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Lossy Compression With Universal Distortion

Adeel Mahmood

Abstract— We consider a novel variant of d-semifaithful lossy
coding in which the distortion measure is revealed only to the
encoder and only at run-time, as well as an extension of it in
which the distortion constraint d is also revealed at run-time. Two
forms of rate redundancy are used to analyze the performance,
and achievability results of both a pointwise and minimax nature
are demonstrated. The first coding scheme uses ideas from VC
dimension and growth functions, the second uses appropriate
quantization of the space of distortion measures, and the third
relies on a random coding argument.

Index Terms—Lossy compression, universal source coding,
quantization, VC dimension, d-semifaithful code.

I. INTRODUCTION

OSSLESS coding is the mapping of raw data to a binary

representation such that the original data can be exactly
recovered from the binary representation. For mathematical
analysis, the raw data is treated as a randomly generated source
sequence and the corresponding binary representation is in
the form of a binary string. In this paper, we will focus on
discrete and memoryless sources, i.e., each source symbol
in the sequence is independent and identically distributed
and takes values on a finite alphabet. A lossless encoder
carries out the source-to-binary mapping while a decoder
performs the inverse mapping. Together, the encoder and
decoder pair specify a coding scheme. The performance of a
lossless coding scheme is usually! measured by the expected
length of the binary string per source symbol (or simply
the expected rate), where the expectation is with respect to
(w.r.t.) the source probability distribution. Shannon entropy
of the source probability distribution characterizes the min-
imum (asymptotically) achievable expected rate.” A precise
performance metric is, therefore, the difference between the
expected rate and Shannon entropy. This is called the rate
redundancy.
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In lossy coding, the original source sequence is not recov-
ered exactly and is instead approximated by what is called
a reconstruction sequence. The rate redundancy in lossy
coding is defined similarly, except that the rate-distortion
function [3] now plays the role of Shannon entropy. In this
paper, we will focus on a generalization of d-semifaithful
coding [4], a form of lossy compression in which the decoder
outputs a reconstruction sequence that is within distortion d of
the original source sequence with probability one. Distortion
is measured by a single-letter distortion measure which we
will denote by p. Denoting the length of the source sequence,
also called the block length, by n, past work has analyzed
the rate of convergence of the average expected codeword
length to the rate-distortion function as a function of n.
[5, Theorem 5] established an achievable rate redundancy
of Inn/n + o(lnn/n) while [5, Theorem 4] established a
converse of 1/2Inn/n + o (lnn/n).

Universal coding schemes are of interest when the source
probability distribution p is unknown. A coding scheme is
said to be universal over a class of source distributions if the
rate redundancy converges to zero for every source in that
class. If the convergence is pointwise, then we say the coding
scheme is weakly universal. If the convergence is uniform (or
minimax), then the coding scheme is strongly universal. These
two notions of universality originated in the universal noiseless
coding literature [6]. Let J and K be the sizes of source and
reconstruction alphabets, respectively. Yu and Speed [7, Theo-
rem 2] established an achievable weakly universal convergence
rate of
logn

(KJ+J+4) +0(n™h (1)

n
for the rate redundancy of universal d-semifaithul codes for
a class of source distributions p satisfying some regularity
conditions. On the other hand, one can also consider a
modified rate redundancy, replacing the rate-distortion func-
tion with Shannon entropy of the probability distribution of
reconstruction sequences, minimized over all d-semifaithful
codes, see [8], [9]. This form of rate redundancy essen-
tially considers the difference between the expected rate of
a given universal code and the expected rate of an optimal
nth order code. Throughout the paper, the rate redundancy
w.r.t. the rate-distortion function will be referred to as sim-
ply the rate redundancy while the latter formulation will
be called the operational rate redundancy. With the opera-
tional rate redundancy as the metric, one can establish (e.g.,
[9, Lemma 5]) an achievable strongly universal convergence
rate of

logn

(J—1) +0(n™h). 2)

n
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In both results (1) and (2), the distortion measure p is
fixed and known to both the encoder and decoder. A novel
variation of (universal) d-semifaithful coding (and lossy cod-
ing in general) we consider is that in which the distortion
measure is revealed to the encoder alone, and only when it
receives the source sequence x” to compress. We call this the
universal distortion problem. Traditional d-semifaithful coding
framework can be roughly represented by

encoder : 2" —— binary string

decoder : binary string — 3" 3)

where z” is the given source sequence to be compressed
and y” is the reconstruction sequence satisfying the distortion
constraint with respect to p. Here the distortion measure p
is fixed a priori. On the other hand, universal distortion
d-semifaithful coding can be represented by

encoder : (2", p) — binary string
decoder : binary string — 3" 4)

We elaborate the distinction between (3) and (4) in terms of
the codebook underlying the encoder and decoder pair. The
task of designing a coding scheme is simplified by sharing
a codebook of indexed reconstruction sequences between the
encoder and decoder. In this case, the encoder transmits
the index (as a binary string) of a codeword which gives
smaller than d distortion with the given source sequence.
In traditional d-semifaithful coding, the codebook is optimally
designed to minimize the average rate and keep distortion
less than d with respect to one fixed distortion measure.
In the universal distortion formulation, one codebook must
be rich enough to cover all source sequences with less than
d distortion with respect to a variety of distortion measures.
An extension of this framework, which we will call the
generalized universal distortion problem, is when the distor-
tion constraint d is itself a run-time input to the encoder
alone:

encoder : (2", p, d) — binary string
decoder : binary string — y" 4

A natural approach to the universal distortion problem is
for the encoder to report a quantized version of the distortion
measure to the decoder and then proceed as if the commu-
nicated distortion measure was in effect. For the universal
distortion framework, we show that this simple approach
(with some post-correction modification) yields a strongly
universal (or minimax) achievability result with respect to the
operational rate redundancy (see Theorem 2). The quantiza-
tion approach only works for uniformly bounded distortion
measures, however. For the generalized universal distortion
framework, we replace the quantization approach with one
based on ideas from VC dimension theory, giving a strongly
universal achievability result with respect to the operational
rate redundancy (see Theorem 1), where universality now
includes all unbounded distortion measures and distortion lev-
els. Returning to the traditional rate redundancy with respect to
the rate-distortion function, we use a random coding approach
to give a weakly universal achievability result for the universal
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distortion framework (see Theorem 3). All three results have
a O(Inn/n) convergence rate which is the optimal order of
convergence for traditional lossy source coding [5]; in partic-
ular, the achievability result of Theorem 3 is within Inn/n
of the known converse bound [10, Theorem 1] for traditional
universal d-semifaithful codes and in fact, matches the best
known achievability result [10, Theorem 2] for traditional
universal d-semifaithful codes, while itself being a universal
distortion d-semifaithful code.

Subsequent to the initial version of this work [11],
Merhav [12] has provided pointwise achievability and converse
results in the universal distortion framework. His rate redun-
dancy results are with respect to the empirical rate-distortion
function® and use a different random coding approach. In his
context, pointwise means that the convergence rate is not uni-
form but depends on the source sequence through its type (and
the distortion measure). As described above, our work focuses
on expected rate redundancy so pointwise in our paper means
for each unknown source p and distortion measure. Both
notions of pointwise should be considered weakly universal.
Other points of comparison with [12] as well as with Yang
and Zhang’s earlier work ([13], [10]) in traditional universal
lossy coding will be laid out in the subsequent presentation of
our main results.

One practical motivation for the universal distortion setup
comes from the observation that compression systems are
typically asked to meet the needs of a variety of end-users
who may have discordant notions of distortion. In the context
of images, for some users, a decoder that includes artificial
high-frequency components in order to make the reconstructed
image more pleasing is preferable to one that simply outputs
blurry images, even though the high-frequency components
might not match the original image [14]. For other end-users,
the opposite will be true. Specifically, image compression
methods based on deep neural networks, which learn to syn-
thesize local image content, can lead to large distortions with
respect to traditional distortion metrics such as peak signal-
to-noise ratio but perform much better with distortion metrics
based on perceptual transforms [15]. One would like to design
codes that respect the distortion constraints of the particular
users using the system, which might only be known at run-
time. In a similar vein, image compression methods based on
saliency maps [16] can be viewed within the (generalized)
universal distortion framework; an image to be compressed is
divided into different subblocks based on relative importance
and each subblock is compressed with a different distortion.

A separate motivation comes from nonlinear transform
coding [15], [17], [18]. Suppose a source z™ is first
mapped to a set of tranform coefficients z* via the analysis
transform g, (-),

2k = ga(z™). (6)

The transform coefficents are then quantized using some
quantizer Q(-),
= Q(h), (7)

3The empirical rate-distortion function is equal to the rate-distortion func-
tion evaluated at the empirical distribution of a given realization of a source
sequence, as opposed to the underlying source distribution itself.
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where the range space of Q(-) is discrete and heavily con-
strained. A synthesis transform g;(+) is then used to create the
reconstruction y":

y" = gs(2). (8)

In linear transform coding, the ¢, (-) and g,(-) transforms are
typically isometric with respect to L? distance. Thus they are
mean-squared error (MSE) preserving and Q(z*) should map
2* to the closest quantization 2* in L? distance.

Recently, however, promising results have been obtained
via nonlinear transform coding, specifically those obtained
via stochastic training of artificial neural networks (e.g.,
[15], [171, [19], [20], [21], [22], [23], [24], [25], [26], [27],
[28], [29]). Such learned, nonlinear transforms are not guar-
anteed to be distance-preserving, however. Thus mapping z*
to the nearest quantization point is not equivalent to finding
the 2* that minimizes

p(a”, gs(2)). 9)

In principle, the quantizer Q(-) could map a given z* to the 2%
that minimizes (9); in practice, this is expensive. An alternative

is to consider a quadratic approximation of (9) about 2% = z*:

p(z™, gs(27))
~ p(a”, gs(2F)) + Voep(a™, gs(2") T (25 — %) +

1, . n R
S (4 = R TV2plam, 6o (F)) (2 — ),

(10)
where V_ip(z", gs(2*)) and VZ,p(z",gs(z")) denote the
gradient and Hessian, respectively. Note that the first term
on the right-hand side of (10) does not depend on 2k, Thus
minimizing (10) is tantamount to minimizing

Vzkp(xnags(zk))T(’%k - Zk) +
%(2’c — 2M)TV2, p(a™, gs(27)) (27 — 2%) (11)
over 2. We arrive at the problem studied in this paper,
in which we seek to quantize a given source realization z*
according to a distortion measure that is not known until z*
itself is known.

For transforms that are trained end-fo-end, there is evidence
that the Jacobian of gs(,z’c ), when viewed as a k-by-n matrix,
has orthonormal rows with high probability [24, supp. mat.].
If the gradient V_xp(z", gs(2%)) is also zero, then the first
term in (11) vanishes and the Hessian is proportional to the
identity matrix, eliminating the need for distortion universality.
A number of nonlinear transforms have been proposed for
compression that are not trained in this fashion, however
[25], [26], [27], [28], [29]. Even for those that are, employing
a quantizer that minimizes the objective in (11) could allow for
reduced capacity in the neural networks comprising the anal-
ysis and synthesis transforms, with a concomitant reduction
in training requirements. Application to nonlinear transform
coding was the original motivation for this work.

II. PRELIMINARIES

Let A and B denote finite source and reconstruction alpha-
bets, respectively. Without loss of generality, we can let
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A={1,2,...,J} and B={1,2,...,K}. P(A) denotes the
set of all probability distributions on A. P(A|B) denotes the
set of all conditional distributions. In this paper, In represents
log to the base e, log represents log to the base 2 and exp(z)
is equal to e to the power of z. Unless otherwise stated, all
information theoretic quantities will be measured in nats. For
p € P(A), H(p) denotes the Shannon entropy. For p € P(A)
and W € P(B|A), H(W|p) denotes the conditional entropy
and I(p, W) = I(X;Y) denotes the mutual information where
(X,Y) have the joint distribution given by p x W.

For p; € P(A) and po € P(A), D(p1||p2) denotes the
relative entropy between the two probability distributions.
For any vector v € R™, ||v||y and ||v||2 will denote the
I* and [? norms of v, respectively. For any two m-dimensional
vectors u = (Ug,...,Up) and v = (v1,..., V), 6(v,u) =
1/2||v —wul|; will denote their total variation distance. We will
frequently view probability distributions p € P(A) as
J-dimensional vectors. Finally, for any matrix M € R™"*™,
||M||7 will denote the Frobenius norm of M.

For a given sequence z™ € A", the n-type t = t(z") of 2"
is defined as

10G) = 5 30w = J)

for all j € A, where 1(-) is the indicator function. P, (A)
denotes the set of all n-types on A. For a pair of sequences
" € A™ and y" € B", the joint n-type s is defined as

: RS :
=1

forall j € A and k € B. P,(A x B) denotes the set of all
joint n-types on A x B. For two sequences z" and y™ with
n-types t; = t(z™) and ¢, = t(y"), the joint n-type s can
also be written as

(5. k) = L)W,y (klj) = t, (0)Wa (7 ]K),
where W, is called a conditional type of y™ given z",
and W, is called a conditional type of x™ given y". From
[30, Lemma 2.2], we have
Pn(A)
|Pn(A x B)

n+1)’~1 and

| <(
| < (n+1)751

12)

For a given type t € P, (A), Th(t) is called the type class
where

Th(t) & {z" € A" : t(z") = t}.

For any given p € P(A) or p € P(B), p™ will denote
the n-fold product distribution induced by p. Let X" be an
independent and identically distributed source. Let p € P(A)
be the generic probability distribution of the source so that
X™ is distributed according to p”. The probability that X™ is

of type t is given by [30, Lemma 2.6]
P, (X" € T3(1) = p" (T4(1)) < exp (—nD(tl|p)) . (13)

For a given source distribution p, it suffices to focus only
on sequence types t satisfying ||t — p||2 < ay/Inn/n, where
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a? > 2 4 2J. Source sequence types farther away from the
source distribution p have negligible probability for large n as
quantified by the following lemma.
Lemma 1: If a € Rsq satisfies a® > 2 + 2.J, then for all
p € P(A) and all n € N, we have
ed—1
S mm) < S
t:||t—p|l2>ay/Inn/n

Proof: [Proof] For any type t satisfying ||t — p|la >
a\/Inn/n, we have 6(t,p) > 1||t—p||o > Sa\/Inn/n where
(¢, p) is the total variation distance and the inequality follows
by the fact that the Euclidean distance is upper bounded by
the ! norm. By Pinsker’s inequality [30, 3.18], we then have

2Inn
D(t||p) > 26%(t, p) > L2
() 2 2%, ) = “

If a > /2 + 2J, we have

> P (TA(t)) <
t:||t—p||2>ay/Inn/n

oD ()

t:||t—p||2>ay/Inn/n
2
< (n_|_ 1).]7167(1 Inn/2
2
e.]—le(.]—l)lnne—a Inn/2

AN

lel

IN

n?2

|

Let p: Ax B — [0, 00) be a single-letter distortion measure

and p, (z",y™) be its n-fold extension defined as
1 n

i=1

(14)

where z™ € A™, y™ € B™. For convenience, we also define

p(0, Weia) = Y p(()Waalkli)p(, k), (15)
jEAKEB

which is equal to the expected distortion E[p(X,Y")] where
(X,Y) have the joint distribution p x W4 for some p €
P(A) and conditional distribution Wp|4 € P(B|A). We will
frequently view distortion measures as J x K matrices, i.e.,
pE RIXK

Let D denote the space of all distortion measures and let
DpPmax C D be the space of uniformly bounded distortion
measures, i.e., all p € DPmax satisfy p(-, ) < pmax for some
fixed pmax > 0. The results of Theorems 2 and 3 hold only for
distortion measures in D=2 Theorem 1, on the other hand,
is valid for all distortion measures in D. Furthermore, we will
use the customary assumption [9], [13], and [31]:

Ijneeg(iréigp(j, k)=0 for all p € D. (16)
When the source distribution and the distortion measure are
fixed, (16) is without loss of generality [3, p. 26]. Here,
it is tantamount to having d represent the allowable excess
expected distortion above the minimum possible for the given
source distribution and distortion measure. For universal dis-
tortion, this is preferable to having d represent a constraint on

the absolute expected distortion: a given d will be below the
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minimum achievable expected distortion for some distortion
measures, for instance.

For a given p € D, p € P(A) and d > 0, the rate-distortion
function R(p,d, p) is defined as [2, Theorem 10.2.1]

R(p,d, p)
£ B (p, Wp|a) (17)
. . . Waja(kl4)
=WBg%p,dyp;p(J)WBm(klj)ln(W(k) )
where W (k) = > p(j)Wpa(klj) and (18)
jeA
Whdp =13 Weia: Y p())Waialkli)p(. k) <d 3. (19)

g,k

For any given p and p, R(p,d,p) is nonincreasing, convex
and differentiable everywhere as a function of d except
possibly at d = mingep ZjeAp(j)p(j, k) [3], [30, Exer-
cise 8.6], [2, Lemma 10.4.1]. In particular, for 0 < d <
minkep Y e P(J)p(J, k), R(p,d, p) is strictly decreasing in
d. The function’s dependence on p for given d and p is
complex [32]. In particular, it is not concave in general. For
a given d > 0 and p € D, we call R(T,d,p) the plug-in
estimator for R(p,d, p), where T = t(X™) is the type of an
i.i.d. sequence X" ~ p”. The expected value of the estimator
is given by

Ep [R(T,d,p)l = > p"(TR(D)R(t,d,p).
tePn(A)

Harrison and Kontoyiannis [33] gave sufficient conditions
for the consistency of the plug-in estimator. In particular,
it follows from [33, Corollary 1] that under the assumption
in (16), R(T\,d, p) is a consistent estimator for R(p, d, p).

Throughout the paper, we will have ng 4 denote an optimal
transition probability matrix which achieves the minimum in
(17)-(19). Note that ng 4 1s not necessarily unique, and ng A
depends on p, d and p; when necessary, we will indicate this
dependence by writing W, Alp.d, pl. We will use QP47 to
denote the corresponding optimal output distribution on B
associated with the optimal channel ng 4 1€,

QPP (k) £ p() Wi a(klj)
JEA
for all £ € B. The next lemma shows that if ng 4 1s unique
for a particular (p,d, p) triple, then it is continuous at this
point.

Lemma 2: Fix any p € P(A), p € D and d satisfying
0 < d < mingep Y ;e p(7)p(J, k). Let Wi 4 be an opti-
mal transition probability matrix corresponding to (p,d, p)
which achieves the minimum in (17). If W, , is the unique
minimizer at (p,d, p), then for every € > 0, there exists a
d > 0 such that for every (p/,d’,p") € N(p,d, p), where

N(p,d,p) ={(,d,p) : [P —pll2 <6,
|d' —d| <& and ||p) — p||lr <6},
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we have

||WE\A[pa d, P] - W§|A[p/a dlvp/]HF <e

Remark 1: Note that ng 4 is not required to be unique for
all points in the neighborhood N (p, d, p).
Proof: The proof of Lemma 2 is given in Appendix B.
Previous works on lossy coding [34], [7], [5], and [13] have
primarily considered two kinds of block codes:

o fixed rate codes
o d-semifaithful codes

As mentioned before, we will focus on the latter. An nth
order d-semifaithful block code is defined by a triplet C,, =

(¢n7 fn; gn) such that

¢n: A" — By, C B"
fn : B¢n — B*

gn 1 B — By, (20)

where

e B* is a set of binary strings,
o (fn,gn) is a prefix-free binary encoder and decoder pair,
e By, is the codebook, and
e ¢, is a d-quantizer, i.e., for all 2™ € A", we have
pn (2", on(x™)) < d.
This formulation has been employed before [5], [10]. It should
be distinguished from the definition of a d-semifaithful code
as a pair (f},g.,) such that
fl A" — B*
g : B — B™, 21

where
e (f}.g),) is a prefix-free binary encoder and decoder pair,

and
o for all z € A™, we have p, (2", g, (f} (z™))) < d.

Compared to (21), the formulation in (20) incurs a loss of
generality in that it prohibits the binary encoder f, from
sending control information obtained from the input to the
quantizer ¢, (but not revealed by the codeword), such as
the type of the source sequence or a flag used to toggle
between different modes of compression. On the other hand,
the structure in (20) is without loss of optimality in that any
d-semifaithful pair in (21) can be reduced to a d-semifaithful
triple in (20) with a rate that is only lower. Given (f},g.)
in (21), let

By, ={gn(fn(z")) : 2" € A"},

Then define
Pn(a") = g, (fn(2"))
gn(-) = 9, (")
fo(y™) = argmin £(b) fory" € By,. (22)
beB*:g!, (b)=ym
From (22) we have
U(fu(Pn (™)) < LS (z")) (23)
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for all ™. We shall adopt the formulation in (20), but we shall
also allow the encoder to send control information when it is
convenient to do so, with the understanding that the above
reduction is ultimately performed. An analogous convention
will prevail for the modified formulations of d-semifaithful
codes given later.

The performance of a d-semifaithful code C), can be mea-
sured by the rate redundancy R,,(Cy,p, p) defined as

Ra(Corpsp) 2 TR [L(f (60(X™) 2] ~ Rip,d, p),
(24)

where E [I(f,,(¢n(X™)))] is the expected length of the binary
string  fn,(n(X™)), the expectation being with respect to
the product distribution p™ and the factor of In2 is because
we measure coding rate in nats. Note that R, (C,,p,p) is
nonnegative for all d-semifaithful codes C,, [2, Secs. 5.4 and
10.4].

Alternatively, note  that the expected length
E[l(fn(¢n(X™)))] of a particular d-semifaithful code
(¢ny frny gn) is lower bounded by the Shannon entropy of
the probability distribution of ¢, (X™), where X" ~ p"
[2, Theorem 5.3.1]. This is because the binary encoder
losslessly encodes the output ¢,(X™) of the d-quantizer.
For a given source p and d-quantizer ¢, the distribution of
¢n(X™) is defined as

Vpr o, (™) =" (07, (y™))
= Y P ($n(a") =y")

zneAn

(25)

for all y* € Bg, . Hence, an operational rate redundancy,
which was considered in [8], [9], can be defined as

Rn(Cr,p,s p)
o l n I H(I/pn@n)
& B (u(X") 2 = inf ) )

where Qg , is the set of all possible d-quantizers with respect
to distortion measure p. The performance metric in (26) is of
an operational nature; it is essentially (with a discrepancy of
at most 1/n) the difference between the expected rate of a
code C), and the minimum possible expected rate of any nth
order code, which we will call M*(n, p, p). We can write the
rate-redundancy R,,(Cy,p, p) as

Rn(cnapv p)
~ [ (f (90(X™) 2] ~ M (n,p, ) +
M*(n,p,p) — R(p,d, p).

When both p and p are known, then R,(C* p,p) =
M*(n,p,p) — R(p,d,p), where C7 = (¢7,, [, ;) uses a
near-optimal d-quantizer ¢;, € Qg4, from the infimum in
(26) and the binary encoder and decoder (f;, g%) are chosen
such that the expected rate is within 1/n of the entropy per
symbol. Hence, in this non-universal case, the problem of
analyzing R,,(Cy,p,p) is reduced to determining how fast
the expected rate of an optimal code converges to the rate-
distortion function. In the universal case when p is unknown,

27
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the first two terms on the right-hand side of (27) quantify
the price of universality. Our first two results in this paper
will demonstrate achievable bounds for the price of universal
distortion, whose exact framework is described next.

In the universal distortion setting, the modified formulation
of a d-semifaithful block code C,, is

¢n A" xD — By, C B"
fn:B¢1z _>B*

gn 1 B* — By, (28)

where ¢, is now a d-quantizer w.r.t. the input distortion
measure. Thus the distortion measure is not known in advance
and only revealed to the d-quantizer at run-time.

Remark 2: To contrast (20) and (28), let us temporarily
assume that D = {py, pa2, ..., pm} consists of a finite number
of distortion measures. Then, (20) is a special case of (28)
with m = 1. Moreover, a d-semifaithful code in (20) achieving
a rate redundancy of R,,(C,,p, p’) for an arbitrary distortion
measure p’ can be extended to a universal distortion code in
(28) to achieve a rate redundancy of R, (C,,p,p) + Inm/n
for all p € D. This can be done by taking a union of the
codebooks of the m codes (call them C’,gl),C,(LZ), .. .,O,(Z”),
where C") is a standard d-semifaithful code for the distortion
measure p;). Then when (2, p) is an input to the quantizer for
some p € D, a two-stage binary encoder can encode ¢,,(x", p)
by first communicating the label j € {1,2,...,m} of the
codebook followed by using the binary encoder of Cff ). In the
general setting, D is infinite so this approach fails.

The main technical contributions of the paper are to show
how to obtain universality over p given that D is a continuous
space, and then extend this universality over distortion con-
straint d as well. The latter provides a generalization of the
universal distortion framework in which both the distortion
measure p and the distortion constraint d can be run-time
inputs to the quantizer only. We will call this the general-
ized universal distortion code C,, which has the following
formulation:

¢n A" x D x R>0 — B¢n Cc B"
fn : B¢n — B*

gn : B* — By, (29)

We now define the counterparts to (24) and (26) for the two
new frameworks in (28) and (29). For a universal distortion
code C), in (28), we simply redefine (24) and (26) to include
the distortion measure as an input to the d-quantizer; the rate
redundancy is given by

Ro(Co ) 2 (L (60(X" p))) n2] ~ R(pd. )
(30)

and the operational rate redundancy (or price of universal
distortion) is

ﬁn(CY'mpa p)

A l n _ : H(VP'L7¢n)
= nEU (fn (@n(X™,p))) In2] ¢nlengfd,,, n . (3D
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For the generalized universal distortion d-semifaithful code
C,,, we define the rate redundancies to include the distortion
constraint d as an additional parameter:

Rn(Ch,p, p,d)
2 %E [ (fn (6n(X™, p,d))) 2] — R(p,d, p)
and
ﬁn(émp, p,d)
s %E (o (@n(X™ pod))) In2) = inf W .
(32)

III. MAIN RESULTS

Our first result establishes an achievable minimax conver-
gence rate for the operational rate redundancy En(én, D, p,d)
as defined in (32). The achievability scheme uses an
approach which is based on VC dimension [35]. It extends
[9, Lemma 4] to the generalized universal distortion setting

of (29).
Theorem 1: In the generalized universal distortion setting,
R, (C d
limsup inf sup M < JPK?+4+J -2,
n—oo  Cn (p.p)EP(A)XD Inn/n

de(0,00)

where the infimum is over all codes which meet the input dis-
tortion constraint with respect to the input distortion measure.
Proof: The proof is given in Section V.

The idea behind the proof is the following. The domain of a
general quantizer ¢,, is A™ xD xR~ . We take inspiration from
the fact that A™ can be partitioned into a polynomial number
of equivalence classes, namely type classes. Similarly, we can
partition D x Ry into a polynomial number of equivalence
classes as follows. For each distortion measure p € D and
d > 0, define h, 4 : Pn(A x B) — {—1,+1} to be a linear
classifier dividing the space P, (A x B) into half-spaces as
follows:

F1 Y sGk)pl k) < d
hpa(s) = . 7 . .
{—1 it >80, k)p(d k) > d.
Let H ={h,q:p € D,d > 0}. We say that the two ordered
pairs (p™),dM)) and (p(?),d?)) are equivalent if h,a) g =
hp@),d(?)’ i.e.,

(33)

oy am (8) = hye) g (8)

for all s € P,,(Ax B). This defines an equivalence relation on
D x R and, therefore, partitions D x R~ into equivalence
classes {[D],.q:p € D,d > 0}, where the equivalence class
[D],,q is defined as

[Dlpa = {(p',d) €D xRug:hy o =hpa}.

Any two pairs (p"),dM)) and (p(), d?) in the same equiva-
lence class are operationally interchangeable for encoding and
decoding purposes, i.e.,

p(l)(lJL’yn) < d(l) — p(Q)(xn,yn) < d(?) (34)
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for all ™ € A™ and y™ € B™. Note that |P,(A x B)| <
(n + 1)7K=1. Each equivalence class [D], 4 can be uniquely
associated with the corresponding h, ¢ which can be uniquely
associated with an M-tuple of +1’s, also called a dichotomy
on P,(A x B), where M < (n + 1)/%~L. Therefore, the
number of equivalence classes, call it ms(n), is equal to the
number of distinct dichotomies on P,,(A x B) which can be
generated by H. Clearly, m(n) < 2"+D"" ™" However, the
number of dichotomies which H can generate on P,,(A x B) is
limited by the VC dimension [35, Definition 2.5] of H. Since
‘H is a set of linear classifiers in J K -dimensional space, the
VC dimension of H is at most JK + 1 [36, 4.11]. Therefore,
since the number of joint n-types is at most (n + 1)7K-1,
the maximum number of dichotomies* generated by H is (see
[35, 2.9] and [35, 2.10])

"gl <7>n<A’x B>|>

i=0
((n+ 1)JK—1)
=(n+1)7 K14

my(n)

JK+1 +1

IN

Let (p1,d1),(p2,d2), ..., (Pmsc(n)> my(n)) be the represen-
tative distortion measures from the my (n) equivalence classes
of D x R+ . These are the polynomial number of distortion
measures we desire. The above discussion can be encapsulated
in the following proposition.

Proposition 1: There are my(n) < (n + 1)
1 equivalence classes of D x Ry, denoted by [D],, 4,,
[Dlpadzs -+ [Pl (nydimyyny - A d-semifaithful code C;, with
respect to a distortion measure p is also d’-semifaithful with
respect to distortion measure p’ for all (p',d') € [D], 4 in the
same equivalence class.

Our next result (Theorem 2) uses a quantization approach to
reduce the continuum of distortion measures into a polynomial
number of distortion measures. This approach leads to a
better redundancy bound than in Theorem 1. However, the
result holds only for uniformly bounded distortion measures
in DPmax_ The coding scheme uses a custom quantization
of DPfmax as a function of d and a post-correction scheme
to prove a minimax achievability result for R, (C’n,p, p) as
defined in (31). In the low distortion regime, the coding
scheme in Theorem 2 requires a finer quantization of the space
of distortion measures. Specifically, the lower order terms
in the given redundancy bound entail an increasing penalty
with decreasing d. Consequently, the result only applies to the
universal distortion framework in (28), i.e., the redundancy
bound does not hold uniformly over all distortion levels
d € R<y.

Consider a quantization D{ of DFfmax, which is parametrized
by some positive integer g:

Definition 1: A distortion measure p € DI C DFPmax if for
all j € A, k € B, we have p(j, k) = m pmax/(gn) for some
integer m satisfying 0 < m < gn.

Essentially, D quantizes the set Dmax using a regular grid
with a spacing of pmax/(gn) in each of the JK dimensions.

272
J°K 1+

4For an exact number of dichotomies on points satisfying certain conditions,
see [37, Theorem 1].
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Hence, |D2| = (qgn + 1)7X; the higher the value of g, the
finer the quantization. Given an arbitrary distortion measure
p € DPmax_each entry of p is rounded down to the nearest
cell in the grid as described in the following definition.

Definition 2: Given the distortion measure p € DPmax,
we will denote by [p] € DI the quantization of p which
satisfies

e [p](4,k) < p(4,k) for all j € A, k € B.

o |01, k) — p(5, k)| < Lwax forall j € A, k € B.

Theorem 2: For any d > 0, there exists a universal distor-
tion d-semifaithful code C,, satisfying

Ro(Cr,p, p)

< JK+ J.
lnn/n  — +

lim sup
n—oo

sup
(p,p) EP(A) x Doma

Proof: The proof is given in Section VI.
So far, we have given results establishing convergence to

inf H(Vpn7¢7l)

35
¢TLEQJ,[J n ( )

instead of the rate-distortion function. The operational nature
of (35) made it an easier target: one did not need to establish
a single-letter characterization of the performance of the
proposed codes. Establishing convergence to the rate-distortion
function in the universal distortion setting involves various
technical challenges related to continuity, smoothness, d-ball
covering and convergence of E, [R(T,d,p)] to R(p,d,p).
Both the VC dimension approach (Theorem 1) and the quan-
tization approach (Theorem 2) establish that a polynomial
number of distortion measures suffice for achieving univer-
sality over the continuous space DPm=x. Hence, as alluded
to in Remark 2, one approach could be to take a standard
universal d-semifaithful code from previous works which
works for a fixed arbitrary distortion measure and instantiate
it a polynomial number of times. Using this idea with the
VC dimension approach and the quantization approach would
add penalties of (J2K2—1)Inn/n and JK Inn/n to the rate
redundancy, respectively. If one seeks optimal pre-log factors,
then such an approach is unlikely to succeed.

In lossless coding, Rissanen [38] established an optimal
lossless coding rate redundancy of 0.5 klnn/n for most
sources in a parametric class, where k is the dimension of the
parametric space. In universal lossy coding, the corresponding
parametric space may at first seem to be the set of all
distributions on the source alphabet, which has dimension
J — 1. However, the rate-distortion function for an i.i.d. source
p has the following alternative characterization (see, e.g., [39]):

R(p,d,p) ei;gl(fB) R(q,p.d, p) (36)

q
where the infimum is over all probability distributions ¢ on the
reproduction alphabet, and R(q,p,d, p) is the rate achieved
by a random codebook used to compress the source data
within distortion d w.r.t. distortion measure p, where the
codewords are randomly generated i.i.d. according to ¢. Hence,
for each distribution p over the source alphabet, there is a
corresponding optimal distribution ¢ = QP'%* on the recon-
struction alphabet which achieves the rate-distortion function.
As p varies over the simplex of probability distributions,
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QP-%r varies over a space of dimension K — 1. It would
seem to be the dimension of the space of distributions on
the reconstruction alphabet which should determine the coef-
ficient before Inn/n, since it captures all of the distributional
information that will be revealed to the decoder. Indeed, for
the fixed-rate variant of traditional universal lossy coding, [13]
established an optimal (assuming K < .J) pointwise distortion
redundancy of

K\ Inn| 0 Inn
<2> | aRdw Rop)| +o (n)

for source distributions p satisfying certain regularity con-
ditions, where the distortion redundancy is defined as the
difference between expected distortion of the code and the
distortion-rate function. When contrasted with the optimal
distortion redundancy, given by [5, Theorem 1]

1\ Inn| 0 Inn
<2) i R o (n> !

of non-universal fixed rate coding, we see that (K — 1)/2 is
the “price of universality”, which is consistent with (36)
and Rissannen’s redundancy result. For traditional universal
d-semifaithful codes, the optimal rate redundancy is not pre-
cisely characterized; for source distributions p € Py C P(A)
satisfying certain regularity conditions, a converse result is
known [10, Theorem 1] giving a lower bound of K/2Inn/n+
o(Inn/n) for the rate redundancy for most p € P; while an
achievability result [10, Theorem 2] of (K + 2)/2Inn/n is
given for all p € Py.

In the universal-distortion setup considered in this paper,
the variation of distortion measure p does not change the
parametric space P(B) of the formulation in (36). Hence,
[K/2,(K + 2)/2] is a reasonable guess for the range of
optimal pre-log factors for the rate redundancy Rn(é’n, D, P)
as defined in (30). Our final result gives a universal-distortion
achievability result with the pre-log factor within this range.
We consider a subset Sq C P(A) x DPmax defined as follows:

Definition 3: For all (p, p) € S4, we have

1) p(j) >0 forall j € A,

2) QP%7 is unique,

3) QP*P(k) >0 for all k € B, and

4) 0 <d < mingep ZjeAp(j)p(j, k})

Remark 3: The uniqueness® of the optimal output distri-
bution @P*%* implies the uniqueness of the optimal channel
WE P, d, p] by the following well-known relation (see, e.g.,
Equation (10.124) in [2]):

(37

(38)

QP (k) exp (=\*p'(4, k))

= Q) exp (A (R
k'EB

which holds for all (p,p) € Sy and where —\* =
OR(p,d,p)/0d. The uniqueness of QP%? is a com-
mon assumption in past works [5], [13], [10], [40].
Also see [13, Remark 1], [40, Remark b), p. 2283],
[5, Remark, p. 817] for discussion and examples of (p,p)

Wi alp, d, pl(kl7) =

5A non-trivial sufficient condition for the uniqueness of QP-% for full-
support p can be found in [13, Lemma 7].
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satisfying the full-support assumptions on p and QP>%*. The
fourth condition in Definition 3 restricts our attention to the
interesting case where R(p,d, p) > 0.

Remark 4: Under the conditions of Definition 3, we have
a o(lnn/n) convergence of E, [R(T,d, p)] to R(p,d, p) from
above. This result is implicit in [5] but we have included a
proof in Appendix C for convenience.

Theorem 3: Fix any d > 0. There exists a random
d-semifaithful code C,, = (®s, fr, gn) in the universal dis-
tortion setting such that for every (p, p) € Sq,

~ K Inn Inn

where E. [-] denotes expectation with respect to the random
code.
Proof: The proof is given in Section VIIL.

Remark 5: Unlike Theorems 1 and 2, the convergence in
Theorem 3 is pointwise in p and p.

As discussed above, we use a random coding argument
to prove Theorem 3. Since p is unknown and p is not
known at design time either, the encoder and decoder share
a random codebook with i.i.d. codewords from the normal-
ized maximum-likelihood (NML) distribution over the recon-
struction alphabet (see the definition of NML distribution
in (63)). Then given the type ¢ and distortion measure p
at runtime, the encoder uses acceptance-rejection sampling
from the codebook to obtain i.i.d. codewords according to
(Qb%P)™ and sends the index of the first one meeting the
distortion constraint. This is different from the random coding
argument in [10], [13] which uses “1/+/n-type” quantization
of the space P(B) and generates uniform samples from each
type. Arguably, our approach circumvents the need for more
delicate continuity and smoothness arguments with respect
to Qt’d’p. See also [12] for another variant of the random
coding argument in which the shared random codebook has
codewords drawn from a uniform mixture of i.i.d. sources on
the reconstruction alphabet.

At the heart of our random coding argument is Lemma 3
which bounds the probability of a codeword Y™ ~ (Qb%r)"
meeting the distortion constraint with a type ¢ source sequence.

Define for any 6 > 0,

Nis(p.p) Z{(t ') € PulA) x DI o [t — pl|2 < &

and ||p — p'||F < 0} (39)

Lemma 3: Fix any d > 0 and (p, p) € Sy. Then there exists
a ¢ > 0 such that

P(py, (x",Y™) < d)
> exp <nR(7f7 d,p') — % Inn+ O(l))

for all (¢,p') € Ns(p,p), where 2" € T%(¢), Y™ is iid.
according to Q"%*" and the O(1) term depends only® on p, d, p
and Pmax-

Proof of Lemma 3: The proof of lemma 3 is given in
Appendix D.

(40)

®We do not mention the dependence on alphabet sizes since those are fixed
throughout the paper.
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Different variants of the lower bound in Lemma 3 under-
lie the random coding approaches used in previous works
to prove achievability schemes; see, e.g., [5, Lemma 3],
[12, Lemma 1]. The main idea is to have a random codebook
of iid. codewords {Y7",Yy", Y3", ...} available to both the
encoder and decoder. Then given an input source sequence x™
to compress, the encoder conveys to the decoder the index [
of the first codeword Y;* which meets the distortion constraint
with ™. The smaller the value of I, the shorter the length of
the binary encoding. It is easy to see that I is a geometric
random variable with success probability lower bounded as
in (40). A useful property of Lemma 3 is that the “O(1)” term
in (40) is uniformly bounded over a neighborhood N5 (p, p); in
particular, it is independent of the type ¢ = ¢t(z™) of the source
sequence x™ which facilitates the expected rate analysis in the
proof of Theorem 3. A second advantage is that since the lower
bound in (40) holds uniformly over all types and distortion
measures in a neighborhood, one can show that with high
probability, the worst-case (i.e., maximum) integer index [
over all types and distortion measures is small. This argument
is made rigorous in the proof of Proposition 2 and is a crucial
part in our next discussion about obtaining a deterministic
code.

Our Theorem 3 can be viewed as a partial strengthening
of [10, Theorem 2] in that our result is in the more general
universal distortion setting and has fewer regularity conditions
which are actually a subset of the regularity conditions used in
[10, Theorem 2]. However, Theorem 3 only proves the exis-
tence of a random code while [10, Theorem 2] gives a deter-
ministic code. Below, we outline a method to derandomize our
code in Theorem 3 by fusing ideas from [10] and [41], but
this comes at the expense of making our regularity conditions
in Definition 3 stricter to match those in [10].

The proofs of both theorems (Theorem 3 and [10, Theorem
2]) begin with a random coding argument. As such, both
proofs rely on lower bounding the probability of a random
codeword meeting the distortion constraint. The result in [10]
obtains this bound by estimating the size of the d-ball around
any given type ¢ source sequence (see [5, Lemma 3]) using a
technical counting argument given in [5, Appendix]. On the
other hand, we use standard large deviations techniques and
the Berry-Esseen Theorem (Lemma 3 in this paper). An advan-
tage of our method is that it is more easily extended to variable
distortion measures; as remarked earlier, our lower bound
holds uniformly in a neighborhood around any given (p, p).
In view of this, it is possible to show strong universality or
uniform convergence over the neighborhood around any given
(p, p), similar to how [13, Theorem 2] or [10, Theorem 2]
showed strong universality over the neighborhood around p.
Hence, we have the following proposition:

Proposition 2: Fix any d > 0 and (p, p) € Sy. There exist
a neighborhood N (p, p) for some § > 0 and a (deterministic)
universal distortion d-semifaithful code C'n = (bn, frs Gn)
satisfying

In2
sup | —Ep [[(fu(¢n(X", 0)))] = Ep [R(T,d, p')]
@0 n
ENs(p,p)
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< <K+1> lnn_’_o(lnlnn>.
2 n n

Proof: The proof is given in Appendix A.

Unlike Theorem 3, whose achievability bound holds point-
wise for each p and p, the bound in (41) holds uniformly
for (p', p’) in a neighborhood around a given (p, p). In other
words, we went from weak universality to strong universality
at the expense of shrinking the set of (p,p) over which
universality is achieved. However, this strong universality or
uniform convergence allows us to obtain a deterministic code
in Proposition 2 as opposed to a random code in Theorem 3; in
the proof of Proposition 2, we used a union bound over types
and equivalence classes of distortion measures over a suitable
neighborhood around (p, p). The notion of equivalence classes
of distortion measures is a straightforward corollary of Propo-
sition 1: for a given blocklength n and distortion level d, there
are £ < (n+1)7 PKP-1 4 equivalence classes of DPmax,
denoted by [D],,, [D],,, ..., [Dl]y., where pi,pa,...,pe
are arbitrarily chosen representative distortion measures.
A d-semifaithful code with respect to a distortion measure
p is also d-semifaithful with respect to all distortion measures
p' € [D], in the same equivalence class.

Now, as mentioned before, under certain additional assump-
tions’ on p and p from [10, p. 8], it can be shown that
the set S; in Definition 3 is an open set. Hence, S; can
be expressed as a countable union of compact subsets, each
of which (by Heine-Borel theorem) can be covered by a
finite union of neighborhoods of the form Njs(p, p). Then
with a similar argument as in [10, Theorem 2 (ii)] or
[13, Corollary 2], the existence of a deterministic, universal-
distortion d-semifaithful code whose expected rate converges
pointwise to E,[R(T, d, p)] for all (p, p) € Sq can be proved.
Subsequently, an application of Lemma 5 in Appendix C
guarantees a o(lnn/n) convergence of E,[R(T,d,p)] —
R(p,d,p). We omit this result and instead keep Theorem 3
as one of our main results to keep the definition of S, simpler
and the associated regularity conditions slightly more general.

(41)

IV. CONCLUDING REMARKS

The three main results show how to achieve universal
distortion using three different approaches: the VC dimension
approach, the quantization approach and the random coding
approach. None of the results, however, show minimax con-
vergence to the rate-distortion function. From Theorem 1,
we have that the redundancy ﬁn(@“ p, p,d) can be made to
vanish uniformly in p, d and p for some code. Thus to obtain
convergence to the rate-distortion function that is uniform over
p, it suffices to show that

H(v,n
lim sup inf 7( P ’d)”’)
n—o0 P ¢n€Qd,p n

—R(p,d,p)| =0 (42

for all p and d > 0. A pointwise version of this result,

H(vyn
lim inf H(vpr 90)
n— 00 d)negd,p n

= R(p,d,p) forall p,p and d,

(43)

7Similar assumptions can be found in [13, p. 129].
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is known (cf. [42, Theorem 4]). One approach is thus to
strengthen (43) to (42), perhaps to include uniformity over
p and d as well.

An alternative is to show that the gap between
expected codeword length and the code-independent quantity
E,[R(T,d,p)] (where T is the nm-type of a source string
generated i.i.d. according to p) vanishes uniformly and then
extend Lemma 5 to show

lim sSup (Ep [R(Ta d, p)] - R(pv da p))+ =0, (44)

n—oo p

where zt = max(x,0). The following lemma, which is

proven in Appendix E, shows that (44) is in fact necessary.
Lemma 4: For all n € N, any d-semifaithful code C,, =

(Pny fry gn) satisfies

CE (L (6n(X", ) 2] 2

E, [R(T,d, p)] — (JK + J — 2)

Inn JK+J-2
n n
for all p € P(A) and p € D.

Lemma 4 shows that the emergence of the quantity
E,[R(T,d,p)] is not an artifact of the proof of Theo-
rem 3 or most other theorems [7], [12], [5] showing achiev-
ability results with respect to the rate-distortion function.
See [12, Theorem 2] for another converse result which gives
a pointwise lower bound to the encoding length in terms of
R(t,d, p) where t = t(z™) is the type of any given realization
of the source sequence. Indeed, [41] gives a minimax conver-
gence to the rate-distortion function by first showing that the
difference between the expected rate of an optimal code and
E, [R(T.d, p)] goes to zero uniformly over p and p.

V. PROOF OF THEOREM 1

From Proposition 1, there are a polynomial number of
equivalence classes of D x Rso. Let us focus first on one
equivalence class [D],, ¢, and a type t € P,(A). For each
type ¢, let p, = Unif (T%(¢)) be the uniform distribution
over the type class. Fix any ¢ > 0. Given any equivalence
class [D],, 4, and type t, it is always possible to choose
(pt,dt) € [D],, 4, and di-quantizer ¢f;" with respect to p! such
that

H(v t,i H(v €
( Pt P ) < inf ( pt7¢n,) + '
n ¢77,€Qdi,pi n
We now construct a di-semifaithful code CbLi =
(ph", flt ght) with respect to p! whose expected rate

with respect to p; is given by

%Ept [1(fE (o5 (X ™)) In(2)]
A | @)

n n
< inf H(vp,4,) +1n(2) + €

f— )

Pn€Qua; p; n

(45)

where the binary encoder and decoder (f%?,gt?) are cho-
sen optimally such that the average expected length of the
binary string is within 1/n of the entropy per symbol; see
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[2, Theorem 5.4.1 and 5.4.2]. Hence, we have a dﬁf—semifaithful
code C%* for each type ¢ and distortion measure p!, where
1 <i < mpy(n).

We now construct a generalized universal distortion code
Cr = (¢n, fn,gn) by collecting all the previous codes. For
any input source sequence x", input distortion measure p € D
and input distortion constraint d > 0, let ¢ = t(x™) be the type
of 2™ and let 7 be the integer such that (p,d) € [D] ¢ 4, where
1 < < my(n). The mapping of the d-quantizer ¢,, is given
by

¢n(xn’ p) = (b:il(xn)v

which satisfies the distortion constraint according to Proposi-
tion 1 and (34). The encoder f,, first sends

log ([P (A)[my(n)) + 1
< log ((n 1)1 ((n + 1) R 1)) +1

= (J?K? +J — 2)log(n) + J?K* + J (46)

bits to identify the type ¢ and equivalence class 7 followed by
the binary encoding f!¢(¢L¢(x™)). Therefore, the expected
rate of this scheme is given by

Ep [[(fn(én (X", p))) In(2)]
In(n) N In(2)(J2K? + J)

B [T (T (X)) In(2)]

2 72
:(J2K2+J72)ln(n)+1n(2)(JK +J)+l.
n n n

Y PU(TAE)E, [ (60 (X™) (2)|(X™) = ¢]

tePn(A)

(47)

(48)
2 12
< (J2K? +J72)1n7(1n) N ln(Q)(JnK +J)Jr
P . H(vp, 4,) +1n(2) +€
I I
tEP(A) e
(49)
2 g2
(PRt 2)1n7(1n) n ln(2)(JnK + J)+
P . H(vp,.4,) +In(2) + €
1€P, (4) n
(50)
1 In(2)(J?K?
= (J2K%+J - 2) nin) L Il )(Jn T
1n(2)+€ +]Ep |: inf H(VpT7¢'n) :|
n d’nEQd,p n
272
< (J2K? +J_2>ln(n) n In(2)(J*K? + J) n
n n
ln(2)+€+ lnf H(EP [VPTﬂi)n]) (51)
n ¢n€Q4d,p n
2 12
_ (PK? +J_2)ln7(1n) n 1n(2)(JnK +J) n
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In(2 H (vyn
n( )+€ + 1nf (VP 7¢n).

¢n€Q4d,p n

In the last term of (47), T' = ¢(X™) is a random type. In (49),
we use (45) along with the fact that X™ is i.i.d. according to p
and that conditioned on the type, X" is uniformly distributed
over the type class. In (50), we use the fact that (p,d) and
(pi,d;) belong to the same equivalence class. In (51), we use
concavity and Jensen’s inequality. Finally, in (52), we use the
definition of v, 4, from (25):

(52)

Voo () = Y pi(@™) L (n(2") = §")
TnEAT
= Y e (G =5
xneT} (1)

and

EP [VPT,dJn (gn)]

= Y @) Y pE (Gl =77

tePn(A) zn €T} (t)

= 3 Y P @ORE) (G = 5
n n ﬁ_/
tEP(A) an€Th(r)
= D P (Gn(a") =5")
anEAn

= Vp”"’qbﬂr (gn).
The upper bound in (52) holds uniformly over all p, p and
d > 0 which enables us to write (52) as

. 1
sup Ru(Coup, p) < (JPK2 +J —2)—2 + O(n™Y)
p,p,d n

Dividing both sides by Inn/n and taking the limit establishes
the result of Theorem 1.

V1. PROOF OF THEOREM 2

Let ¢ = [pmax/d] and quantize DPm==x with D4. For each
type t, let p, = Unif(77}(¢)) be the uniform distribution over
the type class. Fix any € > 0. For each type t € P, (A) and
[p] € DY, it is always possible to choose a d-quantizer gbf{[p }
with respect to [p] such that

H (V t,[pJ) H
Pt On S inf (th7¢71) +e .
n Pn€Q4q, (o] n

Hence, for each type ¢ and [p] € DI, we can construct a d-
semifaithful code Cf{[p = (qﬁf{[p], ff{[p ],gfi M) with respect
to [p] whose expected rate with respect to p; is given by

CE,, [I(72 (6P (x) n(2)]

H(y o)  In(2
p;/;¢n + n( )

<

n
o i HOps) @) e
bn€Qd,[p] n

; (53)

where the binary encoder and decoder ( f,t{[p ], gf{[p]) are cho-
sen optimally such that the average expected length of the
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binary string is within 1/n of the entropy per symbol; see
[2, Theorems 5.4.1 and 5.4.2].

We now construct a universal distortion d-semifaithful code
C, = (¢n, fn, gn) by using the previous codes

{Cf;[P] te Pa(A),[p] € Dg}

in conjunction with a post-correction scheme, which is
described next. For any input source sequence x” and input
distortion measure p € DPmax let t = t(x™) be the type
of 2™ and let [p] € DI be the appropriate quantization of
p as described in Definitions 1 and 2. The d-quantizer ¢,
with respect to p first uses gbf{[p | to encode =™ which satisfies
[p]n(z™, 657 (z7)) < d which implies p, (2", ¢4 (z)) <
d+-pmax/ (qn). T po (2™, 37 (™)) < d, then set ¢, (2, p) =
o571 (z™). Call this Case 1. Otherwise (in Case 2), if d <
pn (™, d)f{[p} (™)) < d+ pmax/(gn), it is possible to replace
exactly one symbol in the sequence qﬁ;[p ) (z™) so that the
post-corrected sequence, call it 4", satisfies p,(z",y") < d.
Such a post-correction is possible because we have d > 0,
the assumption in (16), and the fact that the replacement of
a symbol corresponding to maximum distortion guarantees
an average distortion reduction of at least d/n so that we
have

d
pu(a"y") < pola”, B (2")) —
<y Pmax 4
qn n
<d,

where the last inequality follows from the choice of ¢ =
[ Pmax/d]. We formally write the d-quantizer ¢,, with respect

to p as the composition of two functions, ¢, = w, 0 v,,
defined as
vn (@, p) £ (2", p, 637 (")) (54)
wn (", p, oL1PN(a™))
o for @) it pu(an,6n¥ (2m) <d - (Case 1) 55)
y" if pn(x”7gbf{[p] (™)) >d (Case 2)

where y" differs from zj)f{[p ) (z™) in one component and satis-
fies p,,(z™,y™) < d, as described above. The binary encoder
fn sends

log ([P (A)|IDE]) +1 < log ((n+ 1) (gn + 1)"%) + 1

(JK +J —1)log(n)+
Pmax
JK log (T + 1) YUK+ J
(56)

<
<

bits to first identify the code Cf{[p ], followed by the binary
encoding £ (451" (z)), followed by a flag bit to indicate
Case 1 vs. Case 2 from (55), followed by (if necessary) post-
correction symbol replacement which takes at most log(n) +
log(K') + 2 bits. Therefore, the expected rate of this scheme
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is given by

1

~Ep [1(fa(¢n (X", p))) In(2)]

< (JK+J- 1)1n7(1”) + %m (Lo 1) + %11(2)

L JIn2 . 31n(2) + In(n) —|—1n(K)+
n n
CE, [/ 65 (X)) n2)] 57)
Inn Wh

= (JK +J)— + L +
n n

1 ) i o "
- D PMTRO)E, [ (851(X™) n2)[H(X™) = 1]
teP, (A)
(58)
1 In(2
<R+ WEh@+e
n n
H
+ ) p(TE®) { inf (””“‘ﬁ")} (59)
tePn(A) $n€Qa.[p) n
1 In(2
= (JK + J)ﬂ + M 4
n n
Ep |: inf H(VPT7¢71):|
Pn€Q4,[p) n
n n
inf M (60)
Pn€Q4,[p] n
= (JK + J)ml + Wi+n(2) +e 4 inf Hvpr ,)
n n Pn€Q4, (o] n
(61)
< (JK+J)M+W+ inf H(Vpnﬁn).
n n Dn€Qa,, n
(62)

In the last term of (57), T' = ¢(X™) is a random type. In (58),
W1 is a constant depending only on J, K, pmax and d. In (59),
we use (53) along with the fact that X™ is i.i.d. according to p
and that conditioned on the type, X" is uniformly distributed
over the type class. In (60), we use concavity and Jensen’s
inequality. In (61), we use the same argument as in the
derivation of (52) in the proof of Theorem 1. Finally, in (62),
we use the fact that ¢,, € Qg , implies ¢,, € QdM because of
Definition 2. The upper bound in (62) holds uniformly over
all p and p which enables us to write (62) as

-~ Inn  Wi;+4+1In(2)+¢€
sup Ry (Cr,p, p) < (JK +J)— + Woth@te
PP n n

Dividing both sides by Inn/n and taking the limit establishes
the result of Theorem 2.

VII. PROOF OF THEOREM 3

Let Q"™L € P(B") denote the normalized maximum-
likelihood (NML) distribution which is defined as

sup ¢"(y")
q€P(B)

NML/, n\ _
R (63)
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where

S, = sup p"(z"). (64)

A PEP(B)
The normalization factor .S,, is called the Shtarkov’s sum for
ii.d. distributions and S,, grows only polynomially with n
(as can be seen from the method of types). Alternatively,
Shtarkov [43] showed the important result that log S, is
essentially (up to a discrepancy of at most 1/n) equal to the
universal lossless coding redundancy for i.i.d. source distribu-
tions. It is known from previous works ([44], [45], [46], [47])
that universal lossless coding redundancy for i.i.d. sources
taking values in alphabet B of size K is given by

L) ) +o(1),

r(%)

K-1
2

K-1
5 log(27) + log (

log(n) —
(65)

where I'(-) is the gamma function and ox (1) — 0 as n —
oo at the rate determined only by K. Combining this with
Shtarkov’s result and changing base to natural log, we can
express Sy, from (64) as

Sp = sup p"(z")
znEeBn pEP(B)

K-1 r(H*
:eXp( 5 lnn—&—ln((%r)}(gzl)r(g{))—k

ox (1) ln(2)> .

(66)

Let Z1', Z3, Z%, ... be i.i.d. random vectors each distributed
according to Q"ME. Let the random codebook Bg, C B",

Be, ={21', 23,23, ...},

be available to both the encoder and decoder.
Let 2™ be an input source sequence of type ¢ = ¢(z") and
p be the input distortion measure to the encoder. The encoder
uses acceptance-rejection method (similar to [41, Theorem 1])
to derive a subsequence {Z' }32, where Z\, Z7), Z] , . . . are
i.i.d. random vectors each distributed according to (Q%%°)™.
It is easy to see that
n t,d.p(y.
max izt @7 W:) o
ymEB™ QNML (yn)
The acceptance-rejection algorithm to construct the subse-
quence {Z] }72, is described as follows:
1) Seti=1;j=1.
2) Generate U ~ Unif ([0, 1]).

3) If
t,d,p\n AL
U< ES'QWCQM\’[)L((Z}))’ (success if true)
then set 7; = 4. Set ¢ := ¢+ 1; j := 7 + 1. Go back to
step 2.

4) Else set ¢ := 7+ 1. Go back to step 2.

In each iteration of the above algorithm, Step 3 has success
probability of 1/.5,, independent of other iterations.
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Let J(z") be the smallest integer such that Z]", (o Satisfies
pn (", Zinﬂwn)) <d.
We set
o, (2", p) = 2 oy (67)

It is easy to see that iy(,») is a geometric random variable
with success probability given by

P (pn (2", Y") < d)

St,p = S
n

so that the expected value E. [z J(wn)] is given by

Ee [is(m)]
= Sn . (68)
P (pu(@",Y") < d)

The binary encoder f,, sends 000 if ijny = 1, 001 if
Z‘J(In) = 2, 010 if i.](mn) = 3, 011 followed by doubly
recursive Elias gamma encoding [48] of i y(zn) if 4 < i y(zn) <
K™ and 100 followed by fixed-rate coding of the index of
Zi;(zn) With respect to an fixed ordering of the space B"
which is known to both the encoder and decoder at design
time. The first three bits serve as flag bits to distinguish the
cases.

Note that Elias gamma encoding of a positive integer @
involves writing out Ny = |logi] zero bits followed by
[logi] + 1 bits for the binary representation of 7. With one
recursion, we use Elias gamma encoding to encode Ny, which
involves writing out Ny = [log Ny| zero bits followed by
|log Ng| + 1 bits for the binary representation of Ny. With
a second recursion, we again use Elias gamma encoding to
encode N7 which involves using 2|log N; | + 1 bits in total.
Hence, to encode the integer ¢ using doubly recursive Elias
encoding, the total binary length is

[logi| + 1+ |log No| + 1+ 2[log N1 | +1
<logi + loglogt + 2logloglogt + 3.

(69)
(70)

The expression in (69) is undefined for 1 < ¢ < 3, hence the
need to separately handle the case for these three values.

To finish the proof, we evaluate the expected rate of the
code C,, = (®y, fn, gn), where the expectation E, ,[-] is with
respect to both the random code and the unknown source. Let
X™ be i.i.d. according to the unknown source distribution p
and let p be the input distortion measure such that (p, p) € Sy.
Then we have for a = v2.J + 2,

IHTQEP,C [l(fn(q)n (Xna P)))]

(@) In2 ST Ee " (TH0)E: [1(fa(®0(XT 0)))]]
t:||t—pl|2<

ay/Inn/n

2SS B (T )E (@ (XT )]
Hle plla>
(®) In2

< n
< — > "
t:||t—p||2<ay/Inn/n

TH()Ee [[(fn(Pn(X{, p))]
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+0()

n (m 1

n Z p (TA(t)) |T2(t)|
t:||t—p|l2<ar/Inn/n

1

Ee [l(fu(@0(2", p)))] ) + O <)

n2

n mn 1
S X rTmOgme 2 (G
t:||t—p\|2§a\/m A "EnETX‘(t)
EC [1og iJ(z") + log logZJ(l"n) —+

1
2logloglog i j(zmlijny = 4] ) + O (n)

(.

an €T (1)

_ 2

S (.

zneTy (t)

(d) In2 - 1
< e Z P (TA(t))W
t:||t—p|l2<ar/Inn/n A
[log E. I:i.](xn)“.](zn) > 4] + loglogE. [i!](mn)h'.](xn) > 4}
(71)

1
(;) K+2h17n Lo (1nlnn> N
2 n n

> P (TA(D))R(, d, p) (72)
t:||t—p|l2<ar/Inn/n
K+2lnn Inlnn
<E, [R(T,d,p)] + B +0 < n )
:R(p7d,p)+<K+1)lnn+o<lnn>. (73)
2 n n

In equality (a) above, we use the fact that conditioned on the
type, X" is uniformly distributed over the type class T7% (),
which we denote by writing X/*. In inequality (b), we use
Lemma 1 and the fact that the binary encoding length is always
at most nlog K + O(logn), by construction. Inequality (c)
follows from the following manipulation:

Ee [l(fn(®n(2",p)))]
<P (i](xn) < 3) -3+P (i](xn,) > 4) E. [logiJ(xn) +
loglog i j(zn) + 2logloglog i jigny + 3|ij(zn) = 4]
<3+E, [logiJ(ITL) +loglog i y(zn) +
2 10g log logi'](zn) |ZJ(CL“”) Z 4] .
In inequality (d), we use Jensen’s inequality. For inequality
(e), we carry out the following derivation: note that there exists
an N depending only on p,d, p and py.x such that for n >

N, the result of Lemma 3 applies and, from (66), (68) and
Lemma 3, we can write

Ee [ig(amlig@n) > 4]
=4+ Ee [im)]

K
<4+exp (nR(t,d7 p)+ 5 Inn+ g;)

K
< exp <nR(t, d,p) + 5 Inn + g1>
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for some constants G; and Gj, both also only depending on
p,d,p and pyax. Hence, we can evaluate the Elias encoding
expression as

In2
% (log Ee. [ig(am)lis@n) > 4] +

loglog Ee [iy(am|igany > 4] +
2logloglog B [i(zm|iszn) = 4])

K
(nR(t, d,p) + 5 Inn+ G +

1 K
In (an (nR(t,d, p)+ 5 Inn+ g1>> +

2 .
?glnloglogIEc[ZJ<r">])

K+21 Inl
:R(t,d,p)—i—;r;n—FO(n nn)

<

S|

(74)

where it is easy to see that the O(Inlnn/n) term depends
only on p,d,p and ppa.x because G; depends on the same
parameters. Using (74) in (71) establishes (72). Finally, (73)
follows from Lemma 5 in Appendix C.

APPENDIX A
PROOF OF PROPOSITION 2

Fix any d > 0 and (p, p) € Sa. Let Ny (p,p) = {(p',p') €
P(A) x DPmax : ||p' —plla < ¢ and ||p — p'||p < §'}, for
some ¢’ > 0, be a neighborhood for which the result of
Lemma 3 holds. Consider a subset Ns(p, p) of this neighbor-
hood, Ns(p, p) C Ny (p, p). given by Ni(p, p) = {(p',p') €
P(A) x DPmax : ||p' — p|l2 < 6 and ||p — p/||F < §}, where
0 < § < ¢'. Assume that p’ is the unknown source distribution
which satisfies ||p’ — pl|2 < 9.

Let Z1, Z3, Z%, . . . be i.i.d. random vectors each distributed
according to Q™. where QML is defined in (63). Let the
random codebook By, C B7,

By, ={Z1,723,2Z3, ...},

be available to both the encoder and decoder.

We first consider only input source sequences x™ with
type ¢ = t(2™) and input distortion measures p’ satisfying
(t,p') € Ns/(p,p). The encoder uses acceptance-rejection
method (similar to the proof of Theorem 3) to derive a sub-
sequence {ZZ 221, where Z7', Z1, 77, ... are i.i.d. random
vectors each distributed according to (Q%" )",

Let J(z™) be the smallest integer such that Z

Lr(am) satisfies

P (™, Z}

1J(xzm)

) <d.

It is easy to see that iy(,») is a geometric random variable
with success probability given by

P (pj(z",Y™") < d)
Sh ’

St,p’ =
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where S, is defined in (64). The expected value E. [4(;n)]
is given by
E [is(am]
— Sn
P (py,(an,Y") < d)

K
< exp (nR(t,d7 o)+ 5 Inn + O(l)) ,

(75)

where the O(1) term depends only on p,d, p, pmax and the
alphabet sizes,® which is easy to see from (66) and the
statement of Lemma 3. It turns out that the upper bound in
(75) not only holds in expectation but also (up to a Inlnn
factor) holds with high probability, as we will show next.
This property will be crucial in showing the existence of a
deterministic codebook.
Let

In(J2K? + J — 1)

n:1
g + Inlnn

Denoting the probability law associated with the random
codebook Bg, by P.(-), we have

K
P, ('Z:J(xn) > exp (nR(t,d, o)+ 5 Inn +

Y Inlnn + O(l)))

< (1 o St,p/)exp(nR(t,d,p')Jr% Inn+~v, Inln n+O(1))71

K
< (1 — exp (—nR(t,d, o) — 5 Inn —

exp(nR(t,d,p/)-‘r% In n++v, Inln n+O(1))—1
o)) (76)
< exp ( —exp (yn Inlnn) 4+ exp ( —nR(t,d,p") —
K
5 Inn — O(l)))
1
=0 <nJK+J—1) ; (7)

where the big O term in the last equality above again depends
only on p,d, p and pyax. Also note that the two “O(1)” terms
appearing in (76) are identical which explains the cancellation
occurring in the next inequality.

The bound in (77) holds for a particular z™ € T (). Now
if we let X' ~ Unif(T%(t)) be a random sequence uniformly
distributed over the type class T (), then it is easy to see
from (77) that we have

K
Py <i.](X;L) > exp (nR(t,d, o)+ 5 Inn+
Yn Inlnmn + O(l)))

1
=0 (nJ2K2+J1> :

We used P, . above to denote the probability law associated
with the random sequence X]* ~ Unif(77 (¢)) and the random
codebook. Note that (78) holds for an arbitrary input (¢, p') €

(78)

8Since the alphabet sizes are fixed throughout the paper, we ignore the
dependence on them from now on.
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Ns: (p, p) to the encoder. But we want that with high proba-
bility, the integer index is uniformly “small” over the entire
set Ns:(p, p). For this, we use a straightforward corollary of
Proposition 1: for a given blocklength n and distortion level d,
there are ¢ < (n+1)7 *K*~14 1 equivalence classes of DPmax,
denoted by [D],,, [D],, ---» [D]ye» Where p1,pa, ..., pe are
arbitrarily chosen representative distortion measures. A d-
semifaithful code with respect to a distortion measure p is also
d-semifaithful with respect to all distortion measures p’ € [D],
in the same equivalence class. We will make the choice of
representative distortion measures p1, p2, ..., p¢ be a function
of the type t. For every n-type ¢t and every equivalence class
[D],,, we can choose the representative distortion measure
pt € [D],, to satisfy

R@de§~£ﬁ R(t.d,p) +e€

p

Pi

(79)

for any € > 0. Henceforth, we will choose ¢ = 1/n and the
representative distortion measures, chosen differently for each
type, will be denoted by pf, pb, ..., pg.

We next use subscript “I™ to denote the probability law
associated with the collection of random sequences { X[ : ¢ €
Pn(A)}. Taking a union bound over all types and equivalence
classes of distortion measures in Ny (p, p) gives us that

el U U

tl]t=pl[2<8’ pe{pf,....pE}
lp—pllr <o’

K
+ 2lnn—|—7n1nlnn+0(1)> })

oty

nJ2K2+J—1
1
()
n

Also note that

m( U U

t:l|t=pll2<é’ pe{p},....0t}
[lp—pllF<d’

Iz{lnn+'ynlnlnn+0(l))}>

si( U U

t:l|t—pll2<d’ pe{p}, ..ot }
[lp—pllr<d’

nR(t,d,p) + glnn + Yo Inlnn + O(l)) })]

:EC[ET[1< U U {Z'J(th)>exp("'
t:|[t—pl[2<d’ pe{p},....0t }
l15—pllr<d’

K
nR(t,d.p) + = Inn+ 7, Inln + 0(1)) })

{ZJ(XZ‘) > exp (nR(ta da ﬁ)

{l‘J(X;l) > exp (nR(Ld7 p)+

{iJ(th) >exp(~~

By

n

(80)

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 69, NO. 6, JUNE 2023

o(2)

The above result implies that there exists a deterministic
codebook, call it By, , such that

(U U
t:|[t—pll2<d’ pe{py,....ot}
[lp—pllr<d’

K
+ 2lnn+'ynlnlnn+0(l))}>

o)

In (80), ijxp) is a random variable whose randomness
stems from both the random codebook Bg,, and the random
sequence X', whereas in (81), the randomness of i J(XP) only
stems from the random sequence X'

The result in (81) implies that

s U U
t:|[t—pll2<d’ pe{pl,...,0L}
[lp—pllr<d’

I;lnn+'ynlnlnn+0(1)>}

“u( U U

{iJ(th) > exp (nR(t, d,p)
t:l|t—pll2<d’ pe{p}, ..ot}

[lp—pllr<d’

+ [;lnn—i-'ynlnlnn—FO(l)) })

-of2).

where equality (a) above follows from the independence of
the random codebook Bg,, and the random source sequence
X{'. Now we have a deterministic codebook By, which,
with high probability, has uniformly good performance (i.e.,
small value of index i(xp)) in encoding a random sequence
X' ~ Unif(T%(t)) for any type ¢ and any of the chosen
representative distortion measures p € {pf, p, ..., pt}, such
that (t, p) € N (p, p)-

In the result of (82), both the O(1) and O(1/n) terms
depend only on p, d, p and pp.x. This means that exist some
numbers N, G; and Go depending only on p,d, p and ppax
such that for n > N, we have

w U U
t:]|t—pll2<d’ pef{p}, ..ot}
l|p—pllr<d’

K
2111n+’ynlnlnn+gl> })

G

—
Now we construct the universal distortion code C’n =
(bns Gn, fn) for n > N, with codebook B, , where By,

Er

{ is0xp) > exp (nR(t,d, p)

Bs, = By, (81)

{iJ(th) > exp <nR(t, d,p) +

Bg, = B%,)

(82)

{iJ(th) > exp (nR(t, d,p) +

< (83)
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satisfies (83). Let By, = {27,%2%,...}. Given any input
source sequence x" with arbitrary type ¢t = t(«™) and input
distortion measure p’ satisfying [|p" — p|[r < 0, let p € [D] ;¢
for some 1 <4 < &, define

K
K(t,p') = exp <nR(t,d, oh) + 5 Inn + v, Inlnn + Q1> ,

let

min )

Z‘J ny)y —
(CE ) i:pﬁl(I",Z?)Sd

and set ¢y, (2", p') = 27, o)

The blnary encoder f, sends 000 if 25y = 1, 001 if
ty@zn) = 2, 010 if iyny = 3, 011 followed by doubly
recursive Elias gamma encoding9 of ty(zn) if 4 < igEny <
K™ and 100 followed by fixed-rate coding of the index of
2i;(«n) With respect to a fixed ordering of the space B™ which
is known to both the encoder and decoder at design time. The
first three bits serve as flag bits to distinguish the cases.

To finish the proof, we evaluate the expected rate of the
code C),. Let X" be i.i.d. according to the unknown source
distribution p’ where ||p’ — p||a < §. Then for any input
distortion measure p’ satisfying ||p"—p||p < 0 with p" € [D]
for some 1 <4 < ¢, we have for a = v2J + 2,

In2 "
TEP' [l(fn(¢n(X 7#)))]
. >
t:||t—p’||2<a+/Inn/n
D Y 0
t:|[t—p’||2>a/Inn/n
(®) In2
< —
< — >
#llt—p |2 <ay/mn/n
1
+O(w>

In2
=—= Z
t:||t—p’[|2<ar/Inn/n
By [1(fn(on (X7 0))igxpy < w(t0")] +

n S PUTEOR (o > k() -
t:|[t—p’||2<ay/Inn/n

B2 (10560 (X7 iy > )] +0 ()
In2
- X
t:||t—p’||l2<ay/Inn/n
B [0 (00X ) < e, )] 40 (1)

< Z
n
t:||t—p’||2<ay/Inn/n

9The doubly recursive Elias gamma encoding is described in the proof of
Theorem 3, see (69) and (70).

(a) In2 S
= "(TA(®))

Et [l(fn(d)n (Xf7 pl)))]
[(fn(n (X1, 0')))]

(T )Ee [L(falon(XT, )]

P(TR))P (igxpy < K(t,p)) -

—~
~

(&

<

P (TA() -

P (TA()) (log k(t, p') +
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1
loglog k(t, p') + 2logloglog k(t, p')) + O ()

n

P K+2Ilnn
> (T (1)R(t,d, p )+TT

llt—p |1 <ar/Tn/m
L0 (lnlnn>
n

)] K+2lan <lnlnn>

®
—

©

< E, T / _—
— p[R( ad7p)]+ 2 n +O

In all of the above, we assume sufficiently large n so that
(t,p') € N (p, p) whenever |[t—p'|| < ay/Inn/n. In equality
(a) above, we use the fact that conditioned on the type, X"
is uniformly distributed over the type class 17 (t), which we
denote by writing X;. In inequality (b), we use Lemma I
and the fact that the binary encoding length is always at most
nlog K + O(logn), by construction. In inequality (c), we use
the fact that the codebook B, satisfies (83) and that the
binary encoding length is always at most nlog K + O(logn).
In inequality (d), we upper bound the binary encoding length
by the Elias gamma encoding of (¢, p’). In inequality (e),
we evaluated the Elias encoding expression as

(84)

2
— (log k(t, p') +loglog k(t, p') + 2logloglog k(t, p'))
1

1 K
In (m (RR(TZd,PD + 21nn—|—fynlnlnn+g1>>

K
?lnn—l—'ynlnlnn—kgl +

2
+- Inloglog x(t, p’))

K+21 Inl
= Rt d ) + 2 ff‘+0(“”),

where it is easy to see that O(Inlnn/n) depends only on
p,d, p and pp.x because G; depends only on p, d, p and ppax,
and we can use R(t,d,p!) < In K. Inequality (f) follows
from the way we chose the representative distortion measure
n (79). Since the upper bound in (84) holds uniformly for all
(0, p") € Ns(p, p), we can say that there exist positive N and
F depending only on Ns(p,p) (and d and ppax of course)
such that for n > N,

1n2

p [1(fn(6n (X", 0)))]
<E, [R(T,d, p')] + K;— 21r17n +}_lnlnn.

This finishes the proof of Proposition 2.

APPENDIX B
PROOF OF LEMMA 2

Let {(pn,dn, pn)}2, be a sequence of triples converging
to (p,d,p). Let WB|A[ nsdn, Pn] be any minimizer cor-
responding to (py,dn, pn). Let WE|A[p007d00apoo] be any
subsequential limit of W, AlPnsdn, pn] with respect to the
||| 7 metric as n goes to infinity. Mathematically, this implies
that there exists a subsequence {n;} such that

S W alpoc dos poc] = W alpmss dos pn )l = 0.
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It suffices to show that WB‘A[pOO,dOO,pOO] = VVEIA[p7 d, p).
Clearly, we have

Z anl WB|A pnz’dnupm](klj)pm (]vk) _dm <0.
jEAKEB
(85)
Taking the limit as [ goes to infinity in (85) gives

jEAkeB

which shows that the subsequential limit Wg‘ AlPsos doos Poc]
is feasible for the given (p,d, p). We already know from the
optimality of W, lp, d, p] that

1 (0. Whpalp,d. 1) < 1 (9, Wil docs poc])

Let d,, be the distortion induced by the joint distribution (p,, X
WE Alp, d, p]) with respect to distortion measure p,,. Then we
have

(86)

1 (pn Whialp.dpl) = R(pudupa). 87)

By the convexity of R(p,d,p) in d, (87) implies (e.g., [49,
Lemma 5.16])
I (pn7 WE‘A[}% d7 p})
> R(pn, dn, pn)
> R(Pm dn7pn) +
OR(pn, dn, pn)
od
=1 (pna WE|A[pna dvupn]) +

aR(pna dn7 pn)
od

(88)

(jn - dn)

(dn — dn). (89)
Since d > 0, there exists an N > 0 and € > 0O such that d,, > ¢
for all n > N. From the assumption in (16) and from the
convexity of R(p,d,p) in d, we have (i) R(p,d,p) < In(K)
and (ii) [OR(pn,dn, prn)/0d| < In(K)/e. Furthermore, since
cin is continuous as a function of p,, and p,, we have that cin
tends to d in the limit as n goes to infinity. Hence, writing

(89) using the subsequence {n;}, we have

I (pmaWELA[pv d, P]) >1T1 (pmaWE|A[pmadnupnz]) -
aR(pmvdnnpm) (Jm . dm)

od
(90)

for sufficiently large [. Now taking the limit as [ goes to infinity
n (90), we have

llinolo I(pn“WEM [pa da P]) 2 lliglo I(pnz >W§\A[pnmdnz ) pnlD
I(pa W§|A[p7 d7 P]) Z I(pa W]§|A[ (o oF} d007 pooba (9])

where the last inequality follows by continuity of mutual
information I(p, W) as a function of the joint p x W. Since
Wi alp:d. p] is unique, it follows from (86) and (91) that

WE\A[Z% d7 p] = WE‘A[pCXMdCXMpoo]
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APPENDIX C
CONVERGENCE OF E,, [R(T', d, p)] TO R(p, d, p)

Lemma 5: Fix d > 0 and any (p,p) € Sy, where Sy is
defined in Definition 3. Then we have

By [R(T.d.0)] - Rip.d,p) < 0 ("0

n

Proof:  Similar to (36), the rate-distortion function has
a characterization in terms of the lower mutual information
introduced in [5, (23)],

R ,d, = f I ) 7d7 .
(p,d,p) e 1(q,p,d, p)

The lower mutual information is defined as

Ii(g;p.d.p) = H(p) + H(q) —  sup

s€8(q,p,d,p)

H(s),

where S(q,p,d,p) C P(A x B) is the set of all joint
distributions s with marginals p and ¢ on alphabets A and
B, respectively, such that E[p(X,Y)] < d for (X,Y) ~
s. Properties of I;(q,p,d,p) can be found in [5, Lemmas
1 and 2]. In particular, it follows from [5, Lemma 2] that
for any fixed p,d and p, I;(Q"%* p',d,p) is second-order
differentiable in its second argument for any p’ satisfying
llp" — p|| <6 for some § > 0.

For a = /2J + 2, we have

EP [R(T’ d’ p)}
= Z pn (TZ (t))R(ta d, P)

p"(TX()R(t, d, p)
t:||t—p||2<ay/Inn/n
+
t:[|t—p|l2>ay/Inn/n

“ ol -1
<Y rmoRGd) )

til6—pll2<ay/Tr/n
- X rmo)
t:l|t=pll2<ay/Inn/n
eJ—l
In(K)
< >
t:||t—p||2<ay/Inn/n
J—1
In(K)

p"(TA(1))R(t,d, p)

inf I;(q,t,d,
qelg(B) l(q P)

n2

P (T4(1) [L(QP**,t,d, p)] +

e

n2

2 0@ p.d,p) +

t:||t—p|l2<ar/Inn/n

p'=p

1 PL(QP, ' d
*(t_p)/ l(Q , P, 7/))
2 Op'?

p"(TA()) -

8-[1 (Qp7d,p7 p/7 d7 p)
ap’

(t—p)

p'=p
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J—1

o<|tp|2>> + In(K)—-
— Rl p) o (2] 4

> p”(TX(t))<aIl(Qp’d’p,p’,d,p)

aop’
t:|[t—pl|2
<ay/lnn/n
1
5 2
t:|[t—pl|2

<ay/Inn/n

p'=p

OL(Q™™*,p',d, p)
ap/Q

P (Ti(®))(t —p)’

p'=p

(t—p).

Inequality (a) uses Lemma 1 and the fact that R(t,d,p) <
In(K), which follows from (16). In equality (b), we assume
n large enough so that ¢ satisfies ||t —p||o < 0 which allows us
to use the second-order differentiability property as mentioned
in the beginning of the proof. Also, equality (b) uses a slightly
lesser known form of Taylor’s Theorem [50, p. 290]. We now
show that the last two terms in (92) are O(1/n). Since we

have
>

tePn(A)

92)

P (TE)) () —p(4)) =0

for all j € A, it follows (similar to the approach used in
[7, Theorem 2]) that

t:||t—p|l2<ar/Inn/n

t:|[t—p||2>ar/Inn/n

> p"(Th(t))
t:|[t—p||2>ay/Inn/n

6.771

< e (from Lemma 1)

P (TA®)) () —p(j))‘

P (TA()(t() —p(j))‘

IN

and therefore,

> p”(T;z(t))<3fz<c2pvd’ﬂ7pxd7p>

p'=p

op’
t:|[t—pl|2
<ay/Inn/n
J
AL(Q, ' d, p)
O L () prcians
t Ht—l)Hz J=1 J P;=p;

oL(QP ", p',d, p)
op';

J

t:||t—p|l2<ar/Inn/n

<3|

P;=p;

P (TA)) () p(j))|
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<> O1(Q™",p',d, p) eIl
2
j=1 apj o n
1
—¢ (n2> (93)
For the second term in (92), we can write it as
1 J J
7 2 ) S () -
t:||t—p|l2<ay/Inn/n i=1 j=1
PL(QP4P.p,d, p)
t(j) —p(4)). (94
Op,p), (t(7) —p())- (94

P;=Pi,P;=Dp;

Note that the inner two sums above define a quadratic form.
The singular values are equal to the absolute value of the
eigenvalues of a symmetric matrix and the largest singular
value of a matrix is upper bounded by the Frobenius norm
of the Hessian. Then from basic theory of quadratic form
optimization [51, 7.2], we have

ZZ 32[1(Qp’dp P.d,p)

=1 j=1 aplap]

Hence, the absolute value of (94) is upper bounded by

aZIl(Qp,d,p,p/’d, P) . i Z

Pi=pi,p;=p;

(t(5) —p(j))‘

J
() -

F j=1

82Il(Qp,d,p7 p/v d7 p)
6])'2

p'=p

ap/2
p'=p |F j=1teP,(A)
PHTAE) () - p())?
_ 1| 2@t v d, p) i
== - N
2 op’ U | P
E, [(T() = p(7))*]
_ 1| e2n@rde, /' d, p) Z p(G) (1 = p(5))
2 op’? : n
p'=p IlF j=1
=0 (1> . (95)
n
Hence, substituting (93) and (95) into (92) gives
Inn
By [R(T.d.0)] < Rl )+ (")
|

APPENDIX D
PROOF OF LEMMA 3

Fix any d > 0 and (p, p) € Sg. Let § > 0 be a number to
be specified later. Let (¢,p) € Ns(p, p) and 2™ € T (t) be
any sequence within the type class. By the Definition of Sy,
there exists a o > 0 such that

e p(j) > o forall j €A,
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o QP%r(k) > o for all k € B, and

e 0 <d<mingep Z]eA ()p(, k).
The last condition above implies that we must have that
p(4, k) > d for some j € A and k € B. From the definition
of S, in Definition 3 and the continuity of Q% in p and p
which is implied by Lemma 2, it is easy to see that we can
make § small enough such that

o t(4) >a/2fora11]€A

o QU0 (k) > ¢ /2 for all k € B, and

o 0<d<minkepd ;cat(i)p (4, k).
forall (¢, p’) € Ns(p, p). The last condition above also trivially
implies that p'(j, k) > d for some j € A and k € B.

For the given sequence ™ € T (¢) and distortion measure
o, define a sequence of independent random variables Uy, Us,

Uy as

Ui £ p QC“ 7, Z WB|A k|1'z) (xivk)v (96)

keB

where we write W5, , = W 4[t.d, p'] and Y; ~ ~ Whia(lzi).
Clearly, each U; has finite second- and third-order moments
which we denote by E[U?] = v2 and E[|U;|?] = n;. We have
that

D 0 < npfa 97)

i=1

Next, we show that >, v? also grows linearly with n.
Fact 1: From Equation (10.124) in [2], we have the fol-

lowing relation between WE‘A[t, d,p'] and Q4%+

QU (k) exp (=X (j. K))
S Q) exp (A (. K)
k'eB
where —\* = 9dR(t,d, p’)/0d.
Hence, it follows that support(Q-%*") = K if and only if
Wgalt:d, p'[(klj) > 0 for all j € A and k € B. In fact,

since Q4#' (k) > ¢ /2 for all k, we have

Wiialt, d, ') (klj) >
o max
> 5 €XP (_Pda In(K) )
for all j € A, k € B, where the last inequality above
follows by using the assumption in (16), which implies that
() R(t,d,p) < In(K) and (i) \* = |0R(t,d,p')/dd| <
In(K)/d by convexity of R(t,d,p’) in d.

Since we have (i) a zero in every row of the distortion
matrix p’, (ii) p'(j*,k) > d for some j* € A and k € B,
(i) W5 alt,d, p'](Klj) > § exp (—pmax In(K)/d) for all k
and 7, and (iv) t(j) > o/2 for all j € A, we have

n
no
i=1

where ¢* satisfies z;» = j*. Consider the j*th row of the
distortion matrix whose entries include 0 and d’, where d’' >
d > 0. There is a full-support distribution W, ,[t, d, o] (-[5*)
over the entries of this row and each entry of the distribution
is uniformly bounded away from zero in terms of o, pmax

Wi alt.d, p')(klj) =

% €xp (_)\*pmax)
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and d. Hence, the variance of the random variable U;~ can
be uniformly bounded away from zero by a number which
depends only on o, pi,.x and d. Hence, we can write

n

2 2
E Vi > NVpin > 0.
i=1

We now invoke the Refined Lucky-Strike
Lemma [41, Lemma 8] which, specialized to the ¢ = 0 case,
establishes that for any positive number C,

B (g, (2", Y™) < d)

> exp (—nR(t,d, p')—C\*) P (—

C<§:UZ—<O>

=1

> exp (—nR(t,d, p')—-Cln K/d) P (

HM:

=)

(98)

for all integers n and =™ € T7%(t), where Y™ is distributed
according to (Q"%*")" where \* = —dR(t,d,p')/dd and
A* < 1In(K)/d by the same argument as before.

We continue (98) as

P (py, (2", Y") < d)
> exp (—nR(t,d, p')-Cn(K) /d) -
\/Zz 1 1 \/Zz 1 z B

> exp (—nR(t,d, p')—CIn(K

F,(0) — F, (—

)/d) -

)
D Vi 7

wh%re F,, denotes the cumulative distribution function of

i=1 1t

=L_. Now by Berry-Esseen theorem [52], we have that

99)

=1 "1
for all n there exists an absolute constant C such that

sup [ Fy (s) —
seR

(100)

n —3/2 n
s)| < Co (Zﬁ) > i
i=1 =1

Using the bounds for the second- and third-order moments in
the preceding discussion, we have

sup | Fy (5) — @(s)| < L0 Pmax (101)
seR \/ﬁ Vmin

Continuing (99) using (101), we have

P (pp (2", Y™) < d)

> exp (—nR(t,d, p')—C1In(K)/d) -
1 C Co p3
=P | ] —2—F="5= 102
2 ( T ) Vi m] "
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For the first two terms inside the brackets in (102), we have Let
the following lower bound:

1_@(_ o ) Cly"™, t,d, p) & {W >ty (B)W (k) = t(j) Vi€ A

2 D107
Zl—q)(— C ) and Zt W(jlk)p(4, k) <d
2 Pmax\/Tt
_ / e~ /24y be the set of all conditional types satisfying the given con-
r——vy straints. For a fixed y™, the number of conditional types of
22 x™ given y" is at most (n+ 1)75~1; hence, |C(y", t,d, p)| <
/ (1 - 2> dx (n + 1)7K=1 The size of B(y",t,d,p) can then be eval-

pmaxf uated by summing the sizes of the conditional type classes
1 c? Tw (y™) of all the conditional types W € C(y",t,d, p). From

1/277 pmax\/ﬁ N 621 p?naxnii/?' (103) [30, Lemma 2.3 and Lemma 2.5], we have the following
bounds for |77 (¢)| and |Tiw (y™)]:'°
Finally, using (103) back in (102), we obtain IT(0)] and [T (")

1 mn
> exp (—nR(t,d, p')~Cn(K)/d) - (106)
1 C 1 03 C() p3
_ _ 27 max H W t < T n
T W AT R (o a7t P ViD= w0
(a) <exp(nH(Wlty)). 107
2 exp (—nR(t.d, p)~C () /d) - = ep Vi) 4o
1 C Co pmaX Equipped with these, we evaluate the size of B(y™,t,d, p) as
2v 2w pmax\/ﬁ \/ﬁ me follows:
® exp (—nR(t,d7 o) — 3 lnn + O(l)> . (104) |B(y",t,d, p)|
= > ITw)
where inequality (a) follows by assuming C? < 3p2 _ n, and Wec(ym t.d.p)
equality (b) follows by allowing sufficiently large n to allow < Z (W]t,
the choice of the free parameter C' to satisfy -
WecC(ym,t,d,p)
L c 200’)“““ >0 < (n+1)"E texp <n max  H(W]|t )). (108)
22T Pmax me ’ - wec(yn,t,d,p) v

where one can use the upper bound Cy < 0.56 [53]. The Now let X" ~ p™andletY" = g,(fn(X",p)). We then have
O(1) only depends on p, d, p and pmax. We omit the

dependence on o or § because ¢ and § themselves depend HY"H(X") =1)

on the aforementioned variables. - _ Z {[P) (Y™ =y [t(X™) =t) -
y’!’LGB’H
APPENDIX E In(P(Y"=y"t(X") = t))}
PROOF OF LEMMA 4
| o —- > [Por=yiuxm =0
Fix d > 0 and let p be the input distortion measure. Define yrebn
B(y",t,d p) £ {a" € T4(1) : pula™,y") < d) (0T 20U 21
P(t(X™) = 1)
to be the set of type t source sequences covered within " " n |B(y™,t,d,p)]
distortion d by a reconstruction sequence y™. The distortion Z - Z P =y [t(X") =1t)In ( |T7%(t)] )
constraint p,(z™,y™) < d can be written in terms of types; yreBn
denoting the type of y" by t, and the conditional type of x" > Z PY" =y"[t(X") =1) [ln(n 4 1)7E+HI=2
given y™ by W, we have yneBn
1 <& n (H(t) - max H(W|ty)>} , (109)
(2" y") = — i Yi Wec(y™ t.d.p)
pula™,y") n;p(x vi) v e
— Z ty( k)W( ]| k) p( j k) < d. (105) 100 the cited reference, the lower bounds are stated with powers J and

JK instead of J —1 and JK — 1, respectively, but the bounds as stated here

JEAKEB evidently hold as well.
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where the last inequality above uses (106) and (108). To con-
tinue (109), we note that H(W|t,) is a function of the joint
distribution, call it s € P(A x B), specified by ¢, and W. Let

C(t,d,p) 25 EP(Ax B): Y s(j,k) =t(j) Vi € A
k

and > s(j, k)p(j, k) <d
7,k

It is easy to see that if (X,Y) ~ s, then

max H(W|t,) < max H(X|}7)
Wec(ym,t,d,p) seC*(t,d,p)

Then, using the definition of the rate-distortion function,
we can continue (109) as

HY"[H(X") = 1)
> Y PO =y X" = ) [nR(td. ) -
yneBn
In(n + 1)JK+J72}
=nR(t,d, p) — In(n+ 1)75+7=2,

To finish the proof, we use the fact that for any prefix code,
the expected length is lower bounded by the entropy. Hence,
1 n
B [1(fa (X", )]
1
> —H(Y"™
> ~H(Y")
1
> —H(Y"[#H(X"))
Y P(TRE)HY"HX") = 1)
tEPRL(A)

Z p"(T4(¢)) (TLR(t, d,p) — In(n + 1)JK+J—2)
tEP, (A)

>

SIl— 3|3

Inn JK+J-2

n n

> Ey [R(T,d,p)] = (JK +J —2)
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