice plays an important role. The works [10, 8] characterize the
limit points of �",j��0,j

"
as "! 0, for a simple eigenvalue �0,j of �r · ar with homo-

geneous Dirichlet boundary conditions.1 The authors in [10] demonstrate numerically
that, for a planar domain that has faces with rational directions, the possible subse-
quential limits of the first-order correction to the eigenvalue �",j��0,j

"
as "! 0 can, in

general, be a continuum; the authors in [8] provide a representation formula for the
possible subsequential limits of �",j��0,j

"
as "! 0, in terms of subsequential limits of

corrector equations with oscillating boundary conditions. Thus, in general polygonal
domains, it is not possible to identify the O(") term in an asymptotic expansion due
to the behavior of solutions in boundary layers.

In smooth, uniformly convex domains, the results in [9] and [13] identify the
O(") term in the expansion of �",j in terms of the solutions of the boundary-layer
problem, with an error of O("3/2) in d > 2 and O("5/4) in two dimensions, where the
implicit constants depend also on j. These results use quantitative estimates for the
boundary layer problem in homogenization proved in [4, 3, 11, 12]. To go further in
the analysis and understand the higher-order terms in the expansion, a finer analysis
of the boundary layer problem is required, beyond the current state of the art.

Our motivation for considering the Schrödinger-type operator L" in (1.1) and
posing the eigenvalue problems in the whole space is to circumvent the need to un-
derstand boundary layers and thereby give a more complete asymptotic expansion.
The role of the quadratically growing potential W is to provide localization for the
eigenfunctions and compactness of the resolvent.

Given a simple eigenvalue �0,j of the operator L0 defined in (1.1), with corre-
sponding normalized eigenfunction �0,j , we exhibit asymptotic expansions for �",j
and  ",j of the form

�",j = �0,j +
PX

p=2

"pµp +O
�
"P+1

�

and

 ",j = �0,j +
PX

p=2

"p
pX

k=2

p�kX

m=0

rmUk :�p�k,m,k

⇣
x,

x

"

⌘
+O

�
"P+1

�
,

where the sequences {µp}{p�2} ✓R and {Up}{p�2} ✓L2(Rd) are constructed explicitly
and depend on j but not on " and the functions �

p,m,k
are correctors that contain

the "-scale wiggles in the eigenfunction. The implicit norm in the expansion of  ",j

is the strong H1(Rd) norm.
The expansions are valid for any P 2 N, but we should be more explicit about

the error term O("P+1). The term is actually

1There is also an unpublished manuscript in the website of Vogelius that deals with the homo-
geneous Neumann boundary condition case, with similar conclusions.
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1772 SCOTT ARMSTRONG AND RAGHAVENDRA VENKATRAMAN

C�(�0,j)

✓
"�

3/2

0,j

�(�0,j)

◆P+1

, where P  c log

����log
✓

"�3/2

�(�0,j)

◆����

and where the constant C does not depend on j, p, or " and �(�0,j) denotes the
spectral gap between �0,j and the nearest eigenvalue of L0 that is not equal to �0,j :

�(�0,j) :=min
�
|�0,k � �0,j | : �0,k 6= �0,j

 
.(1.4)

The point of restricting P as above is that, without this restriction, the implicit
constant in the O("P+1) term actually grows doubly exponentially in P , which renders
the estimate useless. Note that this estimate coincides with (1.3) in the case P = 0.
We remark that some dependence on the spectral gap is necessary and occurs even in
perturbation theory in finite dimensions (i.e., matrices). See Theorem 1.3 below for
the precise statement.

The expansion above is not standard in homogenization. This is a reflection of
the fact that, to our knowledge, higher-order expansions have only been used pre-
viously in the periodic (or stationary) setting. Here, however, the potential creates
some macroscopic dependence of the coe�cients, and the higher-order expansion must
intertwine this dependence with the small scales. Indeed, at higher order (unlike at
first order), the large macroscopic scale will interact with the microscopic scale, and
this interaction is what is captured by the correctors �

p�k,m,k
when the parameter

k is at least 2. It is due to the presence of these terms in the expansion (which we
believe are necessary) that the parameter P in the expansion above cannot exceed
c log | log "|.

It should be remarked that the expansion is valid in the case P = 1, when we have

|�",j � �0,j |+ k ",j � �0,jkH1(Rd) 
C"2�30,j
�(�0,j)

,

where  ",j 2 L2(Rd) is the eigenfunction of L" associated with eigenvalue �",j nor-
malized such that

R
Rd  ",j�0,j dx = 1. In particular, the O(") term vanishes. This is

due to the simple fact that the leading-order correction to the homogenized operator,
represented by the (symmetric part of the) third-order homogenized tensor, is zero.

Our methods yield similar expansions in the case of eigenvalues of L0 with mul-
tiplicity, but these asymptotic expansions become di�cult to describe in complete
generality. It is necessary to describe the entire perturbed eigenspace at once, and
the multiplicities can bifurcate (or not) at any higher-order level, leaving us with
many di↵erent cases to enumerate. For simplicity, we present a result in Theorem 1.5
that gives a complete asymptotic expansion in the case that the eigenspace bifurcates
at the level of "2 (we do this by the assumption that a particular matrix has distinct
eigenvalues).

1.2. Statements of the main results. Throughout the paper, d � 2 denotes
the spatial dimension, ✓ 2 (1,1) is the ellipticity ratio, and we fix positive constants
⇤,⇤0 > 0 and ⇤� ⇤+. We consider a coe�cient field a(·) :Rd !Rd⇥d satisfying the
following properties:

aij = aji 8i, j 2 {1, . . . , d} ,(1.5)

|⇠|2 6 ha(x)⇠, ⇠i6 ✓|⇠|2 8⇠ 2Rd, a.e. x2Rd,(1.6)
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SPECTRUM OF PERIODIC SCHRODINGER OPERATORS 1773

and

a(x+ z) = a(x) 8z 2Zd, a.e. x2Rd.(1.7)

We assume the potential W 2C1(Rd) satisfies, for all x2Rd,

|rkW (x)| k!⇤k(1 + |x|2) 1

2
(2�k) 8k 2N0(1.8)

and

⇤�|x|2 6W (x)6⇤+|x|2 .(1.9)

Throughout, we denote

data := (d,✓,⇤,⇤0,⇤+,⇤�) .

So, when we say that a constant C depends on data, we mean that it depends on the
parameters (d,✓,⇤,⇤0,⇤+,⇤�).

The hypotheses (1.5), (1.6), and (1.9) imply that, for every "> 0, setting a"(·) :=
a( ·

"
), the Schrödinger operator

L" :=�r · a"r+W (x)

is a positive operator that has discrete spectrum in L2(Rd). To be precise, the eigen-
values of L" can be put into a sequence {�",j}1j=1 ✓ (0,1), with �",j 6 �",j+1 for
every j 2 N0 and �",j ! +1 as j ! 1. These eigenvalues evidently have no finite
cluster points and are repeated according to multiplicity, with every eigenvalue hav-
ing finite multiplicity. Associated to these eigenvalues {�",j}1j=1 are eigenfunctions
{�",j}1j=1 ⇢H1(Rd) that may be assumed to be orthonormal in L2(Rd).

We let a denote the homogenized matrix corresponding to a(·) in the standard
theory of periodic homogenization. It satisfies that same uniform ellipticity estimate
(1.6), and the operator L0 defined in (1.2) captures the leading-order asymptotics of
the operators L" as "! 0. We arrange the eigenvalues of L0 in a nondecreasing se-
quence {�0,j}1j=1 ⇢ (0,1), with eigenvalues repeated according to (finite) multiplicity,
with �0,j !1 as j !1. Associated to the eigenvalues {�0,j}1j=1 are L2-normalized
eigenfunctions of L0, denoted by {�0,j}1j=1. For any eigenvalue �0,j of L0, we define
the spectral gap �(�0,j) as in (1.4).

We organize our results in four theorems: Theorems 1.1 and 1.4 give the first-
order expansions for simple and multiple eigenvalues, respectively, and their associated
eigenfunctions to errors that are O("2), with dependence of the prefactor on the eigen-
value. Theorems 1.3 and 1.5 present the higher-order expansions for the eigenvalues
and eigenfunctions associated to simple and multiple eigenvalues, respectively.

Theorem 1.1. Fix j 2N such that �0,j is a simple eigenvalue of L0. There exist
constants c(data)2 (0,1] and C(data)<1 such that, if " satisfies

0< " c�(�0,j)�
�3/2

0,j ,(1.10)

then the jth eigenvalue �",j of L" is simple and satisfies the estimate

���",j � �0,j
��

C"2�30,j
�(�0,j)

;(1.11)
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1774 SCOTT ARMSTRONG AND RAGHAVENDRA VENKATRAMAN

moreover, if we let  ",j denote the corresponding eigenfunction for �",j normalized
according to

Z

Rd

 ",j�0,j dx= 1,(1.12)

then we have the estimate

�� ",j �
�
�0,j + "r�0,j ·�(1)( ·

"
)
���

H1(Rd)


C"2�30,j
�(�0,j)

.(1.13)

Remark 1.2. The condition (1.10) is optimal with respect to the homogenization
regime. Indeed, the estimate (1.3) asserts that the eigenvalues of the L" operator do
not deviate from those of L0 by more than C"�

3/2

0,j . The condition (1.10) essentially
guarantees that so long as this deviation does not exceed the spectral gap of L0 at the
eigenvalue �0,j , then the eigenvalues of the homogenized operator approximate those
of the heterogeneous operator to quadratic order.

The previous result, which expands a simple eigenvalue to a precision of roughly
"2, is a special case of our next result, which provides a higher-order expansion to
a precision of roughly "c log | log "|. This higher-order expansion is given in terms of
certain objects—namely, the homogenized tensors aq,m,k, correctors �

q,m,k
, and the

sequences of corrections to the eigenvalues {µk}k�2 and eigenfunctions {Uk}k�2—
which are defined in section 4 via a recursive construction.

Theorem 1.3. Under the hypotheses of Theorem 1.1, there exist constants
c(data)2 (0,1] and C(data)> 1 such that, if "> 0 satisfies (1.10) and we define

P :=

$
c log

����log
✓
"�

3/2

0,j

�(�0,j)

◆����

%
,

along with
8
>>>>><

>>>>>:

e�" := �0,j +
PX

p=2

"pµp,

w" := �0,j +
PX

p=2

"p
pX

k=2

p�kX

m=0

rmUk :�p�k,m,k

⇣
x,

x

"

⌘
,

then the jth eigenvalue �",j of L" is simple, and its associated eigenfunction  ",j of
L" normalized according to (1.12) admits the asymptotic expansion

1

�(�0,j)

�
|�",j � e�"|+ k ",j �w"kH1(Rd)

�
6 ⇢

✓
"�

3/2

0

�(�0)

◆
,

where the modulus ⇢ : (0,1)! (0,1) is defined by

⇢(t) :=Ctc log | log t| .

Concerning multiple eigenvalues, once again, we o↵er two theorems: The analog of
Theorem 1.1 is in Theorem 1.4 below, where we provide the first-order expansions
for N > 1 eigenvalue–eigenfunction pairs of L" that coalesce into a single eigenvalue
of the homogenized operator L0 of high multiplicity N. The analog of Theorem 1.3

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

05
/1

0/
25

 to
 1

28
.1

22
.1

49
.9

2 
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



SPECTRUM OF PERIODIC SCHRODINGER OPERATORS 1775

is Theorem 1.5, which contains the high-order asymptotic expansion for multiple
eigenvalues. For these theorems, we make a simplifying assumption that a certain
symmetric matrix that arises in the analysis has distinct eigenvalues, which ensures
that the eigenspace bifurcates into N distinct branches. This is the matrix D given
in (5.2). We expect that this assumption is generic, although certainly not always
satisfied. In the case it is not satisfied, one needs to study another such symmetric
matrix that occurs at a higher-order level in the expansion. For a general result, one
needs to study all possible splittings of the eigenspace at all possible levels in the
analysis, which is something we do not attempt to describe fully here.

Theorem 1.4. Fix j 2N such that �0,j is a multiple eigenvalue of L0 of multiplic-
ity N > 1, labeled such that �0,j = �0,j+1 = · · ·= �0,j+N�1. Let {�0,j+r}r=0,...,N�1 be
an orthonormal basis for the associated eigenspace. Assume that the N -by-N symmet-
ric matrix D defined in (5.2) has N distinct eigenvalues. Then, there exist constants
c(data)2 (0,1] and C(data)<1 such that, if " satisfies

0< "6 c�(�0,j)�
�3/2

0,j ,(1.14)

then, for each r= 0, . . . ,N � 1,

|�",j+r � �0,j+r|6
C"2�30,j
�(�0,j)

;

moreover, there exists an orthogonal matrix E 2RN⇥N with E = (er
s
) such that, if we

normalize the associated eigenfunctions (and relabel them using  ",j+r, r= 0, . . . ,N �
1) according to

Z

Rd

 ",j+r�0,j+s dx= er
s
,(1.15)

then we have the estimate
����� ",j+r �

N�1X

s=0

er
s

�
r�0,j+r + "r�0,j+r :�

(1)( ·
"
)
�
�����
H1(Rd)

6
C"2�30,j
�(�0,j)

.(1.16)

Our final result concerns a higher-order asymptotic expansion for the spectrum
of L" near an eigenvalue of L0 with multiplicity.

Theorem 1.5. Under the hypotheses of Theorem 1.4, there exist constants
c(data) 2 (0,1] and C(data) > 1 such that, if the matrix E = (er

s
)r,s=0,...,N�1 is

as in Theorem 1.4, "> 0 satisfies (1.10), and we define

P :=

$
c log

����log
✓
"�

3/2

0,j

�(�0,j)

◆����

%
, U0,j+r :=

N�1X

s=0

er
s
�0,j+s ,

along with
8
>>>>><

>>>>>:

e�",j+r := �0,j +
PX

p=2

"pµp,j+r,

w" :=U0,j+r +
PX

p=2

"p
pX

k=2

p�kX

m=0

rmUk,j+r :�p�k,m,k,r

⇣
x,

x

"

⌘
,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1776 SCOTT ARMSTRONG AND RAGHAVENDRA VENKATRAMAN

then, for each r = 0, . . . ,N � 1, the eigenvalues �",j+r of L" and their associated
eigenfunctions, { ",j+r}N�1

r=0 of L" normalized according to (1.15), admit the asymp-
totic expansion

1

�(�0,j)

⇣
|�",j � e�"|+ k ",j �w"kH1(Rd)

⌘
6 ⇢

✓
"�

3/2

0,j

�(�0,j)

◆
,

where the modulus ⇢ : (0,1)! (0,1) is defined by

⇢(t) :=Ctc log | log t| .

While the above results have been stated in the periodic case, the analysis extends to
the stochastic setting. In that case, we would need to use the optimal quantitative
estimates for correctors (see, for instance, [2, 1] and the references therein), and it
would be necessary to stop the expansion after a finite-order P depending on the
dimesion d and the rate of decorrelations of the random coe�cient field (since the
correctors do not exist after a certain finite order in the random setting).

2. Preliminaries.

2.1. The first- and second-order homogenized tensors. We introduce the
first- and second-order correctors and their associated homogenized tensors a,a(3)

and prove a symmetry property of a(3), which will play a crucial role in our analysis.
These correctors, as well as the first and third homogenized tensors, will arise in our
infinite-order expansion subsequently; however, for the time being, we prefer to set
some notation that is less heavy (and is well known) to experts in homogenization.

For each e 2Rd, we let �1
e
2H1(Td) denote the first-order corrector, that is, the

unique mean-zero periodic solution of

�r · a(e+r�1
e
) = 0, h�1

ek
i= 0 .(2.1)

The homogenized tensor a is defined by the formula

ae := ha(e+r�1
e
)i , e2Rd.

We let ge denote the di↵erence between the flux of the corrector and the homogenized
flux:

ge := a(e+r�1
e
)� ae .

We introduce an associated stream matrix se, which is skew symmetric and satisfies

r · se = ge (in coordinates, @xise,ij = ge,j)(2.2)

and whose ijth entry se,ij is defined as the unique mean-zero H1(Td) solution of

��se,ij = @xjge,i � @xige,j hse,iji= 0 .(2.3)

We call se,ij a flux corrector. It is clear from (2.3) that se is skew symmetric. To
check the condition (2.2), apply @xi to both sides of (2.3), sum over i, and use (2.1)
to obtain, in the sense of distributions,

��(r · se)j =��ge,j .(2.4)

Since both ge,j and r · se are of zero mean, it follows that they are equal.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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SPECTRUM OF PERIODIC SCHRODINGER OPERATORS 1777

We also introduce the second-order corrector. Later on, we will introduce it as
a two-tensor–valued, mean-zero, periodic field �(2); this means that it is indexed by
two indices, say, {�2

ej⌦ek
}d
j,k=1 defined to be the unique mean-zero H1(Td) solution

to

�r · ar�2
ej⌦ek

=r ·
�
aej�

1
ek

� s1
ek
ej
�
.

Introducing the third-order homogenized tensor

a(3)
ijk

:= (ar�2
ej⌦ek

+ aej�
1
ek

� s1
ek
ej)i ,

the preceding equation asserts that the vector field

ar�2
ej⌦ek

+ aej�
1
ek

� s1
ek
ej � a(3)

ijk
ei

is mean-zero and divergence free; it then follows, as before, that there exists a skew-
symmetric tensor field sej⌦ek such that

(r · sej⌦ek)i = (ar�2
ej⌦ek

+ aej�
1
ek

� s1
ek
ej)i � a(3)

ijk
.

The following lemma collects a fundamental symmetry property of the third-order
homogenized tensor a(3).

Lemma 2.1. For each i, j, k 2 {1, . . . , d}, setting

a(3),s
ijk

:=
a(3)
ijk

+ a(3)
ikj

2
,

we have the identity

a(3),s
ijk

+ a(3),s
jki

+ a(3),s
kij

= 0 .(2.5)

Proof. Utilizing the equations for the first- and second-order correctors, along
with the skew symmetry of s1

ek
, we find that

2a(3),s
ijk

= ha(r�2
ej⌦ek

+r�2
ek⌦ej

) · eii+ haik�1
ej
+ aij�

1
ek
i

=�hr�2
ej⌦ek

+r�2
ek⌦ej

,ar�1
ei
i+ haik�1

ej
+ aij�

1
ek
i

= h�ajm@xm�
1
ei
· �1

ek
� akm@xm�

1
ei
· �1

ej
i

+ hajm@xm�
1
ek
�1
ei
+ akm@xm�

1
ej
�1
ei
i+ 2hajk�1

ei
i .

The desired identity follows by cyclically summing over i, j, and k.

2.2. Zeroth-order estimates for eigenvalues. The following proposition,
which gives a first estimate for the rate of convergence of the eigenvalues of L" toward
those of L0, is a straightfoward modification of the results in [5]; it forms an ingre-
dient in the proofs of all of our theorems. While the result in that paper lies in the
setting of homogenization of the Dirichlet eigenvalues of periodic elliptic operators in
bounded domains, the proof, which is based on Courant’s minimax characterization of
the eigenvalues, adapts readily to our setting. This basic estimate provides an upper
bound for how much eigenvalues of L" can move relative to those of L0. We recall
that {�",j}1j=1 (resp., {�0,j}1j=1) denote the eigenvalues of L" (resp., L0) written in
nondecreasing order. For each eigenvalue �0,j of L0 we recall that �(�0,j) denotes
the associated the spectral gap of �0,j (see (1.4) for the definition). The following
proposition can be readily proved as in [5], and we omit the proof.
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1778 SCOTT ARMSTRONG AND RAGHAVENDRA VENKATRAMAN

Proposition 2.2. There exists C1 > 0 independent of " and k such that, for each
k 2N and for every "> 0, we have

|�",j � �0,j |6C1"�
3/2

0,j .(2.6)

3. Estimates for analyticity.

3.1. Elliptic estimates. The goal of this section is to derive exponential decay
estimates for eigenfunctions to the operator

L0U :=�r · arU +W (·)U.

Let � > 0 be an eigenvalue of L0, corresponding to eigenfunction U, withkUkL2 = 1
so that

�r · arU +WU = �U.(3.1)

Lemma 3.1. Let � be an eigenvalue of L0, and let f 2 C1 \ L2(Rd) be such
that

R
Rd f�� = 0 for every eigenfunction �� associated to �. There exist ↵(data)> 0,

C1(data)> 0, and C(data)> 0 such that the following holds: For every solution u of

(L0 � �)u= f in Rd ,(3.2)

we have the estimate
Z

Rd

(�+ |x|2)ne2H |rmu|2 dx+

Z

|x|>Rn,�

(�+ |x|2)n�1e2H |rm�1u|2 dx

. ((m� 1)!)2Cn+m�1
1 ⇤m�2

Z

|x|6Rn,�

e2H(�+ |x|2)n+mu2 dx

+ ((m� 1)!)2Cm

1 ⇤2
m�1X

`=0

Z

Rd

e2H(�+ |x|2)n+m�`�2|r`f |2 dx ,

(3.3)

where H :Rd !R is defined via H(x) := ↵|x|2 and

Rn,� :=Cmax(
p
n,

p
�).(3.4)

Proof. The proof is an induction argument on m2N.
The base case. Let ⌘ 2 C1

c
(Rd) be a smooth function. We multiply (3.2) with

⌘2u and integrate on Rd to arrive at
Z

Rd

⌘2aru ·rudx+

Z

Rd

W (x)⌘2u2 dx= �

Z

Rd

⌘2u2 dx+

Z

Rd

⌘2fudx�2

Z

Rd

⌘uaru ·r⌘.

Using ellipticity of a and by Cauchy–Schwarz, we obtain
Z

Rd

⌘2|ru|2 dx.
Z

Rd

⌘2u2(��W (x)) +C0u
2|r⌘|2 dx+

Z

Rd

⌘2fudx(3.5)

for some universal constant C0 (for instance, we can take C0 = 8). We use test
functions of the form ⌘ = eH� for various choices of � 2 C1

c
(Rd). The function H

will be chosen of the form H(x) := ↵|x|2 for some small ↵ = ↵(data) > 0. Inserting
this choice in the prior display, we find that, for any ✓> 0,
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SPECTRUM OF PERIODIC SCHRODINGER OPERATORS 1779

Z

Rd

�2e2H |ru|2 dx+

Z

Rd

�2e2Hu2

✓
W (x)� C0

2
|rH|2 � �

◆
dx

.
Z

Rd

e2Hu2(|r�|2 + �2|rH|2)dx+

Z

Rd

e2H�2

✓
f2

✓
+ ✓u2

◆
dx .

We thus arrive at the main Caccioppoli estimate that we use for the rest of the proof:
Z

Rd

�2e2H |ru|2 dx+

Z

Rd

�2e2Hu2
⇣
W (x)� C0

2
|rH|2 � (�+ ✓)

⌘

+
(3.6)

.
Z

Rd

e2H
✓
u2|r�|2 + f2

✓
�2

◆
dx .

Here, (z)+ denotes the positive part of z 2R. From (1.9), we find that

W (x)�C|rH|2 � (�+ ✓)6⇤+|x|2 � �6 0

for all ✓ > 0 if |x| 6
q

�

⇤+

=: R0(�). In particular, the second term of (3.6) on the

left-hand side does not contribute on this ball centered at the origin.
We now make a choice of the ✓, of the test function �, and of the exponential

weight H toward obtaining the desired estimate.
• We set ✓= ⇤�

8 (�+ |x|2),
• we set H(x) := ↵|x|2 for ↵ su�ciently small so that ⇤�

2 > 2C0↵2, and
• we set �(x) = (�+ |x|2)n/2!R(x) for !R 2 C1(Rd) with !R(x) ⌘ 1 for |x| 6

R,!R(x)⌘ 0 for |x|> 2R, and |r!R(x)|6 1
R
, with |!R(x)|6 1 for all x2Rd.

Here, R � 1 is a parameter that we will send to infinity at the end of the
argument of the base case.

Then,

|r�|2 . n2(�+ |x|2)n�1

2
+

(�+ |x|2)n

R2
.

Inserting these choices into (3.6), we find

Z

Rd

(�+ |x|2)n!2
R
(x)e2H |ru|2 dx

+

Z

Rd

(�+ |x|2)n!2
R
(x)e2Hu2

✓
W (x)� C0

2
|rH|2 � (�+

⇤�
8

�
�+ |x|2)

�◆

+

dx

6
Z

Rd

n2(�+ |x|2)n�1e2H
⇣
u2 +

f2

n2

⌘
dx+

1

R2

Z

Rd

(�+ |x|2)ne2Hu2 dx .

(3.7)

Now, if ⇤�
4 |x|2 > ⇤�

4 �+⇤0 + �, which we rewrite as |x|>R1(�)⇠
p
�>R0(�), then,

choosing ↵> 0 small enough so that ⇤�
2 > 2C0↵2, a short calculation shows that

W (x)� C0

2
|rH|2 �

⇣
�+

⇤�
8

(�+ |x|2)
⌘
>⇤�|x|2�⇤0�2C0↵

2|x|2���⇤�
8

(�+|x|2)

> ⇤�
8

(�+ |x|2) .

For any Rn,� > R1(�) (a specific choice will be made presently), the estimate (3.7)
then rewrites as
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1780 SCOTT ARMSTRONG AND RAGHAVENDRA VENKATRAMAN

Z

Rd

(�+|x|2)n!2
R
e2H |ru|2 dx

+

Z

|x|>Rn,�

(�+|x|2)n�1

✓
⇤�
8

(�+|x|2)2�n2

◆
e2Hu2!2

R
(x)dx

. n2

Z

|x|6Rn,�

(�+|x|2)n�1e2Hu2 dx+

Z

Rd

(�+|x|2)n�1e2Hf2 dx

+
1

R2

Z

Rd

(�+|x|2)ne2Hu2 dx .

Choosing Rn,� > R1(�) so that ⇤�
16 (� + R2

n,�
)2 > n2 and then sending R ! 1, we

obtain
Z

Rd

(�+ |x|2)ne2H |ru|2 dx+
⇤�
16

Z

|x|>Rn,�

(�+ |x|2)n�1e2Hu2 dx

. n2

Z

|x|6Rn,�

(�+ |x|2)n�1e2Hu2 +

Z

Rd

(�+ |x|2)n�1e2Hf2 dx(3.8)

holding for every n2Z. This completes the base case. We note that Rn,� satisfies

Rn,� >R1(�) =C
p
� and Rn,� >C

p
n .

The induction hypothesis. Suppose that, for each p 2 {1, . . . ,m}, we have shown
that, for every n2N0, there holds
Z

Rd

(�+|x|2)ne2H |rpu|2 dx.Cn+p�1
1 ⇤p�1((p�1)!)2

Z

|x|6Rn,�

(�+|x|2)n+pe2Hu2 dx

+Cp

1⇤
2((p�1)!)2

p�1X

j=0

Z

Rd

e2H(�+|x|2)n+(p�j)�1|rjf |2 dx.(3.9)

The induction step. Let ↵ 2 Nm

0 denote a multi-index of length m. Because
f 2C1(Rd) and a is a constant matrix, it follows that u2C1(Rd). Setting v := @↵u,
we apply a @↵ derivative of (3.2) to find that v satisfies the PDE

�r · arv+W (x)v= �v+ @↵f � f↵ =: �v+ F↵,(3.10)

where, by Leibniz rule and using (1.8), f↵ satisfies the bound

|f↵|6
mX

j=0

✓
m

j

◆
|@jW (x)||@m�ju|6

mX

j=0

✓
m

j

◆
j!⇤j(1 + |x|2) 1

2
(2�j)|rm�ju| ,

where we used (1.8) in the second inequality above. Applying the base case to (3.10),
we obtain

Z

Rd

(�+ |x|2)ne2H |rm+1u|2 dx+

Z

|x|>Rn,�

(�+ |x|2)n�1e2H |rmu|2 dx

.Cn

1

Z

|x|6Rn,�

(�+ |x|2)n+1e2H |rmu|2 dx+

Z

Rd

(�+ |x|2)n�1e2H |F↵|2 dx.
(3.11)

To complete the induction step, we must estimate the second term. By Cauchy–
Schwarz, since (a0 + · · · + am)2 6 (m + 1)(a20 + · · · + a2

m
) for any (m + 1) positive

numbers a0, . . . , am, we find, by the induction hypothesis (3.9),
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SPECTRUM OF PERIODIC SCHRODINGER OPERATORS 1781

Z

Rd

(�+ |x|2)n�1e2H |F↵|2 dx

(3.12)

.
Z

Rd

(�+ |x|2)n�1e2H(|rmf |2 + |f↵|2)dx


Z

Rd

e2H(�+ |x|2)n�1|rmf |2 dx

+ (m+ 1)
mX

j=0

✓
m

j

◆2

(j!)2⇤2j

Z

Rd

(�+ |x|2)n�1(1 + |x|2)2�je2H |rm�ju|2 dx


Z

Rd

e2H(�+ |x|2)n�1e2H |rmf |2 dx

+ (m+ 1)

✓
Cn+m�1

1 ⇤m�1((m� 1)!)2
Z

|x|6Rn,�

e2H(�+ |x|2)n+m+1u2 dx

+Cm

1 ⇤2((m� 1)!)2
m�1X

`=0

Z

Rd

e2H(�+ |x|2)n�1+(m�`)�1|r`f |2 dx
◆

+
(m� 1)2m2

4

✓
⇤Cn+m�1

1 ⇤m�2(m� 2)!2
Z

|x|6Rn,�

e2H(�+ |x|2)n+m�1u2 dx

+Cm�1
1 ⇤2(m� 2)!2

m�2X

`=0

Z

Rd

e2H(�+ |x|2)n+(m�1�`)�1|r`f |2 dx
◆

+
mX

j=2

✓
m

j

◆2

j!2⇤j

✓
Cn�1+m�j

1 ⇤m�j�1((m�j�1)!)2

⇥
Z

|x|6Rn,�

(�+|x|2)n�1+m�je2Hu2 dx

+Cm�j

1 ⇤2((m�j�1)!)2
m�j�1X

`=0

Z

Rd

e2H(�+|x|2)n�1+(m�j�`)�1|r`f |2 dx
◆

m!2Cn+m

1 ⇤m�1

Z

|x|Rn,�

e2H(�+|x|2)n+m+1u2 dx

+m!2Cm+1
1 ⇤2

mX

`=0

Z

Rd

e2H(�+|x|2)n+m�`�1|r`f |2 dx.

In the last line, we repeatedly used the fact that
P

q

j=1 t
j ⇠ tq+1 with the choice

t = (� + |x|2) to combine the various terms. The proof of the induction step, and
therefore that of the lemma, is complete.

Our next lemma concerns L2 estimates for eigenfunctions, i.e., equations of (3.2)
with f = 0 with the weight e2H . To this end, we let ��, as before, denote an L2�
normalized eigenfunction of L0 so that

(L0 � �)�� = 0 in Rd, k��kL2(Rd) = 1.(3.13)

Corollary 3.2. Let �� be an eigenfunction of L0 with eigenvalue � normalized
as in (3.13). Then, there exists c2(data)> 0 such that

Z

Rd\BR
1,�

�2
�
e2H dx. e2c��2 .
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1782 SCOTT ARMSTRONG AND RAGHAVENDRA VENKATRAMAN

Proof. We set f ⌘ 0 in (3.3), along with the choice n= 1 and m= 1. This yields

Z

|x|>R1,�

e2H�2
�
dx.

Z

|x|<R1,�

e2H(�+ |x|2)2�2
�
dx. e2c��2

Z

Rd

�2
�
dx= e2c��2 .

3.2. Spectral estimates. Next, we turn our attention to estimates on the prob-
lem

(L0 � �)V = f,(3.14)

where � 2 �(L0) is a given eigenvalue with associated normalized eigenfunction ��,
which we assume simple for the time being, and f 2C1 \L2(Rd) such that

Z

Rd

f�� dx= 0.

Here and in what follows, we use �(L0) to denote the spectrum of L0. Motivated by
the decay rates proven in Lemma 3.1, it is natural to measure the regularity of f using
weighted spaces with inverse Gaussian weights. Setting ⇤2 :=

p
⇤, we define, for any

�2 �(L0) and for any g 2L2 \C1(Rd),

|||g|||�,⇥

(3.15)

:= sup
n2N

sup
m2N

1

⇥n+m⇤m

2 n!(m�1)!

✓Z

Rd

(�+|x|2)n|rmg(x)|2 exp
�
↵|x|2�2↵R2

n,�

�
+
dx

◆1/2
.

Here, we recall that the lengthscale Rn,� ⇠
p
n is defined in (3.4).

We next give an analyticity estimate for solutions of (3.14). Recall that �(�)> 0
is the spectral gap, �(�) := inf{|�� µ| : µ2 �(L0) \ {�}}.

Lemma 3.3. Let � be an eigenvalue of L0 and f 2 C1 \ L2(Rd) be such thatR
Rd f�� = 0 for every eigenfunction �� associated to �. Then, for every solution u of

(L0 � �)u= f in Rd

and for every ⇥>C1, we have the estimate

|||u|||�,⇥ 6 1

�(�)
|||f |||�,⇥ .

Proof. The proof proceeds by combining spectral information with Lemma 3.1.
Step 1. In this step, we obtain the spectral solution formula for u. BecauseR

f�� = 0 for each eigenfunction �� associated with the eigenvalue �, it follows that

(L0 � �)u= f

admits a unique solution satisfying the normalization condition
R
u�� = 0 for each

eigenfunction �� associated with eigenvalue �2 �(L0). It follows, therefore, that if

f :=
X

µ2�(L0)\{�}

fµ�µ, fµ :=

Z
f�µ,
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SPECTRUM OF PERIODIC SCHRODINGER OPERATORS 1783

then

u=
X

µ2�(L0)\{�}

fµ
µ� �

�µ.

Step 2. By Lemma 3.1, for any m2N, we obtain that, for any ⇥>C1,

1

⇥n+m⇤m

2 (m� 1)!n!

✓Z

Rd

(�+ |x|2)n|rmu|2 exp(↵|x|2 � 2↵R2
n,�

)+ dx

◆1/2

=
1

⇥n+m⇤m

2 (m� 1)!n!

⇥
Z

|x|6Rn,�

(�+ |x|2)n|rmu|2 dx+ e�2↵R2

n,�

Z

|x|>Rn,�

(�+ |x|2)ne2H |rmu|2 dx
�1/2

6 1

⇥n+m⇤m

2 (m� 1)!n!

Z

|x|6Rn,�

(�+ |x|2)n|rmu|2 dx

+ e�2↵R2

n,�(m� 1)!2Cn+m�1
1 ⇤m�2

Z

|x|6Rn,�

(�+ |x|2)n+me2Hu2 dx

+ (m� 1)!2Cm

1 ⇤2e�2↵R2

n,�

m�1X

`=0

Z

Rd

e2H(�+ |x|2)n+m�`�2|r`f |2 dx
�1/2

6
Z

Rd

u2 dx

�1/2

+
m�1X

j=0

Cm

1 ⇤2

⇥n+m⇤m(m� 1)!n!

Z

Rd

(�+ |x|2)n+m�j�1e2H |rjf |2 dx
�1/2

.
Z

Rd

u2 dx

�1/2

+ |||f |||�,⇥ .

Taking the supremum with respect to m,n2N on both sides, we arrive at

|||u|||�,⇥ .
Z

Rd

u2 dx

�1/2

+C|||f |||�,⇥.(3.16)

It remains to estimate the L2 norm of u. Toward this end, using the formula from
step 1 and Plancherel,

Z

Rd

u2 dx=
X

µ2�(L0)\{�}

|fµ|2

(µ� �)2
6 1

�(�)2

X

µ2�(L0)\{�}

|fµ|2 =
1

�(�)2

Z

Rd

f2 dx

since
R
f�� = 0. The proof is concluded by observing that kfkL2 6 |||f |||�,⇥ and

combining this with (3.16).

4. Expansions for simple eigenvalues and their eigenfunctions. In this
section, we consider the simpler case of a simple eigenvalue of the second-order ho-
mogenized operator L0 and build an expansion for the corresponding eigenvalue and
eigenfunction for the heterogeneous operator L". Of course, this is only a very par-
ticular case of our main results, but the computations and the notation are much less
heavy and therefore easier to understand in this setting.
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1784 SCOTT ARMSTRONG AND RAGHAVENDRA VENKATRAMAN

4.1. First-order expansions for simple eigenvalues.

Proof of Theorem 1.1. Define

e�" := �0,j + "µ1,j ,

where µ1,j is given by

µ1,j :=

Z

Rd

�
a(3) :r2�0,j(x)

�
·r�0,j(x)dx ;

we also set

w" := �0,j + "U1,j + "r(�0,j + "U1,j) ·�(1)
⇣x
"

⌘
,

where we recall that U1,j is the unique solution to the equation

(L0 � �0,j)U1,j = µ1,j�0,j + a(3) :r3�0,j ,

which is orthogonal in L2 to �0,j . In step 1 below, we insert this ansatz above in the
PDE and compute, and, to alleviate notation, we suppress the dependence on j (the
index of the eigenvalue), which is fixed.

Step 1. By a direct computation (see, for instance, [2, Lemma 6.7]), we find that

�r · a"rw" =�r · ar(�0 + "U1) +r ·
 

dX

k=1

�
s"
ek

� �1,"
ek

a"
�
r@xk

�
�0 + "U1

�
!

.

Using the equation for the second-order corrector equation, we can write the second
term as

r ·
✓ dX

k=1

�
s"
ek

� �1,"
ek

a"
�
r@xk

�
�0 + "U1

�◆

=r ·
dX

k=1

a"�2,"
ek

r@xk

�
�0 + "U1

�
�

dX

k=1

�
a"�2,"

ek
+ s"

ek
� �1,"

ek
a"
�
r2@xk

�
�0 + "U1

�
.

The first term on the right side is O("2). The second term on the right side can be
rewritten in terms of the second-order flux corrector as follows:

dX

k=1

�
a"�2,"

ek
+ s"

ek
� �1,"

ek
a"
�
r2@xk

�
�0 + "U1

�

= "a(3) :r3(�0 + "U1) +
dX

k=1

�
a"�2,"

ek
+ s"

ek
� �1,"

ek
a" � "a(3)

�
r2@xk

�
�0 + "U1

�

= "a(3) :r3(�0 + "U1) +r ·
dX

k=1

s2,"
ek

r2@xk

�
�0 + "U1

�
.

Therefore, we obtain that

�r · a"rw" =�r · ar(�0 + "U1)� "a(3) :r3(�0 + "U1)

+r ·
dX

k=1

�
a"�2,"

ek
r@xk � s2,"

ek
r2@xk

��
�0 + "U1

�

| {z }
=:R"

(4.1)
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SPECTRUM OF PERIODIC SCHRODINGER OPERATORS 1785

.We note that

kR"kL2 C"2(kr2�0kL2 + "kr2U1kL2) +C"2(kr3�0kL2 + "kr3U1kL2)

C"2�
3/2

0 +C"3
�

5/2

0

�(�0)
.

We deduce that

kr ·R"kH�1(Rd) 6 kR"kL2(Rd) 6C"2�
3/2

0 +C"3
�

5/2

0

�(�0)
.(4.2)

Next, we compute

(W (x)� e�")w" = (W (x)� �0)�0 + "((W (x)� �0)U1 + µ1U1) + S",(4.3)

S" :=�"2(µ1U1 + µ1r(�0 + "U1) ·�(1)(x/"))

+ "
�
(W (x)� �0)r(�0 + "U1) ·�(1)(x/")

�

=: S(1)
"

+ S(2)
"

.

The term S(1)
" is clearly of order O("2) in L2(Rd); explicitly,

kS(1)
"

kL2(Rd) 6C"2|µ1|
�
kU1kL2(Rd) + kr�0 + "rU1kL2(Rd)

�

6C"2�
3/2

0

✓
�

3/2

0

�(�0)
+ �

1/2

0 + "
�

3/2

0

�(�0)

◆
.

(4.4)

Concerning S(2)
" , for each x 2 Rd, we introduce the function z 2 H1(Td) to be the

unique mean zero solution to

�ry · aryz(x, y) = (W (x)� �0)r�0(x) ·�(1)(y) .

This problem is well posed since h�(1)(y)i= 0.We set z"(x) := "3z(x,x/") and compute
that

r · a"rz" = "3rx · a"rxz + "2
�
ry · (a"rxz) +rx · a"ryz

���
(x,x/")

+ "ry · a"ryz(x,x/")

= S(3)
"

(x,x/")� "(W (x)� �0)r�0(x) ·�(1)(y) .

(4.5)

By Proposition 4.1, for any ↵2Nd

0 and x2Rd,

k@↵
x
z(x, ·)kH1(Td) 6Ck@↵

�
(W (x)� �0)r�0(x) ·�(1)(y)

�
kL2(Td)

6C|@↵
�
(W (x)� �0)r�0(x)

�
| .

It follows that

kS(3)
"

(x,x/")kL2(Rd) 6C"3k�xz(x, y)kL2(Rd)⇥L1(Td) + "2krxryz(x, y)kL2(Rd)⇥L1(Td)

6C"3�
5/2

0 +C
"2�20
�(�0)

.(4.6)

Combining (4.1) through (4.6), we arrive at

(L" � e�")(w" � z") =r ·R" + S(1)
"

+ "2(W (x)� �0)rU1 ·�(1)(x/") + S(3)
"

=r ·R" + S̃" .
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1786 SCOTT ARMSTRONG AND RAGHAVENDRA VENKATRAMAN

Here,

kr ·R"kH�1(Rd) + kS̃"kL2(Rd)

6C"2�
3/2

0 +C"2�20+C"3�
5/2

0 +
1

�(�0)
(C"3�

5/2

0 +C"2�30 +C"3�30 +C"2�20) =: �"(�0) .

(4.7)

Step 2. We write R" =
P1

i=1 c",i�",i and S" =
P1

i=1 s",i�",i, where {�",i}1i=1

denote the eigenfunctions of L" normalized so that they form an orthonormal basis
of L2(Rd). Similarly, we write w" � z" =

P1
i=1 d",i�",i. Then,

(L" � e�")(w" � z") =r ·R" + S̃",

together with (4.7), yields

1X

i=1

|d",i|2(�",i � e�")2 6
1X

i=1

|c",i|2 + |s",i|2 6 �"(�0)
2 .(4.8)

Now, as
R
Rd U1�0 dx= 0 by choice,

Z

Rd

w2
"
dx=

Z

Rd

(�0 + "U1 + "r(�0 + "U1) ·�(1)(x/"))2 dx6 1 + �"(�0)

so that, by Plancherel,

1X

i=1

|d",i|2 6 1 + �"(�0) .(4.9)

Step 3. In this step, we restore notating the dependence of various quantities on
k and obtain an intermediate bound. By Proposition 2.2, for all " and j 2N, we have

|�",i � �0,i|6C1"�
3/2

0,i .

As |e�" � �0,j | 6 "|µ1,j | 6 "C2,2,0�
3/2

0,j , it follows from the triangle inequality that, for
all i 6= j, we have

|�",i � e�"|= |�0,i � �0,j + �0,j � e�" + �",i � �0,i|
> �(�0,j)� "(C1 +C2,2,0)�

3/2

0,j .

In particular, if "< �(�0,j)

2(C2,2,0+C1)�
3/2
0,j

, it follows that

|�",i � e�"|>
�(�0,j)

2

for all i 6= j. It follows that

X

i 6=j

|d",i|2 6
�"(�0,j)2

�(�0,j)2
.

From (4.9), it then follows that

��|d",j |2 � 1
��6 �"(�0,j)2

�(�0,j)2
.
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SPECTRUM OF PERIODIC SCHRODINGER OPERATORS 1787

Therefore,

|�",j � e�"|2 6
�"(�0,j)2

1� �"(�0,j)2

�(�0,j)2

6 2�"(�0,j)
2 .

This implies the estimate desired in (1.11). Finally, to prove (1.13), we note that the
eigenfunction  ",j associated to the eigenvalue �",j , which is normalized as in (1.12),
satisfies

(L" � �",j)( ",j � (w" � z")) = (e�" � �",j)(w" � z") +r ·R" + S" .

Then, once again, by Plancherel’s theorem we find that

Z

Rd

( ",j � (w" � z"))
2 dx.

X

i 6=j

|d",i|2 +
��1� |d",j |2

��. �"(�0,j)2

�(�0,j)2
.

Similarly, the H1 estimate is proven by di↵erentiating the equation for  ",j�(w"�z")
and estimating similarly using Plancherel.

Step 4. In order to complete the argument, we must show that µ1,k = 0, and so,
U1,k ⌘ 0. Recall that

µ1,k =

Z

Rd

a(3)
ijp
@2
xjxp

�0,j(x)@xi�0,j(x)dx .

By the symmetry of the Hessian, this means that

µ1,k =

Z

Rd

(a(3)
ijp

+ a(3)
ipj

)@2
xjxp

�0,j@xi�0,j dx= 2

Z

Rd

a(3),s
ijp

@2
xjxp

�0,j@xi�0,j dx .

Integrating by parts twice and then reindexing, we get

µ1,r = 2

Z

Rd

a(3),s
ijp

@2
xixp

�0,j@xj�0,j dx= 2

Z

Rd

a(3),s
pij

@2
xkxj

�0,j@xi�0,j dx,

and similarly,

µ1,k = 2

Z

Rd

a(3),s
jpi

@2
xjxp

�0,j@xi�0,j dx .

Adding and invoking Lemma 2.1, we find that

3µ1,k = 0 .

It follows then that U1,k ⌘ 0, and hence, the conclusion of the theorem is obtained.

The rest of this section develops the machinery and eventually proves the high-
order expansion for a simple eigenvalue �",j of L" from a simple eigenvalue �0,j of
L0 (along with associated expansions for the eigenfunctions). In the remainder of
this section, because we work with a fixed simple eigenvalue �0,j of L0, we omit the
dependence on the index j, henceforth denoting �0,j by �0.

4.2. Formal expansion and heuristic derivation of the corrector equa-
tions. In this subsection, we give some heuristic computations to motivate our as-
ymptotic expansion. Let �0 be an eigenvalue of L0 with eigenfunction u0, and we look
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1788 SCOTT ARMSTRONG AND RAGHAVENDRA VENKATRAMAN

for an eigenpair (u",�") of the heterogeneous operator L" that admits the following
ansatz:

�" = �0 +
1X

j=1

"jµj =
1X

j=0

"jµj ,(4.10)

where, for convenience, we have set µ0 := �0 and

u"(x) =
1X

k=0

1X

m=0

X

|↵|=m

1X

n=m

"k+n@↵
x
Uk(x)�n,↵,k

✓
x,

x

"

◆

=
1X

p=0

pX

k=0

p�kX

m=0

X

|↵|=m

"p@↵
x
Uk(x)�p�k,↵,k

✓
x,

x

"

◆
.(4.11)

The parameters {µj}j2N will be determined together with the functions �n,↵,k(x, y),
called the correctors, which are periodic in the variable y. Note that the correctors
�n,↵,k are indexed by (n,↵, k), where n,k 2N0 and ↵ is a multi-index. We also denote

�
n,m,k

= (�n,↵,k)|↵|=m ,

which is a periodic function taking values in Tm. We may then write the ansatz in
the second line of (4.11) in tensor notation as

u"(x) =
1X

p=0

pX

k=0

p�kX

m=0

"prmUk(x) :�p�k,m,k

⇣
x,

x

"

⌘
.(4.12)

We declare straightaway that the correctors will satisfy the following properties:

�0,0,k = 1 8k 2N and h�p,↵,ki= 1{p=0,↵=0} .(4.13)

Since �p,↵,k only appears in (4.11) if p� |↵| and if all the indices are nonnegative, we
also adopt the convention that

p < |↵| =) �p,↵,k = 0 8p,↵, k(4.14)

and that �p,↵,k = 0 if any index is negative. Throughout, if F (x, y) is a function that
is periodic in the variable y, then we denote by hF i(x) the mean of F (x, ·) and set

F̊ (x, y) := F (x, y)� hF i(x) .(4.15)

To determine the correctors �q,↵,k, the parameters {µj}, and the macroscopic func-
tions {Uk}, we proceed (informally) by plugging the ansatz for u" into the equation
L"u" = �"u". First, we compute the right-hand side of the equation by multiplying
(4.10) and (4.11):

�"u"(x) =
1X

j=0

1X

p=0

pX

k=0

p�kX

m=0

X

|↵|=m

"p+jµj@
↵

x
Uk(x)�p�k,↵,k

✓
x,

x

"

◆

=
1X

p=0

pX

r=0

rX

k=0

r�kX

m=0

X

|↵|=m

"p@↵
x
Uk(x)µp�r�r�k,↵,k

✓
x,

x

"

◆

=
1X

p=0

pX

k=0

p�kX

m=0

X

|↵|=m

"p@↵
x
Uk(x)

pX

r=m

µp�r�r�k,↵,k

✓
x,

x

"

◆
.(4.16)
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SPECTRUM OF PERIODIC SCHRODINGER OPERATORS 1789

We turn to the computation of the left side of the equation, namely, L"u". We first
compute the gradient ru" in coodinates:

@xju"(x)

=

"
�
@xj + "�1@yj

� 1X

p=0

pX

k=0

p�kX

m=0

X

|↵|=m

"p@↵
x
Uk(x)�p�k,↵,k(x, y)

#�����
y= x

"

=
1X

p=0

pX

k=0

p�kX

m=0

X

|↵|=m

✓
"p�1@↵

x
Uk(x)@yj�p�k,↵,k(x, y) + "p@↵+ej

x
Uk(x)�p�k,↵,k(x, y)

+ "p@↵
x
Uk(x)@xj�p�k,↵,k(x, y)

◆����
y= x

"

=
1X

p=0

pX

k=0

p�kX

m=0

X

|↵|=m

"p�1@↵
x
Uk(x)

⇥
⇣
@yj�p�k,↵,k(x, y) + �p�1�k,↵�ej ,k(x, y) + @xj�p�1�k,↵,k(x, y)

⌘����
y= x

"

.

In the last line, we reindexed two of the sums in order to make the common factor
"p�1@↵

x
Uk appear in each of the three terms. This requires changing the bounds on

the summands, and the expression we have written actually has extra terms in the
sum because we did not change the bounds. However, the extra terms correspond to
�p,↵,k with either p = �1 or ↵ = �ej . If we adopt the convention that �p,↵,k := 0 if
any index is negative, then the expression above is valid. We will play the same game
in our computations below.

We next compute

(r · a"ru")(x)

=
dX

i,j=1

�
@xi + "�1@yi

� 1X

p=0

pX

k=0

p�kX

m=0

X

|↵|=m

"p�1@↵
x
Uk(x)

⇥ aij(y)
⇣
@yj�p�k,↵,k(x, y) + �p�1�k,↵�ej ,k(x, y) + @xj�p�1�k,↵,k(x, y)

⌘����
y= x

"

=
1X

p=0

pX

k=0

p�kX

m=0

X

|↵|=m

"p�2@↵
x
Uk

⇥
⇣
ry · ary�p�k,↵,k +ry · arx�p�1�k,↵,k +

dX

i,j=1

@yi

�
aij�p�1�k,↵�ej ,k

�⌘

+
1X

p=0

pX

k=0

p�kX

m=0

X

|↵|=m

dX

i,j=1

"p�1@↵+ei
x

Ukaij

⇥
⇣
@yj�p�k,↵,k + �p�1�k,↵�ej ,k+@xj�p�1�k,↵,k

⌘

+
1X

p=0

pX

k=0

p�kX

m=0

X

|↵|=m

"p�1@↵
x
Uk

⇥
⇣
rx · ary�p�k,↵,k +rx · arx�p�1�k,↵,k +

dX

i,j=1

@xi

�
aij�p�1�k,↵�ej ,k

�⌘����
t= x

"

.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

05
/1

0/
25

 to
 1

28
.1

22
.1

49
.9

2 
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



1790 SCOTT ARMSTRONG AND RAGHAVENDRA VENKATRAMAN

Changing the bounds on the sums in order to factor out the common term "p�2@↵
x
Uk,

we can write this expression as

(r · a"ru")(x)

=
1X

p=0

pX

k=0

p�kX

m=0

X

|↵|=m

"p�2@↵
x
Uk

⇥
✓
ry · ary�p�k,↵,k +ry · arx�p�1�k,↵,k +

dX

i,j=1

@yi

�
aij�p�1�k,↵�ej ,k

�

+
dX

i,j=1

aij
⇣
@yj�p�1�k,↵�ei,k + �p�2�k,↵�ej�ei,k + @xj�p�2�k,↵�ei,k

⌘

+rx · ary�p�1�k,↵,k +rx · arx�p�2�k,↵,k +
dX

i,j=1

@xi

�
aij�p�2�k,↵�ej ,k

�◆
�����
y= x

"

.

In order to simplify this expression, we introduce the vector field fq,↵,k(x, y) with ith
entry given by

�
fq,↵,k

�
i
:=
�
ary�q,↵,k

�
i
+
�
arx�q�1,↵,k

�
i
+

dX

j=1

aij�q�1,↵�ej ,k .

Substituting this expression into the previous display, we get

(r · a"ru")(x)

=
1X

p=0

pX

k=0

p�kX

m=0

X

|↵|=m

"p�2@↵
x
Uk

✓
ry · fp�k,↵,k +rx · fp�1�k,↵,k +

dX

i=1

fp�1�k,↵�ei,k

◆����
y= x

"

.

Combining (4.16) with the previous display and also remembering the Wu" term, we
obtain

�
�r · a"r+W � �"

�
u"

(4.17)

=
1X

p=0

pX

k=0

p�kX

m=0

X

|↵|=m

"p�2@↵
x
Uk

✓
�ry · fp�k,↵,k �rx · fp�1�k,↵,k �

dX

i=1

fp�k,↵�ei,k

+W�p�2�k,↵,k �
p�2X

r=|↵|

µp�2�r�r�k,↵,k

◆����
y= x

"

.

Our ansatz would obviously be very good if the term inside parentheses on the right
side of (4.17) was zero (or at least very small), for every (p,↵, k). But, before aiming
for such a lofty goal, we first insist that it be macroscopic, that is, independent of the
variable y. This is the same as demanding that it be equal to its mean over y 2 Td.
In view of (4.13), this is
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SPECTRUM OF PERIODIC SCHRODINGER OPERATORS 1791

�ry · fp�k,↵,k �rx · fp�1�k,↵,k �
dX

i=1

fp�1�k,↵�ei,k +W�p�2�k,↵,k

�
p�2X

r=|↵|

µp�2�r�r�k,↵,k

=�rx · hfp�1�k,↵,ki �
dX

i=1

hfp�1�k,↵�ei,ki+W (x)1{p=k+2,↵=0}

�
p�2X

r=|↵|

µp�2�r1{r=k,↵=0} .

We can rewrite this, using the notation (4.15) and substituting q= p� k, as

�ry · ary�q,↵,k =ry · arx�q�1,↵,k +
dX

i,j=1

@xi

�
aij�q�1,↵�ej ,k

�

+rx · f̊q�1,↵,k +
dX

i=1

f̊q�1,↵�ei,k �W
�
�q�2,↵,k � 1{q=2,|↵|=0}

�

+
q+k�2X

r=|↵|

µq+k�2�r

�
�r�k,↵,k � 1{r=k,|↵|=0}

�
.(4.18)

This is the sequence of corrector equations we have been seeking. Observe that this
equation involves the constants {µk : k 2 {0, . . . , q + k �m� 2}, which are a priori
unknown. This is because these corrector equations have to be understood as coupled
to the macroscopic equations, which we introduce next. Define the homogenized
coe�cients by

aq,↵,k := hfq,↵,ki .

We note that aq,↵,k is Rd-valued and depends on the macroscopic variable x. Assuming
for the moment that the corrector equation (4.18) is satisfied, we insert it back into
(4.17) to obtain

(4.19)
�
�r · a"r+W � �"

�
u"

=
1X

p=0

pX

k=0

p�kX

m=0

X

|↵|=m

"p�2@↵
x
Uk

✓
�rx · ap�1�k,↵,k �

dX

i=1

ap�1�k,↵�ei,k

+W1p=k+2,|↵|=0 �
p�2X

r=m

µp�2�r1r=k,|↵|=0

◆

=�rx ·
1X

p=0

pX

k=0

p�kX

m=0

X

|↵|=m

"pap+1�k,↵,k @
↵

x
Uk +

1X

p=0

"pWUp �
1X

p=0

pX

k=0

"pµp�kUk

=
1X

p=0

"p
✓
�rx ·

0

@
pX

k=0

p�kX

m=0

X

|↵|=m

ap+1�k,↵,k @
↵

x
Uk

1

A+WUp �
pX

k=0

µp�kUk

◆
.
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1792 SCOTT ARMSTRONG AND RAGHAVENDRA VENKATRAMAN

This is the macroscopic equation, or, to be more precise, it encodes a sequence of
macroscopic equations—one for every p2N0:

�rx ·

0

@
pX

k=0

p�kX

m=0

X

|↵|=m

ap+1�k,↵,k @
↵

x
Uk

1

A+WUp =
pX

k=0

µp�kUk .(4.20)

If we can find {µk} and {Uk} solving the system (4.20), with correctors �q,↵,k solving
(4.18), then we will be able to show that the function u" is close to a true eigenfunction
of the operator L", with eigenvalue close to �".

Before we consider the hierarchy of equations in (4.20) in more detail, we make
some remarks about the first few homogenized coe�cients. First, for every k 2N and
j 2 {1, . . . , d}, the corrector �1,ej ,k is the usual first-order corrector in homogenization
theory. In particular, it is independent of x and solves the equation

�r · a(ej +r�1,ej ,k) = 0 .

We deduce that, for each k 2 N, the (i, j)th entry of the usual homogenized matrix
a in elliptic homogenization theory is equal to the ith component of the coe�cient
a1,ej ,k defined above (which, in particular, does not depend on x):

aij =
�
a1,ej ,k

�
i
.

Recalling also that µ0 = �0, we may therefore write (4.20) as

�r · arUp + (W � �0)Up =rx ·

0

@
p�1X

k=0

p�kX

m=0

X

|↵|=m

ap+1�k,↵,k @
↵

x
Uk

1

A+
p�1X

k=0

µp�kUk .

(4.21)

This equation gives us hope that we can solve for Up, provided that we have already
determined U0, . . . ,Up�1 and µ1, . . . , µp as well as aq,↵,k for every (q,↵, k) with 2 
q + k  p + 1 and 0  |↵|  q � 1. We will require that Uk be orthogonal to U0 in
L2(Rd) for every k� 1:

Z

Rd

Uk(x)U0(x)dx= 0 8k� 1 .(4.22)

We can determine the values of {µk} requiring that (4.21) be solvable; that is,
the right side of (4.21) must be orthogonal to U0. This yields a formula for µp:

µp =

Z

Rd

µpU
2
0 =

p�1X

k=0

µp�k

Z

Rd

UkU0 =
p�1X

k=0

p�kX

m=0

X

|↵|=m

Z

Rd

ap+1�k,↵,k @
↵

x
Uk ·rxU0 .

This gives a formula for µp in terms of U0, . . . ,Up�1 and the tensors aq,↵,k with indices
(q,↵, k) satisfying 2 q+ k p+ 1 and 0 |↵| q� 1.

4.3. Rigorous construction with estimates. In this subsection, we use the
foregoing formal argument to provide a rigorous inductive proof to show that the
higher-order correctors {�

q,m,k
} and e↵ective tensors {aq,m,k} are well defined for

q,m,k 2 N0. This amounts to showing that we can solve the corrector equations in
some appropriate order so that all the terms on the right side have been already
previously defined.
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SPECTRUM OF PERIODIC SCHRODINGER OPERATORS 1793

In this section, we employ tensor notation instead of the multi-index notation
from the previous section. All tensors are actually indexed by these multi-indices,
and the precise meaning of the (implicit) tensor contractions (sometimes denoted by
“:”) can be inferred from the computations in the previous section. However, these
turn out to be not very important for the computations that follows, and so, for
convenience, we use the more compact tensor notation.

As in the rest of this section, we assume that �0 is a simple eigenvalue of the
homogenized operator L0 := �r · ar+W and U0 is a corresponding eigenfunction
such that kU0kL2(Rd) = 1.

Base case. We initialize the construction by making the following definitions for
the first few correctors and e↵ective parameters:

• We set µ0 := �0.
• We take �0,0,k := 1, as well as f0,0,k := 0 and a0,0,k := 0, for every k 2N0.
• �

q,0,k := 0, as well as fq,0,k := 0 and aq,0,k := 0, for every q, k 2N, k 2N0.
• �

q,m,k
:= 0, as well as fq,m,k := 0 and aq,m,k := 0, for every q,m,k 2 N0 with

m> q.
• We define �1,1,k for each k 2 N0 to be the usual first-order corrector in

classical periodic homogenization, that is, the solution of
(

�ry · ary�1,1,k =ry · (a⌦ 1) in Td,

h�1,1,ki= 0.
(4.23)

We also define

f1,1,k := a(I +ry�1,1,k) and a1,1,k := hf1,1,ki.

Observe that a1,1,k corresponds to the usual homogenized matrix in classical
homogenization a. Note that �1,1,k, f1,1,k, and a1,1,k depend on neither the
index k nor the slow variable x.

• We define �2,1,k := 0, as well as f2,1,k := 0 and a2,1,k := 0, for every k 2N0.
• We define �2,2,k for each k 2N0 to be the solution of

(
�ry · ary�2,2,k =ry · (a⌦�1,1,k) + a⌦ 1 + ary�1,1,k � a1,1,k in Td,

h�2,2,ki= 0.

(4.24)

We also define

f2,2,k := ary�2,2,k + a⌦�1,1,k and a2,2,k := hf2,2,ki.

Note that �2,2,k is the second-order corrector and a2,2,k is the usual third-
order homogenized matrix in classical homogenization. In particular, �2,2,k,
f2,2,k, and a2,2,k depend on neither the index k nor the slow variable x, and
the symmetric part of a2,2,k vanishes.

Induction step. Let us suppose that, for some integer K 2N, K � 2, we have defined
�

q,m,k
, the associated fluxes fq,m,k, and homogenized coe�cients aq,m,k for indices

(q,m,k)2 J(K) :=
�
(q,m,k) : m2N0, 0 kK, 0 qK + 2� k

 
,(4.25)

as well as µk and Uk for every k 2 {0, . . . ,K � 2}. Note that, for K = 2, we defined
these objects in the base case above.
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1794 SCOTT ARMSTRONG AND RAGHAVENDRA VENKATRAMAN

We then make the following definitions.
• We define µK�1 by

µK�1 :=
K�2X

k=0

K�kX

m=1

Z

Rd

aK�k,m,k :rmUk :rU0 .(4.26)

• We define the macroscopic function UK�1 to be the unique solution of

(L0 � µ0)UK�1 =
K�2X

k=0

µK�1�kUk +r ·
K�2X

k=0

K�kX

m=1

aK�k,m,k :rmUk in Rd ,

(4.27)

which is orthogonal to U0 in L2(Rd). Note that this indeed uniquely deter-
mines UK�1 since µK�1 was chosen above so that the right side of (4.27) is
orthogonal to the eigenspace of L0 corresponding to µ0.

• The functions �2,m,k
, as well as f2,m,k and a2,m,k, have already been defined

in the base case above for every k and, in particular, for k=K+1. The only
nonzero function among these is �2,2,k, which was defined in (4.24).

• We define �
q,m,k

for each (q,m,k)2 J(K+1)\J(K), q 6= 2, to be the solution
of

8
>>>>>>><

>>>>>>>:

�ry · ary�q,m,k
=ry · (a⌦�

q�1,m�1,k) +ry · arx�q�1,m,k

+ f̊q�1,m�1,k +rx · f̊q�1,m,k

�W (x)�̊
q�2,m,k

+
q�2+kX

r=m+k

µq�2+k�r�̊r�k,m,k
in Td,

h�
q,m,k

i= 0.

(4.28)

Note that q 6= 2 implies q � 3, and thus, k K. Therefore, all the terms on
the right side have been defined already by the induction hypothesis because
all the index triples belong to J(K) and the highest index i of µi that appears
in (4.28) is i=K � 1, which we have above defined in (4.26). Moreover, the
right side of the equation has zero mean, and so, the equation is uniquely
solvable. We then define

fq,m,k := arx�q�1,m,k
+ a⌦�

q�1,m�1,k + ary�q,m,k
,(4.29)

and then

aq,m,k(x) := hfq,m,k(x, ·)i.(4.30)

We have therefore defined �
q,m,k

, the associated fluxes fq,m,k, and homogenized co-
e�cients aq,m,k for every (q,m,k) 2 J(K + 1). By induction, this concludes the
construction of the correctors, homogenized tensors.

4.4. Regularity estimates. In this section, we study the regularity, with re-
spect to the slow variable x, of the objects defined above in section 4.3. This amounts
to going over the entire recursive construction, step by step, and estimating all x
derivatives of each newly defined object. This is a rather laborious and tedious but
straightforward process.
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SPECTRUM OF PERIODIC SCHRODINGER OPERATORS 1795

The regularity of the e↵ective homogenized tensors aq,m,k will follow from the
regularity of the fluxes fq,m,k, and the latter will be obtained rather easily from the
product rule and the regularity in x of the correctors �

q,m,k
. The latter will be

obtained by repeatedly di↵erentiating the equation for the correctors and using the
regularity of all objects previously defined. Fortunately, every term in (4.28), with
one exception, has only one factor with x dependence. The exception is the term
W (x)�

q�2,m,k
, which is simple to di↵erentiate and estimate. Therefore, the compu-

tation is not overly involved.
We begin with a preliminary lemma that we repeatedly invoke in our bounds for

�
q,m,k

and hence the corrections aq,m,k, µk, and Uk.

Lemma 4.1. Let � :Rd ⇥Td !R be the unique periodic (in y) solution to

�ry · ary�=ry · F +G, h�(x,0)i= 0,(4.31)

where F,G2H1
per

(Td,C1(Rd)) with hG(x, ·)i= 0 for every x. Then, for every x2Rd,

kry@
↵

x
�(x, ·)kL2(Td) 6C

�
k@↵

x
F (x, ·)kL2(Td) + k@↵

x
G(x, ·)kL2(Td)

�
(4.32)

for a universal constant C(✓, d)> 0 and for any multi-index ↵2Nd

0.

Proof. We set v := @↵
x
�, for any ↵2Nd

0. Then, it is clear that hv(x, ·)i= 0 by the
choice of normalization in �. Moreover, v satisfies

�ry · aryv=ry · @↵xF + @↵
x
G.(4.33)

Multiplying the equation by v, integrating by parts on Td, and using the ellipticity of
a and Cauchy–Schwarz and Poincaré inequalities, we obtain the desired estimate.

We are now ready to prove regularity estimates for each object constructed in
section 4.3.

Proposition 4.2. There exists C(d,✓)<1 such that, for every q,m,k 2N with
m q,

8
>>>>>>>><

>>>>>>>>:

|µk|
�

3k
2

�(�)k�1
exp
�
Ck+1

�
,

|||Uk|||�,Ck  �
3k
2

�(�)k
exp
�
Ck+1

�
,

1

(q+ l)!
sup
x2Rd

�
�+ |x|2

�� 1

2
(q�l)krl

x
�

q,m,k
(x, ·)kH1(Td) 

exp(Cq�m+k)

�(�)(q�2�m)+
,

(4.34)

where we recall that �(�) is the spectral gap of the simple eigenvalue �.

Proof. We argue by induction, following the same procedure as in the construction
of the objects.

Step 1. We begin by noticing that each of the objects introduced in the “base
case” of the construction; in particular, for every (q,m,k) 2 J(2) and (q,m,k) 2
{(2,2, k) : k 2N}, we have that estimates (4.34) are satisfied.

Turning to the induction step, we suppose that A,B 2 [1,1) and K 2N are such
that, for every (q,m,k)2 J(K),
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1796 SCOTT ARMSTRONG AND RAGHAVENDRA VENKATRAMAN

8
>>>>>>>><

>>>>>>>>:

|µk|
�

3k
2

�(�)k�1
exp
�
Ak+1

�
,

|||Uk|||�,Bk  �
3k
2

�(�)k
exp
�
Ak+1

�
,

1

(q+ l)!
sup
x2Rd

�
�+ |x|2

�� 1

2
(q�l)krl

x
�

q,m,k
(x, ·)kH1(Td) 

exp(Aq�m+k)

�(�)(q�2�m)+
,

(4.35)

with the last estimate holding for every l 2N0. Recall that J(K) is defined in (4.25).
We will show that, if A and B are chosen su�ciently large, depending only on (d,✓),
then the same estimates are valid for (q,m,k)2 J(K + 1).

Step 2. We record estimates for fq,m,k. The claim is that, for every (q,m,k) 2
J(K), and for every l 2N0,

1

(q+ l)!
sup
x2Rd

(�+ |x|2)� 1

2
(q�l)krl

x
fq,m,k(x, ·)kL2(Td) 

1

�(�)(q�2�m)+
exp
�
Aq�m+k

�
.

(4.36)

Compute, using the induction hypothesis, for every (q,m,k)2 J(K),

krl

x
fq,m,k(x)kL2(Td)

 karl+1
x

�
q�1,m,k

kL2(Td) + ka⌦rl

x
�

q�1,m�1,kkL2(Td) + karyrl

x
�

q,m,k
kL2(Td)

 (q+ l)!
1

�(�)(q�3�m)+
(�+ |x|2) 1

2
(q�l�2) exp

�
Aq�m+k�1

�

+ (q+ l� 1)!
1

�(�)(q�2�m)+
(�+ |x|2) 1

2
(q�l�1) exp

�
Aq�m+k

�

+ (q+ l)!
1

�(�)(q�2�m)+
(�+ |x|2) 1

2
(q�l) exp

�
Aq�m+k

�

C(q+ l)!
1

�(�)(q�2�m)+
(�+ |x|2) 1

2
(q�l) exp

�
Aq�m+k

�
.

This yields (4.36); moreover, by the definition in (4.30), the homogenized tensors then
satisfy

1

(q+ l)!
sup
x2Rd

(�+ |x|2)� 1

2
(q�l)|rl

x
aq,m,k(x)|6C

1

�(�)(q�2�m)+
exp(Aq�m+k) .(4.37)

Step 3. The estimate for µK�1. By our induction hypothesis, we have

�����

K�2X

k=1

µK�1�k

Z

Rd

UkU0

�����
K�2X

k=1

|µK�1�k|kUkkL2(Rd)kU0kL2(Rd)


K�2X

k=1

�
3

2
(K�1�k)+ 3k

2

�(�)K�1�k�1+k
exp
�
AK�1�k +Ak)

C
�

3

2
(K�1)

�(�)K�2
(K � 2) exp

�
AK�2

�
.
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SPECTRUM OF PERIODIC SCHRODINGER OPERATORS 1797

We recall, by the energy bound, that krU0kL2(Rd) 
p
� and next estimate

�����

K�2X

k=0

K�kX

m=1

Z

Rd

aK�k,m,k :rmUk :rU0

�����

 krU0kL2(R2)

K�2X

k=0

K�kX

m=1

✓Z

Rd

|aK�k,m,k|2|rmUk|2
◆1/2

C
p
�

K�2X

k=0

K�kX

m=1

(K�k)!
exp(AK�m)

�(�)(K�k�m�2)+

✓Z

Rd

(�+|x|2)K�k|rmUk(x)|2 dx
◆1/2

C
p
�

K�2X

k=0

K�kX

m=1

(Bk)K�k+m⇤m

2 (K�k)!2m!
exp(AK�m)

�(�)(K�k�m�2)+
|||Uk|||�,Bk

C�1+
3

2
(K�2)

K�2X

k=0

K�kX

m=1

(K�k)!3⇤m

2
1

�(�)(K�k�m�2)++k

⇥ exp
�
AK�m+Ak+k(K�k+m) logB+m log⇤2

�

 C�
3

2
(K�1)

�(�)K�2
K2(K!)3 exp

�
AK�1+AK�2+K2 logB+K log⇤2

�
.

Using the triangle inequality and (4.26) and choosing B su�ciently large depending
on A, we have that

|µK�1|
C�

3

2
(K�1)

�(�)K�2
exp(AK) .

Step 4. We estimate |||r · (aK�k,m,k :rmUk)|||�,⇥ for each ⇥> 0. We will show
that, for each m� 2,

|||r · (aK�k,m,k :rmUk)|||�,C⇥

 1

�(�)(K�k�2�m)+
exp(AK�m)|||Uk|||�,⇥(C⇥)K�k⇤m

2 (K � k+m)!.(4.38)

We have that

rl+1(aK�k,m,k :rmUk) =
l+1X

j=0

✓
l+ 1

j

◆
rjaK�k,m,k :rl+m+1�jUk.

We estimate the ||| · |||�,⇥ norm of each term on the right side; by (4.37) in step 2, we
have

✓Z

Rd

(�+ |x|2)n
��rjaK�k,m,k

��2��rl+m+1�jUk

��2 exp
�
(↵|x|2 � c2�)+

�
dx

◆1/2

 1

�(�)(K�k�m�2)+
exp(AK�m)

⇥
✓Z

Rd

(�+ |x|2)n+K�k�j
��rl+m+1�jUk

��2 exp
�
(↵|x|2 � c2�)+

�
dx

◆1/2

 1

�(�)(K�k�m�2)+
exp(AK�m)

⇥ |||Uk|||�,⇥⇥n+K+l+m+1�k�2j⇤l+m+1�j

2 (n+K�k�j)!(l+m+1�j)! .
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1798 SCOTT ARMSTRONG AND RAGHAVENDRA VENKATRAMAN

Substituting this estimate into the identity above and using the triangle inequality,
we obtain

✓Z

Rd

(�+ |x|2)n
��rl+1(aK�k,m,k :rmUk)

��2 exp
�
(↵|x|2 � c2�)+

�
dx

◆1/2


l+1X

j=0

✓
l+1

j

◆✓Z

Rd

(�+|x|2)n
��rjaK�k,m,k

��2��rl+m+1�jUk

��2 exp
�
(↵|x|2�c2�)+

�
dx

◆1/2

 1

�(�)(K�k�m�2)+
exp(AK�m)|||Uk|||�,⇥(C⇥)n+K+l+m+1�k⇤l+m+1

2 (K�k+m)!n!l!.

Taking the supremum over n and l yields (4.38).
Step 5. The estimate for UK�1. We apply Lemma 3.3 to (4.27) for UK�1 and use

the triangle inequality to get

(4.39)

|||UK�1|||�,C⇥

 �(�)�1

 
K�2X

k=0

|µK�1�k| · |||Uk|||�,⇥ +
K�2X

k=0

K�kX

m=1

|||r · (aK�k,m,k :rmUk)|||�,C⇥

!
.

Recall, in the induction step, that we must estimate UK�1 in the ||| · |||�,C⇥ norm
with the choice C =B,⇥=BK�2 so that C⇥=BK�1. We estimate the second term
on the right side by

K�2X

k=0

K�kX

m=1

|||r · (aK�k,m,k :rmUk)|||�,CBk


K�2X

k=0

K�kX

m=1

1

�(�)(K�k�m�2)+
exp(AK�m)|||Uk|||�,Bk(CBk)K�k⇤m

2 (K � k+m)!


K�2X

k=0

1

�(�)(K�k�3)++k
(CBk)K�k�

3k
2 exp(AK�1 +Ak+1)(K � k+ 1)!

K(K + 1)!
�

3

2
(K�2)

�(�)K�2
(CB

K2

4 ) exp(AK�1 +AK�1)

 �
3

2
(K�2)

�(�)K�2
exp

✓
2AK�1 + (K + 2) log(K + 2) + K

2

4 logB

◆
.

In the above, we tacitly used the inequality that ||| · |||�,BK�1  ||| · |||�,Bk for any
k  K � 1. Once more, choosing B suitably large in terms of A, this completes the
induction step for estimating |||UK�1|||�,BK�1 since, from (4.39) using the triangle
inequality, we get

|||UK�1|||�,BK�1 6 �
3

2
(K�2)

�(�)K�1
exp(AK) .
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SPECTRUM OF PERIODIC SCHRODINGER OPERATORS 1799

Step 6. The estimates for �
q,m,k

for (q,m,k)2 J(K+1). By Lemma 4.1, we have

kryrl

x
�

q,m,k
(x, ·)kL2(Td)

 ka⌦rl

x
�

q�1,m�1,k(x, ·)kL2(Td) + karl+1
x

�
q�1,m,k

(x, ·)kL2(Td)

+ krl

x̊
fq�1,m�1,k(x, ·)kL2(Td) + krl+1

x
f̊q�1,m,k(x, ·)kL2(Td)

+ krl

x
(W �̊

q�2,m,k
)(x, ·)kL2(Td) +

q�2+kX

r=m+k

|µq�2+k�r|krl

x
�̊

r�k,m,k
(x, ·)kL2(Td) .

Using the induction hypothesis and (4.36), we can bound the terms on the first two
lines by

(�+ |x|2)� 1

2
(q�l�1)

�(�)(q�m�2)+
exp
�
Aq�m+k

�
.

The first term on the third line is bounded by

krl

x
(W �̊

q�2,m,k
)(x, ·)kL2(Td)

Cl

lX

j=0

��rj

x
W (x)

����rl�j

x
�̊

q�2,m,k
(x, ·)

��
L2(Td)

C`

lX

j=0

(1 + |x|2) 1

2
(2�j)(�+ |x|2) 1

2
(q�2�l+j) 1

�(�)(q�m�4)+
exp
�
Aq�m+k

�

 (�+ |x|2) 1

2
(q�l)

�(�)(q�m�4)+
exp
�
Aq�m+k

�
.

To prepare for the estimate of the second term on the third line, we first observe that,
for every r 2 {m+ k, . . . , q+ k� 2},

|µq�2+k�r|krl

x
�̊

r�k,m,k
(x, ·)kL2(Td)

 �
3

2
(q�2+k�r)

�(�)q�3+k�r

1

�(�)(r�k�m�2)+
exp
�
Aq+k�r�1 +Ar�m

�
(�+ |x|2) 1

2
(r�k�l)

 (�+ |x|2) 3

2
(q�2+k�r)(�+ |x|2) 3

2
(r�k�l)

�(�)q�3�m
exp
�
Aq�m�1 +Aq�m+k�2

�

=
(�+ |x|2) 3

2
(q�l�2)

�(�)q�3�m
exp(Aq�m�1 +Aq�m+k�2)

and then sum this over r 2 {m+ k, . . . , q+ k� 2} to get

q�2+kX

r=m+k

|µq�2+k�r|krl

x
�̊

r�k,m,k
(x, ·)kL2(Td)

 (q�m� 2)
(�+ |x|2) 3

2
(q�l�2)

�(�)q�3�m
exp
�
Aq�m�1 +Aq�m+k�2

�

 1

�(�)q�3�m
(�+ |x|2) 3

2
(q�l�2) exp(Aq�m+k) .

Combining the above displays yields

kryrl

x
�

q,m,k
(x, ·)kL2(Td) 

(�+ |x|2) 3

2
(q�l)

�(�)(q�m�2)+
exp
�
Aq�m+k

�
.

This completes the induction step and the proof of the proposition.
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1800 SCOTT ARMSTRONG AND RAGHAVENDRA VENKATRAMAN

4.5. Higher-order expansions for simple eigenvalues. Given the explicit
construction of higher-order correctors {�

q,m,k
}, along with their homogenized tensors

aq,m,k, the sequence {µk}k, and smooth functions {Uk}k, we are now ready to prove
Theorem 1.3 on the higher-order expansion of a simple eigenvalue.

Proof of Theorem 1.3. The proof of this theorem proceeds similarly to that of
Theorem 1.1, and we follow similar steps—naturally, the associated computations are
more involved.

We let P 2N be an integer that will be fixed at the end of the proof.
Step 1. We set

e�" := �0 + "µ1 + · · ·+ "PµP

and

w"(x) :=
PX

p=0

pX

k=0

p�kX

m=0

rmUk(x) :�p�k,m,k

�
x,

x

"

�
.

Then, the derivation leading up to (4.19) shows that

�r · a"rw" + (W (x)� e�")w"

=
PX

p=0

"p
✓
(L0��0)Up�

p�1X

k=1

✓
r ·

p+1�kX

m=1

ap+1�k,m,k :rmUk+µp�kUk

◆◆
+r ·R"+S",

where, by Proposition 4.2, the functions R" and S" satisfy

kR"kL2(Rd) + kS"kL2(Rd) 6C"P
�

3P/2

0

�(�0)P�1
exp(AP+1) .(4.40)

Step 2. We set �(",�0) :=
"�

3/2
0

�(�0)
, which, by (1.10), is smaller than 1. To complete

the argument, it remains to minimize the function f(P ) := �P exp(AP+1) over P 2
(1,1). Toward this goal, it is easily seen that f(P ) ! 1 as P ! 1 and f(1) =
� exp(A2) =O(�). At an interior critical point, we must have f 0(P ) = 0 so that

0 =
f 0(P )

f(P )
= log �+AP+1 logA

so that the optimal choice P⇤, namely,

P⇤ ⇠
1

logA
log

| log �|
logA

,

and correspondingly,

f(P⇤) = �P exp(AP+1) = exp(P log �+AP+1)

= exp

✓
log �

logA
log

| log �|
logA

+
| log �|
logA

◆

= exp
�
�| log

A
�| log | log

A
�|+ | log

A
�|
�
.

It follows that f(P⇤)6 ⇢(�(",�0)) = ⇢
�
"�

3/2
0

�(�0)

�
, where ⇢(t) := tc log | log t|. Inserting this

into (4.40), we obtain that

kR"kL2(Rd) + kS"kL2(Rd) 6 �(�0)⇢

✓
"�

3/2

0

�(�0)

◆
.

The proof is now completed exactly as in step 3 of Theorem 1.1.
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SPECTRUM OF PERIODIC SCHRODINGER OPERATORS 1801

5. Expansions for highmultiplicity eigenvalues and their eigenfunctions.

5.1. First-order expansions for multiple eigenvalues. In this section, we
consider expansions for eigenvalues that are of high multiplicity. To be precise, let
�0,j = �0,j+1 = · · · = �0,j+N�1 be an eigenvalue of L0 of multiplicity N > 1, and let
{�0,j+r}N�1

r=0 denote the associated eigenfunctions of L0. Here, as usual, we have used
the enumeration of the eigenvalues of L0 in nondecreasing order, repeated according
to multiplicity. We seek to expand the eigenvalues {�",j+r}N�1

r=0 of the operator L"

and their associated eigenfunctions. Toward this goal, we begin with a preliminary
lemma that we will crucially use.

Next, we define the matrix D via

Drs :=
dX

i=1

Z

Rd

a3,ei,0 ·r�0,j+r@xi�0,j+s dx+
X

|↵|=2

Z

Rd

a3,↵,0@
↵

x
�0,j+s ·r�0,j+r dx .

(5.1)

The next lemma collects properties of D that will be crucially used in the sequel.

Lemma 5.1. The matrix D satisfies

Drs =
dX

i,k=1

⌦
�1,ek,0�1,ei,0

↵Z

Rd

(W (x)� µ0)@xk�0,j+r(x)@xi�0,j+s(x)dx .(5.2)

In particular, D is symmetric.

Proof. Repeating the proof of Lemma 2.1—i.e., utilizing that when |↵|= 2, then
a3,↵,0 is constant—and integrating by parts three times yields that the second group
of terms in Drs evaluate to zero. It therefore remains to compute the first term. Using
the definition of the higher-order homogenized tensors, we have

a3,ei,0 = hary�3,ei,0i ,

where the higher-order corrector �3,ei,0 is the unique mean-zero (in y) solution to

ry · ar�3,ei,0 = (W (x)� µ0)�1,ei,0 .

Testing this equation (in the fast variable) with �1,ek,0 and using the PDE satisfied
by the first-order corrector �1,ek,0 yields

�(a3,ei,0)k =�ek ·
Z

Td

ary�3,ei,0 dy=

Z

Td

r�1,ek,0 · ar�3,ei,0 dy

=�(W (x)� µ0)

Z

Td

�1,ek,0�1,ei,0 dy .

This completes the proof.

We are now ready to prove Theorem 1.4.

Proof of Theorem 1.4. We have shown in Lemma 5.1 that D is symmetric. Now,
we let r 2 {0, . . . ,N � 1}, and let µ2,j+r denote the rth eigenvalue of the matrix D
along with the eigenvector er (by symmetry and our assumption, we can arrange the
µ2,j+r in increasing order). We also define

U0,j+r :=
N�1X

s=0

er
s
�0,j+s .
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1802 SCOTT ARMSTRONG AND RAGHAVENDRA VENKATRAMAN

Here, er := (er1, . . . , e
r

n
) denotes the eigenvector of the matrix D associated to the

eigenvalue µ2,j+r. Then, clearly, L0U0,j+r = �0,jU0,j+r and
Z

Rd

U0,j+rU0,j+s =

⇢
1 r= s,
0 r 6= s.

(5.3)

As in the proof of Theorem 1.1, we let

e�",j+r := �0,j + "2µ2,j+r ,

and we set

w",j+r :=U0,j+r + "2U2,j+r + "r(U0,j+r + "2U2,j+r) ·�(1)(x
"
) ,

where U2,j+r is the unique solution to

(L0 � µ0)U2,j+r = µ2,j+rU0,j+r +rx ·
2X

m=1

X

|↵|=m

a3,↵,0@
↵

x
U0,j+r ,

which is orthogonal to each of {�0,j+s}N�1
s=0 .

We observe that, by choice of µ2,j+r, such a solution exists for each r= 0, . . . ,N�1.
By linearity, this solution is also orthogonal to {U0,j+r : r= 0, . . . ,N � 1}.

Finally, as in the proof of Theorem 1.1, for fixed x2Rd, we let zj+r(x, ·) :Td !Rd

denote the unique H1(Td) mean-zero solution to the PDE

r · arzj+r(x, y) = (W (x)� �0,j)rU0,j+r ·�(1)(y) .

We then set z",j+r(x) := "3zj+r(x,x/") .
Step 2. In this step, we compute (L" � e�")w". Proceeding as in the proof of

Theorem 1.1, we find that

(L" � e�")(w" � z",j+r) = (L0 � �0)U0,j+r

+ "2
✓
(L0 � �0)U2 + (W (x)� �0)U2 � µ2U0

�rx ·
2X

m=1

X

|↵|=m

a3,↵,0@
↵

x
U0

◆

+r ·
 

dX

k=1

s"
ek

� �1,"
ek

a"
!
r@xk(U0 + "2U2)

+ "2rx ·
2X

m=1

X

|↵|=m

a3,↵,0@
↵

x
U0

+ "3(W (x)� �0)rU2 · �(1)(x
"
) + (W (x)� �0)z",j+r

� "3µ2r(U0 + "2U2) · �(1)(x
"
)� "4µ2U2 .

By definition, the first two lines of the preceding display are zero. By the computa-
tions in Theorem 1.1 (specifically, those involving the second-order corrector equation
and leading up to (4.1)) and using the symmetry property of a(3) from Lemma 2.1,
we obtain that the third line rewrites in divergence form as r ·R", with R" satisfying
the bound

kr ·R"kH�1(Rd) 6 kR"kL2(Rd) 6C"2�
3/2

0 +C"3
�

5/2

0

�(�0)
.
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SPECTRUM OF PERIODIC SCHRODINGER OPERATORS 1803

Writing the term in the fourth line, which is in divergence form, as r · R̃", we
easily have the estimate

kr · R̃"kH�1(Rd) 6C"2�0 .

Finally, combining the fifth and sixth lines and denoting them by S", we estimate
similarly to (4.6)

kS"kL2(Rd) 6C"3�
5/2

0,j +C
"2�20,j
�(�0,j)

.

Therefore, we can write

(L" � e�",j+r)(w",j+r � z",j+r) =r ·R",j+r + S̃",j+r,(5.4)

with

kr ·R",j+rkH�1(Rd) + kS̃",j+rkL2(Rd) 6C"2�
3/2

0,j +C
"2�30,j
�(�0,j)

.

In order to proceed as in step 2 of the proof of Theorem 1.1, we make some preliminary
observations about a convenient basis in which to solve (5.4). We note that, for any
r, s2 {0, . . . ,N � 1}, in light of (5.3),

Z

Rd

w",j+rw",j+s dx

=

Z

Rd

�
U0,j+r + "U2,j+r + "r(U0,j+r + "U2,j+r) ·�(1)(x

"
)
�

⇥
�
U0,j+s + "U2,j+s + "r(U0,j+s + "U2,j+s) ·�(1)(x

"
)
�
dx

=

Z

Rd

U0,j+rU0,j+s dx+ "

✓Z

Rd

U2,j+rU0,j+s +

Z

Rd

U0,j+rU2,j+s

◆

+ "

✓Z

Rd

U0,j+rrU0,j+s ·�(1)(x
"
) +U0,j+srU0,j+r ·�(1)(x

"
)

◆
+ �"(�0,j),

with

|�"(�0,j)|6C"2�
3/2

0,j +C
"2�30,j
�(�0,j)

.

Now, by construction,
R
Rd U2,j+rU0,j+s = 0 and

R
Rd U0,j+rU2,j+s = 0, and, for the

other O(") term in the computation above, we observe that
����
Z

Rd

U0,j+rrU0,j+s ·�(1)(x
"
) +U0,j+srU0,j+r ·�(1)(x

"
)

����

6 "kU0,j+rrU0,j+skH1(Rd)k�(1)kH�1(Rd) 6 �"(�0,j) .

In light of (5.3), it then follows that the set {w",j+r}N�1
r=0 is approximately orthogonal

in L2(Rd) :
Z

Rd

w",j+rw",j+s = �rs + �"(�0,j)
2 .(5.5)
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1804 SCOTT ARMSTRONG AND RAGHAVENDRA VENKATRAMAN

In order to complete the argument, we let { ",j+r}N�1
r=0 denote the eigenvalues of L"

associated with �",j , . . . ,�",j+N�1, respectively, that are normalized according to the
conditions

Z

Rd

 ",j+s�0,j+r dx= er
s
.

For each r, s2 {0, . . . ,N � 1}, we set

d",j+r,j+s :=

Z

Rd

�
w",j+r � z",j+r

�  ",j+s

k ",j+skL2(Rd)
dx .

Then, by the triangle inequality and (5.5), we find that

|d",j+r,j+s � �rs|6
����
Z

Rd

(w",j+r � z",j+r)

✓
 ",j+s

k ",j+skL2(Rd)
� (w",j+s � z",j+s)

◆����

6
����

 ",j+s

k ",j+skL2(Rd)
� (w",j+s � z",j+r)

����
L2(Rd)

+ �"(�0) .

From (5.4), we find that

N�1X

s=0

(�",j+s � e�",j+r)
2d2

",j+r,j+s
6 �"(�0,j)

2 .

Combining the last two displays yields

|�",j+r � e�",j+r|6 �"(�0,j)

 
1 +

����
 ",j+r

k ",j+rkL2(Rd)
� (w",j+r � z",j+r)

����
L2(Rd)

!
.

To complete the argument, we must estimate the convergence rates for the eigenfunc-
tions, and for this, let us note that

(L" � e�",j+r)

✓
 ",j+r

k ",j+rkL2(Rd)
� (w",j+r � z",j+r)

◆

= (�",j+r � e�",j+r)
 ",j+r

k ",j+rkL2(Rd)
+r ·R",j+r + S̃",j+r

so that
����

 ",j+r

k ",j+rkL2(Rd)
� (w",j+r � z",j+r)

����
H1(Rd)

6 |�",j+r � e�",j+r|+ �"(�0,j)

6 �"(�0,j)

✓
1 +

����
 ",j+r

k ",j+rkL2(Rd)
� (w",j+r � z",j+r)

����
L2(Rd)

◆
+ �"(�0,j) .

The proof is finished by buckling and using the triangle inequality.

5.2. Rigorous construction and estimates. As is well known from pertur-
bation theory, if �0,j is an eigenvalue of L0 with multiplicity N > 1, then we must
construct all N branches of eigenpairs splitting o↵ of �0,j together since the branches
interact with each other. As in the simple case, our construction of the higher-order
branches will be inductive.
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SPECTRUM OF PERIODIC SCHRODINGER OPERATORS 1805

Base case.
• For each s := {0, . . . ,N � 1}, we set µ0 := �0,j and let {�0,j+r}N�1

r=0 denote
the N orthonormal eigenfunctions of L0 associated to the eigenvalue �0,j ,
which is the jth eigenvalue of L0 in an enumeration of the eigenvalues in
nondecreasing order. In order to ease notation, we will largely suppress the
dependence on the index j in the remainder of this section.

• For all N branches, we initialize our construction by setting �0,0,k = 1, and
we define f0,0,k := 0 and a0,0,k := 0 for every k 2N0.

• �
q,0,k := 0, as well as fq,0,k := 0, and aq,0,k := 0, for every q 2N, k 2N0.

• �
q,m,k

:= 0, as well as fq,m,k := 0 and aq,m,k := 0 for every q,m,k 2 N0 with
m> q.

• We define �1,1,k for each k 2 N0 to be the usual first-order corrector in
classical periodic homogenization, that is, the unique solution of (4.23). Also,
we define

f1,1,k := a(I +ry�1,1,k) and a1,1,k := hf1,1,ki .

As usual, a1,1,k = a is the usual homogenized matrix of classical periodic
homogenization. Note that �1,1,k, f1,1,k, and a1,1,k depend on neither the
index k nor the slow variable x.

• We define �2,1,k := 0, as well as f2,1,k := 0 and a2,1,k := 0, for every k 2N0.
• We define �2,2,k for each k 2N0 to be the unique mean-zero solution of (4.24)

and define f2,2,k := ary�2,2,k + a⌦�1,1,k and a2,2,k := hf2,2,ki .
• We define that

U0,j+r =
N�1X

s=0

er
s
�0,j+s ,(5.6)

where {er
s
}N�1
r,s=0 are the eigenfunctions of the symmetric matrix D, which

form an orthonormal basis of RN . We will denote the N eigenvalues of D by
{µ2,j+r}N�1

r=0 (we recall that �0,j = · · · = �0,j+N�1 and j denotes the lowest
index such that �0,j is an eigenvalue of L0).

• We set µ1,j+r = 0 and also set U1,j+r ⌘ 0 for every r 2 {0, . . . ,N � 1}.
Induction step. Let us suppose that, for some integer K 2N,K > 2, we have defined
�

q,m,k,j+s
, the associated fluxes fq,m,k,j+s, and the homogenized coe�cients aq,m,k,j+s

for indices

(q,m,k)2 J(K) := {(q,m,k) :m2N0,06 k6K,06 q6K + 2� k,06 s6N � 1} .
(5.7)

The higher-order correctors depend on the specific branch s, and this is the reason
for the last index in each of these objects, next to the three familiar ones from the
simple eigenvalue case.

Additionally, in the induction hypothesis, we assume that µk,j+s have been de-
fined for every k 2 {0, . . . ,K� 2}, s2 {0, . . . ,N � 1} along with macroscopic functions
Uk,j+s, and these functions satisfy the normalization conditions

Z

Rd

Uk,j+s�0,j+r dx= ↵k,s,r, k 2 {1, . . . ,K � 4}, r, s2 {0, . . . ,N � 1} .
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1806 SCOTT ARMSTRONG AND RAGHAVENDRA VENKATRAMAN

In the induction step, we give ourselves the task of determining the N branches
of macroscopic correctors at order {UK�1,j+r}N�1

r=0 and {µK�1,j+r}N�1
r=0 , as well as

the normalization conditions ↵K�3,s,t for the function {UK�3,s}N�1
s=0 . We point out

that, as we will explain below, the normalization conditions for a given stage arise
two stages further in the inductive construction as part of a solvability criterion.

Precisely, by the formal derivation of the homogenized equations, we recall that
UK�1,j+r must satisfy

(L0 � �0)UK�1,j+r

=rx ·

0

@
K�2X

k=0

K�1�kX

m=0

X

|↵|=m

aK�k,↵,k,j+r@
↵

x
Uk,j+r

1

A+
K�2X

k=0

µK�1�k,j+rUk,j+r .(5.8)

Solvability for this PDE requires that the right-hand side of (5.8) be orthogonal to
each of {�0,j+t}N�1

t=0 . Imposing this and using (5.6) yields

Z

Rd

K�3X

k=0

K�1�kX

m=0

X

|↵|=m

aK�k,↵,k,j+s ·r�0,j+t@
↵

x
Uk,j+s dx

=
K�1X

k=0

µK�1�k,j+s

Z

Rd

Uk,j+s�0,t dx+ µK�1,j+s

Z

Rd

U0,s�0,t dx

+ µ2,s

Z

Rd

UK�3,j+s�0,t dx .

Observe carefully that the terms corresponding to the index k=K� 2 do not appear
in the preceding display; this is because µ1,j+s = 0 for each s, and the homogenized
coe�cients a2,↵,k,· vanish when |↵| = 1 by the base case. Toward determining the
normalizations ↵K�3,s,t, let us write

UK�3,j+s := ŮK�3,j+s +
N�1X

t=0

↵K�3,s,t�0,t , s= 0, . . . ,N � 1 .

By the induction hypothesis, ŮK�3,j+s, which is the unique solution to the PDE for
UK�3,j+s that is orthogonal to {�0,t}N�1

t=0 , exists. Inserting this decomposition in the
preceding display yields the following problem for µK�1,s and {↵K�3,s,t}N�1

t=0 :

(D� µ2,j+s)

0

B@
↵K�3,s,0

...
↵K�3,s,N�1

1

CA= µK�1,j+s

0

B@
es,0
...

es,N�1

1

CA+ Fj+s ,(5.9)

where Fj+s 2RN is defined via

(Fj+s)t :=�
K�4X

k=1

K�1�kX

m=0

X

|↵|=m

Z

Rd

(aK�k,↵,k,j+s ·r�0,t)@↵xUk,j+s dx

+
K�4X

k=1

µK�1�k,j+s

Z

Rd

Uk,j+s�0,j+t dx .

At this point, we use our assumption that µ2,j+s is a simple eigenvalue of D for
each s2 {0, . . . ,N �1} and that the associated eigenvector is es := (es,0, . . . , es,N�1)t.
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SPECTRUM OF PERIODIC SCHRODINGER OPERATORS 1807

Taking the inner product of (5.9) with the unit vector es and using the symmetry of
D from Lemma 5.1, we find that

µK�1,j+s =�Fj+s · es .

By elementary linear algebra, since the right-hand side of (5.9) is orthogonal to
the kernel of D� µ2,j+s, it follows that we can invert (5.9) to find the undetermined
coe�cients (↵K�3,s,t)

N�1
s,t=0, and, in turn, since UK�3 is then uniquely determined, the

existence of UK�1,j+r is obtained for each r= 0, . . . ,N �1. The macroscopic function
UK�1 is nonunique up to an arbitrary function in the kernel of L0 � �0, which, as
in the induction step, is determined as part of the solvability condition for UK+1.
Toward completing the inductive construction, we notice the following:

• The above argument uniquely determines, for each s 2 {0, . . . ,N � 1},
µK�1,j+s 2 R. It also determines UK�1,j+s 2 L2(Rd), which is unique up
to addition of linear combinations of {�0,j+r}N�1

r=0 .
• Fixing s= 0, . . . ,N�1, the functions �2,m,k

, as well as f2,m,k and a2,m,k, have
already been defined in the base case above for every k, and in particular for
k=K+1. The only nonzero object among these is �2,2,k (and therefore only
a2,2,k). Notice that these objects do not depend on s or on the macroscopic
variable x.

• We define, �
q,m,k,j+s

for each (q,m,k)2 J(K+1)\J(K), q 6= 2, s2 {0, . . . ,N�
1} to be the unique solution of

8
>>>>>>>>><

>>>>>>>>>:

�ry · ary�q,m,k,j+s

=ry · (a⌦�
q�1,m�1,k,j+s

) +ry · arx�q�1,m,k,j+s

+ f̊q�1,m�1,k,j+s +rx · f̊q�1,m,k,j+s �W (x)�̊
q�2,m,k,j+s

+
q�2+kX

r=m+k

µq�2+k�r,j+s�̊r�k,m,k,j+s
in Td,

h�
q,m,k,j+s

i= 0.

(5.10)

Note that q 6= 2 implies q � 3, and thus, k K. Therefore, all the terms on
the right side have been defined already, by the induction hypothesis because
all the index triples belong to J(K) and the highest index i of µi that appears
in (4.28) is i=K � 1, which we have defined above in (4.26). Moreover, the
right side of the equation has zero mean, and so, the equation is uniquely
solvable. We then define

fq,m,k,j+s := arx�q�1,m,k,j+s
+ a⌦�

q�1,m�1,k,j+s
+ ary�

s

q,m,k
,(5.11)

and then

aq,m,k(x) := hfq,m,k,j+s(x, ·)i.(5.12)

This completes the inductive construction of all the objects we set out to
construct.

By easy modifications of the arguments in the proof of Proposition 4.2, we can prove
the following.

Proposition 5.2. There exists C(d,✓)<1 such that, for every q,m,k 2N with
m q and for each s2 {0, . . . ,N � 1},
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1808 SCOTT ARMSTRONG AND RAGHAVENDRA VENKATRAMAN

8
>>>>>>>>><

>>>>>>>>>:

|µk,j+s|
�

3k
2

0,j

�(�0,j)k�1
exp
�
Ck+1

�
,

|||Uk,j+s|||�,Ck 
�

3k
2

0,j

�(�0,j)k
exp
�
Ck+1

�
,

1

(q+ l)!
sup
x2Rd

�
�0,j + |x|2

�� 1

2
(q�l)krl

x
�

q,m,k,j+s
(x, ·)kH1(Td) 

exp(Cq�m+k)

�(�0,j)(q�2�m)+
,

(5.13)

where we recall that �(�0,j) is the spectral gap of the multiple eigenvalue �0,j .

5.3. Higher-order expansions for multiple eigenvalues. We are finally in
a position to prove Theorem 1.5.

Proof of Theorem 1.5. The proof proceeds exactly like that of Theorem 1.3 and
is concluded like in the proof of Theorem 1.4.
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