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Lossy Compression With Universal Distortion

Adeel Mahmood and Aaron B. Wagner , Fellow, IEEE

Abstract— We consider a novel variant of d-semifaithful lossy
coding in which the distortion measure is revealed only to the
encoder and only at run-time, as well as an extension of it in
which the distortion constraint d is also revealed at run-time. Two
forms of rate redundancy are used to analyze the performance,
and achievability results of both a pointwise and minimax nature
are demonstrated. The first coding scheme uses ideas from VC
dimension and growth functions, the second uses appropriate
quantization of the space of distortion measures, and the third
relies on a random coding argument.

Index Terms— Lossy compression, universal source coding,
quantization, VC dimension, d-semifaithful code.

I. INTRODUCTION

L
OSSLESS coding is the mapping of raw data to a binary

representation such that the original data can be exactly

recovered from the binary representation. For mathematical

analysis, the raw data is treated as a randomly generated source

sequence and the corresponding binary representation is in

the form of a binary string. In this paper, we will focus on

discrete and memoryless sources, i.e., each source symbol

in the sequence is independent and identically distributed

and takes values on a finite alphabet. A lossless encoder

carries out the source-to-binary mapping while a decoder

performs the inverse mapping. Together, the encoder and

decoder pair specify a coding scheme. The performance of a

lossless coding scheme is usually1 measured by the expected

length of the binary string per source symbol (or simply

the expected rate), where the expectation is with respect to

(w.r.t.) the source probability distribution. Shannon entropy

of the source probability distribution characterizes the min-

imum (asymptotically) achievable expected rate.2 A precise

performance metric is, therefore, the difference between the

expected rate and Shannon entropy. This is called the rate

redundancy.
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1Other performance metrics such as the probabilistic ϵ-length [1] are also

used.
2For prefix-free lossless codes [2, Theorem 5.3.1].

In lossy coding, the original source sequence is not recov-

ered exactly and is instead approximated by what is called

a reconstruction sequence. The rate redundancy in lossy

coding is defined similarly, except that the rate-distortion

function [3] now plays the role of Shannon entropy. In this

paper, we will focus on a generalization of d-semifaithful

coding [4], a form of lossy compression in which the decoder

outputs a reconstruction sequence that is within distortion d of

the original source sequence with probability one. Distortion

is measured by a single-letter distortion measure which we

will denote by ρ. Denoting the length of the source sequence,

also called the block length, by n, past work has analyzed

the rate of convergence of the average expected codeword

length to the rate-distortion function as a function of n.

[5, Theorem 5] established an achievable rate redundancy

of lnn/n + o (lnn/n) while [5, Theorem 4] established a

converse of 1/2 lnn/n + o (lnn/n).
Universal coding schemes are of interest when the source

probability distribution p is unknown. A coding scheme is

said to be universal over a class of source distributions if the

rate redundancy converges to zero for every source in that

class. If the convergence is pointwise, then we say the coding

scheme is weakly universal. If the convergence is uniform (or

minimax), then the coding scheme is strongly universal. These

two notions of universality originated in the universal noiseless

coding literature [6]. Let J and K be the sizes of source and

reconstruction alphabets, respectively. Yu and Speed [7, Theo-

rem 2] established an achievable weakly universal convergence

rate of

(KJ + J + 4)
log n

n
+ O(n−1) (1)

for the rate redundancy of universal d-semifaithul codes for

a class of source distributions p satisfying some regularity

conditions. On the other hand, one can also consider a

modified rate redundancy, replacing the rate-distortion func-

tion with Shannon entropy of the probability distribution of

reconstruction sequences, minimized over all d-semifaithful

codes, see [8], [9]. This form of rate redundancy essen-

tially considers the difference between the expected rate of

a given universal code and the expected rate of an optimal

nth order code. Throughout the paper, the rate redundancy

w.r.t. the rate-distortion function will be referred to as sim-

ply the rate redundancy while the latter formulation will

be called the operational rate redundancy. With the opera-

tional rate redundancy as the metric, one can establish (e.g.,

[9, Lemma 5]) an achievable strongly universal convergence

rate of

(J − 1)
log n

n
+ O(n−1). (2)
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In both results (1) and (2), the distortion measure ρ is

fixed and known to both the encoder and decoder. A novel

variation of (universal) d-semifaithful coding (and lossy cod-

ing in general) we consider is that in which the distortion

measure is revealed to the encoder alone, and only when it

receives the source sequence xn to compress. We call this the

universal distortion problem. Traditional d-semifaithful coding

framework can be roughly represented by

encoder : xn 7−→ binary string

decoder : binary string 7−→ yn (3)

where xn is the given source sequence to be compressed

and yn is the reconstruction sequence satisfying the distortion

constraint with respect to ρ. Here the distortion measure ρ
is fixed a priori. On the other hand, universal distortion

d-semifaithful coding can be represented by

encoder : (xn, ρ) 7−→ binary string

decoder : binary string 7−→ yn (4)

We elaborate the distinction between (3) and (4) in terms of

the codebook underlying the encoder and decoder pair. The

task of designing a coding scheme is simplified by sharing

a codebook of indexed reconstruction sequences between the

encoder and decoder. In this case, the encoder transmits

the index (as a binary string) of a codeword which gives

smaller than d distortion with the given source sequence.

In traditional d-semifaithful coding, the codebook is optimally

designed to minimize the average rate and keep distortion

less than d with respect to one fixed distortion measure.

In the universal distortion formulation, one codebook must

be rich enough to cover all source sequences with less than

d distortion with respect to a variety of distortion measures.

An extension of this framework, which we will call the

generalized universal distortion problem, is when the distor-

tion constraint d is itself a run-time input to the encoder

alone:

encoder : (xn, ρ, d) 7−→ binary string

decoder : binary string 7−→ yn (5)

A natural approach to the universal distortion problem is

for the encoder to report a quantized version of the distortion

measure to the decoder and then proceed as if the commu-

nicated distortion measure was in effect. For the universal

distortion framework, we show that this simple approach

(with some post-correction modification) yields a strongly

universal (or minimax) achievability result with respect to the

operational rate redundancy (see Theorem 2). The quantiza-

tion approach only works for uniformly bounded distortion

measures, however. For the generalized universal distortion

framework, we replace the quantization approach with one

based on ideas from VC dimension theory, giving a strongly

universal achievability result with respect to the operational

rate redundancy (see Theorem 1), where universality now

includes all unbounded distortion measures and distortion lev-

els. Returning to the traditional rate redundancy with respect to

the rate-distortion function, we use a random coding approach

to give a weakly universal achievability result for the universal

distortion framework (see Theorem 3). All three results have

a O(lnn/n) convergence rate which is the optimal order of

convergence for traditional lossy source coding [5]; in partic-

ular, the achievability result of Theorem 3 is within lnn/n

of the known converse bound [10, Theorem 1] for traditional

universal d-semifaithful codes and in fact, matches the best

known achievability result [10, Theorem 2] for traditional

universal d-semifaithful codes, while itself being a universal

distortion d-semifaithful code.

Subsequent to the initial version of this work [11],

Merhav [12] has provided pointwise achievability and converse

results in the universal distortion framework. His rate redun-

dancy results are with respect to the empirical rate-distortion

function3 and use a different random coding approach. In his

context, pointwise means that the convergence rate is not uni-

form but depends on the source sequence through its type (and

the distortion measure). As described above, our work focuses

on expected rate redundancy so pointwise in our paper means

for each unknown source p and distortion measure. Both

notions of pointwise should be considered weakly universal.

Other points of comparison with [12] as well as with Yang

and Zhang’s earlier work ([13], [10]) in traditional universal

lossy coding will be laid out in the subsequent presentation of

our main results.

One practical motivation for the universal distortion setup

comes from the observation that compression systems are

typically asked to meet the needs of a variety of end-users

who may have discordant notions of distortion. In the context

of images, for some users, a decoder that includes artificial

high-frequency components in order to make the reconstructed

image more pleasing is preferable to one that simply outputs

blurry images, even though the high-frequency components

might not match the original image [14]. For other end-users,

the opposite will be true. Specifically, image compression

methods based on deep neural networks, which learn to syn-

thesize local image content, can lead to large distortions with

respect to traditional distortion metrics such as peak signal-

to-noise ratio but perform much better with distortion metrics

based on perceptual transforms [15]. One would like to design

codes that respect the distortion constraints of the particular

users using the system, which might only be known at run-

time. In a similar vein, image compression methods based on

saliency maps [16] can be viewed within the (generalized)

universal distortion framework; an image to be compressed is

divided into different subblocks based on relative importance

and each subblock is compressed with a different distortion.

A separate motivation comes from nonlinear transform

coding [15], [17], [18]. Suppose a source xn is first

mapped to a set of tranform coefficients zk via the analysis

transform ga(·),
zk = ga(xn). (6)

The transform coefficents are then quantized using some

quantizer Q(·),
ẑk = Q(zk), (7)

3The empirical rate-distortion function is equal to the rate-distortion func-
tion evaluated at the empirical distribution of a given realization of a source
sequence, as opposed to the underlying source distribution itself.
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where the range space of Q(·) is discrete and heavily con-

strained. A synthesis transform gs(·) is then used to create the

reconstruction yn:

yn = gs(ẑ
k). (8)

In linear transform coding, the ga(·) and gs(·) transforms are

typically isometric with respect to L2 distance. Thus they are

mean-squared error (MSE) preserving and Q(zk) should map

zk to the closest quantization ẑk in L2 distance.

Recently, however, promising results have been obtained

via nonlinear transform coding, specifically those obtained

via stochastic training of artificial neural networks (e.g.,

[15], [17], [19], [20], [21], [22], [23], [24], [25], [26], [27],

[28], [29]). Such learned, nonlinear transforms are not guar-

anteed to be distance-preserving, however. Thus mapping zk

to the nearest quantization point is not equivalent to finding

the ẑk that minimizes

ρ(xn, gs(ẑ
k)). (9)

In principle, the quantizer Q(·) could map a given zk to the ẑk

that minimizes (9); in practice, this is expensive. An alternative

is to consider a quadratic approximation of (9) about ẑk = zk:

ρ(xn, gs(ẑ
k))

≈ ρ(xn, gs(z
k)) + ∇zkρ(xn, gs(z

k))T (ẑk − zk) +

1

2
(ẑk − zk)T∇2

zkρ(xn, gs(z
k))(ẑk − zk), (10)

where ∇zkρ(xn, gs(z
k)) and ∇2

zkρ(xn, gs(z
k)) denote the

gradient and Hessian, respectively. Note that the first term

on the right-hand side of (10) does not depend on ẑk. Thus

minimizing (10) is tantamount to minimizing

∇zkρ(xn, gs(z
k))T (ẑk − zk) +

1

2
(ẑk − zk)T∇2

zkρ(xn, gs(z
k))(ẑk − zk) (11)

over ẑk. We arrive at the problem studied in this paper,

in which we seek to quantize a given source realization zk

according to a distortion measure that is not known until zk

itself is known.

For transforms that are trained end-to-end, there is evidence

that the Jacobian of gs(z
k), when viewed as a k-by-n matrix,

has orthonormal rows with high probability [24, supp. mat.].

If the gradient ∇zkρ(xn, gs(z
k)) is also zero, then the first

term in (11) vanishes and the Hessian is proportional to the

identity matrix, eliminating the need for distortion universality.

A number of nonlinear transforms have been proposed for

compression that are not trained in this fashion, however

[25], [26], [27], [28], [29]. Even for those that are, employing

a quantizer that minimizes the objective in (11) could allow for

reduced capacity in the neural networks comprising the anal-

ysis and synthesis transforms, with a concomitant reduction

in training requirements. Application to nonlinear transform

coding was the original motivation for this work.

II. PRELIMINARIES

Let A and B denote finite source and reconstruction alpha-

bets, respectively. Without loss of generality, we can let

A = {1, 2, . . . , J} and B = {1, 2, . . . ,K}. P(A) denotes the

set of all probability distributions on A. P(A|B) denotes the

set of all conditional distributions. In this paper, ln represents

log to the base e, log represents log to the base 2 and exp(x)
is equal to e to the power of x. Unless otherwise stated, all

information theoretic quantities will be measured in nats. For

p ∈ P(A), H(p) denotes the Shannon entropy. For p ∈ P(A)
and W ∈ P(B|A), H(W |p) denotes the conditional entropy

and I(p, W ) = I(X;Y ) denotes the mutual information where

(X,Y ) have the joint distribution given by p × W .

For p1 ∈ P(A) and p2 ∈ P(A), D(p1||p2) denotes the

relative entropy between the two probability distributions.

For any vector v ∈ R
m, ||v||1 and ||v||2 will denote the

l1 and l2 norms of v, respectively. For any two m-dimensional

vectors u = (u1, . . . , um) and v = (v1, . . . , vm), δ(v, u) ≜

1/2||v−u||1 will denote their total variation distance. We will

frequently view probability distributions p ∈ P(A) as

J-dimensional vectors. Finally, for any matrix M ∈ R
n×m,

||M ||F will denote the Frobenius norm of M .

For a given sequence xn ∈ An, the n-type t = t(xn) of xn

is defined as

t(j) =
1

n

n∑

i=1

1(xi = j)

for all j ∈ A, where 1(·) is the indicator function. Pn(A)
denotes the set of all n-types on A. For a pair of sequences

xn ∈ An and yn ∈ Bn, the joint n-type s is defined as

s(j, k) =
1

n

n∑

i=1

1 (xi = j, yi = k)

for all j ∈ A and k ∈ B. Pn(A × B) denotes the set of all

joint n-types on A × B. For two sequences xn and yn with

n-types tx = t(xn) and ty = t(yn), the joint n-type s can

also be written as

s(j, k) = tx(j)Wy(k|j) = ty(k)Wx(j|k),

where Wy is called a conditional type of yn given xn,

and Wx is called a conditional type of xn given yn. From

[30, Lemma 2.2], we have

|Pn(A)| ≤ (n + 1)J−1 and

|Pn(A × B)| ≤ (n + 1)JK−1. (12)

For a given type t ∈ Pn(A), Tn
A(t) is called the type class

where

Tn
A(t) ≜ {xn ∈ An : t(xn) = t}.

For any given p ∈ P(A) or p ∈ P(B), pn will denote

the n-fold product distribution induced by p. Let Xn be an

independent and identically distributed source. Let p ∈ P(A)
be the generic probability distribution of the source so that

Xn is distributed according to pn. The probability that Xn is

of type t is given by [30, Lemma 2.6]

Pp (Xn ∈ Tn
A(t)) = pn (Tn

A(t)) ≤ exp (−nD(t||p)) . (13)

For a given source distribution p, it suffices to focus only

on sequence types t satisfying ||t − p||2 ≤ a
√

lnn/n, where
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a2 ≥ 2 + 2J . Source sequence types farther away from the

source distribution p have negligible probability for large n as

quantified by the following lemma.

Lemma 1: If a ∈ R≥0 satisfies a2 ≥ 2 + 2J , then for all

p ∈ P(A) and all n ∈ N, we have

∑

t:||t−p||2>a
√

ln n/n

pn(Tn
A(t)) ≤ eJ−1

n2
.

Proof: [Proof] For any type t satisfying ||t − p||2 >
a
√

lnn/n, we have δ(t, p) ≥ 1
2 ||t−p||2 > 1

2a
√

lnn/n where

δ(t, p) is the total variation distance and the inequality follows

by the fact that the Euclidean distance is upper bounded by

the l1 norm. By Pinsker’s inequality [30, 3.18], we then have

D(t||p) ≥ 2δ2(t, p) ≥ a2 lnn

2n
.

If a ≥
√

2 + 2J , we have
∑

t:||t−p||2>a
√

ln n/n

pn (Tn
A(t)) ≤

∑

t:||t−p||2>a
√

ln n/n

e−nD(t||p)

≤ (n + 1)J−1e−a2 ln n/2

≤ eJ−1e(J−1) ln ne−a2 ln n/2

≤ eJ−1

n2
.

Let ρ : A×B → [0,∞) be a single-letter distortion measure

and ρn(xn, yn) be its n-fold extension defined as

ρn(xn, yn) =
1

n

n∑

i=1

ρ(xi, yi), (14)

where xn ∈ An, yn ∈ Bn. For convenience, we also define

ρ(p, WB|A) =
∑

j∈A,k∈B

p(j)WB|A(k|j)ρ(j, k), (15)

which is equal to the expected distortion E[ρ(X, Y )] where

(X, Y ) have the joint distribution p × WB|A for some p ∈
P(A) and conditional distribution WB|A ∈ P(B|A). We will

frequently view distortion measures as J × K matrices, i.e.,

ρ ∈ R
J×K .

Let D denote the space of all distortion measures and let

Dρmax ⊂ D be the space of uniformly bounded distortion

measures, i.e., all ρ ∈ Dρmax satisfy ρ(· , ·) ≤ ρmax for some

fixed ρmax > 0. The results of Theorems 2 and 3 hold only for

distortion measures in Dρmax . Theorem 1, on the other hand,

is valid for all distortion measures in D. Furthermore, we will

use the customary assumption [9], [13], and [31]:

max
j∈A

min
k∈B

ρ(j, k) = 0 for all ρ ∈ D. (16)

When the source distribution and the distortion measure are

fixed, (16) is without loss of generality [3, p. 26]. Here,

it is tantamount to having d represent the allowable excess

expected distortion above the minimum possible for the given

source distribution and distortion measure. For universal dis-

tortion, this is preferable to having d represent a constraint on

the absolute expected distortion: a given d will be below the

minimum achievable expected distortion for some distortion

measures, for instance.

For a given ρ ∈ D, p ∈ P(A) and d > 0, the rate-distortion

function R(p, d, ρ) is defined as [2, Theorem 10.2.1]

R(p, d, ρ)

≜ min
WB|A∈Wp,d,ρ

I(p, WB|A) (17)

= min
WB|A∈Wp,d,ρ

∑

j,k

p(j)WB|A(k|j) ln

(
WB|A(k|j)

W (k)

)

,

where W (k) =
∑

j∈A

p(j)WB|A(k|j) and (18)

Wp,d,ρ =






WB|A :

∑

j,k

p(j)WB|A(k|j)ρ(j, k) ≤ d






. (19)

For any given p and ρ, R(p, d, ρ) is nonincreasing, convex

and differentiable everywhere as a function of d except

possibly at d = mink∈B

∑

j∈A p(j)ρ(j, k) [3], [30, Exer-

cise 8.6], [2, Lemma 10.4.1]. In particular, for 0 < d <
mink∈B

∑

j∈A p(j)ρ(j, k), R(p, d, ρ) is strictly decreasing in

d. The function’s dependence on p for given d and ρ is

complex [32]. In particular, it is not concave in general. For

a given d > 0 and ρ ∈ D, we call R(T, d, ρ) the plug-in

estimator for R(p, d, ρ), where T = t(Xn) is the type of an

i.i.d. sequence Xn ∼ pn. The expected value of the estimator

is given by

Ep [R(T, d, ρ)] =
∑

t∈Pn(A)

pn(Tn
A(t))R(t, d, ρ).

Harrison and Kontoyiannis [33] gave sufficient conditions

for the consistency of the plug-in estimator. In particular,

it follows from [33, Corollary 1] that under the assumption

in (16), R(T, d, ρ) is a consistent estimator for R(p, d, ρ).
Throughout the paper, we will have W ∗

B|A denote an optimal

transition probability matrix which achieves the minimum in

(17)-(19). Note that W ∗
B|A is not necessarily unique, and W ∗

B|A
depends on p, d and ρ; when necessary, we will indicate this

dependence by writing W ∗
B|A[p, d, ρ]. We will use Qp,d,ρ to

denote the corresponding optimal output distribution on B
associated with the optimal channel W ∗

B|A, i.e.,

Qp,d,ρ(k) ≜
∑

j∈A

p(j)W ∗
B|A(k|j)

for all k ∈ B. The next lemma shows that if W ∗
B|A is unique

for a particular (p, d, ρ) triple, then it is continuous at this

point.

Lemma 2: Fix any p ∈ P(A), ρ ∈ D and d satisfying

0 < d < mink∈B

∑

j∈A p(j)ρ(j, k). Let W ∗
B|A be an opti-

mal transition probability matrix corresponding to (p, d, ρ)
which achieves the minimum in (17). If W ∗

B|A is the unique

minimizer at (p, d, ρ), then for every ϵ > 0, there exists a

δ > 0 such that for every (p′, d′, ρ′) ∈ N (p, d, ρ), where

N (p, d, ρ) ≜ {(p′, d′, ρ′) : ||p′ − p||2 ≤ δ,

|d′ − d| ≤ δ and ||ρ′ − ρ||F ≤ δ} ,
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we have

||W ∗
B|A[p, d, ρ] − W ∗

B|A[p′, d′, ρ′]||F ≤ ϵ.

Remark 1: Note that W ∗
B|A is not required to be unique for

all points in the neighborhood N (p, d, ρ).
Proof: The proof of Lemma 2 is given in Appendix B.

Previous works on lossy coding [34], [7], [5], and [13] have

primarily considered two kinds of block codes:

• fixed rate codes

• d-semifaithful codes

As mentioned before, we will focus on the latter. An nth

order d-semifaithful block code is defined by a triplet Cn =
(ϕn, fn, gn) such that

ϕn : An → Bφn
⊂ Bn

fn : Bφn
→ B∗

gn : B∗ → Bφn
(20)

where

• B∗ is a set of binary strings,

• (fn, gn) is a prefix-free binary encoder and decoder pair,

• Bφn
is the codebook, and

• ϕn is a d-quantizer, i.e., for all xn ∈ An, we have

ρn(xn, ϕn(xn)) ≤ d.

This formulation has been employed before [5], [10]. It should

be distinguished from the definition of a d-semifaithful code

as a pair (f ′
n, g′n) such that

f ′
n : An → B∗

g′n : B∗ → Bn, (21)

where

• (f ′
n, g′n) is a prefix-free binary encoder and decoder pair,

and

• for all xn ∈ An, we have ρn(xn, g′n(f ′
n(xn))) ≤ d.

Compared to (21), the formulation in (20) incurs a loss of

generality in that it prohibits the binary encoder fn from

sending control information obtained from the input to the

quantizer ϕn (but not revealed by the codeword), such as

the type of the source sequence or a flag used to toggle

between different modes of compression. On the other hand,

the structure in (20) is without loss of optimality in that any

d-semifaithful pair in (21) can be reduced to a d-semifaithful

triple in (20) with a rate that is only lower. Given (f ′
n, g′n)

in (21), let

Bφn
= {g′n(f ′

n(xn)) : xn ∈ An}.

Then define

ϕn(xn) = g′n(f ′
n(xn))

gn(·) = g′n(·)
fn(yn) = arg min

b∈B∗:g′
n(b)=yn

ℓ(b) for yn ∈ Bφn
. (22)

From (22) we have

ℓ(fn(ϕn(xn))) ≤ ℓ(f ′
n(xn)) (23)

for all xn. We shall adopt the formulation in (20), but we shall

also allow the encoder to send control information when it is

convenient to do so, with the understanding that the above

reduction is ultimately performed. An analogous convention

will prevail for the modified formulations of d-semifaithful

codes given later.

The performance of a d-semifaithful code Cn can be mea-

sured by the rate redundancy Rn(Cn, p, ρ) defined as

Rn(Cn, p, ρ) ≜
1

n
E [l (fn (ϕn(Xn))) ln 2] − R(p, d, ρ),

(24)

where E [l(fn(ϕn(Xn)))] is the expected length of the binary

string fn(ϕn(Xn)), the expectation being with respect to

the product distribution pn and the factor of ln 2 is because

we measure coding rate in nats. Note that Rn(Cn, p, ρ) is

nonnegative for all d-semifaithful codes Cn [2, Secs. 5.4 and

10.4].

Alternatively, note that the expected length

E [l(fn(ϕn(Xn)))] of a particular d-semifaithful code

(ϕn, fn, gn) is lower bounded by the Shannon entropy of

the probability distribution of ϕn(Xn), where Xn ∼ pn

[2, Theorem 5.3.1]. This is because the binary encoder

losslessly encodes the output ϕn(Xn) of the d-quantizer.

For a given source p and d-quantizer ϕn, the distribution of

ϕn(Xn) is defined as

νpn,φn
(yn) = pn

(
ϕ−1

n (yn)
)

=
∑

xn∈An

pn(xn)1 (ϕn(xn) = yn) (25)

for all yn ∈ Bφn
. Hence, an operational rate redundancy,

which was considered in [8], [9], can be defined as

Rn(Cn, p, ρ)

≜
1

n
E [l (fn (ϕn(Xn))) ln 2] − inf

φn∈Qd,ρ

H(νpn,φn
)

n
, (26)

where Qd,ρ is the set of all possible d-quantizers with respect

to distortion measure ρ. The performance metric in (26) is of

an operational nature; it is essentially (with a discrepancy of

at most 1/n) the difference between the expected rate of a

code Cn and the minimum possible expected rate of any nth

order code, which we will call M∗(n, p, ρ). We can write the

rate-redundancy Rn(Cn, p, ρ) as

Rn(Cn, p, ρ)

≈ 1

n
E [l (fn (ϕn(Xn))) ln 2] −M∗(n, p, ρ) +

M∗(n, p, ρ) − R(p, d, ρ). (27)

When both p and ρ are known, then Rn(C∗
n, p, ρ) ≈

M∗(n, p, ρ) − R(p, d, ρ), where C∗
n = (ϕ∗

n, f∗
n, g∗n) uses a

near-optimal d-quantizer ϕ∗
n ∈ Qd,ρ from the infimum in

(26) and the binary encoder and decoder (f∗
n, g∗n) are chosen

such that the expected rate is within 1/n of the entropy per

symbol. Hence, in this non-universal case, the problem of

analyzing Rn(Cn, p, ρ) is reduced to determining how fast

the expected rate of an optimal code converges to the rate-

distortion function. In the universal case when p is unknown,
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the first two terms on the right-hand side of (27) quantify

the price of universality. Our first two results in this paper

will demonstrate achievable bounds for the price of universal

distortion, whose exact framework is described next.

In the universal distortion setting, the modified formulation

of a d-semifaithful block code C̃n is

ϕn : An ×D → Bφn
⊂ Bn

fn : Bφn
→ B∗

gn : B∗ → Bφn
, (28)

where ϕn is now a d-quantizer w.r.t. the input distortion

measure. Thus the distortion measure is not known in advance

and only revealed to the d-quantizer at run-time.

Remark 2: To contrast (20) and (28), let us temporarily

assume that D = {ρ1, ρ2, . . . , ρm} consists of a finite number

of distortion measures. Then, (20) is a special case of (28)
with m = 1. Moreover, a d-semifaithful code in (20) achieving

a rate redundancy of Rn(Cn, p, ρ′) for an arbitrary distortion

measure ρ′ can be extended to a universal distortion code in

(28) to achieve a rate redundancy of Rn(Cn, p, ρ) + lnm/n
for all ρ ∈ D. This can be done by taking a union of the

codebooks of the m codes (call them C
(1)
n , C

(2)
n , . . . , C

(m)
n ,

where C
(i)
n is a standard d-semifaithful code for the distortion

measure ρi). Then when (xn, ρ) is an input to the quantizer for

some ρ ∈ D, a two-stage binary encoder can encode ϕn(xn, ρ)
by first communicating the label j ∈ {1, 2, . . . ,m} of the

codebook followed by using the binary encoder of C
(j)
n . In the

general setting, D is infinite so this approach fails.

The main technical contributions of the paper are to show

how to obtain universality over ρ given that D is a continuous

space, and then extend this universality over distortion con-

straint d as well. The latter provides a generalization of the

universal distortion framework in which both the distortion

measure ρ and the distortion constraint d can be run-time

inputs to the quantizer only. We will call this the general-

ized universal distortion code C̃n which has the following

formulation:

ϕn : An ×D × R>0 → Bφn
⊂ Bn

fn : Bφn
→ B∗

gn : B∗ → Bφn
, (29)

We now define the counterparts to (24) and (26) for the two

new frameworks in (28) and (29). For a universal distortion

code C̃n in (28), we simply redefine (24) and (26) to include

the distortion measure as an input to the d-quantizer; the rate

redundancy is given by

Rn(C̃n, p, ρ) ≜
1

n
E [l (fn (ϕn(Xn, ρ))) ln 2] − R(p, d, ρ)

(30)

and the operational rate redundancy (or price of universal

distortion) is

Rn(C̃n, p, ρ)

≜
1

n
E [l (fn (ϕn(Xn, ρ))) ln 2] − inf

φn∈Qd,ρ

H(νpn,φn
)

n
. (31)

For the generalized universal distortion d-semifaithful code

C̃n, we define the rate redundancies to include the distortion

constraint d as an additional parameter:

Rn(C̃n, p, ρ, d)

≜
1

n
E [l (fn (ϕn(Xn, ρ, d))) ln 2] − R(p, d, ρ)

and

Rn(C̃n, p, ρ, d)

≜
1

n
E [l (fn (ϕn(Xn, ρ, d))) ln 2] − inf

φn∈Qd,ρ

H(νpn,φn
)

n
.

(32)

III. MAIN RESULTS

Our first result establishes an achievable minimax conver-

gence rate for the operational rate redundancy Rn(C̃n, p, ρ, d)
as defined in (32). The achievability scheme uses an

approach which is based on VC dimension [35]. It extends

[9, Lemma 4] to the generalized universal distortion setting

of (29).
Theorem 1: In the generalized universal distortion setting,

lim sup
n→∞

inf
C̃n

sup
(p,ρ)∈P(A)×D

d∈(0,∞)

Rn(C̃n, p, ρ, d)

lnn/n
≤ J2K2 + J − 2,

where the infimum is over all codes which meet the input dis-

tortion constraint with respect to the input distortion measure.

Proof: The proof is given in Section V.

The idea behind the proof is the following. The domain of a

general quantizer ϕn is An×D×R>0. We take inspiration from

the fact that An can be partitioned into a polynomial number

of equivalence classes, namely type classes. Similarly, we can

partition D × R>0 into a polynomial number of equivalence

classes as follows. For each distortion measure ρ ∈ D and

d > 0, define hρ,d : Pn(A × B) → {−1,+1} to be a linear

classifier dividing the space Pn(A × B) into half-spaces as

follows:

hρ,d(s) =

{

+1 if
∑

j,k s(j, k)ρ(j, k) ≤ d

−1 if
∑

j,k s(j, k)ρ(j, k) > d.
(33)

Let H = {hρ,d : ρ ∈ D, d > 0}. We say that the two ordered

pairs (ρ(1), d(1)) and (ρ(2), d(2)) are equivalent if hρ(1),d(1) =
hρ(2),d(2) , i.e.,

hρ(1),d(1)(s) = hρ(2),d(2)(s)

for all s ∈ Pn(A×B). This defines an equivalence relation on

D× R>0 and, therefore, partitions D× R>0 into equivalence

classes {[D]ρ,d : ρ ∈ D, d > 0}, where the equivalence class

[D]ρ,d is defined as

[D]ρ,d ≜ {(ρ′, d′) ∈ D × R>0 : hρ′,d′ = hρ,d} .

Any two pairs (ρ(1), d(1)) and (ρ(2), d(2)) in the same equiva-

lence class are operationally interchangeable for encoding and

decoding purposes, i.e.,

ρ(1)(xn, yn) ≤ d(1) ⇐⇒ ρ(2)(xn, yn) ≤ d(2) (34)
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for all xn ∈ An and yn ∈ Bn. Note that |Pn(A × B)| ≤
(n + 1)JK−1. Each equivalence class [D]ρ,d can be uniquely

associated with the corresponding hρ,d which can be uniquely

associated with an M -tuple of ±1’s, also called a dichotomy

on Pn(A × B), where M ≤ (n + 1)JK−1. Therefore, the

number of equivalence classes, call it mH(n), is equal to the

number of distinct dichotomies on Pn(A × B) which can be

generated by H. Clearly, mH(n) ≤ 2(n+1)JK−1

. However, the

number of dichotomies which H can generate on Pn(A×B) is

limited by the VC dimension [35, Definition 2.5] of H. Since

H is a set of linear classifiers in JK-dimensional space, the

VC dimension of H is at most JK + 1 [36, 4.11]. Therefore,

since the number of joint n-types is at most (n + 1)JK−1,

the maximum number of dichotomies4 generated by H is (see

[35, 2.9] and [35, 2.10])

mH(n) ≤
JK+1∑

i=0

(|Pn(A × B)|
i

)

≤
(
(n + 1)JK−1

)JK+1
+ 1

= (n + 1)J2K2−1 + 1.

Let (ρ1, d1), (ρ2, d2), . . . , (ρmH(n), dmH(n)) be the represen-

tative distortion measures from the mH(n) equivalence classes

of D × R>0. These are the polynomial number of distortion

measures we desire. The above discussion can be encapsulated

in the following proposition.

Proposition 1: There are mH(n) ≤ (n + 1)J2K2−1 +
1 equivalence classes of D × R>0, denoted by [D]ρ1,d1

,

[D]ρ2,d2
, . . . , [D]ρmH(n),dmH(n)

. A d-semifaithful code Cn with

respect to a distortion measure ρ is also d′-semifaithful with

respect to distortion measure ρ′ for all (ρ′, d′) ∈ [D]ρ,d in the

same equivalence class.

Our next result (Theorem 2) uses a quantization approach to

reduce the continuum of distortion measures into a polynomial

number of distortion measures. This approach leads to a

better redundancy bound than in Theorem 1. However, the

result holds only for uniformly bounded distortion measures

in Dρmax . The coding scheme uses a custom quantization

of Dρmax as a function of d and a post-correction scheme

to prove a minimax achievability result for Rn(C̃n, p, ρ) as

defined in (31). In the low distortion regime, the coding

scheme in Theorem 2 requires a finer quantization of the space

of distortion measures. Specifically, the lower order terms

in the given redundancy bound entail an increasing penalty

with decreasing d. Consequently, the result only applies to the

universal distortion framework in (28), i.e., the redundancy

bound does not hold uniformly over all distortion levels

d ∈ R>0.

Consider a quantization Dq
n of Dρmax , which is parametrized

by some positive integer q:

Definition 1: A distortion measure ρ ∈ Dq
n ⊂ Dρmax if for

all j ∈ A, k ∈ B, we have ρ(j, k) = m ρmax/(qn) for some

integer m satisfying 0 ≤ m ≤ qn.

Essentially, Dq
n quantizes the set Dρmax using a regular grid

with a spacing of ρmax/(qn) in each of the JK dimensions.

4For an exact number of dichotomies on points satisfying certain conditions,

see [37, Theorem 1].

Hence, |Dq
n| = (qn + 1)JK ; the higher the value of q, the

finer the quantization. Given an arbitrary distortion measure

ρ ∈ Dρmax , each entry of ρ is rounded down to the nearest

cell in the grid as described in the following definition.

Definition 2: Given the distortion measure ρ ∈ Dρmax ,

we will denote by [ρ] ∈ Dq
n the quantization of ρ which

satisfies

• [ρ](j, k) ≤ ρ(j, k) for all j ∈ A, k ∈ B.

•
∣
∣[ρ](j, k) − ρ(j, k)

∣
∣ < ρmax

qn for all j ∈ A, k ∈ B.

Theorem 2: For any d > 0, there exists a universal distor-

tion d-semifaithful code C̃n satisfying

lim sup
n→∞

sup
(p,ρ)∈P(A)×Dρmax

Rn(C̃n, p, ρ)

lnn/n
≤ JK + J.

Proof: The proof is given in Section VI.

So far, we have given results establishing convergence to

inf
φn∈Qd,ρ

H(νpn,φn
)

n
(35)

instead of the rate-distortion function. The operational nature

of (35) made it an easier target: one did not need to establish

a single-letter characterization of the performance of the

proposed codes. Establishing convergence to the rate-distortion

function in the universal distortion setting involves various

technical challenges related to continuity, smoothness, d-ball

covering and convergence of Ep [R(T, d, ρ)] to R(p, d, ρ).
Both the VC dimension approach (Theorem 1) and the quan-

tization approach (Theorem 2) establish that a polynomial

number of distortion measures suffice for achieving univer-

sality over the continuous space Dρmax . Hence, as alluded

to in Remark 2, one approach could be to take a standard

universal d-semifaithful code from previous works which

works for a fixed arbitrary distortion measure and instantiate

it a polynomial number of times. Using this idea with the

VC dimension approach and the quantization approach would

add penalties of (J2K2−1) lnn/n and JK lnn/n to the rate

redundancy, respectively. If one seeks optimal pre-log factors,

then such an approach is unlikely to succeed.

In lossless coding, Rissanen [38] established an optimal

lossless coding rate redundancy of 0.5 k lnn/n for most

sources in a parametric class, where k is the dimension of the

parametric space. In universal lossy coding, the corresponding

parametric space may at first seem to be the set of all

distributions on the source alphabet, which has dimension

J−1. However, the rate-distortion function for an i.i.d. source

p has the following alternative characterization (see, e.g., [39]):

R(p, d, ρ) = inf
q∈P(B)

R(q, p, d, ρ) (36)

where the infimum is over all probability distributions q on the

reproduction alphabet, and R(q, p, d, ρ) is the rate achieved

by a random codebook used to compress the source data

within distortion d w.r.t. distortion measure ρ, where the

codewords are randomly generated i.i.d. according to q. Hence,

for each distribution p over the source alphabet, there is a

corresponding optimal distribution q = Qp,d,ρ on the recon-

struction alphabet which achieves the rate-distortion function.

As p varies over the simplex of probability distributions,
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Qp,d,ρ varies over a space of dimension K − 1. It would

seem to be the dimension of the space of distributions on

the reconstruction alphabet which should determine the coef-

ficient before lnn/n, since it captures all of the distributional

information that will be revealed to the decoder. Indeed, for

the fixed-rate variant of traditional universal lossy coding, [13]

established an optimal (assuming K ≤ J) pointwise distortion

redundancy of
(

K

2

)
lnn

n

∣
∣
∣

∂

∂R
d(p, R, ρ)

∣
∣
∣+ o

(
lnn

n

)

(37)

for source distributions p satisfying certain regularity con-

ditions, where the distortion redundancy is defined as the

difference between expected distortion of the code and the

distortion-rate function. When contrasted with the optimal

distortion redundancy, given by [5, Theorem 1]
(

1

2

)
lnn

n

∣
∣
∣

∂

∂R
d(p, R, ρ)

∣
∣
∣+ o

(
lnn

n

)

, (38)

of non-universal fixed rate coding, we see that (K − 1)/2 is

the “price of universality”, which is consistent with (36)
and Rissannen’s redundancy result. For traditional universal

d-semifaithful codes, the optimal rate redundancy is not pre-

cisely characterized; for source distributions p ∈ Pd ⊂ P(A)
satisfying certain regularity conditions, a converse result is

known [10, Theorem 1] giving a lower bound of K/2 lnn/n+
o(lnn/n) for the rate redundancy for most p ∈ Pd while an

achievability result [10, Theorem 2] of (K + 2)/2 lnn/n is

given for all p ∈ Pd.

In the universal-distortion setup considered in this paper,

the variation of distortion measure ρ does not change the

parametric space P(B) of the formulation in (36). Hence,

[K/2, (K + 2)/2] is a reasonable guess for the range of

optimal pre-log factors for the rate redundancy Rn(C̃n, p, ρ)
as defined in (30). Our final result gives a universal-distortion

achievability result with the pre-log factor within this range.

We consider a subset Sd ⊂ P(A)×Dρmax defined as follows:
Definition 3: For all (p, ρ) ∈ Sd, we have

1) p(j) > 0 for all j ∈ A,

2) Qp,d,ρ is unique,

3) Qp,d,ρ(k) > 0 for all k ∈ B, and

4) 0 < d < mink∈B

∑

j∈A p(j)ρ(j, k).

Remark 3: The uniqueness5 of the optimal output distri-

bution Qp,d,ρ implies the uniqueness of the optimal channel

W ∗
B|A[p, d, ρ] by the following well-known relation (see, e.g.,

Equation (10.124) in [2]):

W ∗
B|A[p, d, ρ](k|j) =

Qp,d,ρ(k) exp (−λ∗ρ′(j, k))
∑

k′∈B

Qp,d,ρ(k′) exp (−λ∗ρ′(j, k′))
,

which holds for all (p, ρ) ∈ Sd and where −λ∗ =
∂R(p, d, ρ)/∂d. The uniqueness of Qp,d,ρ is a com-

mon assumption in past works [5], [13], [10], [40].

Also see [13, Remark 1], [40, Remark b), p. 2283],

[5, Remark, p. 817] for discussion and examples of (p, ρ)

5A non-trivial sufficient condition for the uniqueness of Qp,d,ρ for full-
support p can be found in [13, Lemma 7].

satisfying the full-support assumptions on p and Qp,d,ρ. The

fourth condition in Definition 3 restricts our attention to the

interesting case where R(p, d, ρ) > 0.

Remark 4: Under the conditions of Definition 3, we have

a o(lnn/n) convergence of Ep [R(T, d, ρ)] to R(p, d, ρ) from

above. This result is implicit in [5] but we have included a

proof in Appendix C for convenience.

Theorem 3: Fix any d > 0. There exists a random

d-semifaithful code C̃n = (Φn, fn, gn) in the universal dis-

tortion setting such that for every (p, ρ) ∈ Sd,

Ec

[

Rn(C̃n, p, ρ)
]

≤
(

K

2
+ 1

)
lnn

n
+ o

(
lnn

n

)

,

where Ec [·] denotes expectation with respect to the random

code.

Proof: The proof is given in Section VII.

Remark 5: Unlike Theorems 1 and 2, the convergence in

Theorem 3 is pointwise in p and ρ.

As discussed above, we use a random coding argument

to prove Theorem 3. Since p is unknown and ρ is not

known at design time either, the encoder and decoder share

a random codebook with i.i.d. codewords from the normal-

ized maximum-likelihood (NML) distribution over the recon-

struction alphabet (see the definition of NML distribution

in (63)). Then given the type t and distortion measure ρ
at runtime, the encoder uses acceptance-rejection sampling

from the codebook to obtain i.i.d. codewords according to

(Qt,d,ρ)n and sends the index of the first one meeting the

distortion constraint. This is different from the random coding

argument in [10], [13] which uses “1/
√

n-type” quantization

of the space P(B) and generates uniform samples from each

type. Arguably, our approach circumvents the need for more

delicate continuity and smoothness arguments with respect

to Qt,d,ρ. See also [12] for another variant of the random

coding argument in which the shared random codebook has

codewords drawn from a uniform mixture of i.i.d. sources on

the reconstruction alphabet.

At the heart of our random coding argument is Lemma 3

which bounds the probability of a codeword Y n ∼ (Qt,d,ρ)n

meeting the distortion constraint with a type t source sequence.

Define for any δ > 0,

Nδ(p, ρ) ≜ {(t, ρ′) ∈ Pn(A) ×Dρmax : ||t − p||2 < δ

and ||ρ − ρ′||F < δ}. (39)

Lemma 3: Fix any d > 0 and (p, ρ) ∈ Sd. Then there exists

a δ > 0 such that

P(ρ′n(xn, Y n) ≤ d)

≥ exp

(

−nR(t, d, ρ′) − 1

2
lnn + O(1)

)

(40)

for all (t, ρ′) ∈ Nδ(p, ρ), where xn ∈ Tn
A(t), Y n is i.i.d.

according to Qt,d,ρ′
and the O(1) term depends only6 on p, d, ρ

and ρmax.

Proof of Lemma 3: The proof of lemma 3 is given in

Appendix D.

6We do not mention the dependence on alphabet sizes since those are fixed
throughout the paper.
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Different variants of the lower bound in Lemma 3 under-

lie the random coding approaches used in previous works

to prove achievability schemes; see, e.g., [5, Lemma 3],

[12, Lemma 1]. The main idea is to have a random codebook

of i.i.d. codewords {Y n
1 , Y n

2 , Y n
3 , . . .} available to both the

encoder and decoder. Then given an input source sequence xn

to compress, the encoder conveys to the decoder the index I
of the first codeword Y n

I which meets the distortion constraint

with xn. The smaller the value of I , the shorter the length of

the binary encoding. It is easy to see that I is a geometric

random variable with success probability lower bounded as

in (40). A useful property of Lemma 3 is that the “O(1)” term

in (40) is uniformly bounded over a neighborhood Nδ(p, ρ); in

particular, it is independent of the type t = t(xn) of the source

sequence xn which facilitates the expected rate analysis in the

proof of Theorem 3. A second advantage is that since the lower

bound in (40) holds uniformly over all types and distortion

measures in a neighborhood, one can show that with high

probability, the worst-case (i.e., maximum) integer index I
over all types and distortion measures is small. This argument

is made rigorous in the proof of Proposition 2 and is a crucial

part in our next discussion about obtaining a deterministic

code.

Our Theorem 3 can be viewed as a partial strengthening

of [10, Theorem 2] in that our result is in the more general

universal distortion setting and has fewer regularity conditions

which are actually a subset of the regularity conditions used in

[10, Theorem 2]. However, Theorem 3 only proves the exis-

tence of a random code while [10, Theorem 2] gives a deter-

ministic code. Below, we outline a method to derandomize our

code in Theorem 3 by fusing ideas from [10] and [41], but

this comes at the expense of making our regularity conditions

in Definition 3 stricter to match those in [10].

The proofs of both theorems (Theorem 3 and [10, Theorem

2]) begin with a random coding argument. As such, both

proofs rely on lower bounding the probability of a random

codeword meeting the distortion constraint. The result in [10]

obtains this bound by estimating the size of the d-ball around

any given type t source sequence (see [5, Lemma 3]) using a

technical counting argument given in [5, Appendix]. On the

other hand, we use standard large deviations techniques and

the Berry-Esseen Theorem (Lemma 3 in this paper). An advan-

tage of our method is that it is more easily extended to variable

distortion measures; as remarked earlier, our lower bound

holds uniformly in a neighborhood around any given (p, ρ).
In view of this, it is possible to show strong universality or

uniform convergence over the neighborhood around any given

(p, ρ), similar to how [13, Theorem 2] or [10, Theorem 2]

showed strong universality over the neighborhood around p.

Hence, we have the following proposition:
Proposition 2: Fix any d > 0 and (p, ρ) ∈ Sd. There exist

a neighborhood Nδ(p, ρ) for some δ > 0 and a (deterministic)

universal distortion d-semifaithful code C̃n = (ϕn, fn, gn)
satisfying

sup
(p′,ρ′)

∈Nδ(p,ρ)

[
ln 2

n
Ep′ [l(fn(ϕn(Xn, ρ′)))] − Ep′ [R(T, d, ρ′)]

]

≤
(

K

2
+ 1

)
lnn

n
+ O

(
ln lnn

n

)

. (41)

Proof: The proof is given in Appendix A.

Unlike Theorem 3, whose achievability bound holds point-

wise for each p and ρ, the bound in (41) holds uniformly

for (p′, ρ′) in a neighborhood around a given (p, ρ). In other

words, we went from weak universality to strong universality

at the expense of shrinking the set of (p, ρ) over which

universality is achieved. However, this strong universality or

uniform convergence allows us to obtain a deterministic code

in Proposition 2 as opposed to a random code in Theorem 3; in

the proof of Proposition 2, we used a union bound over types

and equivalence classes of distortion measures over a suitable

neighborhood around (p, ρ). The notion of equivalence classes

of distortion measures is a straightforward corollary of Propo-

sition 1: for a given blocklength n and distortion level d, there

are ξ ≤ (n + 1)J2K2−1 + 1 equivalence classes of Dρmax ,

denoted by [D]ρ1
, [D]ρ2

, . . . , [D]ρξ
, where ρ1, ρ2, . . . , ρξ

are arbitrarily chosen representative distortion measures.

A d-semifaithful code with respect to a distortion measure

ρ is also d-semifaithful with respect to all distortion measures

ρ′ ∈ [D]ρ in the same equivalence class.

Now, as mentioned before, under certain additional assump-

tions7 on p and ρ from [10, p. 8], it can be shown that

the set Sd in Definition 3 is an open set. Hence, Sd can

be expressed as a countable union of compact subsets, each

of which (by Heine-Borel theorem) can be covered by a

finite union of neighborhoods of the form Nδ(p, ρ). Then

with a similar argument as in [10, Theorem 2 (ii)] or

[13, Corollary 2], the existence of a deterministic, universal-

distortion d-semifaithful code whose expected rate converges

pointwise to Ep[R(T, d, ρ)] for all (p, ρ) ∈ Sd can be proved.

Subsequently, an application of Lemma 5 in Appendix C

guarantees a o(lnn/n) convergence of Ep[R(T, d, ρ)] →
R(p, d, ρ). We omit this result and instead keep Theorem 3

as one of our main results to keep the definition of Sd simpler

and the associated regularity conditions slightly more general.

IV. CONCLUDING REMARKS

The three main results show how to achieve universal

distortion using three different approaches: the VC dimension

approach, the quantization approach and the random coding

approach. None of the results, however, show minimax con-

vergence to the rate-distortion function. From Theorem 1,

we have that the redundancy Rn(C̃n, p, ρ, d) can be made to

vanish uniformly in p, d and ρ for some code. Thus to obtain

convergence to the rate-distortion function that is uniform over

p, it suffices to show that

lim
n→∞

sup
p

∣
∣
∣ inf

φn∈Qd,ρ

H(νpn,φn
)

n
− R(p, d, ρ)

∣
∣
∣ = 0 (42)

for all ρ and d > 0. A pointwise version of this result,

lim
n→∞

inf
φn∈Qd,ρ

H(νpn,φn
)

n
= R(p, d, ρ) for all p, ρ and d,

(43)

7Similar assumptions can be found in [13, p. 129].
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is known (cf. [42, Theorem 4]). One approach is thus to

strengthen (43) to (42), perhaps to include uniformity over

ρ and d as well.

An alternative is to show that the gap between

expected codeword length and the code-independent quantity

Ep[R(T, d, ρ)] (where T is the n-type of a source string

generated i.i.d. according to p) vanishes uniformly and then

extend Lemma 5 to show

lim
n→∞

sup
p

(Ep[R(T, d, ρ)] − R(p, d, ρ))+ = 0, (44)

where x+ = max(x, 0). The following lemma, which is

proven in Appendix E, shows that (44) is in fact necessary.

Lemma 4: For all n ∈ N, any d-semifaithful code Cn =
(ϕn, fn, gn) satisfies

1

n
E [l (fn (ϕn(Xn, ρ))) ln 2] ≥

Ep [R(T, d, ρ)] − (JK + J − 2)
lnn

n
− JK + J − 2

n

for all p ∈ P(A) and ρ ∈ D.

Lemma 4 shows that the emergence of the quantity

Ep[R(T, d, ρ)] is not an artifact of the proof of Theo-

rem 3 or most other theorems [7], [12], [5] showing achiev-

ability results with respect to the rate-distortion function.

See [12, Theorem 2] for another converse result which gives

a pointwise lower bound to the encoding length in terms of

R(t, d, ρ) where t = t(xn) is the type of any given realization

of the source sequence. Indeed, [41] gives a minimax conver-

gence to the rate-distortion function by first showing that the

difference between the expected rate of an optimal code and

Ep [R(T, d, ρ)] goes to zero uniformly over p and ρ.

V. PROOF OF THEOREM 1

From Proposition 1, there are a polynomial number of

equivalence classes of D × R>0. Let us focus first on one

equivalence class [D]ρi,di
and a type t ∈ Pn(A). For each

type t, let pt = Unif (Tn
A(t)) be the uniform distribution

over the type class. Fix any ϵ > 0. Given any equivalence

class [D]ρi,di
and type t, it is always possible to choose

(ρt
i, d

t
i) ∈ [D]ρi,di

and dt
i-quantizer ϕt,i

n with respect to ρt
i such

that

H(νpt,φ
t,i
n

)

n
≤ inf

φn∈Qdi,ρi

H(νpt,φn
) + ϵ

n
.

We now construct a dt
i-semifaithful code Ct,i

n =
(ϕt,i

n , f t,i
n , gt,i

n ) with respect to ρt
i whose expected rate

with respect to pt is given by

1

n
Ept

[
l(f t,i

n (ϕt,i
n (Xn))) ln(2)

]

≤
H(νpt,φ

t,i
n

)

n
+

ln(2)

n

≤ inf
φn∈Qdi,ρi

H(νpt,φn
) + ln(2) + ϵ

n
, (45)

where the binary encoder and decoder (f t,i
n , gt,i

n ) are cho-

sen optimally such that the average expected length of the

binary string is within 1/n of the entropy per symbol; see

[2, Theorem 5.4.1 and 5.4.2]. Hence, we have a dt
i-semifaithful

code Ct,i
n for each type t and distortion measure ρt

i, where

1 ≤ i ≤ mH(n).
We now construct a generalized universal distortion code

C̃n = (ϕn, fn, gn) by collecting all the previous codes. For

any input source sequence xn, input distortion measure ρ ∈ D
and input distortion constraint d > 0, let t = t(xn) be the type

of xn and let i be the integer such that (ρ, d) ∈ [D]ρt
i,d

t
i
, where

1 ≤ i ≤ mH(n). The mapping of the d-quantizer ϕn is given

by

ϕn(xn, ρ) = ϕt,i
n (xn),

which satisfies the distortion constraint according to Proposi-

tion 1 and (34). The encoder fn first sends

log (|Pn(A)|mH(n)) + 1

≤ log
(

(n + 1)J−1
(

(n + 1)J2K2−1 + 1
))

+ 1

= (J2K2 + J − 2) log(n) + J2K2 + J (46)

bits to identify the type t and equivalence class i followed by

the binary encoding f t,i
n (ϕt,i

n (xn)). Therefore, the expected

rate of this scheme is given by

1

n
Ep [l(fn(ϕn(Xn, ρ))) ln(2)]

≤ (J2K2 + J − 2)
ln(n)

n
+

ln(2)(J2K2 + J)

n

+
1

n
Ep

[
l(fT,i

n (ϕT,i
n (Xn))) ln(2)

]
(47)

= (J2K2 + J − 2)
ln(n)

n
+

ln(2)(J2K2 + J)

n
+

1

n
·

∑

t∈Pn(A)

pn(Tn
A(t))Ep

[
l(f t,i

n (ϕt,i
n (Xn))) ln(2)|t(Xn) = t

]

(48)

≤ (J2K2 + J − 2)
ln(n)

n
+

ln(2)(J2K2 + J)

n
+

∑

t∈Pn(A)

pn(Tn
A(t))

[

inf
φn∈Qdi,ρi

H(νpt,φn
) + ln(2) + ϵ

n

]

(49)

= (J2K2 + J − 2)
ln(n)

n
+

ln(2)(J2K2 + J)

n
+

∑

t∈Pn(A)

pn(Tn
A(t))

[

inf
φn∈Qd,ρ

H(νpt,φn
) + ln(2) + ϵ

n

]

(50)

= (J2K2 + J − 2)
ln(n)

n
+

ln(2)(J2K2 + J)

n
+

ln(2) + ϵ

n
+ Ep

[

inf
φn∈Qd,ρ

H(νpT ,φn
)

n

]

≤ (J2K2 + J − 2)
ln(n)

n
+

ln(2)(J2K2 + J)

n
+

ln(2) + ϵ

n
+ inf

φn∈Qd,ρ

H (Ep [νpT ,φn
])

n
(51)

= (J2K2 + J − 2)
ln(n)

n
+

ln(2)(J2K2 + J)

n
+
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ln(2) + ϵ

n
+ inf

φn∈Qd,ρ

H (νpn,φn
)

n
. (52)

In the last term of (47), T = t(Xn) is a random type. In (49),
we use (45) along with the fact that Xn is i.i.d. according to p
and that conditioned on the type, Xn is uniformly distributed

over the type class. In (50), we use the fact that (ρ, d) and

(ρi, di) belong to the same equivalence class. In (51), we use

concavity and Jensen’s inequality. Finally, in (52), we use the

definition of νpt,φn
from (25):

νpt,φn
(ỹn) =

∑

xn∈An

pt(x
n)1 (ϕn(xn) = ỹn)

=
∑

xn∈T n
A

(t)

pt(x
n)1 (ϕn(xn) = ỹn)

and

Ep [νpT ,φn
(ỹn)]

=
∑

t∈Pn(A)

pn(Tn
A(t))

∑

xn∈T n
A

(t)

pt(x
n)1 (ϕn(xn) = ỹn)

=
∑

t∈Pn(A)

∑

xn∈T n
A

(t)

pn(Tn
A(t))pt(x

n)
︸ ︷︷ ︸

=pn(xn)

1 (ϕn(xn) = ỹn)

=
∑

xn∈An

pn(xn)1 (ϕn(xn) = ỹn)

= νpn,φn
(ỹn).

The upper bound in (52) holds uniformly over all p, ρ and

d > 0 which enables us to write (52) as

sup
p,ρ,d

Rn(C̃n, p, ρ) ≤ (J2K2 + J − 2)
lnn

n
+ O(n−1)

Dividing both sides by lnn/n and taking the limit establishes

the result of Theorem 1.

VI. PROOF OF THEOREM 2

Let q = ⌈ρmax/d⌉ and quantize Dρmax with Dq
n. For each

type t, let pt = Unif(Tn
A(t)) be the uniform distribution over

the type class. Fix any ϵ > 0. For each type t ∈ Pn(A) and

[ρ] ∈ Dq
n, it is always possible to choose a d-quantizer ϕ

t,[ρ]
n

with respect to [ρ] such that

H
(

ν
pt,φ

t,[ρ]
n

)

n
≤ inf

φn∈Qd,[ρ]

H(νpt,φn
) + ϵ

n
.

Hence, for each type t and [ρ] ∈ Dq
n, we can construct a d-

semifaithful code C
t,[ρ]
n =

(

ϕ
t,[ρ]
n , f

t,[ρ]
n , g

t,[ρ]
n

)

with respect

to [ρ] whose expected rate with respect to pt is given by

1

n
Ept

[

l(f t,[ρ]
n (ϕt,[ρ]

n (Xn))) ln(2)
]

≤
H(ν

pt,φ
t,[ρ]
n

)

n
+

ln(2)

n

≤ inf
φn∈Qd,[ρ]

H(νpt,φn
) + ln(2) + ϵ

n
, (53)

where the binary encoder and decoder (f
t,[ρ]
n , g

t,[ρ]
n ) are cho-

sen optimally such that the average expected length of the

binary string is within 1/n of the entropy per symbol; see

[2, Theorems 5.4.1 and 5.4.2].

We now construct a universal distortion d-semifaithful code

C̃n = (ϕn, fn, gn) by using the previous codes

{

Ct,[ρ]
n : t ∈ Pn(A), [ρ] ∈ Dq

n

}

in conjunction with a post-correction scheme, which is

described next. For any input source sequence xn and input

distortion measure ρ ∈ Dρmax , let t = t(xn) be the type

of xn and let [ρ] ∈ Dq
n be the appropriate quantization of

ρ as described in Definitions 1 and 2. The d-quantizer ϕn

with respect to ρ first uses ϕ
t,[ρ]
n to encode xn which satisfies

[ρ]n(xn, ϕ
t,[ρ]
n (xn)) ≤ d which implies ρn(xn, ϕ

t,[ρ]
n (xn)) ≤

d+ρmax/(qn). If ρn(xn, ϕ
t,[ρ]
n (xn)) ≤ d, then set ϕn(xn, ρ) =

ϕ
t,[ρ]
n (xn). Call this Case 1. Otherwise (in Case 2), if d <

ρn(xn, ϕ
t,[ρ]
n (xn)) ≤ d + ρmax/(qn), it is possible to replace

exactly one symbol in the sequence ϕ
t,[ρ]
n (xn) so that the

post-corrected sequence, call it yn, satisfies ρn(xn, yn) ≤ d.

Such a post-correction is possible because we have d > 0,

the assumption in (16), and the fact that the replacement of

a symbol corresponding to maximum distortion guarantees

an average distortion reduction of at least d/n so that we

have

ρn(xn, yn) ≤ ρn(xn, ϕt,[ρ]
n (xn)) − d

n

≤ d +
ρmax

qn
− d

n

≤ d,

where the last inequality follows from the choice of q =
⌈ρmax/d⌉. We formally write the d-quantizer ϕn with respect

to ρ as the composition of two functions, ϕn = wn ◦ vn,

defined as

vn(xn, ρ) ≜ (xn, ρ, ϕt,[ρ]
n (xn)) (54)

wn(xn, ρ, ϕt,[ρ]
n (xn))

≜

{

ϕ
t,[ρ]
n (xn) if ρn(xn, ϕ

t,[ρ]
n (xn)) ≤ d (Case 1)

yn if ρn(xn, ϕ
t,[ρ]
n (xn)) > d (Case 2)

(55)

where yn differs from ϕ
t,[ρ]
n (xn) in one component and satis-

fies ρn(xn, yn) ≤ d, as described above. The binary encoder

fn sends

log (|Pn(A)||Dq
n|) + 1 ≤ log

(
(n + 1)J−1(qn + 1)JK

)
+ 1

≤ (JK + J − 1) log(n)+

JK log
(ρmax

d
+ 1
)

+ JK + J

(56)

bits to first identify the code C
t,[ρ]
n , followed by the binary

encoding f
t,[ρ]
n (ϕ

t,[ρ]
n (xn)), followed by a flag bit to indicate

Case 1 vs. Case 2 from (55), followed by (if necessary) post-

correction symbol replacement which takes at most log(n) +
log(K) + 2 bits. Therefore, the expected rate of this scheme
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is given by

1

n
Ep [l(fn(ϕn(Xn, ρ))) ln(2)]

≤ (JK + J − 1)
ln(n)

n
+

JK

n
ln
(ρmax

d
+ 1
)

+
JK ln(2)

n

+
J ln 2

n
+

3 ln(2) + ln(n) + ln(K)

n
+

1

n
Ep

[

l(fT,[ρ]
n (ϕT,[ρ]

n (Xn))) ln(2)
]

(57)

= (JK + J)
lnn

n
+

W1

n
+

1

n

∑

t∈Pn(A)

pn(Tn
A(t))Ep

[
l(f t,i

n (ϕt,i
n (Xn))) ln(2)|t(Xn) = t

]

(58)

≤ (JK + J)
lnn

n
+

W1 + ln(2) + ϵ

n
+

+
∑

t∈Pn(A)

pn(Tn
A(t))

[

inf
φn∈Qd,[ρ]

H(νpt,φn
)

n

]

(59)

= (JK + J)
lnn

n
+

W1 + ln(2) + ϵ

n
+

Ep

[

inf
φn∈Qd,[ρ]

H(νpT ,φn
)

n

]

≤ (JK + J)
lnn

n
+

W1 + ln(2) + ϵ

n
+

inf
φn∈Qd,[ρ]

H(Ep [νpT ,φn
])

n
(60)

= (JK + J)
lnn

n
+

W1 + ln(2) + ϵ

n
+ inf

φn∈Qd,[ρ]

H(νpn,φn
)

n

(61)

≤ (JK + J)
lnn

n
+

W1 + ln(2) + ϵ

n
+ inf

φn∈Qd,ρ

H(νpn,φn
)

n
.

(62)

In the last term of (57), T = t(Xn) is a random type. In (58),
W1 is a constant depending only on J , K, ρmax and d. In (59),
we use (53) along with the fact that Xn is i.i.d. according to p
and that conditioned on the type, Xn is uniformly distributed

over the type class. In (60), we use concavity and Jensen’s

inequality. In (61), we use the same argument as in the

derivation of (52) in the proof of Theorem 1. Finally, in (62),
we use the fact that ϕn ∈ Qd,ρ implies ϕn ∈ Qd,[ρ] because of

Definition 2. The upper bound in (62) holds uniformly over

all p and ρ which enables us to write (62) as

sup
p,ρ

Rn(C̃n, p, ρ) ≤ (JK + J)
lnn

n
+

W1 + ln(2) + ϵ

n
.

Dividing both sides by lnn/n and taking the limit establishes

the result of Theorem 2.

VII. PROOF OF THEOREM 3

Let QNML ∈ P(Bn) denote the normalized maximum-

likelihood (NML) distribution which is defined as

QNML(yn) =

sup
q∈P(B)

qn(yn)

Sn
, (63)

where

Sn =
∑

zn∈Bn

sup
p∈P(B)

pn(zn). (64)

The normalization factor Sn is called the Shtarkov’s sum for

i.i.d. distributions and Sn grows only polynomially with n
(as can be seen from the method of types). Alternatively,

Shtarkov [43] showed the important result that log Sn is

essentially (up to a discrepancy of at most 1/n) equal to the

universal lossless coding redundancy for i.i.d. source distribu-

tions. It is known from previous works ([44], [45], [46], [47])

that universal lossless coding redundancy for i.i.d. sources

taking values in alphabet B of size K is given by

K − 1

2
log(n) − K − 1

2
log(2π) + log

(

Γ
(

1
2

)K

Γ
(

K
2

)

)

+ oK(1),

(65)

where Γ(·) is the gamma function and oK(1) → 0 as n →
∞ at the rate determined only by K. Combining this with

Shtarkov’s result and changing base to natural log, we can

express Sn from (64) as

Sn =
∑

xn∈Bn

sup
p∈P(B)

pn(xn)

= exp

(

K − 1

2
lnn + ln

(

Γ
(

1
2

)K

(2π)
K−1

2 Γ
(

K
2

)

)

+

oK(1) ln(2)

)

. (66)

Let Zn
1 , Zn

2 , Zn
3 , . . . be i.i.d. random vectors each distributed

according to QNML. Let the random codebook BΦn
⊂ Bn,

BΦn
= {Zn

1 , Zn
2 , Zn

3 , . . .},

be available to both the encoder and decoder.

Let xn be an input source sequence of type t = t(xn) and

ρ be the input distortion measure to the encoder. The encoder

uses acceptance-rejection method (similar to [41, Theorem 1])

to derive a subsequence {Zn
ij
}∞j=1, where Zn

i1
, Zn

i2
, Zn

i3
, . . . are

i.i.d. random vectors each distributed according to (Qt,d,ρ)n.

It is easy to see that

max
yn∈Bn

∏n
i=1 Qt,d,ρ(yi)

QNML(yn)
≤ Sn.

The acceptance-rejection algorithm to construct the subse-

quence {Zn
ij
}∞j=1 is described as follows:

1) Set i = 1; j = 1.

2) Generate U ∼ Unif ([0, 1]).
3) If

U <
(Qt,d,ρ)n(Zn

i )

SnQNML(Zn
i )

, (success if true)

then set ij = i. Set i := i + 1; j := j + 1. Go back to

step 2.

4) Else set i := i + 1. Go back to step 2.

In each iteration of the above algorithm, Step 3 has success

probability of 1/Sn independent of other iterations.
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Let J(xn) be the smallest integer such that Zn
iJ(xn)

satisfies

ρn(xn, Zn
iJ(xn)

) ≤ d.

We set

Φn(xn, ρ) = Zn
iJ(xn)

. (67)

It is easy to see that iJ(xn) is a geometric random variable

with success probability given by

st,ρ =
P (ρn(xn, Y n) ≤ d)

Sn

so that the expected value Ec

[
iJ(xn)

]
is given by

Ec

[
iJ(xn)

]

=
Sn

P (ρn(xn, Y n) ≤ d)
. (68)

The binary encoder fn sends 000 if iJ(xn) = 1, 001 if

iJ(xn) = 2, 010 if iJ(xn) = 3, 011 followed by doubly

recursive Elias gamma encoding [48] of iJ(xn) if 4 ≤ iJ(xn) ≤
Kn and 100 followed by fixed-rate coding of the index of

ziJ (xn) with respect to an fixed ordering of the space Bn

which is known to both the encoder and decoder at design

time. The first three bits serve as flag bits to distinguish the

cases.

Note that Elias gamma encoding of a positive integer i
involves writing out N0 = ⌊log i⌋ zero bits followed by

⌊log i⌋ + 1 bits for the binary representation of i. With one

recursion, we use Elias gamma encoding to encode N0, which

involves writing out N1 = ⌊log N0⌋ zero bits followed by

⌊log N0⌋ + 1 bits for the binary representation of N0. With

a second recursion, we again use Elias gamma encoding to

encode N1 which involves using 2⌊log N1⌋ + 1 bits in total.

Hence, to encode the integer i using doubly recursive Elias

encoding, the total binary length is

⌊log i⌋ + 1 + ⌊log N0⌋ + 1 + 2⌊log N1⌋ + 1 (69)

≤ log i + log log i + 2 log log log i + 3. (70)

The expression in (69) is undefined for 1 ≤ i ≤ 3, hence the

need to separately handle the case for these three values.

To finish the proof, we evaluate the expected rate of the

code C̃n = (Φn, fn, gn), where the expectation Ec,p[·] is with

respect to both the random code and the unknown source. Let

Xn be i.i.d. according to the unknown source distribution p
and let ρ be the input distortion measure such that (p, ρ) ∈ Sd.

Then we have for a =
√

2J + 2,

ln 2

n
Ep,c [l(fn(Φn(Xn, ρ)))]

(a)
=

ln 2

n

∑

t:||t−p||2≤

a
√

ln n/n

Ec [pn(Tn
A(t))Et [l(fn(Φn(Xn

t , ρ)))]]

+
ln 2

n

∑

t:||t−p||2>

a
√

ln n/n

Ec [pn(Tn
A(t))Et [l(fn(Φn(Xn

t , ρ)))]]

(b)

≤ ln 2

n

∑

t:||t−p||2≤a
√

ln n/n

pn(Tn
A(t))Et [l(fn(Φn(Xn

t , ρ)))]

+ O

(
1

n2

)

=
ln 2

n

∑

t:||t−p||2≤a
√

ln n/n

pn(Tn
A(t))

1

|Tn
A(t)|

∑

xn∈T n
A

(t)

(
. . .

Ec [l(fn(Φn(xn, ρ)))]
)

+ O

(
1

n2

)

(c)

≤ ln 2

n

∑

t:||t−p||2≤a
√

ln n/n

pn(Tn
A(t))

1

|Tn
A(t)|

∑

xn∈T n
A

(t)

(
. . .

Ec

[
log iJ(xn) + log log iJ(xn) +

2 log log log iJ(xn)|iJ(xn) ≥ 4
] )

+ O

(
1

n

)

(d)

≤ ln 2

n

∑

t:||t−p||2≤a
√

ln n/n

pn(Tn
A(t))

1

|Tn
A(t)|

∑

xn∈T n
A

(t)

(
. . .

[
log Ec

[
iJ(xn)|iJ(xn) ≥ 4

]
+ log log Ec

[
iJ(xn)|iJ(xn) ≥ 4

]

(71)

+2 log log log Ec

[
iJ(xn)|iJ(xn) ≥ 4

]] )
+ O

(
1

n

)

(e)

≤ K + 2

2

lnn

n
+ O

(
ln lnn

n

)

+

∑

t:||t−p||2≤a
√

ln n/n

pn(Tn
A(t))R(t, d, ρ) (72)

≤ Ep [R(T, d, ρ)] +
K + 2

2

lnn

n
+ O

(
ln lnn

n

)

= R(p, d, ρ) +

(
K

2
+ 1

)
lnn

n
+ o

(
lnn

n

)

. (73)

In equality (a) above, we use the fact that conditioned on the

type, Xn is uniformly distributed over the type class Tn
A(t),

which we denote by writing Xn
t . In inequality (b), we use

Lemma 1 and the fact that the binary encoding length is always

at most n log K + O(log n), by construction. Inequality (c)
follows from the following manipulation:

Ec [l(fn(Φn(xn, ρ)))]

≤ P
(
iJ(xn) ≤ 3

)
· 3 + P

(
iJ(xn) ≥ 4

)
Ec

[
log iJ(xn) +

log log iJ(xn) + 2 log log log iJ(xn) + 3|iJ(xn) ≥ 4
]

≤ 3 + Ec

[
log iJ(xn) + log log iJ(xn) +

2 log log log iJ(xn)|iJ(xn) ≥ 4
]
.

In inequality (d), we use Jensen’s inequality. For inequality

(e), we carry out the following derivation: note that there exists

an N depending only on p, d, ρ and ρmax such that for n >
N , the result of Lemma 3 applies and, from (66), (68) and

Lemma 3, we can write

Ec

[
iJ(xn)|iJ(xn) ≥ 4

]

= 4 + Ec

[
iJ(xn)

]

≤ 4 + exp

(

nR(t, d, ρ) +
K

2
lnn + G′

1

)

≤ exp

(

nR(t, d, ρ) +
K

2
lnn + G1

)
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for some constants G′
1 and G1, both also only depending on

p, d, ρ and ρmax. Hence, we can evaluate the Elias encoding

expression as

ln 2

n

(
log Ec

[
iJ(xn)|iJ(xn) ≥ 4

]
+

log log Ec

[
iJ(xn)|iJ(xn) ≥ 4

]
+

2 log log log Ec

[
iJ(xn)|iJ(xn) ≥ 4

] )

≤ 1

n

(

nR(t, d, ρ) +
K

2
lnn + G1 +

ln

(
1

ln 2

(

nR(t, d, ρ) +
K

2
lnn + G1

))

+

2

n
ln log log Ec

[
iJ(xn)

] )

= R(t, d, ρ) +
K + 2

2

lnn

n
+ O

(
ln lnn

n

)

(74)

where it is easy to see that the O(ln lnn/n) term depends

only on p, d, ρ and ρmax because G1 depends on the same

parameters. Using (74) in (71) establishes (72). Finally, (73)
follows from Lemma 5 in Appendix C.

APPENDIX A

PROOF OF PROPOSITION 2

Fix any d > 0 and (p, ρ) ∈ Sd. Let Nδ′(p, ρ) = {(p′, ρ′) ∈
P(A) × Dρmax : ||p′ − p||2 < δ′ and ||ρ − ρ′||F < δ′}, for

some δ′ > 0, be a neighborhood for which the result of

Lemma 3 holds. Consider a subset Nδ(p, ρ) of this neighbor-

hood, Nδ(p, ρ) ⊂ Nδ′(p, ρ), given by Nδ(p, ρ) = {(p′, ρ′) ∈
P(A) × Dρmax : ||p′ − p||2 < δ and ||ρ − ρ′||F < δ}, where

0 < δ < δ′. Assume that p′ is the unknown source distribution

which satisfies ||p′ − p||2 < δ.

Let Zn
1 , Zn

2 , Zn
3 , . . . be i.i.d. random vectors each distributed

according to QNML, where QNML is defined in (63). Let the

random codebook BΦn
⊂ Bn,

BΦn
= {Zn

1 , Zn
2 , Zn

3 , . . .},

be available to both the encoder and decoder.

We first consider only input source sequences xn with

type t = t(xn) and input distortion measures ρ′ satisfying

(t, ρ′) ∈ Nδ′(p, ρ). The encoder uses acceptance-rejection

method (similar to the proof of Theorem 3) to derive a sub-

sequence {Zn
ij
}∞j=1, where Zn

i1
, Zn

i2
, Zn

i3
, . . . are i.i.d. random

vectors each distributed according to (Qt,d,ρ′
)n.

Let J(xn) be the smallest integer such that Zn
iJ(xn)

satisfies

ρ′n(xn, Zn
iJ(xn)

) ≤ d.

It is easy to see that iJ(xn) is a geometric random variable

with success probability given by

st,ρ′ =
P (ρ′n(xn, Y n) ≤ d)

Sn
,

where Sn is defined in (64). The expected value Ec

[
iJ(xn)

]

is given by

E
[
iJ(xn)

]

=
Sn

P (ρ′n(xn, Y n) ≤ d)

≤ exp

(

nR(t, d, ρ′) +
K

2
lnn + O(1)

)

, (75)

where the O(1) term depends only on p, d, ρ, ρmax and the

alphabet sizes,8 which is easy to see from (66) and the

statement of Lemma 3. It turns out that the upper bound in

(75) not only holds in expectation but also (up to a ln lnn
factor) holds with high probability, as we will show next.

This property will be crucial in showing the existence of a

deterministic codebook.

Let

γn = 1 +
ln(J2K2 + J − 1)

ln lnn
.

Denoting the probability law associated with the random

codebook BΦn
by Pc(·), we have

Pc

(

iJ(xn) > exp

(

nR(t, d, ρ′) +
K

2
lnn +

γn ln lnn + O(1)
))

≤ (1 − st,ρ′)exp(nR(t,d,ρ′)+ K
2 ln n+γn ln ln n+O(1))−1

≤
(

1 − exp

(

−nR(t, d, ρ′) − K

2
lnn −

O(1)
))exp(nR(t,d,ρ′)+ K

2 ln n+γn ln ln n+O(1))−1

(76)

≤ exp
(

− exp (γn ln lnn) + exp
(

− nR(t, d, ρ′) −
K

2
lnn − O(1)

))

= O

(
1

nJ2K2+J−1

)

, (77)

where the big O term in the last equality above again depends

only on p, d, ρ and ρmax. Also note that the two “O(1)” terms

appearing in (76) are identical which explains the cancellation

occurring in the next inequality.

The bound in (77) holds for a particular xn ∈ Tn
A(t). Now

if we let Xn
t ∼ Unif(Tn

A(t)) be a random sequence uniformly

distributed over the type class Tn
A(t), then it is easy to see

from (77) that we have

Pt,c

(

iJ(Xn
t ) > exp

(

nR(t, d, ρ′) +
K

2
lnn+

γn ln lnn + O(1)
))

= O

(
1

nJ2K2+J−1

)

. (78)

We used Pt,c above to denote the probability law associated

with the random sequence Xn
t ∼ Unif(Tn

A(t)) and the random

codebook. Note that (78) holds for an arbitrary input (t, ρ′) ∈
8Since the alphabet sizes are fixed throughout the paper, we ignore the

dependence on them from now on.
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Nδ′(p, ρ) to the encoder. But we want that with high proba-

bility, the integer index is uniformly “small” over the entire

set Nδ′(p, ρ). For this, we use a straightforward corollary of

Proposition 1: for a given blocklength n and distortion level d,

there are ξ ≤ (n+1)J2K2−1+1 equivalence classes of Dρmax ,

denoted by [D]ρ1
, [D]ρ2

, . . . , [D]ρξ
, where ρ1, ρ2, . . . , ρξ are

arbitrarily chosen representative distortion measures. A d-

semifaithful code with respect to a distortion measure ρ is also

d-semifaithful with respect to all distortion measures ρ′ ∈ [D]ρ
in the same equivalence class. We will make the choice of

representative distortion measures ρ1, ρ2, . . . , ρξ be a function

of the type t. For every n-type t and every equivalence class

[D]ρi
, we can choose the representative distortion measure

ρt
i ∈ [D]ρi

to satisfy

R(t, d, ρt
i) ≤ inf

ρ̃∈[D]ρi

R(t, d, ρ̃) + ϵ (79)

for any ϵ > 0. Henceforth, we will choose ϵ = 1/n and the

representative distortion measures, chosen differently for each

type, will be denoted by ρt
1, ρ

t
2, . . . , ρ

t
ξ.

We next use subscript “T ” to denote the probability law

associated with the collection of random sequences {Xn
t : t ∈

Pn(A)}. Taking a union bound over all types and equivalence

classes of distortion measures in Nδ′(p, ρ) gives us that

PT,c








⋃

t:||t−p||2<δ′

⋃

ρ̃∈{ρt
1,...,ρt

ξ}

||ρ̃−ρ||F <δ′

{

iJ(Xn
t ) > exp

(

nR(t, d, ρ̃)

+
K

2
lnn + γn ln lnn + O(1)

)})

= O

(

(n + 1)J−1(n + 1)J2K2−1

nJ2K2+J−1

)

= O

(
1

n

)

.

Also note that

PT,c

(
⋃

t:||t−p||2<δ′

⋃

ρ̃∈{ρt
1,...,ρt

ξ}

||ρ̃−ρ||F <δ′

{

iJ(Xn
t ) > exp

(

nR(t, d, ρ̃) +

K

2
lnn + γn ln lnn + O(1)

)
})

= ET,c

[

1

(
⋃

t:||t−p||2<δ′

⋃

ρ̃∈{ρt
1,...,ρt

ξ}

||ρ̃−ρ||F <δ′

{

iJ(Xn
t ) > exp

(

· · ·

nR(t, d, ρ̃) +
K

2
lnn + γn ln lnn + O(1)

)}
)]

= Ec

[

ET

[

1

(
⋃

t:||t−p||2<δ′

⋃

ρ̃∈{ρt
1,...,ρt

ξ}

||ρ̃−ρ||F <δ′

{

iJ(Xn
t ) > exp

(

· · ·

nR(t, d, ρ̃) +
K

2
lnn + γn ln lnn + O(1)

)
})∣

∣
∣
∣
∣
BΦn

]]

(80)

= O

(
1

n

)

.

The above result implies that there exists a deterministic

codebook, call it Bφn
, such that

ET

[

1

(
⋃

t:||t−p||2<δ′

⋃

ρ̃∈{ρt
1,...,ρt

ξ}

||ρ̃−ρ||F <δ′

{

iJ(Xn
t ) > exp

(

nR(t, d, ρ̃)

+
K

2
lnn + γn ln lnn + O(1)

)
})∣

∣
∣
∣
∣
BΦn

= Bφn

]

(81)

= O

(
1

n

)

.

In (80), iJ(Xn
t ) is a random variable whose randomness

stems from both the random codebook BΦn
and the random

sequence Xn
t , whereas in (81), the randomness of iJ(Xn

t ) only

stems from the random sequence Xn
t .

The result in (81) implies that

PT

(
⋃

t:||t−p||2<δ′

⋃

ρ̃∈{ρt
1,...,ρt

ξ}

||ρ̃−ρ||F <δ′

{

iJ(Xn
t ) > exp

(

nR(t, d, ρ̃) +

K

2
lnn + γn ln lnn + O(1)

)}∣
∣
∣
∣
∣
BΦn

= Bφn

)

(a)
= PT

(
⋃

t:||t−p||2<δ′

⋃

ρ̃∈{ρt
1,...,ρt

ξ}

||ρ̃−ρ||F <δ′

{

iJ(Xn
t ) > exp

(

nR(t, d, ρ̃)

+
K

2
lnn + γn ln lnn + O(1)

)})

= O

(
1

n

)

, (82)

where equality (a) above follows from the independence of

the random codebook BΦn
and the random source sequence

Xn
t . Now we have a deterministic codebook Bφn

which,

with high probability, has uniformly good performance (i.e.,

small value of index iJ(Xn
t )) in encoding a random sequence

Xn
t ∼ Unif(Tn

A(t)) for any type t and any of the chosen

representative distortion measures ρ̃ ∈ {ρt
1, ρ

t
2, . . . , ρ

t
ξ}, such

that (t, ρ̃) ∈ Nδ′(p, ρ).
In the result of (82), both the O(1) and O(1/n) terms

depend only on p, d, ρ and ρmax. This means that exist some

numbers N , G1 and G2 depending only on p, d, ρ and ρmax

such that for n > N , we have

PT

(
⋃

t:||t−p||2<δ′

⋃

ρ̃∈{ρt
1,...,ρt

ξ}

||ρ̃−ρ||F <δ′

{

iJ(Xn
t ) > exp

(

nR(t, d, ρ̃) +

K

2
lnn + γn ln lnn + G1

)})

≤ G2

n
. (83)

Now we construct the universal distortion code C̃n =
(ϕn, gn, fn) for n > N , with codebook Bφn

, where Bφn
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satisfies (83). Let Bφn
= {zn

1 , zn
2 , . . . }. Given any input

source sequence xn with arbitrary type t = t(xn) and input

distortion measure ρ′ satisfying ||ρ′ − ρ||F < δ, let ρ′ ∈ [D]ρt
i

for some 1 ≤ i ≤ ξ, define

κ(t, ρ′) ≜ exp

(

nR(t, d, ρt
i) +

K

2
lnn + γn ln lnn + G1

)

,

let

iJ(xn) = min
i:ρ′

n(xn,zn
i )≤d

i

and set ϕn(xn, ρ′) = zn
iJ(xn)

.

The binary encoder fn sends 000 if iJ(xn) = 1, 001 if

iJ(xn) = 2, 010 if iJ(xn) = 3, 011 followed by doubly

recursive Elias gamma encoding9 of iJ(xn) if 4 ≤ iJ(xn) ≤
Kn and 100 followed by fixed-rate coding of the index of

ziJ (xn) with respect to a fixed ordering of the space Bn which

is known to both the encoder and decoder at design time. The

first three bits serve as flag bits to distinguish the cases.

To finish the proof, we evaluate the expected rate of the

code C̃n. Let Xn be i.i.d. according to the unknown source

distribution p′ where ||p′ − p||2 < δ. Then for any input

distortion measure ρ′ satisfying ||ρ′−ρ||F < δ with ρ′ ∈ [D]ρt
i

for some 1 ≤ i ≤ ξ, we have for a =
√

2J + 2,

ln 2

n
Ep′ [l(fn(ϕn(Xn, ρ′)))]

(a)
=

ln 2

n

∑

t:||t−p′||2≤a
√

ln n/n

p′n(Tn
A(t))Et [l(fn(ϕn(Xn

t , ρ′)))]

+
ln 2

n

∑

t:||t−p′||2>a
√

ln n/n

p′n(Tn
A(t))Et [l(fn(ϕn(Xn

t , ρ′)))]

(b)

≤ ln 2

n

∑

t:||t−p′||2≤a
√

ln n/n

p′n(Tn
A(t))Et [l(fn(ϕn(Xn

t , ρ′)))]

+ O

(
1

n2

)

=
ln 2

n

∑

t:||t−p′||2≤a
√

ln n/n

p′n(Tn
A(t))P

(
iJ(Xn

t ) ≤ κ(t, ρ′)
)
·

Et

[
l(fn(ϕn(Xn

t , ρ′)))|iJ(Xn
t ) ≤ κ(t, ρ′)

]
+

ln 2

n

∑

t:||t−p′||2≤a
√

ln n/n

p′n(Tn
A(t))P

(
iJ(Xn

t ) > κ(t, ρ′)
)
·

Et

[
l(fn(ϕn(Xn

t , ρ′)))|iJ(Xn
t ) > κ(t, ρ′)

]
+ O

(
1

n2

)

(c)

≤ ln 2

n

∑

t:||t−p′||2≤a
√

ln n/n

p′n(Tn
A(t)) ·

Et

[
l(fn(ϕn(Xn

t , ρ′)))|iJ(Xn
t ) ≤ κ(t, ρ′)

]
+ O

(
1

n

)

(d)

≤ ln 2

n

∑

t:||t−p′||2≤a
√

ln n/n

p′n(Tn
A(t))

(
log κ(t, ρ′) +

9The doubly recursive Elias gamma encoding is described in the proof of
Theorem 3, see (69) and (70).

log log κ(t, ρ′) + 2 log log log κ(t, ρ′)
)

+ O

(
1

n

)

(e)
=

∑

t:||t−p′||2≤a
√

ln n/n

p′n(Tn
A(t))R(t, d, ρt

i) +
K + 2

2

lnn

n

+ O

(
ln lnn

n

)

(f)

≤ Ep′ [R(T, d, ρ′)] +
K + 2

2

lnn

n
+ O

(
ln lnn

n

)

. (84)

In all of the above, we assume sufficiently large n so that

(t, ρ′) ∈ Nδ′(p, ρ) whenever ||t−p′|| ≤ a
√

lnn/n. In equality

(a) above, we use the fact that conditioned on the type, Xn

is uniformly distributed over the type class Tn
A(t), which we

denote by writing Xn
t . In inequality (b), we use Lemma 1

and the fact that the binary encoding length is always at most

n log K +O(log n), by construction. In inequality (c), we use

the fact that the codebook Bφn
satisfies (83) and that the

binary encoding length is always at most n log K + O(log n).
In inequality (d), we upper bound the binary encoding length

by the Elias gamma encoding of κ(t, ρ′). In inequality (e),
we evaluated the Elias encoding expression as

ln 2

n
(log κ(t, ρ′) + log log κ(t, ρ′) + 2 log log log κ(t, ρ′))

=
1

n

(

nR(t, d, ρt
i) +

K

2
lnn + γn ln lnn + G1 +

ln

(
1

ln 2

(

nR(t, d, ρt
i) +

K

2
lnn + γn ln lnn + G1

))

+
2

n
ln log log κ(t, ρ′)

)

= R(t, d, ρt
i) +

K + 2

2

lnn

n
+ O

(
ln lnn

n

)

,

where it is easy to see that O(ln lnn/n) depends only on

p, d, ρ and ρmax because G1 depends only on p, d, ρ and ρmax,

and we can use R(t, d, ρt
i) ≤ lnK. Inequality (f) follows

from the way we chose the representative distortion measure

in (79). Since the upper bound in (84) holds uniformly for all

(p′, ρ′) ∈ Nδ(p, ρ), we can say that there exist positive N and

F depending only on Nδ(p, ρ) (and d and ρmax of course)

such that for n > N ,

ln 2

n
Ep′ [l(fn(ϕn(Xn, ρ′)))]

≤ Ep′ [R(T, d, ρ′)] +
K + 2

2

lnn

n
+ F ln lnn

n
.

This finishes the proof of Proposition 2.

APPENDIX B

PROOF OF LEMMA 2

Let {(pn, dn, ρn)}∞n=1 be a sequence of triples converging

to (p, d, ρ). Let W ∗
B|A[pn, dn, ρn] be any minimizer cor-

responding to (pn, dn, ρn). Let W ∗
B|A[p∞, d∞, ρ∞] be any

subsequential limit of W ∗
B|A[pn, dn, ρn] with respect to the

||·||F metric as n goes to infinity. Mathematically, this implies

that there exists a subsequence {nl} such that

lim
l→∞

||W ∗
B|A[p∞, d∞, ρ∞] − W ∗

B|A[pnl
, dnl

, ρnl
]||F = 0.
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It suffices to show that W ∗
B|A[p∞, d∞, ρ∞] = W ∗

B|A[p, d, ρ].
Clearly, we have
∑

j∈A

∑

k∈B

pnl
(j)W ∗

B|A[pnl
, dnl

, ρnl
](k|j)ρnl

(j, k) − dnl
≤ 0.

(85)

Taking the limit as l goes to infinity in (85) gives
∑

j∈A,k∈B

p(j)W ∗
B|A[p∞, d∞, ρ∞](k|j)ρ(j, k)−d ≤ 0,

which shows that the subsequential limit W ∗
B|A[p∞, d∞, ρ∞]

is feasible for the given (p, d, ρ). We already know from the

optimality of W ∗
B|A[p, d, ρ] that

I
(

p, W ∗
B|A[p, d, ρ]

)

≤ I
(

p, W ∗
B|A[p∞, d∞, ρ∞]

)

. (86)

Let d̃n be the distortion induced by the joint distribution (pn×
W ∗

B|A[p, d, ρ]) with respect to distortion measure ρn. Then we

have

I
(

pn, W ∗
B|A[p, d, ρ]

)

≥ R(pn, d̃n, ρn). (87)

By the convexity of R(p, d, ρ) in d, (87) implies (e.g., [49,

Lemma 5.16])

I
(

pn, W ∗
B|A[p, d, ρ]

)

(88)

≥ R(pn, d̃n, ρn)

≥ R(pn, dn, ρn) +

∂R(pn, dn, ρn)

∂d
(d̃n − dn)

= I
(

pn, W ∗
B|A[pn, dn, ρn]

)

+

∂R(pn, dn, ρn)

∂d
(d̃n − dn). (89)

Since d > 0, there exists an N > 0 and ϵ > 0 such that dn ≥ ϵ
for all n ≥ N . From the assumption in (16) and from the

convexity of R(p, d, ρ) in d, we have (i) R(p, d, ρ) ≤ ln(K)
and (ii) |∂R(pn, dn, ρn)/∂d| ≤ ln(K)/ϵ. Furthermore, since

d̃n is continuous as a function of pn and ρn, we have that d̃n

tends to d in the limit as n goes to infinity. Hence, writing

(89) using the subsequence {nl}, we have

I
(

pnl
, W ∗

B|A[p, d, ρ]
)

≥ I
(

pnl
, W ∗

B|A[pnl
, dnl

, ρnl
]
)

−
∂R(pnl

, dnl
, ρnl

)

∂d
(d̃nl

− dnl
)

(90)

for sufficiently large l. Now taking the limit as l goes to infinity

in (90), we have

lim
l→∞

I(pnl
,W ∗

B|A[p, d, ρ]) ≥ lim
l→∞

I(pnl
,W ∗

B|A[pnl
,dnl

, ρnl
])

I(p, W ∗
B|A[p, d, ρ]) ≥ I(p, W ∗

B|A[p∞, d∞, ρ∞]), (91)

where the last inequality follows by continuity of mutual

information I(p, W ) as a function of the joint p × W . Since

W ∗
B|A[p, d, ρ] is unique, it follows from (86) and (91) that

W ∗
B|A[p, d, ρ] = W ∗

B|A[p∞, d∞, ρ∞].

APPENDIX C

CONVERGENCE OF Ep [R(T, d, ρ)] TO R(p, d, ρ)

Lemma 5: Fix d > 0 and any (p, ρ) ∈ Sd, where Sd is

defined in Definition 3. Then we have

Ep [R(T, d, ρ)] − R(p, d, ρ) ≤ o

(
lnn

n

)

.

Proof: Similar to (36), the rate-distortion function has

a characterization in terms of the lower mutual information

introduced in [5, (23)],

R(p, d, ρ) = inf
q∈P(B)

Il(q, p, d, ρ).

The lower mutual information is defined as

Il(q, p, d, ρ) ≜ H(p) + H(q) − sup
s∈S(q,p,d,ρ)

H(s),

where S(q, p, d, ρ) ⊂ P(A × B) is the set of all joint

distributions s with marginals p and q on alphabets A and

B, respectively, such that E[ρ(X, Y )] ≤ d for (X,Y ) ∼
s. Properties of Il(q, p, d, ρ) can be found in [5, Lemmas

1 and 2]. In particular, it follows from [5, Lemma 2] that

for any fixed p, d and ρ, Il(Q
p,d,ρ, p′, d, ρ) is second-order

differentiable in its second argument for any p′ satisfying

||p′ − p|| ≤ δ for some δ > 0.

For a =
√

2J + 2, we have

Ep[R(T, d, ρ)]

=
∑

t∈Pn(A)

pn(Tn
A(t))R(t, d, ρ)

=
∑

t:||t−p||2≤a
√

ln n/n

pn(Tn
A(t))R(t, d, ρ)

+
∑

t:||t−p||2>a
√

ln n/n

pn(Tn
A(t))R(t, d, ρ)

(a)

≤
∑

t:||t−p||2≤a
√

ln n/n

pn(Tn
A(t))R(t, d, ρ) + ln(K)

eJ−1

n2

=
∑

t:||t−p||2≤a
√

ln n/n

pn(Tn
A(t))

[

inf
q∈P(B)

Il(q, t, d, ρ)

]

+

ln(K)
eJ−1

n2

≤
∑

t:||t−p||2≤a
√

ln n/n

pn(Tn
A(t))

[
Il(Q

p,d,ρ, t, d, ρ)
]
+

ln(K)
eJ−1

n2

(b)
= Il(Q

p,d,ρ, p, d, ρ) +
∑

t:||t−p||2≤a
√

ln n/n

pn(Tn
A(t)) ·

(〈

∂Il(Q
p,d,ρ, p′, d, ρ)

∂p′

∣
∣
∣
∣
∣
p′=p

, t−p

〉

+

1

2
(t − p)′

∂2Il(Q
p,d,ρ, p′, d, ρ)

∂p′2

∣
∣
∣
∣
∣
p′=p

(t − p)
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+ o(||t − p||2)
)

+ ln(K)
eJ−1

n2

= R(p, d, ρ) + o

(
lnn

n

)

+

∑

t:||t−p||2

≤a
√

ln n/n

pn(Tn
A(t))

〈

∂Il(Q
p,d,ρ, p′, d, ρ)

∂p′

∣
∣
∣
∣
∣
p′=p

, t−p

〉

+

1

2

∑

t:||t−p||2

≤a
√

ln n/n

pn(Tn
A(t))(t − p)′

∂2Il(Q
p,d,ρ, p′, d, ρ)

∂p′2

∣
∣
∣
∣
∣
p′=p

·

(t − p). (92)

Inequality (a) uses Lemma 1 and the fact that R(t, d, ρ) ≤
ln(K), which follows from (16). In equality (b), we assume

n large enough so that t satisfies ||t−p||2 ≤ δ which allows us

to use the second-order differentiability property as mentioned

in the beginning of the proof. Also, equality (b) uses a slightly

lesser known form of Taylor’s Theorem [50, p. 290]. We now

show that the last two terms in (92) are O(1/n). Since we

have
∑

t∈Pn(A)

pn(Tn
A(t))(t(j) − p(j)) = 0

for all j ∈ A, it follows (similar to the approach used in

[7, Theorem 2]) that
∣
∣
∣
∣
∣

∑

t:||t−p||2≤a
√

ln n/n

pn(Tn
A(t))(t(j) − p(j))

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

∑

t:||t−p||2>a
√

ln n/n

pn(Tn
A(t))(t(j) − p(j))

∣
∣
∣
∣
∣

≤
∑

t:||t−p||2>a
√

ln n/n

pn(Tn
A(t))

≤ eJ−1

n2
(from Lemma 1)

and therefore,
∣
∣
∣
∣
∣

∑

t:||t−p||2

≤a
√

ln n/n

pn(Tn
A(t))

〈

∂Il(Q
p,d,ρ, p′, d, ρ)

∂p′

∣
∣
∣
∣
∣
p′=p

, t−p

〉∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

∑

t:||t−p||2

≤a
√

ln n/n

pn(Tn
A(t))

J∑

j=1

∂Il(Q
p,d,ρ, p′, d, ρ)

∂p′j

∣
∣
∣
∣
∣
p′

j=pj

·

(t(j) − p(j))

∣
∣
∣
∣
∣

≤
J∑

j=1

∣
∣
∣
∣
∣

∂Il(Q
p,d,ρ, p′, d, ρ)

∂p′j

∣
∣
∣
∣
∣
p′

j=pj

∣
∣
∣
∣
∣
·

∣
∣
∣
∣
∣

∑

t:||t−p||2≤a
√

ln n/n

pn(Tn
A(t))(t(j) − p(j))

∣
∣
∣
∣
∣

≤
J∑

j=1

∣
∣
∣
∣
∣

∂Il(Q
p,d,ρ, p′, d, ρ)

∂p′j

∣
∣
∣
∣
∣
p′

j=pj

eJ−1

n2

= O

(
1

n2

)

. (93)

For the second term in (92), we can write it as

1

2

∑

t:||t−p||2≤a
√

ln n/n

pn(Tn
A(t))

J∑

i=1

J∑

j=1

(t(i) − p(i))

∂2Il(Q
p,d,ρ, p′, d, ρ)

∂p′i∂p′j

∣
∣
∣
∣
∣
p′

i=pi,p′
j=pj

(t(j) − p(j)). (94)

Note that the inner two sums above define a quadratic form.

The singular values are equal to the absolute value of the

eigenvalues of a symmetric matrix and the largest singular

value of a matrix is upper bounded by the Frobenius norm

of the Hessian. Then from basic theory of quadratic form

optimization [51, 7.2], we have
∣
∣
∣
∣
∣

J∑

i=1

J∑

j=1

(t(i) − p(i))
∂2Il(Q

p,d,ρ, p′, d, ρ)

∂p′i∂p′j

∣
∣
∣
∣
∣
p′

i=pi,p′
j=pj

·

(t(j) − p(j))

∣
∣
∣
∣
∣

≤
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

∂2Il(Q
p,d,ρ, p′, d, ρ)

∂p′2

∣
∣
∣
∣
∣
p′=p

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
F

·
J∑

j=1

(t(j) − p(j))2.

Hence, the absolute value of (94) is upper bounded by

1

2

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

∂2Il(Q
p,d,ρ, p′, d, ρ)

∂p′2

∣
∣
∣
∣
∣
p′=p

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
F

·
J∑

j=1

∑

t∈Pn(A)

· · ·

pn(Tn
A(t))(t(j) − p(j))2

=
1

2

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

∂2Il(Q
p,d,ρ, p′, d, ρ)

∂p′2

∣
∣
∣
∣
∣
p′=p

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
F

·
J∑

j=1

· · ·

Ep

[
(T (j) − p(j))2

]

=
1

2

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

∂2Il(Q
p,d,ρ, p′, d, ρ)

∂p′2

∣
∣
∣
∣
∣
p′=p

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
F

·
J∑

j=1

p(j)(1 − p(j))

n

= O

(
1

n

)

. (95)

Hence, substituting (93) and (95) into (92) gives

Ep [R(T, d, ρ)] ≤ R(p, d, ρ) + o

(
lnn

n

)

.

APPENDIX D

PROOF OF LEMMA 3

Fix any d > 0 and (p, ρ) ∈ Sd. Let δ > 0 be a number to

be specified later. Let (t, ρ′) ∈ Nδ(p, ρ) and xn ∈ Tn
A(t) be

any sequence within the type class. By the Definition of Sd,

there exists a σ > 0 such that

• p(j) ≥ σ for all j ∈ A,
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• Qp,d,ρ(k) ≥ σ for all k ∈ B, and

• 0 < d < mink∈B

∑

j∈A t(j)ρ(j, k).

The last condition above implies that we must have that

ρ(j, k) > d for some j ∈ A and k ∈ B. From the definition

of Sd in Definition 3 and the continuity of Qp,d,ρ in p and ρ
which is implied by Lemma 2, it is easy to see that we can

make δ small enough such that

• t(j) ≥ σ/2 for all j ∈ A,

• Qt,d,ρ′
(k) ≥ σ/2 for all k ∈ B, and

• 0 < d < mink∈B

∑

j∈A t(j)ρ′(j, k),

for all (t, ρ′) ∈ Nδ(p, ρ). The last condition above also trivially

implies that ρ′(j, k) > d for some j ∈ A and k ∈ B.

For the given sequence xn ∈ Tn
A(t) and distortion measure

ρ′, define a sequence of independent random variables U1, U2,
. . . , Un as

Ui ≜ ρ′(xi, Ỹi) −
∑

k∈B

W ∗
B|A(k|xi)ρ

′(xi, k), (96)

where we write W ∗
B|A = W ∗

B|A[t, d, ρ′] and Ỹi ∼ W ∗
B|A(·|xi).

Clearly, each Ui has finite second- and third-order moments

which we denote by E[U2
i ] = ν2

i and E[|Ui|3] = ηi. We have

that

n∑

i=1

ηi ≤ nρ3
max. (97)

Next, we show that
∑n

i=1 ν2
i also grows linearly with n.

Fact 1: From Equation (10.124) in [2], we have the fol-

lowing relation between W ∗
B|A[t, d, ρ′] and Qt,d,ρ′

:

W ∗
B|A[t, d, ρ′](k|j) =

Qt,d,ρ′
(k) exp (−λ∗ρ′(j, k))

∑

k′∈B

Qt,d,ρ′(k′) exp (−λ∗ρ′(j, k′))
,

where −λ∗ = ∂R(t, d, ρ′)/∂d.

Hence, it follows that support(Qt,d,ρ′
) = K if and only if

W ∗
B|A[t, d, ρ′](k|j) > 0 for all j ∈ A and k ∈ B. In fact,

since Qt,d,ρ′
(k) ≥ σ/2 for all k, we have

W ∗
B|A[t, d, ρ′](k|j) ≥ σ

2
exp (−λ∗ρmax)

≥ σ

2
exp

(

−ρmax

d
ln(K)

)

for all j ∈ A, k ∈ B, where the last inequality above

follows by using the assumption in (16), which implies that

(i) R(t, d, ρ′) ≤ ln(K) and (ii) λ∗ = |∂R(t, d, ρ′)/∂d| ≤
ln(K)/d by convexity of R(t, d, ρ′) in d.

Since we have (i) a zero in every row of the distortion

matrix ρ′, (ii) ρ′(j∗, k) > d for some j∗ ∈ A and k ∈ B,

(iii) W ∗
B|A[t, d, ρ′](k|j) > σ

2 exp (−ρmax ln(K)/d) for all k
and j, and (iv) t(j) ≥ σ/2 for all j ∈ A, we have

n∑

i=1

ν2
i ≥ nσ

2
ν2

i∗ > 0.

where i∗ satisfies xi∗ = j∗. Consider the j∗th row of the

distortion matrix whose entries include 0 and d′, where d′ >
d > 0. There is a full-support distribution W ∗

B|A[t, d, ρ′](·|j∗)
over the entries of this row and each entry of the distribution

is uniformly bounded away from zero in terms of σ, ρmax

and d. Hence, the variance of the random variable Ui∗ can

be uniformly bounded away from zero by a number which

depends only on σ, ρmax and d. Hence, we can write

n∑

i=1

ν2
i ≥ n ν2

min > 0.

We now invoke the Refined Lucky-Strike

Lemma [41, Lemma 8] which, specialized to the ϵ = 0 case,

establishes that for any positive number C,

P (ρ′n(xn, Y n) ≤ d)

≥ exp (−nR(t, d, ρ′)−Cλ∗) P

(

−C ≤
n∑

i=1

Ui ≤ 0

)

≥ exp (−nR(t, d, ρ′)−C lnK/d) P

(

−C ≤
n∑

i=1

Ui ≤ 0

)

(98)

for all integers n and xn ∈ Tn
A(t), where Y n is distributed

according to (Qt,d,ρ′
)n, where λ∗ = −∂R(t, d, ρ′)/∂d and

λ∗ ≤ ln(K)/d by the same argument as before.

We continue (98) as

P (ρ′n(xn, Y n) ≤ d)

≥ exp (−nR(t, d, ρ′)−C ln(K) /d) ·

P

(

− C
√∑n

i=1 ν2
i

≤
∑n

i=1 Ui
√∑n

i=1 ν2
i

≤ 0

)

≥ exp (−nR(t, d, ρ′)−C ln(K)/d) ·
[

Fn(0) − Fn

(

− C
√∑n

i=1 ν2
i

)]

, (99)

where Fn denotes the cumulative distribution function of∑n
i=1 Ui√∑

n
i=1 ν2

i

. Now by Berry-Esseen theorem [52], we have that

for all n there exists an absolute constant C0 such that

sup
s∈R

|Fn(s) − Φ(s)| ≤ C0

(
n∑

i=1

ν2
i

)−3/2 n∑

i=1

ηi. (100)

Using the bounds for the second- and third-order moments in

the preceding discussion, we have

sup
s∈R

|Fn(s) − Φ(s)| ≤ C0√
n

ρ3
max

ν3
min

. (101)

Continuing (99) using (101), we have

P (ρ′n(xn, Y n) ≤ d)

≥ exp (−nR(t, d, ρ′)−C ln(K)/d) ·
[

1

2
− Φ

(

− C
√∑n

i=1 ν2
i

)

− 2
C0√

n

ρ3
max

ν3
min

]

(102)
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For the first two terms inside the brackets in (102), we have

the following lower bound:

1

2
− Φ

(

− C
√∑n

i=1 σ2
i

)

≥ 1

2
− Φ

(

− C

ρmax
√

n

)

=
1√
2π

∫ 0

− C
ρmax

√
n

e−x2/2dx

≥ 1√
2π

∫ 0

− C
ρmax

√
n

(

1 − x2

2

)

dx

=
1√
2π

C

ρmax
√

n
− 1

6
√

2π

C3

ρ3
maxn

3/2
. (103)

Finally, using (103) back in (102), we obtain

P (ρ′n(xn, Y n) ≤ d)

≥ exp (−nR(t, d, ρ′)−C ln(K)/d) ·
[

1√
2π

C

ρmax
√

n
− 1

6
√

2π

C3

ρ3
maxn

3/2
− 2

C0√
n

ρ3
max

ν3
min

]

(a)

≥ exp (−nR(t, d, ρ′)−C ln(K)/d) ·
[

1

2
√

2π

C

ρmax
√

n
− 2

C0√
n

ρ3
max

ν3
min

]

(b)
= exp

(

−nR(t, d, ρ′) − 1

2
lnn + O(1)

)

. (104)

where inequality (a) follows by assuming C2 ≤ 3ρ2
maxn, and

equality (b) follows by allowing sufficiently large n to allow

the choice of the free parameter C to satisfy

1

2
√

2π

C

ρmax
− 2C0

ρ3
max

ν3
min

> 0,

where one can use the upper bound C0 ≤ 0.56 [53]. The

O(1) only depends on p, d, ρ and ρmax. We omit the

dependence on σ or δ because σ and δ themselves depend

on the aforementioned variables.

APPENDIX E

PROOF OF LEMMA 4

Fix d > 0 and let ρ be the input distortion measure. Define

B(yn, t, d, ρ) ≜ {xn ∈ Tn
A(t) : ρn(xn, yn) ≤ d}

to be the set of type t source sequences covered within

distortion d by a reconstruction sequence yn. The distortion

constraint ρn(xn, yn) ≤ d can be written in terms of types;

denoting the type of yn by ty and the conditional type of xn

given yn by W , we have

ρn(xn, yn) =
1

n

n∑

i=1

ρ(xi, yi)

=
∑

j∈A,k∈B

ty(k)W (j|k)ρ(j, k) ≤ d. (105)

Let

C(yn, t, d, ρ) ≜

{

W :
∑

k

ty(k)W (j|k) = t(j) ∀j ∈ A

and
∑

j,k

ty(k)W (j|k)ρ(j, k) ≤ d







be the set of all conditional types satisfying the given con-

straints. For a fixed yn, the number of conditional types of

xn given yn is at most (n + 1)JK−1; hence, |C(yn, t, d, ρ)| ≤
(n + 1)JK−1. The size of B(yn, t, d, ρ) can then be eval-

uated by summing the sizes of the conditional type classes

TW (yn) of all the conditional types W ∈ C(yn, t, d, ρ). From

[30, Lemma 2.3 and Lemma 2.5], we have the following

bounds for |Tn
A(t)| and |TW (yn)|:10

1

(n + 1)J−1
exp (nH(t)) ≤ |Tn

A(t)| ≤ exp (nH(t)) and

(106)

1

(n + 1)JK−1
exp (nH(W |ty)) ≤ |TW (yn)|

≤ exp (nH(W |ty)) . (107)

Equipped with these, we evaluate the size of B(yn, t, d, ρ) as

follows:

|B(yn, t, d, ρ)|
=

∑

W∈C(yn,t,d,ρ)

|TW (yn)|

≤
∑

W∈C(yn,t,d,ρ)

enH(W |ty)

≤ (n + 1)JK−1 exp

(

n max
W∈C(yn,t,d,ρ)

H(W |ty)

)

. (108)

Now let Xn ∼ pn and let Y n = gn(fn(Xn, ρ)). We then have

H(Y n|t(Xn) = t)

= −
∑

yn∈Bn

[

P (Y n = yn|t(Xn) = t) ·

ln (P (Y n = yn|t(Xn) = t))
]

= −
∑

yn∈Bn

[

P (Y n = yn|t(Xn) = t) ·

ln

(
P (Y n = yn, t(Xn) = t)

P(t(Xn) = t)

)]

≥ −
∑

yn∈Bn

P (Y n = yn|t(Xn) = t) ln

( |B(yn, t, d, ρ)|
|Tn

A(t)|

)

≥ −
∑

yn∈Bn

P (Y n = yn|t(Xn) = t)
[
ln(n + 1)JK+J−2 −

n

(

H(t) − max
W∈C(yn,t,d,ρ)

H(W |ty)

)]

, (109)

10In the cited reference, the lower bounds are stated with powers J and
JK instead of J−1 and JK−1, respectively, but the bounds as stated here
evidently hold as well.
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where the last inequality above uses (106) and (108). To con-

tinue (109), we note that H(W |ty) is a function of the joint

distribution, call it s ∈ P(A×B), specified by ty and W . Let

C∗(t, d, ρ) ≜

{

s ∈ P(A × B) :
∑

k

s(j, k) = t(j) ∀j ∈ A

and
∑

j,k

s(j, k)ρ(j, k) ≤ d






.

It is easy to see that if (X̃, Ỹ ) ∼ s, then

max
W∈C(yn,t,d,ρ)

H(W |ty) ≤ max
s∈C∗(t,d,ρ)

H(X̃|Ỹ ).

Then, using the definition of the rate-distortion function,

we can continue (109) as

H(Y n|t(Xn) = t)

≥
∑

yn∈Bn

P (Y n = yn|t(Xn) = t)
[

nR(t, d, ρ) −

ln(n + 1)JK+J−2
]

= nR(t, d, ρ) − ln(n + 1)JK+J−2.

To finish the proof, we use the fact that for any prefix code,

the expected length is lower bounded by the entropy. Hence,

1

n
Ep [l(fn(Xn, ρ))]

≥ 1

n
H(Y n)

≥ 1

n
H(Y n|t(Xn))

=
1

n

∑

t∈Pn(A)

pn(Tn
A(t))H(Y n|t(Xn) = t)

≥ 1

n

∑

t∈Pn(A)

pn(Tn
A(t))

(
nR(t, d, ρ) − ln(n + 1)JK+J−2

)

≥ Ep [R(T, d, ρ)] − (JK + J − 2)
lnn

n
− JK + J − 2

n
.
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