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Minimax Rate-Distortion

Adeel Mahmood

Abstract— We show the existence of variable-rate rate-
distortion codes that meet the distortion constraint almost surely
and are minimax, i.e., strongly, universal with respect to an
unknown source distribution and a distortion measure that
is revealed only to the encoder and only at runtime. If we
only require minimax universality with respect to the source
distribution and_not the distortion measure, then we provide
an achievable O(1/4/n) redundancy rate, which we show
is optimal. This is in contrast to prior work on universal
lossy compression, which provides O(logn/n) redundancy
guarantees for weakly universal codes under various regular-
ity conditions. We show that either eliminating the regularity
conditions or upgrading to strong universality while keeping
these regularity conditions entails an inevitable increase in the
redundancy to O(1/4/m). Our construction involves random
coding with non-i.i.d. codewords and a zero-rate uncoded trans-
mission scheme. The proof uses exact asymptotics from large
deviations, acceptance-rejection sampling, and the VC dimension
of distortion measures.

Index Terms—Lossy compression, universal source coding,
quantization, VC dimension, d-semifaithful code.

I. INTRODUCTION

ONSIDER the problem of lossy compression of a mem-

oryless source on a finite alphabet. Let X™ be an
independent and identically distributed (i.i.d.) source taking
values on a finite source alphabet A with cardinality J. Let
B be a finite reconstruction alphabet with cardinality K.
The fidelity criterion we consider is a single-letter distortion
measure p between source and reconstruction alphabets. We fix
a distortion level d > 0 and consider variable-rate codes
that meet the distortion constraint almost surely; such codes
are sometimes called d-semifaithful [1], [2]. It is well-known
that the minimum expected rate achievable asymptotically by
a prefix code optimized for a particular source distribution
p and distortion measure p is given by the rate-distortion
function R(p,d,p). In source coding theory, both lossless
and lossy compression, joint descriptions are more efficient
than individual descriptions [3]; hence, the source sequence
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X™ is compressed as an n-length block and past works have
analyzed the convergence of the average' expected rate to
the rate-distortion function as a function of n. The resulting
performance metric, i.e., the difference between the average
expected rate and the rate-distortion function, is known as the
rate redundancy. When both the source p and the distortion
measure p are known ahead of time, [4, Theorem 5] has estab-
lished an achievable rate redundancy of Inn/n + o(lnn/n)
under some regularity conditions while [4, Theorem 4] has
given a converse result of 1/2lnn/n + o(lnn/n). These
results stand in contrast to a rate redundancy of O(1/n)
[3, Thm. 5.4.2] for prefix lossless codes when the source
p is known, where the Shannon entropy H(p) replaces the
rate-distortion function in the definition of the rate redundancy.

In practice, the source distribution is rarely known, and
thus one seeks universal codes that do not require knowledge
of the source distribution and achieve the same asymptotic
performance of those that do. For an unknown i.i.d. source
p, let R(C,,p) denote the expected rate of a prefix lossless
code C, and let R(C,,p,d,p) denote the expected rate
of a prefix, d-semifaithful lossy code C,,. Within the class
of universal codes, a distinction is made between weakly
universal and strongly universal codes [5]. A weakly universal
code is one with a rate that is guaranteed to converge to
the minimum asymptotic limit for each source distribution p,
with no guarantee that this convergence is uniform over p.
A strongly universal code is one whose rate converges to the
minimum asymptotic limit uniformly over all source distri-
butions. This distinction is analogous to the pointwise versus
uniform convergence of functions if we consider the expected

rate, R(Cy,p) or R(C,,p,d,p), as a function of p, where
R(C,,, p) converges to H(p) and R(C,,,p,d, p) converges to
R(p,d, p). For lossless compression, the existence of strongly
universal codes is well known [6], [7], [8]. In fact, practical
codes are known that approach the entropy limit uniformly
over the unknown source distribution, and the optimal rate of

convergence has been characterized with precision [6], [7], [8]:

inf sup [R(Cpp) — Hp) = 222 4 o (}1) W

Cn p 2 n
Less is known, on the other hand, about universal lossy codes,
especially the minimax rate of convergence for

icz}f sup | R(Cn,p,d, p) — R(p,d, p)] : 2
n P

The existence of weakly universal, prefix d-semifaithful codes
that achieve the rate-distortion function for any source distri-
bution under certain constraints is known, and their speed of

Average expected rate means the expected rate divided by the block-
length n.
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convergence to the rate-distortion function has been bounded.
Under various regularity conditions, [2, Theorem 2] gives an
achievable weakly universal convergence rate of

inf [R(C"m p,d,p) — R(p,d, p)]
Ch

Inn

S(JK+J+4>n+O(:L)' 3)

The pre-log factor in (3) has been improved in an unpublished
paper by Yang and Zhang [9] in which an achievable weakly
universal convergence rate of

inf [R(C*mp, d,p) — R(p,d, p)}

Ch
<<K+2>m”+o(m”> o)
2 n n

is shown under some regularity conditions. Furthermore,
a converse result in the same paper provides a lower bound of

) K\ Inn Inn
. _ > =) — T
[ o)~ R )] = () 5 o (%)

®)

for most sources p (but see Appendix D). Universal lossy
coding has also been considered with a fixed rate constraint
instead of a fixed distortion constraint. In this framework, the
performance metric used is called the distortion redundancy
which is defined as the difference between the expected
distortion and the distortion-rate function; see [10] and [11]
which give a weakly universal convergence rate of O(Inn/n)
for fixed-rate codes which is the same order of decay as
the weakly universal convergence rate known for optimal d-
semifaithful codes. In addition to the convergence of expected
rate, one can also analyze rates of almost-sure convergence.
Kontoyiannis [12] and Kontoyiannis and Zhang [13] give
bounds for almost-sure convergence to the rate-distortion
function instead of the convergence of expected rate.

None of the aforementioned results for lossy compression
are minimax, however; that is, the convergence to the rate-
distortion function is pointwise for each source distribution
as opposed to being uniform over the set of all possible
source distributions. With the exception of Kontoyiannis [12],
the above achievability results also apply only to source
distributions satisfying certain technical conditions. Some uni-
versal results of a minimax nature are available [14, Problem
9.2], [15], [16], [17], [18], [19], [20], [21], although none
provides an explicit bound on the minimax rate of convergence
to the rate-distortion function for d-semifaithful codes. Some
works have succeeded in obtaining minimax convergence rates
for operational rate redundancy [22] which is defined as the
difference between the average expected rate and the minimum
expected rate of an optimal nth order d-semifaithful code.
Let R*(n,p,d, p) denote the optimal rate for a given n, p, d
and p:

R*(n,p,d,p) =inf R(Cy,p, d, p), (6)
Chr

where the infimum is over all prefix codes that are
d-semifaithful under p. Note that R*(n,p,d,p) > R(p,d,p)
for all n. The operational nature of (6) makes it an easier target
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in some ways than the rate-distortion function. For instance,
it is easy to show (e.g., [18, Lemma 5]) that

lpf sup R(C’Yupv d7 p) - R*(n7p7 da p):|

Cn p
+0 (1) . @)
n

With respect to (w.r.t.) this operational rate redundancy, mini-
max results in more advanced settings have been shown. Silva
and Piantanida [18] have given convergence rates for

R(C’n7p7 d7 p) - R*(nvpv d7 p):| )

Inn

< (J—l)T

inf sup
C,, peP>
where the supremum is over memoryless sources over count-
ably infinite alphabets whose probability mass functions are
dominated by summable envelope functions and where the
exact rate of convergence depends on the envelope function.
In a different setting called the generalized universal distor-
tion framework, [22] has given the following minimax rate of
convergence,

1¥1f sup |:R(én7pa da ;0) - R (napa da p):|
Crn p,p,d

g(J2K2+J2)1n”+0<1), (8)
n n

where the supremum is over memoryless sources over a
finite alphabet, all (unbounded) distortion measures p and all
distortion levels d > 0. The universal distortion framework
was comprehensively introduced in [22] and is a more general
setting in which the distortion measure p is not available at
design time and is available only at runtime and available only
to the encoder as an input. This introduces another dimension
of universality of the prefix d-semifaithful code, namely one
over the space of distortion measures, on top of its universality
w.r.t. p. The practical applications of a universal distortion
code are described in detail in [22]; briefly stated, it allows for
a flexible compression system which can meet the discordant
notions of distortions for different users and it also has use in
nonlinear transform coding. In a recent paper, under certain
technical assumptions, Merhav [23] proved the existence of
a universal distortion, prefix, d-semifaithful code for i.i.d.
sources whose average rate for each source sequence and input
distortion measure converges in a pointwise sense to the empir-
ical rate-distortion function R(t, d, p), where ¢ is the empirical
distribution or the type of the source sequence. Furthermore,
under some regularity conditions, [22, Theorem 3] proved the
existence of a universal distortion, prefix d-semifaithful code
whose expected rate converges to the rate-distortion function
in a pointwise sense:

inf [R(@m p,d,p) — R(p,d, p)}
C,

() (2). o
2 n n

where pointwise means for every source p and input distortion
measure p. Note that (9) is a strengthening of the traditional
weakly universal result in (4) in the sense that it includes uni-
versality over distortion measures; both are weakly universal
results, however.
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In this paper, we obtain strongly universal (or minimax)
d-semifaithful codes in the universal distortion setting whose
expected rate converges uniformly to the rate-distortion func-
tion, i.e.,

lim inf sup | R(C,p,d, p) — R(p, d, p)} —0,  (10)

n—oo C" D,p

where the infimum is over prefix, d-semifaithful codes in the
universal distortion setting. We consider strong universality in
the absence of any regularity conditions on the source p or
distortion measure p, except the assumption that the distortion
measures are uniformly bounded by some constant. Note that
the guarantee in (10) is stronger than that obtained by showing
that the redundancy in (2) tends to zero. For the quantity
in (2), we give an achievability result (Corollary 3) with an
explicit decay rate of O(In*?(n)/\/n). We also establish a
converse result (Corollary 5) which says that the worst-case
redundancy of the best d-semifaithful code, even in the non-
universal setting, cannot be better than Q(1/+/n).

The rate redundancy in (10) is evidently upper bounded by
the sum of two limits,

lim sup lpf Sup [R(é7zapa da p) - R (n’p7 d7 p)
n—oo Cp p,p

an
+ limsupsup [R*(n,p,d, p) — R(p,d, p)],
n—oo  p,p
both nonnegative, the first of which one might call the price
of universality [11], [24]. The price of universality is zero
and the rate of convergence for the first term is O(Inn/n),
which follows from (8). Indeed, the encoder can communicate
the type ¢ of the source sequence and the equivalence class?
of the distortion measure to the decoder, and then employ
an optimal d-semifaithful code w.r.t. a suitable representative
distortion measure from the equivalence class for sources that
are uniformly distributed over the type class t. Thus, if the
goal is to establish (10), one need only show that the second
term in (11) vanishes, namely that the worst-case redundancy
of the optimal prefix, d-semifaithful code in a non-universal
setup tends to zero.
Following precedent [2], [9], we shall adopt a more conve-
nient decomposition which upper bounds the rate redundancy
in (10) as

lim sup lpf Sup R(Cn7p7 d7 p) - E[R(T? d7 p)]

n—oo Cp p,p

+ limsupsup [E[R(T' d, p)] — R(p,d, p)],

n—oo  p,p

12)

where T is the n-type of the source sequence generated i.i.d.
according to p. Such a decomposition naturally arises in uni-
versal source coding where, in the absence of the knowledge
of the underlying source p, the type of the source sequence is
used as a proxy for p and convergence to the asymptotic limit
associated with T is achieved. Indeed, we show that unless
the difference between the expected rate of a code and the
expected rate-distortion function E[R(T, d, p)] tends to zero

2Although there is a continuum of distortion measures, for a given distortion
level, they can be divided into a polynomial number of equivalence classes
so that within an equivalence class, all distortion measures agree on which
sequences satisfy the distortion constraint. See [22, Proposition 1].
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uniformly over both p and p as n tends to infinity, it is
not possible to have uniform convergence to the rate-
distortion function. Regarding the first term in (12), we show

(Theorems 1-4) that there exists a sequence of codes C,
satisfying

lim sup [R(C'n,p, d, p) —E[R(T,d, p)]} n*=0

n=00 pop (13)
if  <5/8.
Furthermore, it follows from our results (specifically
Theorems 1-4 and Lemmas 3 and 4) that
lim sup |R*(n,p,d, p) —E[R(T,d, p)]| - n® =0
n—0oo p 4 (14)

if o < 5/8.

Since the worst-case convergence to the rate-distortion func-
tion cannot be any faster than Q(1/4/n), as noted above,
it follows that, at least retrospectively, using the decomposition
in (12) instead of (11) does not entail any loss in the order
of convergence.

The second term in (12) poses a challenge since the
rate-distortion function R(p,d, p) is not well-behaved as a
function of p, e.g., it is not necessarily concave in p or dif-
ferentiable w.r.t. p. This makes the analysis more challenging
than in the lossless case, where the entropy function H(p)
is concave in p, which enables a simple upper bound of
E[H(T)] < H(p). This also partially explains why results
in universal lossy coding are less well-developed, frequently
relying on various regularity conditions to obtain pointwise
convergence® of E[R(T,d,p)] to R(p,d,p). Nevertheless,
we show (Lemma 5) that

lim sup | E[R(T,d,p)] — R(p.d,p) | =0,

n—oo D,p

15)

where the above result relies on a type concentration result
(Lemma 1) and uniform continuity of the rate-distortion func-
tion w.r.t. p and p (Lemma 2). We thus conclude (Corollary 1)
that codes that approach the rate-distortion function uniformly
with respect to both the source and the distortion measure
exist, i.e., the result in (10).

Note that this result does not provide an explicit bound
on the speed of convergence. However, using a result of
Palaiyanur and Sahai [25, Lemma 2], we show (Lemma 6)
that

lim sup |E[R(T,d, p)] — R(p,d,p)| -n* =0

n—oo p

if « <1/2. (16)

Thus we have proven (Corollary 3) the existence of strongly
universal, prefix, d-semifaithful codes in the traditional uni-
versal setting with minimax redundancy at most (essentially)

1/y/n:
lim inf sup [R(C’,L,p, d,p) — R(p,d,p)| -n*=0

n—oo C’n. P

if o <1/2. (17)

3See [22, Lemma 5] which extracts from [4] a pointwise o(lnn/n)
convergence of E[R(T,d, p)] to R(p,d, p).
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where the rate is controlled by the speed of convergence of the
code-independent quantity E[R(T, d, p)| to the rate-distortion
function, because the convergence of the expected rate to
E[R(T,d, p)] from (13) is faster. Lastly, we show (Lemma 7
and Corollary 5) that the 1/1/n bound in both (16) and (17)
is tight. Specifically, (16) and (17) can be strengthened to, for
at least some p and d,

lim sup [E[R(T, d, p)] — R(p,d, p)‘ n® =0

n—oo P

= a<1/2 (18)

and

lim inf sup [R(C‘n,p, d, p) — R(p,d, p)] -n*=0

n—oo C«" P

= a<1/2 (19)
respectively.

The optimal rate of convergence of O(1/y/n) stands in
stark contrast to the O(lnn/n) optimal convergence rate
in prior work on universal compression noted above. The
0(1 /+/n) rate is controlled by the worst-case convergence
rate of E[R(T\,d, p)] to R(p,d, p) in (18). Indeed, R(T\,d, p)
has a 1//n spread around R(p,d,p) from central limit
theorem-type arguments. In typical cases, the positive and
negative deviations tend to cancel, leading to a O(logn/n)
redundancy. If R(p, d, p) is zero or nearly zero, however, then
R(T, d, p) has deviations in the positive direction only, which
explains the 1//n redundancy. Note that this effect does
not arise in the lossless case because when H(p) = 0 we
have H(T) = 0 almost surely. In the lossy context, prior
work on d-semifaithful coding, both non-universal [4] and
weakly universal [2], [9], [11], [13], [22], impose regularity
conditions on the source and distortion measure that have the
effect of excluding this phenomenon. We show that in the
absence of these regularity conditions, the optimal redundancy
is O(1/y/n), even in the non-universal case (Corollary 5).
However, the 1//n behavior does not come about solely
from relaxing the regularity conditions from previous works.
In Appendix D, we assume the regularity conditions in [4], [9],
and [11], where [9] in particular shows a pointwise rate redun-
dancy of O(Inn/n) for weakly universal codes. We prove
that under these conditions, imposing strong universality
worsens the redundancy from O(Inn/n) to Q(1/y/n). Thus
the O(Inn/n) redundancy finding is sensitive to both the
regularity conditions and the weak universality assumption.
Table I summarizes these results.

We prove analogous results to the above for non-prefix
codes, following developments in the lossless coding litera-
ture. Imposing the prefix constraint is rarely necessary when
considering block coding; as discussed in [27], when the
codeword is stored as a file, self-punctuating prefix codes are
not necessary since the start and end of the file are recorded
by the filesystem. Furthermore, imposing the prefix constraint
in universal lossless coding incurs an extra factor of Inn/n in
rate redundancy when compared to non-prefix codes, see, e.g.,
[8, Table I]. In the universal lossy coding setup considered in
this paper, we observe a similar penalty in the higher-order
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terms of the rate redundancy, although the dominant term is
unaffected.

Table II compares the achievability results of this paper with
some of the previous work on d-semifaithful codes, focusing
only on the expected rate analysis.

Most existing works on universal lossy compression rely
on random code constructions that are analyzed using type-
theoretic tools. This analysis can be quite involved, and it
requires various technical conditions. In contrast, we use a
random code construction which relies on acceptance-rejection
sampling and exact asymptotics from large deviations in
place of type-theoretic methods. The codebook is generated
from a specific mixture distribution called the normalized
maximum-likelihood (NML) distribution (given in (40)). Such
mixture distributions have precedent in the context of universal
rate-distortion in the work of Kontoyiannis and Zhang [13].
Our approach obviates the need for the technical conditions
alluded to earlier. It also has the added advantage that it can
readily accommodate universality over the distortion measure,
albeit with the modification discussed next.

If one wishes to achieve universality with respect to the
distortion measure, then the usual random coding approach
is insufficient in the following sense. For any given source
distribution p and distortion measure p, it is well-known that
there exists a distribution over the reconstruction alphabet,
QP4 such that if X™ is i.i.d. p and Y is i.i.d. QP%?, with
X™ and Y independent, then

lim . InP(p(X™,Y") <d) = R(p,d, p)
n

n—oo

(20)

if the rate is measured in nats. Indeed, several achievability
schemes [4], [11], [22], [23] based on random coding rely
on lower bounding the probability that a random codeword
meets the distortion constraint with a given source sequence.
We show (Proposition 1) that such an argument cannot provide
uniform convergence over all source sequences z” and all
distortion measures p because

inf P(p(z™,Y") <d) =0, (21)
z",p
where ¢ is the type of 2 and Y™ is ii.d. QH%’.

We mitigate this shortcoming by providing leeway in the
allowed distortion which results in a nonvanishing lower bound

(Lemma 10 and (62)):
]P) n Yn < 2pmax
; (p(a™,Y™) < d + 2max) - exp (_Q (ng/g)).
(22)

", p e—nR(t,d,p)

The resulting code is not d-semifaithful, however. To make it
d-semifaithful, we employ a post-correction scheme that uses
uncoded (or uncompressed) transmission from the encoder to
the decoder to replace suitable symbols in the reconstruction
sequence so that the post-corrected sequence meets the dis-
tortion constraint. The word “uncoded” here means that there
is no compression and the number of post-correction bits sent
is essentially equal to the log of the alphabet size times the
number of replacement symbols (see (90) in the proof of
Theorem 1). This use of uncoded transmission is reminiscent
of schemes for achieving the rate-distortion function at very
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TABLE I

COMPARISON OF THE OPTIMAL RATE REDUNDANCY BETWEEN PREFIX LOSSLESS CODES, PREFIX d-SEMIFAITHFUL CODES FOR SOURCES SATISFYING
CERTAIN REGULARITY CONDITIONS (APPENDIX D), AND PREFIX d-SEMIFAITHFUL CODES FOR ARBITRARY SOURCE DISTRIBUTIONS, IN THE
CLASSICAL SETTING OF FIXED DISTORTION MEASURE. RESULTS WITHOUT A CITATION ARE FROM THIS PAPER

Lossy (d-semifaithful)

Lossless
with regularity conditions | without regularity conditions
Non-universal O (1/n) [3, Thm. 5.4.2] O(lnn/n) [4] O(1/+/n)
Weakly universal | O (Inn/n) [6, Thm. la] O(lnn/n) 9] o(1/y/n)
Strongly universal | O (Inn/n) [26, (61)] O(1/+/n) O(1/+/n)
TABLE II
UNIVERSAL d-SEMIFAITHFUL ACHIEVABILITY RESULTS (PARTICULARIZED TO EXPECTED RATE FOR 1.I.D. SOURCES WITH FINITE ALPHABETS)
Paper Universality w.r.t. | Guarantee | Redundancy w.r.t. Convergence Convergence Rate
Yu and Speed [2] D for most p R(p,d, p) in expectation O(logn/n)
Yang, Zhang, and Berger [28] p for all p R(p,d, p) almost surely
Yang and Zhang [9] D for most p R(p,d, p) in expectation O(logn/n)
Kontoyiannis [12] P for all p R(p,d, p) almost surely -
Kontoyiannis and Zhang [13] D for most p other both? O(logn/n)
Silva and Piantanida [18] D minimax R*(n,p,d, p) in expectation O(logn/n)
Mahmood and Wagner [22] p, p, and d minimax R*(n,p,d, p) in expectation O(logn/n)
Mahmood and Wagner [22] p and p for most p R(p,d, p) in expectation O(logn/n)
This paper p and p minimax E[R(T,d, p)] in expectation O( losg/g)
. L. . . log3/2 n
This paper D minimax R(p,d, p) in expectation O( Ve L)
This paper p and p minimax R(p,d, p) in expectation -
Merhav [23] t and p for most ¢ R(t,d, p) almost surely O(logn/n)

“Results on convergence in expectation as well as almost surely are given.

low rates [29]. Uncoded transmission is also employed in the
recent work of the authors, mentioned above, for showing that
the price of universality over unknown distortion measures
is zero [22, Theorem 2]. Prior studies considered uncoded
transmission due to its simplicity, not because it outperforms
other schemes. It has also been considered in the context of
joint source-channel coding [30], [31], where it can outperform
other schemes. Its use in achieving universality appears to be
unique to this paper and [22].

The remainder of the paper is organized as follows.
Section II establishes the notation, definitions and basic
properties of various objects related to lossy compression.
Section III lists and discusses the main results of this paper.
Section IV states the known results about the Lagrange formu-
lation of the rate-distortion function. Section V develops the
d-covering lemmas whose proofs are given in appendices E
and F. Sections VI—VIII are devoted to the proofs of the main
theorems.

II. PRELIMINARIES

Without loss of generality, we let A = {1,2,...,J} and

={1,2,...,K}. P(A) denotes the set of all probability
distributions on A. P(A|B) denotes the set of all conditional
distributions. In this paper, In represents log to the base e,
log represents log to the base 2 and exp(z) is equal to e
to the power of x. Unless otherwise stated, all information
theoretic quantities will be measured in nats. For p € P(A),

H(p) denotes the Shannon entropy. For p € P(A) and
W € P(BJA), H(W|p) denotes the conditional entropy
and I(p,W) = I(X;Y) denotes the mutual information
where (X,Y) have the joint distribution given by p x W.
For p1 € P(A) and p € P(A), D(pi|lp2) denotes the
relative entropy between the two probability distributions. For
any vector v € R™, [[v||; will denote the I' norm of wv.
For any two m-dimensional vectors u = (uq,...,u,) and
v = (v1,...,Um), ||[v—u||2 will denote the Euclidean distance
between w and v. We use ®(-) to denote the standard normal
cumulative distribution function (CDF).

For a given sequence 2™ € A", the n-type ¢t = t(z"
is defined as

) of z"

1

for all j € A, where 1(.) is the standard indicator function.
P, (A) denotes the set of all n-types on A. For a pair of
sequences z" € A™ and y™ € B"™, the joint n-type s is defined
as

1 n )
= ﬁz]l(% =jyi=k)
i=1
forall j € A and k € B. P,(A x B) denotes the set of all

joint n-types on A x B. For two sequences =" and y" with
n-types t, = t(z") and t, = t(y"), the joint n-type s can
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also be written as
(4, k) = to (F)Wy(k[4) = t, (k)W (j|k),

where W, is called a conditional type of y™ given z",
and W, is called a conditional type of =™ given y™. From
[14, Lemma 2.2], we have

Pa(A)] < (n+1)77

|Pn(A x B)| < (n+ 1)KL, (23)

For a given type t € P,(A), T%(t) is called the type class
where

Th(t) ={z" € A" : t(z") = t}.

For any given P € P(A) or P € P(B), P" will denote
the n-fold product distribution induced by P. Let X" be an
independent and identically distributed source. Let p € P(A)
be the generic probability distribution of the source so that
X™ is distributed according to p”. The probability that X" is
of type t satisfies [14, Lemma 2.6]

B, (X" € T3(t) = p" (T4(1)) < exp (—nD(tl|p)) . (24)

For a given source distribution p, it suffices to focus only
on sequence types ¢ satisfying ||t — p||2 < ay/lnn/n, where
a > /24 2J. Source sequence types sufficiently away from
source distribution p have negligible probability for large n as
quantified by the following lemma ( [22, Lemma 1]):

Lemma 1: If a satisfies a > /2 + 2J, then for all p €
P(A) and all n € N, we have

ed—1
S rme) < S
t:||t—p||2>ay/Inn/n

We review the standard notations for asymptotic growth
rates which are used to describe the limiting behavior of
various functions (e.g., the expected rate) w.r.t. the blocklength
n. A function f(n) € O(n) if there exist constants M/ > 0 and
N > 0 such that |f(n)] < Mn for all n > N. A function
f(n) € Q(n) if there exist constants M > 0 and N > 0 such
that |f(n)] > Mn for all n > N. A function f(n) € o(n)
if for every € > 0, there exists a constant N > 0 such that
|f(n)|/n < eforall n> N.

Let p : A x B — [0, pmax] be a single letter distortion
measure and p, (2", y") be its n-fold extension defined as

n

1
pn(2",y") = - Zp(iﬂuyi),

i=1

(25)

where z™ € A", y" € B™.

Let D be the space of uniformly bounded distortion mea-
sures, i.e., fix some py,x > 0 and let D denote those p such
that 0 < p(j,k) < pmax for all j € A, k € B. All distortion
measures considered in this paper will be in D and ppax Will
denote the uniform bound on all p € D. Furthermore, we will
assume that

max min p(j, k) =0 (26)

for all p € D.
JEA keB

When the source distribution and the distortion measure are
fixed, (26) is without loss of generality [32, p. 26]. Here,
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it is tantamount to having d represent the allowable excess
expected distortion above the minimum possible for the given
source distribution and distortion measure. For the universal
setup, this is preferable to having d represent a constraint on
the absolute expected distortion: a given d will be below the
minimum achievable expected distortion for some cases, for
instance.

For a given p € D, p € P(A) and d > 0, the rate-distortion
function R(p,d, p) is defined as [3, Theorem 10.2.1]

R(p,d, p)

= QBgléHQd’p I(p,Qpla)

- , . . Qp|a(klj)
—QBTé%d,ij,;p(J)QB'A(kJ)Irl( G ) @

where Q(k) =3, 4 p(j)@p|a(k|j) and

Qup =1 Qpa: Yy p(H)Qpalkli)p(G k) <d

gk

(28)

For any given p and p, R(p,d,p) is nonincreasing, con-
vex and differentiable everywhere as a function of d except
possibly at d = minkep ;4 P(j)p(j k) [14, Exercise
8.6], [3, Lemma 10.4.1]. In particular, for 0 < d <
mingep Zjewv(j)p(j7 k), R(p,d,p) is strictly decreasing
in d. The function’s dependence on p for given d and p is
complex [33]. In particular, it is not concave in general.

For the given p,d and p, if Q};‘|A solves (27), then QP»4-*
defined as

QPP (k) = p(§)Qa (kL)

jeA

(29)

will be called an optimal (output) distribution on B associated
with p,d and p. The optimal transition probability matrix
Q}‘3| 4 or the optimal output distribution Q%P may not be
unique* for a given (p, d, p).

Lemma 2: For a fixed distortion level d > 0, the
rate-distortion function R(p, d, p) is uniformly continuous on
P(A) x D.

Proof: The proof of Lemma 2 is given in Appendix A.

Remark 1: Throughout this paper, we will adopt the fol-
lowing metric on P(A) x D:

|(p1, p1) = (P2, p2)l

= 2 00G) =202+ D (ol k) = palGi k)2

jeA jEAkEB

(30)

for any (p1, p1) and (p2, p2). Uniform continuity in Lemma 2
can be thought of with respect to this given metric.

Previous works on lossy coding [2], [4], [10], [11] have
primarily considered two kinds of block codes:

o fixed rate codes

o d-semifaithful codes
As mentioned before, we will focus on the latter.

4Lemma 7 in [11] gives sufficient conditions on the distortion measure

under which QP>%* is unique for all full support distributions p and for
K < J. We will not assume these conditions in this paper.
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Definition 1: An nth order d-semifaithful block code is
defined by a triplet C,, = (¢n, fn, gn):

¢n:A"—>B¢nCBn
fn 1 By, — B*

gn 1 B* — By, 31

where

e B* is a set of binary strings,

e (fn,gn) is a binary encoder and decoder pair,

e By, is the codebook, and

e ¢n is a d-quantizer, i.e., for all 2™ € A", we have

pu (", p(z™)) < d.

Remark 2: We consider a code C,, to be a random code
if any one of the functions ¢, f, or g, is random. When
considering random codes, we assume that infinite common
randomness is available between the encoder and the decoder.

The performance of a d-semifaithful code C, can be mea-
sured by the rate redundancy R, (Cy,p, p) defined as

Ro(Cosp) 2 [ (60(X™) 2] ~ R(p,d ),
(32)

where E [I(f,(¢n(X™)))] is the expected length of the binary
string f,, (¢, (X™)), the expectation being with respect to the
product distribution p™ (as well as C,, if the code is itself
random) and the factor of In 2 is because we measure coding
rate in nats.

In the universal distortion framework studied in [22], the
modified formulation of a d-semifaithful block code is given
as follows:

Definition 2: An  nth  order universal distortion
d-semifaithful code is defined by a triplet Cy, = (¢, fn, gn):

¢n: A" XD — By, C B"
fn:B¢n4>B*

gn : B* — qunv (33)

where D is the space of uniformly bounded distortion mea-
sures defined earlier. Thus the distortion measure is not known
in advance and only revealed to the d-quantizer at run-time.
Henceforth, we will use C,, to denote a code in the traditional
setting as in (31) and C, to denote a code in the universal
distortion setting as in (33). The rate redundancy in the
universal distortion setting is given by

Ra(Cop,p) & SE[L(f (90X, ))) n2] ~ Rlp,d. p).

Viewing the codebook By, C B™ as a set of indexed’
codewords available to both the encoder f, and decoder g,
the encoder f,, can map the integer index of the codeword to a
binary string followed by the decoder performing the inverse
mapping to recover the codeword. A frequently used integer-
to-binary encoding is based on Elias coding [34]. If y;* € By,
is a codeword with index ¢, then with Elias coding [34], the
length of the binary encoding f, (y}") satisfies

[(fa(y;')) < [log(i)] + 2[log ([log()] + )] + 1.

SIndexed as 1,2,3,. ..

(34)
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Another integer-to-binary encoding is the fixed-to-variable one
given by

fos Y v,y ..} — {0,1,00,01, 10, 11,000,001, ...},
(€R)

where the length of the binary encoding f,(y") satisfies
W(fn(yi')) <1+ log(i).

The encoder f,, is said to be a prefix code if for all i, j € Z~o,
fn(yf) is not a prefix of f,(y}) so long as y' # yj.
Otherwise, it is a non-prefix code. Elias encoding in (34)
results in a prefix code while the fixed-to-variable encoding
in (35) and (36) yields a non-prefix code.

While the expected rate of a d-semifaithful code with a
prefix encoder is strictly lower bounded by the rate-distortion
function [3, Secs. 5.4 and 10.4], this is not necessarily true
for a d-semifaithful code with a non-prefix encoder. However,
as we will show later, the rate-distortion function is still an
asymptotic lower bound in the non-prefix case.

Let P(A™) be a set of probability distributions on A™. Then
Shtarkov’s sum [35] for P(A™) is defined as

Sp =

(36)

sup p(z™).
TN EAT PEﬁ(A")
In particular, if P(A") is the set of i.i.d. distributions, then
we have

S, = sup p"(z"). (37)

ancan PEP(A)
Shtarkov [35] showed the important result that log.S, is
essentially (up to a discrepancy of at most 1/n) equal
to the universal lossless coding redundancy over the set
of distributions P(A™). It is known from previous works
([36], [37], [38], [39]) that the universal lossless coding
redundancy for i.i.d. sources taking values in alphabet A of

size J is given by
r (é)")
+OJ(1),
r(s)
(38)

where I'(+) is the gamma function and 0;(1) — 0 as n — oo at
the rate determined only by J. Combining this with Shtarkov’s
result and changing base to natural log, we can express S,
from (37) as

Sy =

J—1 J—1

log(n) — log(27) + log (

sup p"(z"™)

I"GA” pGP(A)
exp (J lnn+ln( ) +o (1))
= — i J .
= )
(39)

The above result is used in constructing random codes (Theo-
rems 1 and 2) which use acceptance-rejection sampling using
the normalized maximum-likelihood distribution Q"ML ¢
P(B™), specified by

-1

r(3)’
1

sup ¢"(y")
q€P(B)

> sup pr(z")’
2"€B" peP(B)
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to generate i.i.d. codewords from the optimal distribution
(QH4P)™, where Q4%+ is defined according to (29).

ITI. MAIN RESULTS

In this section, we list the main theorems of the paper. The-
orems 1 — 4 are minimax achievability results in the universal
distortion setting which establish that the difference between
the expected rate and E, [R(T, d, p)| is upper bounded by a
quantity that tends to zero at a rate independent of p and
p. Corollaries 1 and 2 are minimax results which establish
uniform convergence of the expected rate to R(p,d, p) over
all source distributions p € P(A) and distortion measures
p € D. Corollaries 3 and 4 are minimax results which establish
uniform convergence of the expected rate to R(p, d, p) over all
source distributions p € P(A) with an explicit convergence
rate. Finally, Corollary 5 establishes that the order of the
minimax convergence rate of the previous two corollaries is
essentially optimal, ignoring logarithmic factors; see Table III
for a summary of main results. These results encompass both
random and deterministic coding schemes as well as both
prefix and non-prefix coding schemes.

For a given d > 0, p € P(A) and p € D, let

E, [R(T.d.p)] = > p"(T4(t)R(t,d,p).
teP(A)

Throughout the rest of the paper, E, will denote expectation
with respect to the source distribution p as above and E. will
denote expectation with respect to the random code.
Theorem 1: Fix d > 0. Then for sufficiently large n, there
exists a universal random non-prefix d-semifaithful code C, =
(dn, fn, gn) for the universal distortion problem such that

sup | By M@, [1(fa(dn(X™, )]
peP(A),peD LT

2pmax In(n)
—E, [R(T,d, P)]] < Al
4pmax (min (In(K),In(J)) + In(2))
+ dnb/8
N K +5/4lnn N V1 +1n(8) N min (In(K), In(J))
2 n n n

b

where
(T 0
1%} _1n<(27r)K21F(12()> +21n(2).

Theorem 2: Fix d > 0. Then for sufficiently large n, there
exists a universal random prefix d-semifaithful code C, =
(én, fn, gn) for the universal distortion problem such that

sup [%%mwmwnwmemn

pEP(A),peD LT

2pmax In(n)
—E, [R(Td, P)]} B

4pmax (min (In(K),In(J)) + In(2))

_|_
dn5/8
K+21/4lnn Inlnn  min (In(K),In(J)) + In(4)
2 n n n ’

where G is a constant depending on J, K, pyax and d.
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Proof: The proofs of Theorems 1 and 2 are given in
Section VI.

Proof Outline: A random codebook with codewords drawn
according to the normalized maximum-likelihood distribution
Q™ in (40) is available to both the encoder and decoder. For
any input source sequence ™ with type ¢t = t(x™) and input
distortion measure p, the encoder uses acceptance-rejection
sampling from Q"ML to obtain i.i.d. codewords according
to the optimal output distribution Q*%?. The encoder then
communicates to the decoder the index of the first accepted
codeword which meets the distortion constraint. The proof
then primarily relies on lower bounding the probability
P(p, (2™, Y™) < d) where Y™ is i.i.d. according to Q*%*. For
minimax results, such a lower bound must hold uniformly for
all source sequences and distortion measures. As discussed in
the Introduction section in (21), a nonvanishing lower bound
is impossible to obtain as shown by a simple counterexample
in Proposition 1. Thus, as discussed in (22), we provide some
leeway in distortion and then use post-correction to satisfy
the distortion constraint. The lower bound to the probability
of meeting the relaxed distortion constraint is developed in
Lemmas 8-10 in Section V.

Remark 3: Prior work has focused on the existence of
deterministic universal codes, which is not directly implied by
Theorems 1 and 2. It is unclear that one should demand that
universal codes be deterministic, since in practice common
pseudo-randomness can be realized by having the encoder
communicate a seed to the decoder. Nevertheless, we prove
the existence of deterministic universal codes in the next
two theorems. Although the dominant term (~ n=°/8) in
the achievability results of Theorems 1 — 4 is the same,
the random codes exhibit smaller penalty in higher-order
terms.

Theorem 3: Fix d > 0. Then for sufficiently large n, there
exists a universal deterministic non-prefix d-semifaithful code
C, = (¢n, fn,gn) for the universal distortion problem such
that

sup | B, M@ fa(én(X™, )]

pEP(A),peD LT
2pmax In(n)
—E, [R(Td, P)]} < T ansls

4pmax (min (In(K),In(J)) 4+ In(2))

dnb/8
1
e () ,
n

Inlnn
In(J2K?2 +J — 1)
Inlnn

+

K+5/41
L K+5/4ln
2 n

where V] is as defined in Theorem 1,

Tn = 1+ 5

and the O(1/n) term depends only on J and K.

Proof: The proof of Theorem 3 is given in Section VII.
Theorem 4: Fix d > 0. Then for sufficiently large n,

there exists a universal deterministic prefix d-semifaithful code

Cpn = (¢n, fn, gn) for the universal distortion problem such
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TABLE III
SUMMARY OF MAIN RESULTS
Code Characterization Universality w.r.t. Performance Metric Bound? Result Type
Theorem 1 non-prefix random p and p sup [ E [Rate] — E, [R(T, d, p)] ] < Tlfg/’g achievability
PP
Theorem 2 prefix random p and p sup [ E [Rate] — E, [R(T, d, p)] | < 71;/718 achievability
PP
Theorem 3 non-prefix deterministic p and p sup [ E [Rate] — E, [R(T', d, p)] | < 71;51/7; achievability
P.p
Theorem 4 prefix deterministic p and p sup [E [Rate] — E, [R(T, d, p)] ] < Tll'g—/’; achievability
PP
Lemma 3 prefix deterministic non-universal inf [ E [Rate] — E,, [R(T, d, p)] ] > — 1’;” converse
PP
Lemma 4 non-prefix deterministic non-universal inf [ E [Rate] — E,, [R(T, d, p)] ] > —IHT” converse
P.p
Corollary 1 prefix deterministic p and p sup [ E [Rate] — R(p, d, p)] < o(1) achievability
p,p
Corollary 2 non-prefix deterministic p and p sup [ E [Rate] — R(p,d, p)] <o(1) achievability
PP
3/2
Corollary 3 prefix deterministic D sup [ E [Rate] — R(p,d, p)] < \/ﬁ(n) achievability
P
3/2
Corollary 4 non-prefix deterministic D sup [IE [Rate] — R(p, d, p)} < In \/ﬁ(n) achievability
P
Corollary 5 | prefix/non-prefix | deterministic non-universal sup [ E [Rate] — R(p,d, p)] > % converse
P

“Only the dominant terms omitting the multiplicative constants are specified.

that

pET c n ! [ (2)l(f71(¢n(Xn7 )))}
(A),P D n P

4pmax (min (In(K),In(J)) + In(2))
+ dnd/8
N K+21/4Inn +glnlnn Lo (1) ’
2 n n n
where G is a constant depending on J, K, pmax and d, and the
O(1/n) term depends only on J and K.
Proof: The proof of Theorem 4 is given in Section VIII.

Proof Outline: The proofs of Theorems 3 and 4 again rely
on a random coding argument as in the proofs of Theorems 1
and 2. While Theorems 1 and 2 showed that the random
code performs uniformly well in expectation, we must now
show that the random code performs uniformly well with high
probability. This is the key to derandomization, i.e., inferring
the existence of a deterministic code from a random one.
To achieve this objective, we used a uniform concentration
result for the random rate used to encode a sequence from
a given type class w.r.t. a given input distortion measure
followed by a union bound over all types and equivalence
classes of distortion measures.

Theorems 1 — 4 establish an O(n~%/%Inn) achievable
rate for uniform convergence of the difference between
expected rate and E, [R(T,d, p)] to zero. Concavity of the
rate-distortion function in the source distribution p would
enable application of Jensen’s inequality and thus, establish
convergence to the rate-distortion function. However, the

rate-distortion function R(p,d, p)
or even quasiconcave in p [33].

Our ultimate goal is to establish uniform convergence to
the rate-distortion function. It may seem that E, [R(T, d, p)]
appearing as an intermediate quantity might be an artifact
of our analysis. However, the following lemmas based on
[22, Lemma 5], when combined with Theorems 1-4, establish
the important role of E,, [R(T, d, p)] in analyzing convergence
of the expected rate for any code.

Lemma 3: For all n € N, any prefix d-semifaithful code

Cr = (n, fn,gn) satisfies

is not necessarily concave

%EP [(fr(Pn(X™)))In2]
2 Ep [R(T,d,p)] = (JE +J - 2)“17" _JK+J-2

n

for all p € P(A) and p € D.

The next lemma shows that a uniform lower bound involv-
ing E, [R(T,d, p)] holds for non-prefix d-semifaithful codes
as well.

Lemma 4: Any non-prefix d-semifaithful code C,, =

(¢n7 fn, gn) satisfies
1 n
~Ep [1(fn(¢n(X™))) In2]
1 1
> E, [R(T.d,p)] — (JK +J — 1)~ 40 (nn)
n n
for all p € P(A) and p € D, where the term o(lnn/n), when

divided by Inn/n, tends to zero at a rate determined only by
alphabet sizes J and K.
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For the proof of Lemma 3, see [22, Lemma 5]. The proof
of Lemma 4 is similar to Lemma 3 and is briefly outlined in
Appendix B.

Lemmas 3 and 4 in conjunction with Theorems 1 —4 imply
that for an optimal d-semifaithful code, the difference between
its expected rate and E, [R(T, d, p)] tends to zero uniformly.
Therefore, a necessary and sufficient condition for minimax
convergence of the expected rate of a d-semifaithful code to
the rate-distortion function R(p, d, p) is uniform convergence
of E,[R(T, d, p)] to R(p,d, p), over all p and p. This condition
is indeed satisfied by virtue of the uniform continuity of the
rate-distortion function with respect to (p, p) (Lemma 2). The
following lemma synthesizes Lemmas 1 and 2 to establish
uniform convergence of E,[R(T,d, p)] to R(p,d, p) over all
p and p.

Lemma 5: For any fixed d > 0, we have

lim sup |]Ep [R<T7 d7 p)] - R<p7 d’ p)’ =0.

0 peP(A),pED

Proof: The proof is given in Appendix C
While the rate-distortion function is a strict lower bound
for the expected rate of a d-semifaithful code with a pre-
fix encoder, Lemmas 4 and 5 imply that the rate-distortion
function is an asymptotic lower bound for the expected
rate of a d-semifaithful code with an arbitrary encoder. Let
Cq,pr be the set of all deterministic d-semifaithful codes
with a prefix encoder and Cg,, be the set of all deter-
ministic d-semifaithful codes with an arbitrary encoder. The
following two corollaries directly follow from the results of
Theorems 1 — 4 and Lemmas 3 — 5.
Corollary 1 (Existence of minimax prefix codes): For any
fixed d > 0, we have
lim inf sup
N—00 (¢n,fn,gn)ECd pr pEP(A),pED

|:hl,'(712) Ep [l(fn(‘ZSn(Xn,P)m - R(p’ d, 'D)] =0

Corollary 2 (Existence of Minimax Arbitrary Codes): For
any fixed d > 0, we have

lim inf sup
n—=00 (¢n,frn,9n)€Canpr peP(A),peD

|:1n7(1 )EP [l(fn(¢n(Xn7p)))} — R(p,d, p)] =0.

These corollaries do not have explicit bounds on the rate
of minimax convergence to the rate-distortion function owing
to the absence of explicit bounds for the convergence in
Lemma 5. However, Lemma 6, which uses uniform continuity
bounds from [25, Lemma 2], resolves this shortcoming. While
Lemma 6 is stronger than Lemma 5 because it provides an
explicit rate of convergence, it is weaker because it is not
uniform over distortion measures.

Lemma 6: Fix d > 0 and a distortion measure p. Then for
sufficiently large n, we have for all a > /2J + 2,

sup |Ep [R(T.d,p)] — R(p,d, P)|

pEP(A)

7721
T Pmax Inn < JK\n ) el1
< Hmax 0T SV ) 4 In(K)——,
" Pmin < > avJIlnn (K) n?

where

p(j, k).

Pmin =  min
(4:k):p(4,k)>0

Remark 4: For f(n) €
@) < lnn py (\/ﬁ)), we have f(n) € O (#)
Proof: [Proof of Lemma 6] Fix d > 0 and a distortion
measure p. For some a > v/2.J + 2, we start by writing
Ey[R(T,d, p)]
= 3 PMTR)R(d.p)

tePn(A)
t:||t—p|l2<ar/Inn/n
DY
t:||t—p||2>ay/Inn/n

t:||t—p||2<ay/Inn/n

any function

p"(TA(t))R(t,d, p)

P (TA(6)R(t, d, p)

o1
pH(TA())R(t,d, p) + In(K)—-,

IN

(4D
where the last inequality follows from Lemma 1 and the fact
that R(t,d, p) < In(K) from the assumption in (26).

We now invoke [25, Lemma 2] which states that for any
p;q € P(A) satisfying [|p — g|[1 < {22 and for any d > 0,

pmax K
Rlp.d.p) = Rladop)] < 22l =gl in (25
Pmin ‘ | q| |1
(42)
For sufficiently large n, we can ensure
It = pll < VJ|It=plla
<oV Inn
Pmin
< —. 43
S Lo (43)
Therefore, using (42) in (41), we obtain

Ey [R(T, d, p)]

< X
t:||t—p|l2<ar/Inn/n

wamm(mp¢m+”““

Pmin

JK el1
X ||pt|11n< >)+1n(K)
llp =t n?
Tpmax Inn (JKﬁ)
< R(p.d, VT VB
< Rlp,d,p) + Pmin ( ) avJlnn

el -1

+ In(K)

n?
In the last inequality above, we use the fact that z In(JK/x)
is an increasing function in x for all z < JK/e and it is easy

to ensure ||t — p||y < JK/e for sufficiently large n using the
upper bound in (43).

Authorized licensed use limited to: Cornell University Library. Downloaded on May 10,2025 at 19:30:47 UTC from IEEE Xplore. Restrictions apply.



7722

For the lower bound, we can write
Ep [R(Tv da p)]
>
t:||t—p|l2<ar/Inn/n

Then, for sufficiently large n, we can again apply the result
in (42) and, using a similar argument as before, obtain

p"(TA(t)R(t.d, p). (44)

EP [R(Tv dv p)}
Tpmax Inn JK+/n
Z R(p’ d’ p) min < \/7 > (a\/ Jlnn>
eJ—l
— ln(K)T.

|
Using the simplification from Remark 4, the following two
corollaries follow from the results of Theorems 1 — 4 and
Lemmas 3, 4 and 6.
Corollary 3 (Minimax redundancy with prefix codes): Fix
d > 0 and some distortion measure p. Then

inf sup
(n:frn,9n)ECa,pr peP(A)

{]DT(LQ) E, [1(fn(¢n(X™)))] — R(p, d, p):|

B lng/z(n)
)

Corollary 4 (Minimax Redundancy With Arbitrary Codes):
Fix d > 0 and some distortion measure p. Then

inf sup
(¢n fns gn)ecd npr pe’P(A)

5, 4 (00 (X)) -

B ln3/2(n)
O( Vi )

One can obtain explicit bounds in Corollaries 3 and 4 from
the statements of Theorems 1 — 4 and Lemmas 3, 4 and 6.
We turn to impossibility results. We first show in Lemma 7
that the upper bound in Lemma 6 cannot be improved more
sup |E,[R(T,d,p)] —

than logarithmically, i.e.,
1
R@Am)=9<)-
peP(A) Vn

Lemma 7: Consider alphabets A = B = {0,1} with dis-
tortion measure p(0,0) = p(1,1) = 0 and p(0,1) = p(1,0) =
Pmax > 0. Then for any distortion level d € (0, pmax/2),
if the source distribution is Bernoulli(J), where d = d / Pmaxs
we have®

EP [R<T7 d’ p)] - R(p, d7 p)

zl d(ln_d)ln(:d)_;nr

®We use the notation 1 = max(x,0). Also note that the two terms on
the right-hand side of (45) are greater than zero for sufficiently large n.

R(p,d, p)
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- b
(1—d)*+d?

= = 45
nd(1 —d) )

[@(2) —3(1) -

for any n satisfying 2d + 3 M <1
Proof: Denoting the binary entropy function by H,(-), we
have

IV
/N
=
/N

S
+
&
—_
S
)
~—

P

(46)

where the second inequality uses the assumption that 2d +

3\/@ < 1. By a simple Taylor series expansion,

- Jd(1-d
Hb (d + (’ﬁ,)> - Hb (d_)
d(1—d —d
> ( )ln L 7d — i
n d 2n
A standard application of the Berry-Esseen theorem (with
constant 1/2 [40], [41]) yields

- dl—d) 1 d(1 —d)
PG+ ———<£ZXZ n)

=1

47

1—d)? + &

— 48
nd(1 —d) (%)

>[@%—®ﬂ%—

Substituting (47) and (48) into (46) completes the proof. M
By combining Lemma 7 with Lemmas 3 and 4, we obtain
in particular that, up to logarithmic factors, the redundancy
bounds in Corollaries 3 and 4 cannot be improved.
Corollary 5: Under the choice of p and d assumed in
Lemma 7,

In(2)

liminf sup inf {
=00 ,ep(A) (bn:fnign)€ECa,pr

E, [1(f2 (60 (X™))]
- R(p, da p):| \/ﬁ >0
) g (fa(6n (X))

n

(49)

liminf sup inf {
n—=00 ,eP(A) (bn:fnign) €ECa npr

—R@@mﬂ¢ﬁ>0 (50)

Note that the lower bounds in Corollary 5 apply to the
max-min redundancy, i.e., the non-universal setup. Corollar-
ies 3 and 4, on the other hand, provide achievable results for
the min-max redundancy, i.e., the universal setup. It follows
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that the discrepancy between the max-min and min-max redun-
dancies, which is related to the price of universality, is no more
than logarithmic. Also note that the choice of p and d in crucial
in Lemma 7 and Corollary 5. If d is zero then the problem
reduces to the lossless case, for which (for prefix codes) the
max-min redundancy is O(1/n) [3, Thm. 5.4.1] and the min-
max redundancy is O(logn/n) [6]. If p(j,k) = O for all j
and k, then all forms of the redundancy are obviously zero.

IV. LAGRANGE FORMULATION OF
RATE-DISTORTION PROBLEM

The proofs of the main theorems rely on a Lagrangian
characterization of the rate-distortion function. For a given
t € P(A), d > 0 and p € D, an optimal solution Q}}lA
to the rate-distortion problem satisfies the following system of
equations:

QY4 (k) exp (=A"p(j, k))

Gl = Grasmen xRy O
k'eB
3 t(j) =N p(ik)
S X QU exp (X))
=1 ifQ"*»*(k)>0
{Sl if Q47 (k) =0 Y
XY tDQpalklieG k) —d ) =0 (53)
jeEAkeEB
R(t,d,p)
=—Nd=3 i) (Z Qt’d’fj(k’)e”f’@vk”) oY
JjEA k'eB
where
. OR(t,d,p)
—Ne T (55)

and the right-hand side refers to the subdifferential of
R(t,d, p) with respect to d. Note that R(t,d, p) is differen-
tiable in d except possibly at the distortion associated with

Zero rate:
min > _ p(5)p(j,k
jeA

(56)

as noted earlier. The existence of the Lagrange multiplier \*
satisfying (55) follows from, e.g., [42, Thm. 29.1]. Then [42,
Thm. 28.4] guarantees that QQ7; , minimizes the Lagrangian,
in which case complementary slackness (53) must hold. Then
[14, Thm. 8.7] establishes the remaining assertions.

V. RANDOM d-BALL LEMMAS

Fix d > 0. For any given type t € P,(A) and distortion
measure p € D, let (le 4> A") be a solution to the Lagrange
formulation of the rate-distortion problem in (51) — (54). Let
Q%" be the corresponding optimal reconstruction distribution

7723

on B defined in (29). The proofs of the main theorems of this
paper use a lower bound’ on

P(pp(2™,Y") <d+e), (57)

where 2" € T4(t), Y™ is an iid. sequence generated
according to @“%” and € is a real parameter. We derive this
lower bound through several successive lemmas.

For any given (¢,d,p), define a sequence of independent

random variables Uy, Us, ..., U, as
Ui 2 p(xi,Yi) = Y Qpalklz)p(ei k), (58)
kEB

where Y; ~ Qa(]ws).
Lemma 8 (Refined Lucky-Strike Lemma): Fix d > 0. For
any real number parameters € and C, we have

P (pu(a",Y"™) < d+ )
> exp (—nR(t,d, p)—CA\")P (C’ < Z U; < en) (59)
i=1

for all integers n, for all t € P, (A), p € D and 2" € T%(¢t),
where Y is distributed according to (Q%%*)™.
The proof of Lemma 8 is given in Appendix E.

By making appropriate choices of parameters ¢ and C' in
Lemma 8, we can further lower bound (59) using concentra-
tion results and the Berry-Esseen theorem.

Lemma 9: Fix d > 0. For any nonnegative numbers
C4,C5 and o, we have

P (putan v <a+ 1)

> exp (—nR(t, d,p) — C’l)\*nlfa) £(Cy,Cq, )

for

for all t € P,(A), p € D and 2" € T}(t), where Y is
distributed according to (Q“%°)",

6 (C17 027 O() =
min 1— @ C'1 _ 26VO (pmax)3
012 ; \/ﬂna_l/meax (02)3/2,”27301 )

and Cj is the absolute constant from Berry-Esseen theo-
rem [43].
The proof of Lemma 9 is given in Appendix F.

The final lemma in this sequence, which will be directly
used in proving the main theorems, follows as a direct
corollary of Lemma 9. Specifically, using the upper bound
Co < 0.56 [43] and choosing o = 5/8, C7 = 2ppmax and
Co = 2.5(pmax)? in Lemma 9, we obtain the following.

Lemma 10: Fix d > 0. Then for n > 10, we have

pm X
00 3)

"This lower bound holds uniformly over all types t € P, (A), distortion
measures p € D and all sequences =™ € T} (t).

Y") <d+
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2 )
(60)
for all t € P, (A), p € D, 2™ € T%(t) and Y™ distributed
according to (Q%%P)".
Since A\* satisfies (55) and R(t,d,p) is convex in d and
satisfies R(t,d, p) < min(log J, log K), we have®

min(log J, log K)

1 1
> exp <—nR(t, d,p) — 2Ppmax AN 1?8 — 3 Inn + In ())

A< y (61)
Substituting this into (60) gives the bound
P (pala7, ") < d-+ )
e—nR(t,d,p)
; 3/8
> exp _ 2pmax min(log J, log K)n —}lnn—Hn 1 ’
d 8 2
(62)

which has the crucial property that the right-hand side decays
to zero subexponentially independently of ¢ and p. This
uniformity relies on the leeway afforded by allowing the
code to violate the distortion constraint by 2p,.,/n°/%. The
following proposition shows that without such freedom, it is
not possible to have a nonvanishing lower bound, even for
a fixed n, that holds uniformly over source sequences and
distortion measures.

Proposition 1: Fix pmax = 3, d = 1, and alphabets A =
{0,1} and B = {0, 1, 2}. Then for all even n and € > 0, there
exists ™ and p such that for any optimal output distribution
Qb%P, we have

P(pala" Y") <d) _
efnR(md,p) -

where Y™ is ii.d. @Q“%” and t is the type of 2.
Proof: Fix an even integer n and some ¢ > 0. First
consider the rate-distortion problem with distortion measure

, [0 31
P=13 01|

and a uniform source distribution p over A. Evidently

R(p,1,p') = 0 and since the rate-distortion function is
continuous in the distortion level [14, Lemma 7.2],
For some § > 0, consider the perturbed distortion measure’
|0 3 1456
3 0 146

with distortion constraint d = 1. The rate-distortion function
for this problem, R(p, 1, p), is clearly upper bounded by that
of the problem with distortion measure

0 3+ 1+96
3+0 o6 146

with distortion constraint d = 1, for which the rate-distortion
function is R(p,1 — 4, p’). Thus, from (63), we have

lim R(p,d, p) = 0. (64)

8This observation was credited by Yu and Speed [2] to T. Linder.
9We suppress the dependence of p on 6.
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Given any €; > 0, choose ¢ > 0 such that R(p,d, p) < €.
Let 2™ be any sequence with half zeros and half ones, and
let ¢ denote its type. For the given (¢, d, p), let (Qp 4, A") be
a solution to the Lagrange formulation of the rate-distortion
problem as described in Section IV and let Q“%” be the
corresponding optimal output distribution on {0, 1,2} defined
via (29). Let Y™ be iid. Q“%?. From (136), we have (by
choosing € = 0)

P(pn (2", Y") < d) -
e—nR(t,d,p) <P Z U0/,

i=1

(65)

where Uy, ...,
D) Qa1 HIQ ()
S D(@iAC0)IQY () + 3 D@ A CIDIQ ()
= R(t,d, p) < €1,

we have D(Q*B‘A(-U)HQt’d*”(-)) < 2¢ for all j € {0,1}.
By Pinsker’s inequality [14, Prob. 3.18], we have

QB (kL)) — Q4 (k)| < Ve,

for all k and j. Since Qp 4 (|) satisfies the distortion con-
straint,

> 1 [3@514010) + (1 4+ 0)Q3,4(210) + 3Q34(011) +
(1+0)Qpa(2]1)]
[3Q47(1) 4 3Q"47(0) + 2(1 + 6)Q"*(2) —
VAer (8 +26)]
> L[3-QM(2) - Via(s+20)]
which implies that
Q4%°(2) > 1 — v/Aey (8 + 26).
Inequality (a) follows from (66). Then by the union bound

(ZU«))S

U, are as defined in (58). Now since

(66)

—~

a

>

=

1
2

NE
=
S
IA
=

—

[QB\A<0|0> + Qp1a(1D)]

[QV#(0) + Q4P (1) + 2V/4e |
[2Vder +1 - Q"4(2)]
[2\/4? +Vier (8 +26)]

where inequality (a) above uses (66). Finally, we can choose
€1 and § small enough so that (67) is less than e.

INE

\31\9\3[\3‘3 N\ﬁﬁ

IN

(67)

VI. PROOF OF THEOREMS 1 AND 2

Fix d > 0. Let ™ be the input source sequence and p be
the input distortion measure. Let

2Pmax
n5/8 '

d =d+ (68)
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We first encode the sequence z" wusing a random d'-
semifaithful code C, = (¢n,fn,gn) and then use a
(deterministic) post-correction scheme to reduce distortion
from d’ to d. Let Q"™ € P(B™) be defined as

SEFB)q"(y”)
NML /. n qc<
S 69
Q™ (y") S , (69)
where

S, = sup p"(z"). (70)

zneBn pEP(B)

Let Z7', 23,773, ... be i.i.d. random vectors each distributed
according to Q"L The random codebook By, C B",

By, ={21.23,23, ...},

is available to both the encoder and decoder.

Let t = t(z") be the type of 2", where ¢t € P,,(A). For the
given (t,d, p), let (Qp 4, A") be a solution to the Lagrange
formulation of the rate-distortion problem in (51) — (54).
Let Q“%? be the corresponding optimal reconstruction
distribution on B. From the sequence {Z"}$°,, the encoder
uses acceptance rejection method to derive a subsequence
{Z“ j21, where Z, Z ., Z ... are iid. random vectors
each distributed according to (Q%%”)". It is easy to see that
N Atdp(,.
max izt @7 W) o
B QW)
The acceptance-rejection algorithm to construct the subse-
quence {ZZ j=1 1s described below.
1) Sete=1;j5=1.
2) Generate U ~ Unif ([0, 1]).

3) If
t,d,p\n AL
U< W7 (success if true)
then set 7; = 4. Set ¢ := ¢+ 1; j := j 4+ 1. Go back to
step 2.

4) Else set i := ¢+ 1. Go back to step 2.

In each iteration of the above algorithm, Step 3 has success
probability of 1/.5,, independent of other iterations.

Let J(z") be the smallest integer such that Z]", (un, Satisfies
n 2p1nax /
(I Z’LJ( n)§d+ n5/8 :d
We set
Pn(x",p) = Z7, . - (71

We can now either use a non-prefix fixed-to-variable
encoder (35) or a prefix Elias encoder (34) to encode the
index i7j(,n) of the codeword. Therefore, the length of the
binary encoding satisfies

I(fu(pn(z™,p))) <1+ logiJ(gc")

if f, is a fixed-to-variable encoder or

U fn(dn(z",p))) < [log(is@n))]
+ 2[log (|log(is@m)] +1)] +1  (73)

(72)

7725

if’ f, is an Elias encoder. The decoder g,, then outputs Z;" ()
as the reconstruction sequence.

We now evaluate the expected rate of this d’-semifaithful
coding scheme. For every sequence z" with type t = t(z"),
it is easy to see that J(z™) is a geometric random variable
with success parameter

n n 2pmax
P(’)”(x Y <dt g >

where Y™ is an i.i.d. sequence with distribution (Q%%?)" and
P is the probability law associated with Y. It also follows
that

E [ijzm | J(z") =1] = Sp

E [ij@n | J(z") = 2] =25,
E [ij@n | J(@")] = J(") Sn
— E I:ZJ(xn)} = SnE [J(x")]

Sn
P (pn(a", Y") < d+ 2me)”
(74)

Alternatively, we can see that i (,») is a geometric random
variable with success parameter

P (pn(z™,Y™) < d + 2omex)
Sn ’

(75)

where in both (74) and (75), Y™ is an i.i.d. sequence with
distribution (Q*%*)". From (39), we obtain

E[ZJ(x”)]

exp <K2_1 Inn +1In (F(zll)K) + OK(1)>
_ (2m) 2 (%) (76)
n n 2Pnnx ’
P (pn(zn,Y™) < d+ 22max)

where ok (1) — 0 as n — oo at the rate determined only by
K. For n > 10, we can use the lower bound from Lemma 10
n (76) to obtain

E[ZJ(:E")]

<K_
< exp

K- ()"
< 1 1 2 1
_exp< nn -+ n( W)KEIF(%) +ok(1)
Fnft,d,p) 4 2 ORI o
Inn+1n(2) > (78)

K —3/4 r(H*
< exp <2 Inn + In (W)%)
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min (In(K),In(J))
d

+ n R(t,d, p) +2 Pmaxn’>/® + 21n (2))
(79)

K—-3/4
= exp (nR(t7 d,p)+ T/

min (In(K),In(J))
d

where we have defined the constant V/; for convenience:

a r”
Vi £1n <(27r) Tor (K)> + 21In(2).

2

Inn

+ 2

Prmaxn S 4 Vl) , (80)

(81)

In inequality (78), we use the assumption that (26) holds
which implies that R(¢,d,p) < min (In(K),In(J)). Then
it is easy to see by convexity of the rate-distortion func-
tion in d that any subderivative A\* is upper bounded
by min (In(K),In(J)) /d which explains inequality (78).
Inequality (79) follows by taking n sufficiently large such that
ok (1) < 1. Since ok (1) tends to zero at a rate independent
of t and p, the bound in (79) and, therefore, in (80) hold
uniformly over all ¢ € P,,(A), all p € D and all sequences
™ e Th(1).

Hence, when X™ is i.i.d. according to p, the total expected
rate in nats of the random d’-semifaithful code C’n with a
fixed-to-variable encoder is

D, . 1 fu(6n (X7 )]
In(2)

< — =R, [Ec [1+logisxm)]] (82)
< %]Ep In(2) + In (Ec [i7(zm)])] (83)
< 1“22) + %Ep nRX), o)+ 5
,min (1n(1§), (D) WSy,
=E, [R(T,d,p)] + K%MlnTn
2min (0(K) o), Vit @) gy

In inequality (82), we used (72). In inequality (83), we used
Jensen’s inequality.

Similarly, the total expected rate in nats of the random
d’-semifaithful code C’n with an Elias encoder is

lnf) Ep [Ec [[(fn(én(X™, p)))]]

IH(Q)E,, [Ec [[log(i(xn))]

n 2|log (|log(is(xny)] +1)] +1]]

< mf) lnr(f) Ep [Ee [log(isx)
+2log (log(iy(xn)) +1)]]

< @ + %Ep [In(Ee [isxm))

+21n (log(Ee [ixn)]) +1)]

In equality (85), we used (73). In inequality (86), we used
Jensen’s inequality.

IN

(85)

+

(86)
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For convenience, we evaluate the last two terms in (86)
separately and then add them together later. Using the same
definition of the constant V; in (81), we have from (80) that

K —3/4Inn

1 ‘ .
ﬁ IHEC[ZJ(Xn)} < R(t(X ),d, p) + B

2min (In(K), In(J
\ 2min(n(K) 1)

n

Vi

pmax + -
n

(87)

In <hr112 (nR(t(X"), d,p)+ K—TQB/ZL Inn
+2min (In(K),In(J))

d
2
= In <nR(t(X”),d, p) +

min (In(K), In(J))
d

Pmaxn3/8 +Vi+ ln(2)>>

K —3/4
2

P> + Vi 4 ln(2)>

21nln(2)
n

We now use the bounds in (87) and (88) in (86). Since
R(t,d, p) < In(K), it is easy to see that there exist an integer
Z and a constant G such that for n > Z, we have

In(2)
n Ep [Ee [(fn(on (X", )]
K+13/4Inn
<E, [R(T,d,p)] + %T
2min (In(K), In(J))
+ d TL5/8 pmax + g
Note that Z and G are independent of ¢ and p.

So far, we have constructed random non-prefix and prefix d’-
semifaithful codes with expected rates upper bounded by (84)
and (89), respectively. We now use post-correction to obtain
d-semifaithful codes. Let y™ be the reconstruction sequence
corresponding to ™ such that

Inn

+2

. (88)

Inlnn

(89)

1 n
n n,nzi iai<d/-
pnl(x™,y") n;:lp(w yi) <

For any integer M < n, let {l,,}*_, be a sequence indexing
the M highest distortion letter pairs (x;,y;), i.€.,

Py, Y1) 2 p(T1y5Y1,) > -0 > p(T1y, Yia) = P(T4,Yi)
Vi ¢ {lm 7]&{:1'

We replace

M = FPTMXHS/S—‘
d
symbols, namely v;,,vi,,.-.,%1,,, i y" to obtain another
sequence §" which satisfies p,(z",§") < d. From the
assumption in (26), we can choose the replacement symbols
Uiy Ulos - - > U1,y such that p(zy,,9;,,) =0 forall 1 < m <
M. The post-corrected sequence ¢" reproduces z” within
distortion d since

"9")

pn(z™, Y
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2 2.

i€{lm} i {lm } N,

m=1
-2
)
i%{lﬂl}%zl
n—M 1
o n n—M Z
if{lm}i\gzl
n— M 2pmax
< - (d—i— 575 )
<d.

The encoder will need at most

M (log(n) + min (log(K),log(J)) + 2)

1
p(xi, i) + o p(i,yi)

S|

p<xi7y’i)

p(xhyi)

(90)

bits using fixed-length encoding to convey this ‘“post-
correction” information. Note that for the non-prefix
d’'-semifaithful coding scheme from before, this “post-
correction” information needs to be sent before the variable
length encoding of the reconstruction sequence. The rate incre-
ment from the post-correction bits in (90) is upper bounded
by

D) (A (1og(n) + min (05(K). () + 2)
< 1“51”) +In(n) Z’:;jg
4 LI i (1), () 2
L In() | APmax In(2). 1)

n dnb/8
Adding (91) to (84) and (89) establishes the results of
Theorems 1 and 2, respectively.

VII. PROOF OF THEOREM 3

Fix d > 0. In the proof of Theorem 1 (see (84)), we showed
that for sufficiently large n, there exists a universal random,
non-prefix d’-semifaithful code C,, = (¢n, fn, gn) satisfying

LR, @)K, [(f(6n(X™, 0)))]]

sup
pEP(A),peD LT
K —-3/4Inn
B, [R(T,d,p))] < T AT
2min (In(K), In(J)) n V1 + In(2)

dnb/8
where V; is given in (81) and d' = d + 2pmax/n5/8.

We will now use uppercase ®,, to distinguish the random
d’'-quantizer from a deterministic one for which we will use
lowercase ¢,.

For any sequence x™, we have

U fn(@n(z™,p)) <1+ 10gi](x?l)
from (72). If 2™ € T} (t), then we know (see (75) and (80))
that ¢ (;») is a geometric random variable with parameter
gt.p
> exp (—nR(t, d,p) — K—3/4

5 Inn

7727
in (In(K), In(J
_2m1n(n(d)7 n( ))pmaxn?,/s_vl)_ (92)
Let
In(J?K?+J -1
SR Ch Sk i 93)
Inlnn
N 2pmax min (hl(K),lIl(J)) 3/8
C_ d n
K —3/4
R Vi f i (04

Denoting the probability law associated with the random code
C,, by P.(-), we have
1
P D, (2" — In(2
(1@ ) > s (nRle ) + 102
K —2 3/4 Inn 4 2n3/8 min (1;1(1(), In(.J)) .-

+ Vi +’y7,,lnlnn))

+

. 1
< ]P’c<1 +log i y(gny > @) (nR(t, d, p) +1In(2)

K —2 3/4 Inn 4 2n%/% min (12([(), 1n(J))pmax

+W +’ynlnlnn))
K-3/4
2

+

=P, (iJ(xn) > exp (nR(t, d,p) + Inn

n 2n%/8 min (In(K),In(.J))
d

Pmax + V1 + 7 Inln n))
95)

< (1 — p)exp (nR(t,d,p)+C)fl

K —-3/4
< (1—exp <—nR(t,d,p) - T/lnn—Vl

-2

min (IH(K),ID(J)) 3/8>)exp (n R(t,d,p)JrC)fl
d PmaxT

(a)
< exp ( —exp (v Inlnn) + exp ( —nR(t,d,p)

K-3/4 min (In(K),In(J)) 3/8
S R VRN (B ; P ))
(&
S CFERETD (96)

where the inequality (a) above uses the inequality (1 —x)¥ <
e~ Y. Now if we let X" ~ Unif(T%(¢)) be a random sequence
uniformly distributed over the type class 77 (¢), then

P, <l(fn(<1>n(X{L,p))) > n(2)

(nR(t, d, p) +1In(2)

N K —3/4 Inn+ 2n3/8 min (In(K), 1n(J))pmaX
2 d
e
+ W +’Yn1111nn>> Sm, C)

where the last inequality above follows from (96).

We used P; to denote the probability law associated with
the random sequence X;* ~ Unif(T%(t)). We next use Pr to
denote the probability law associated with the collection of
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random sequences {X]" : t € P,(A)}. Taking a union bound
over all types gives

pre [ U ){z<fn<q>n<Xf,p>>>>11(nR(t,d,m
A

tEP,( n(2)

n(2) 3/ ! n°/% min (In(K), In(J)) -
+Vi+~y lnlnn) <(n+1) ' —e—
n nJ2K2 J—1

— 0 as n — oo.

(98)

The above result proves that for large enough n, we have
with high probability that the length of binary encoding used
by the random d’-semifaithful code (®,,, fy, gn) to encode a
randomly chosen sequence X{* from any type class ¢ does not
exceed

1

K —3/4
In(2)

2

Inn

<nR(t, d,p) +1n(2) +

2n%/8 min (In(K),1In(J))
d

Pmax + Vl + Tn Inln TL)
99)

As we will show later, this result implies the existence of a
deterministic d’-semifaithful code which has uniformly good
performance over all types. However, our goal is to prove the
existence of a deterministic d’-semifaithful code in the univer-
sal distortion framework, i.e., one which has uniformly good
performance over all types as well as all distortion measures.
Since the set of distortion measures D is uncountably infinite,
a naive union bound similar to (98) fails. Instead, we invoke
the fact that the space of distortion measures D can be
partitioned into a polynomial number of equivalence classes.
For full explanation, we refer the reader to [22, Theorem 1].
Here, we merely state and use the following proposition which
is a straightforward corollary of [22, Proposition 1]:
Proposition 2: For a glven blocklength n and distortion
level d, there are £ < (n—i—l)‘] K*-141 equivalence classes of
D, denoted by [D],,, [D]y,. ..., [D],., where p1,pa, ..., pe
are arbitrarily chosen representative distortion measures. A d-
semifaithful code C,, with respect to a distortion measure p
is also d-semifaithful with respect to all distortion measures
p' € [D], in the same equivalence class.
We will make the choice of representative distortion measures
P1, P2, - - -, pe be a function of the type ¢. For every type ¢ and
every equivalence class [D],,, we choose the representative
distortion measure p! € [D],, which satisfies

R(t,d,p!) < R(t,d, p)

for all p € [D],,. Henceforth, the representative distor-
tion measures, chosen differently for each type, will be
t ot ¢
p17p2v"'7p§'

Now applying the union bound over the types and distortion
measures gives

(U U

i=1teP,(A)

(100)

{itn@a x> s
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K—-3/4
nR(t,d, pt) +In(2) + T/

3/8
N 2n3/8 min (ln(K),ln(J))pmax + Y lnlnn) })

Inn+W;

d

J2K?-1 J—1 e
— 0 as n — oo. (101)
Also note that
1
N(XP (
U U { t 7p1))) 111(2)
i=1teP,(A)
K —3/4
nR(t,d,pt) +In(2) + K-3/4 Inn

n 2n%/8 min (In(K),In(J))

Pmax + Vl + Tn Inln n) }

d
(102)
e i () U { X2
i=1teP,(A)
) t K —3/4
Z (@) (nR(t, d,pi) +(2) + ————Inn
3/8
N 2n3/8 min (lg(K)Jn(J))pmax + Vi + lnlnn> })]
= U U { fn Xf’pl)))
1=1tePy(A)
. t K —3/4
1 ) +1n(2) + ———1
o) (”R(t’d’Pz)Jf n(2)+ = ln
+ 20%/% min (IH(K)’ ln(J)) Pmax + V1
d
+~ynln1nn)}> @, 1
< PR, 0y —° o3
(6 1) (19 g 069

The above inequality implies that that there exists a determin-
istic d’-quantizer ¢,, such that

" 1
Er |1 U U { n(X700))) > m(
i=1teP, (A)
nR(t,d, pt) +1In(2) + K—T?)/él Inn +
2n3/8 min (In(K),In(.J)) P
d
+ Y lnlnn) }) ®, = qﬁn]

< ((n 1)K 1) ((n+1)771) ﬁ (104)

This in turn implies that

(U U

i=1teP,(A)

{itnu@. .00 > s (vt

1
In(2)
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_ 3/8 i
K 3/4lnn—|—2n min (In(K),In(J))

+1n(2) + d Pmax

+ W Jr’ynlnlnn)}‘@n = qbn)

a 1
(_) Pr U U { fn ¢n XtNapz))) M(
i=1teP, (A)
R(t,d,p}) +1In(2) + K-3/4 Inn

3/8
N 2n3/8 min (1§(K)’IH(J))pmax+Vl+7" In lnn)}>

< ((n p1)tKT 1) ((n+1)""1) ﬁ (105)

Equality (a) above follows from the independence of the
random code ®,, and the random source sequence X;'.

Now we have a deterministic d’-semifaithful code
(&n, fn,gn) which, with high probability, has uniformly
good performance in encoding a random sequence X;' ~
Unif(T% (t)) for any type ¢ and any of the chosen representa-
tive distortion measures pi, pb, . .., p¢.

But we are interested in encoding an i.i.d. sequence X" ~
p™ with respect to an arbitrary distortion measure. To accom-
plish this, we can use the code (¢, fn,gn) to construct
another code (¢, fn,dn) as described next. For any given
sequence =" and input distortion measure p, let ¢t = ¢t(z™) be
the type and let p € [D] ¢ for some 1 <4 < . The new code

(qNSn, fn,gn) uses (¢n, fn,gn) for encoding if (in Case 1)
(nR(t, d,p}) +1n(2) + K—3/4

(
< Inn
2

1
In(2)

3/8
N 2n3/8 min (ln(K),ln(J))pmax + Vi + e Inln n)

d

and otherwise (in Case 2), searches the entire B” space to send
the index of a y" satisfying (pf),(z",y") < d'. In both cases,
the distortion measure p! is used because of the equivalence
pt ~ p from Proposition 2. The two cases can be indicated to
the decoder using a flag bit /', where F' = 1 in Case 1 and
F =0 in Case 2.

Hence, for any source distribution p € P(A) and for any
p € D, the expected rate in nats of (¢, fn,Jn) is

2B, [(Fa(Ga o))
@ 0@ S T 0B [1Fu (@K 0))
tePL(A)
< Y ) {R(tvdmﬁ) + K_Tmln?n
tePn(A)
2min (In(K), In(J Vi +1In(2 Inlnn
(dv(”LS/ZB D g + 1+n 2y, n
# (D7 1) (00077 s (K

7729
K —3/4Inn
=E, [R(T,d,p])] + T/T
2min (In(K), In(J Vi +In(2 Inl
n rnln(n(m)g n( ))Pmax+ fl n()_i_,yn nlnn
dnb/ n n
272 _ e
In(2 In(2
L)y 02
n n
(b) K —-3/4Inn
< E, [R(T,d, p)] + T/T
2min (In(K), In(J Vi +In(2 Inlnn
n n
272 _ e
+((n+1)JK 1+1) ((n+1)7 1)m(1nf<
In(2 In(2
+M)+M. (106)
n n

In equality (a), we use the fact that conditioned on the type,
X™ is distributed uniformly over the type class ¢, which we
denote by writing X;'. Equality (b) follows from (100).

Finally, we wuse post-correction to make the code
d-semifaithful. This post-correction was described in the
proof of Theorem 1 (Section VI), specifically (90) and (91).
By adding the rate increment from post-correction in (91) to
the expression in (106), the expected rate of the overall code
is upper bounded by

2pmax In(n)

Ep [R(T,d, o)l + — 55—
4pmax (min (In(K),In(J)) +In(2)) K +5/4Inn

+ : + —

dnb/8 2 n

Inlnn
Tn
n
272 _ e

+(<n+1)JK 1+1) ((n+1)J 1) nJ2K2+J—1(1nK
N ln?(l2)) n Vi +1n(16) + mTiLn (In(K), ln(,])). (107)

The above bounds holds uniformly over P(A) x D for suffi-
ciently large n. This finishes the proof of Theorem 3.

VIII. PROOF OF THEOREM 4

The proof of Theorem 4 is similar to the proof of The-
orem 3. Fix d > 0. In the proof of Theorem 2 (see (89)),
we showed that for sufficiently large n, there exists a uni-
versal random, prefix d’-semifaithful code C,, = (Pny frus Gn)
satisfying

sup [HE,, I(E. [(fa(60(X™, 0)))]

pEP(A),peD LT

_K +213/4 Inn
Inlnn

pmax + g77
n

- EZ? [R(T7 d7 p)}

2min (In(K), In(J))
dnb/8
where G is a constant depending only on J, K, pnax and d,
and d’ = d + 2pmax/n°/5.
We will now use uppercase @ to distinguish the random
d’'-quantizer from a deterministic one for which we will use
lowercase ¢y .
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For any sequence x™, we have

1(fn(®n (2", p)))
< [log(iyny)] + 2|log ([log(ijmm)] +1)] +1

from (73). If 2™ € T%(t), then we know (see (75) and (80))
that ¢ (;n) is a geometric random variable with parameter

(108)

Gt,p
K —3/4
> exp (—TLR(t, da p) - T?)/l

72min (In(K),In(J))

d PmaxT

3/8 _ V1> . (109)

Let ~, be as defined in (93). Then as shown in (95) —
we have for any 2" € T%(¢),

(96),

K —3/4
2

Inn

P, (ij(xn) > exp (nR(t,UZ7 p)+

n 2n3/8 min (In(K), In(J))
d

Pmax + Vl + Tn hl ln n))

e

S PRI (110)

In view of (108) and (110), we have that with probability at
least 1 — e/n’ K +7-1

U(fa(@n(z", p)))
< log [exp (nR(t, d,p) +

2n%/8 min (In(K),In(J))
d

K —3/4

5 Inn +

Pmax + Vl + Yn Inln n>:|

K —3/4
+ 2log <log [eXP (nR(t,‘L p)+ S Inn
2n3/8 min (In(K), 1
N n min(;l( ), n(‘]))plnax‘i‘vl‘i"%lnlnn)i —|—1>
+ 1.

Since R(t,d,p) < In(K) and V; and v are independent of
t = t(z™) and p, it is easy to see that there exist an integer Z
and a constant G such that for n > Z, we have

U fn(@n(z™, p)))
K +13/4
m(2) (”R(t’d’ A+t —s

n 2n%/8 min (In(K),1In(J))
d

< Inn

Pmax + G Inln n>

with probability at least 1 — e/n’ K +7=1_ Note that Z and
G depend on J, K and ppax but do not depend on ¢ and p.
Hence, for sufficiently large n, we have for any z™ € T%(¢),

1
( (fn( L( ))) > ﬁ(nR(t d, p)

2n%/8 min (In(K), In(J))
d Pmax

K +13/4
+ 5 Inn +

€

PRI (111

+glnlnn)> <
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Now if we let X} ~ Unif(T%(¢)) be a random sequence
uniformly distributed over the type class 77 (), then

" 1
Pr (102 @0 (X7 ) > s (R( .0
3/8 mi
L+ K +13/4 I+ 2n°/° min (ln(K),ln(J))pmLX
2 d
e

where the inequality above follows from (111). Then similar to
the proof of Theorem 3 (see Proposition 2), applying a union
bound over the types and the specially chosen representative
distortion measures from their respective equivalence classes
(see (100)) gives

(U U i@t > i

i=1teP, A)

nR(t,d, p;) +

3/8 .
n n min (ln(K)’ iH(J)) Pmax + g Inln n) })

K +13/4
%3/11171

d

e

272 _
< (4D 1) ()T

— 0 as n — oo.

Then following the same line of argument as
in (101),(102),(103),(104) and (105), we have that for
sufficiently large n, there exists a deterministic d’-quantizer
On satisfying

(U U

i=11€P,(A)

(113)

{itrutonxe ) > s

K+13/4
nR(t,d, pt) + L/lnn

3/8
N 2n3/8 min (1;1(K), In(J)) Pmax + G Inln n) })

e

< (47K 1) ()77 T

Now we have a deterministic d’'-semifaithful code (¢y,, frn, gn)
which, with high probability, has uniformly good performance
in encoding a random sequence X' ~ Unif(T%(¢)) for any
type ¢ and any of the chosen representative distortion measures
Pis 0%, - PE-

As in the proof of Theorem 3, using this code (¢, fr, gn),
we can construct another d’-semifaithful code (gi)n, fn, Jn)
which can encode an i.i.d. sequence X" ~ p™ with respect
to an arbitrary distortion measure. For any given sequence x"
and input distortion measure p, let ¢ = t(2™) be the type and
let p € [D],: for some 1 < i < . The new code (d)n, fn,gn)
uses (P, fn,gn) for encoding if (in Case 1)

U fn(dn(z" ?pi)))
< 1n12) (nR(t,d, pL) + K%lg/ﬁl Inn

n 2n3/8 min (In(K),In(J))

d Pmax Glnln n)
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and otherwise (in Case 2), searches the entire B" space to send
the index of a y™ satisfying (p!),,(z™,y™) < d’. In both cases,
the distortion measure p! is used because of the equivalence
pt ~ p from Proposition 2. The two cases can be indicated to
the decoder using a flag bit F, where F' = 1 in Case 1 and
F =0 in Case 2.

Hence, for any source distribution p € P(A) and for any
p € D, the expected rate in nats of (qgn, fn, Jn) is

D), (1@l )]

@ In(2) > PUTRO)E: [1fa(Gn(XT )
tEPn(A)

< > PTRO)[R(td )
tePn(A)
K +13/4lnn  2min (In(K),In(J))
2 n dnb/8
+ ((+ )7 1) (4 )7
ln(2)) . m(z)}

K+13/41nn
=E, [R(T,d,p])] + %7

n 2min (ln(lr()7 ln(J))pmaX i g
dna/8

+ ((n F 1T 1) (n+1)771)

Inlnn

Pmax + g

TP K211 (IDK

+

Inlnn

e

K+ T—1 (th

n

() K+13/41Inn
< E, [R(T,d, p)] + %T

2min (In(K),In(J))
dnb/8
+ (4 )" F T 1) (1))

Inlnn

Pmax + g

e

K211 (th

(114)

In equality (a), we use the fact that conditioned on the type,
X™ is distributed uniformly over the type class ¢, which we
denote by writing X;'. Equality (b) follows from (100).

Finally, we use post-correction to make the code d-
semifaithful. This post-correction was described in the proof of
Theorem 1 (Section VI), specifically (90) and (91). By adding
the rate increment from post-correction in (91) to the expres-
sion in (114), the expected rate of the overall code is upper
bounded by

2pmax In(n)
EP [R(T’ da p)] + dns/s
4pmax (min (In(K),In(J)) +In(2)) K +21/41nn
+ + —
dnb/8 2 n
Inlnn
+¢ +

n
(40757 1) (04 )77 gy (K

N lnT(LQ)) N In(16) + minéln(K), ln(J)).

This finishes the proof of Theorem 4.
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APPENDIX A
PROOF OF LEMMA 2

Since P(A) x D is a compact set, it suffices to show that
R(p,d,p) is a continuous function of the pair (p, p). With
some abuse of notation, we define

p(0, W) & > p()W(klj)p(i, k)
jEAkeB
for any p € P(A), W € P(B|A) and p € D.

Fix any (p*,p*) € P(A) x D and let (p™), p(™) —
(p*, p*) as m — oo with respect to the metric defined in (30).
Since R(p,d, p) is continuous in d, it is possible to choose,
for every € > 0, a Q € P(B|A) satisfying p*(p*, Q) < d and
I1(p*, Q) < R(p*,d, p*)+e. By continuity of I(p, W) in p and
p(p, W) in both p and p, it follows that for sufficiently large m,
we have p(™) (p(™) Q) < dand I(p™), Q) < R(p*,d, p*)+e.
Since R(p\™, d, p(™) < I(p'™, Q) eventually, we obtain

limsup R(p™, d, p'™) < R(p*,d, p*).

m— 00

(115)

On the other hand, let Q™) € P(B|A) achieve the minimum
in the definition of R(p(™,d, p"™). Let {m;} be a subse-
quence such that Q(™) — @ for some @ and

lim R(p(m’), d, p(ml)) = liminf R(p(m), d, p(m)).

l—o00

If d > mingep 35 4 p*(7)p" (4, k), then

0 = R(p*,d, p*) < liminf R(p\™, d, p™). (116)

If d < minkepd ;cap"(j)p"(j k), then for sufficiently
large m, we have d < mingep ZjeAp(m)(j)p(m)(j, k) and
therefore, p(™) (p(™), Q(™)) = d. The last assertion follows
from the fact that R(p,d,p) is strictly decreasing in d for

d € (0, mingep > c 4 P(J)p(J; k)). Now since
llir& p(ml)(p(ml)v Q(ml)) =p"(p*, Q) =d,
we obtain

R(p™,d,p*) <I(p*,Q)
= llim I(p("”)7 Q(ml))

= liminf R(p'™, d, p™).

m—00

(117)

The result of Lemma 2 follows from (115), (116) and (117).

APPENDIX B
PROOF OF LEMMA 4

Fix d > 0 and let p be a fixed distortion measure. Let
X™ be an i.i.d. source sequence distributed according to
some distribution p € P(A). For any d-semifaithful code

(Pns frus Gn)s let Y™ = gu(fr(dn(X™))). It was shown in [22,
Appendix E] that

%H(Y")

> B, [R(T,d, )] — (TK +J ~2) "0 -

JK+J -2

(118)
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To prove Lemma 4, we only use the fact that the optimal
expected length LY for a non-prefix code [27, Theorem 1]
satisfies L < H(Y™) and

HY™) <L)+ (L;,+1)In(L; +1)—L;In(L}). (119)

Since (z+1) In(x+1)—z In(x) is non-decreasing in x, we can
use LF < H(Y™) <nln K to write (119) as

H(Y™)
<L +(nnK+1)InrnlnK+1)— (nlnK)In(nln K).

Hence, we have

LBy [1(fu(on (X" )

L*

n

>

>

SI—3-

HY™) — (an+ ;) In(nln K +1)
+ (InK)In(nln K)

(1) Inn

K+.J-2
> E, [R(T,d,p)]f(JK+J72)Tfi

n

- <an—|— 1) In(nln K 4+ 1)+ (In K) In(nln K)
n

(2) |
> E,[R(T\d,p)] - (JK + ] —2)—= -

n
1 ) Inn  In(2InK)

JK+J -2

nln K

— (InK)In (1+
n n

1 |
g, (R(T,d,p)] ~ (JK +7 — 1) =" 40 (1;”) |

Inequality (1) above follows from (118). Inequality (2) above
holds for n > 1. Equality (3) above holds because as n —
00, In(1 4 1/n) approaches zero faster than lnn/n. It is easy
to see that the o(Inn/n) term, when divided by Inn/n, tends

to zero at a rate determined only by alphabet sizes J and K.

APPENDIX C
PROOF OF LEMMA 5

For any a > v/2J + 2, we have
E,[R(T,d, p)]
= > p"(Tit)R(t d,p)

tEP,(A)
t:||t—p||2<ayr/lnn/n
DY
t:||t—p||2>ay/Inn/n

t:||t—p|l2<ay/Inn/n

P (TA(0)R(t,d, p)

p"(TA()R(t, d, p)

eJ—l
p"(T4(t)R(t, d, p) + In(K) 5

IN

(120)

where the last inequality follows from Lemma 1 and the fact
that R(t,d,p) < In(K) from the assumption in (26). Now
since R(p,d,p) is uniformly continuous on P(A) x D by
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Lemma 2, it admits a modulus of continuity w(-) satisfying
lim; o w(t) = w(0) = 0 and

|R(p1,d, p1) — R(p2,d, p2)| < w(||(p1,p1) — (P2, p2)l]) -
(121)

Therefore, we can use (121) in (120) to obtain
Ey [R(T, d, p)]

< X
t:||t—p||2<ayr/lnn/n

Inn el 1
E—— In(K
—i—w(a\/n))—}—n( )n2
Inn el1
< d —_— In(K)——.
_Rm,m+w<m/n)+n<>n2

Similarly, we have
EP [R(T7 d7 p)]

DS
t:||t—p|l2<ar/Inn/n

> R(p,d,p) —w (a

p"(TA(t)) (R(p, d, p)

p"(TX()R(t,d, p)

J—1

n n? -’

Inn e
— | —In(K)
APPENDIX D
STRONGLY UNIVERSAL CODES OVER A RESTRICTED SET
OF SOURCE DISTRIBUTIONS

The O(lnn/n) convergence rate for weakly universal d-
semifaithful codes in prior works holds under certain regularity
conditions on the source distribution and the distortion mea-
sure. Corollary 5 shows that eliminating these conditions
slows convergence rate to 1/+/n, even in the non-universal
context. Here we show that with the regularity conditions
of [9] in place, upgrading to strong universality also slows
the convergence rate to O(1/y/n).

For a given p € P(A), d > 0 and p € D, let (@4, \") be
a solution to the Lagrange formulation of the rate-distortion
problem R(p,d,p) as in (51) — (55), and let QP%* be
the corresponding optimal reconstruction distribution on B.
The assumed regularity conditions in [9] are, in our notation
(cf. [111),

1) The matrix £(\*), defined by [E(\*)]; 1 = e~ PR is

full column rank.

2) p and QP*%* are both full support.

3) 0 < A < 0.

4) The determinant of the Jacobian,

OF (p, \*)
apjl 8pj2 o 'pjxaA* ’
is nonzero for some 1 < j; < jo--- < jg < J, where
F' is the vector-valued function

Qe (1)
Qrr(2)
F(p,\") = : ,
Q" (K)
d

(122)

(123)
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where we have used the implicit one-to-one mapping
between \* and d for a given p and p.

In fact, it is impossible to satisfy the fourth condition
because the first X' components of F'(p, \*) sum to one; thus,
their derivative with respect to any input must sum to zero.
This could potentially be rectified by redefining F' as

QPhr(1)
QPP (2)
F(p,\") = : ,
QP (K —1)
d

(124)

and modifying the proofs accordingly. In any event, assump-
tion 4) is assumed in both the converse and achievability
results in [9] (and similarly in [11]), but is only used in the
proof of the converse result (and similarly in [11]). As such,
we will only consider the first three assumptions.

Lemma 11: Consider alphabets A = B = {0,1}, fix the
distortion measure

. [ 0 pmax]

Pmax 0

and distortion level d € (0, pmax/2). Let P, 4 C P(A) be the
set of source distributions satisfying conditions 1)-3) above for
this choice of p. Then

liminf inf sup |:hlf7/2)Ep L(fn(dn(X™)))]

n—oo ((bnafnvgn) pEPPTd

- R(pv d? p)] \/ﬁ >0,

where the infimum is over all (prefix or non-prefix)
d-semifaithful codes.

Proof: The proof is similar to that of Lemma 7 and Corol-
lary 5. Let p,, € P(A) be a sequence of source distributions
given by p,(1) = d + 1/n, where d £ d/pmax, Which is
well-defined for large n. Since d € (0,1/2), we have, for
sufficiently large n, p,(1) € (d,1/2). Denoting the binary
entropy function by H,(-), we have

Ep, [R(T,d, p)]
= Y. PHTAE)R(E,d,p)
tePn(A)
> > Pu(TA(1) [Hy(4(1)) — Ho(d)]

P (D)+ /Pn(l)(lnfpn(l)) <t(1)
<pn(1)42 /Pn(l)(lnfpn(l))

(Hb <pn(1> N Wn(l)(ln—pn(l))) o @> |

P( D)+ Wn(l)(l—pn(l)) _ %ZX

n

Spn(1)+2\/p”(1)(1_p”(l)>> , (125)

n

v
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where the second inequality above assumes sufficiently large
n. By a simple Taylor series expansion,

o ( (D Wn(nun—pn(nv ()
. (iﬁ Wn(l)(lnpn(m) 1“<1d J>

1 1 pu(1)(1 = pn(1))
- 2d(1—d) <n+\/ n )

)

2

v
N
S|
Jr

=
-
S
&
~_
=2
N
—
\‘l
S

(126)

A standard application of the Berry-Esseen theorem (with
constant 1/2 [40], [41]) yields

P <pn(1) + \/pn(l)(ln_ pn(l)) < %zn:Xz
=1

pa(D)(1 pn<1>>>

n

Spn(1)+2\/

(1= pa(1))2 +pa(1)?
> [@(2) — (1) - Vi, (D)1 = pa(1)) ]
1
. (127)

for sufficiently large n. Substituting (126) and (127)
into (125), we have

Epn [R<T7 d’ p)] - R(p’ﬂ7 d7 p)

1 (1 d(1—d) 1—d
21o<n+ n )111( a )
2
1 1 pn(l)(l *pn(l))
T 204d(1—d) <n+\/ n ) ~ B(pn,d;p)

(128)

where the last equality above follows from the upper bound

R(pn,d, p)
< Hb(pn(l))

1 1—-d
<—In{—]).
n d
Now consider the subset P ; C P(A) defined as

i 2 {peP(A) d<p(l) <1/2}. (129)

We first check that the set P, satisfies the
assumptions 1)-3), ie., P;, C Ppq. Fix any p € P,
and let (Q’él 4> A¥) be a solution to the Lagrange formulation
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of the rate-distortion problem in (51) — (55). Obviously p is
full-support, and we have

0<d < min gp(J)p(17 k).

(130)

The matrix £(A\*) associated with A* and p,

]_ e_)‘*pmax
ef)‘*pmax 1 )
is of full rank; hence, from [11, Lemma 7], the optimal output

distribution QP'%* is unique. From [3, Theorem 10.3.1], one
can infer that QP4 is given by

1-2d '~ 1-2d

@@ ) = (

and it is easy to check that QP® is full-support for the
specified p,d and p. Furthermore, we have

9

o _

= — = [H(p(1)) — Hy(d)

0
- %Hb(d/pmax)v

1 max
= In (p — 1) .
Pmax d
Thus 0 < d < pmax/2 implies that 0 < A* < co. We conclude
that P} ; C P, 4. Now the expected rate of a strongly universal

code (prefix or non-prefix) with uniform convergence over
N .
P 4 satisfies

PE'P;d
9 oy [u«: R(T.d, p)] — Rp,dsp) — (T + J)mnn}

Inn

n

(b)
> E,, [R(T,d,p)] = R(pn.d, p) — (JK + J)

0()

Inequality (a) holds for sufficiently large n where we used
Lemmas 3 and 4 for prefix and non-prefix codes, respectively.
In inequality (b), we used the fact that the sequence of p,
satisfies p,, € P, ; for every n. In equality (c), we used (128).

|

APPENDIX E
PROOF OF LEMMA 8

Fix d > 0. Let 2™ be a source sequence with type ¢t = t(x™)
and p be a distortion measure. Let (Qp 4, A*) be a solution
to the Lagrange formulation of the rate-distortion problem
as in (51) — (54) and Q%%* be the corresponding optimal
reconstruction distribution on B. Define Z; = p(xz;,Y;) where
Y; ~ Q%P Letting € be any real number, we can write

1 n
P Y™ < =P| - Z; < .
(pnla™ Y™) < d+0) (ng z_d+e>

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 69, NO. 12, DECEMBER 2023

Let f; be the probability mass function of Z;. The cumulant
generating function of Z; is defined as

Ai(A) 2 1In (E [e*]) =In (Z Qt’d”’(k)e’\”(”“'“k)> .
keB
The distribution of Z; depends on x; only through its value,
not the index. Hence, for each j € A, define

AD(X) £ 1n (Z Qt,d,p(k)e/\p(jyk)> ’
keB

which is the cumulant generating function of Z; if z; = j.

We apply the exponential tilting technique to form the distri-

bution r; given by

ri(2) — )

fi(2) 7
where A is a parameter which will be chosen later. Further
define foreach 1 <7 <n

5 QUEo(k) e, k) >
di vy keB

S Qtdr (k) e @ik
k'eB

and for each j € A

T Q) pli ) ¥
dU) A& k<

3 Qtﬂd,p(k/)ekp(j,k’)

k'eB

Then we have
P(pn(2",Y") <d+e)

Jf1(z1) fa(22) -+ fn(2n)

I
j\d

>

n
z":% > zi<d+e
i=1

exp (— z": )\zi>
i=1

“r1(z1)r2(22) - rn(2n)

Z exp (—)\ Z(zl —d;
i=1

n
- Z zi <d+e
i=1

I

o)

]

i)
Z S
Il 3
—

g

/.ﬂ

>
N—————

+ dJ) r1(z1)re(22) - mn(2n)

= exp (— . [)\di—Ai(A)]) Z exp(—)\

n
.1
znit > z;<d+e
i=1
n

Yz - di)>7’1(21)7"2(22) “++Tn(zn)

i=1

=exp | —n [ADt(7)dY = Y 4(HAD ()

jeA JEA
Z exp (—)\ Z(’Z’ - dz)> ri(z1)
z”:% i z; <d+e
i=1

i=1

cro(22) - rn(zn). (132)
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Now we fix A\ = —A* throughout. Then, from (51), we have _ >ren @ P (k) L(p(zi, k) = z)e APk
the following simplified expressions for d; and d(/): Yopen QUL (ke APk
di =S Qpalklw)p(a:, k) and (133) =D Qalklz)L(p(xi k) = 2),
= keB
3 — Z Q514 (k17)p(j, k). (134) where the last equality follows from (51). This shows that

p(z;,Y;) has the same distribution as r;(-). Hence, the asser-
tion in (137) follows from the fact that 7;(u) = r;(u + d;).
For any real number C, we can lower bound (136) as

keB

From (53), we have

=AY #(5)dD P(pn(2",Y™) < d+e¢)
JEA n n
* . * . . —nR(t,d,p) * . _ .
=3 YU Y Qi kli)o ) ze 8 [exp (A Z“) ! ( C<) U
JEA  keB =1 =1
—-\*d < en>
Hence, we have from (54) that .

exp [ —n | =" Z t(j)d9) — Zt(j)/\(j)(_)‘*) o

jEA jEA This finishes the proof of Lemma 8.
—exp | —n |-\d— Z HAG) (- APPENDIX F
=y PROOF OF LEMMA 9
- _ We start with the result of Lemma 8 and reparametrize ¢
exp (—nR(t,d, p)).
and C' in terms of nonnegative numbers C; and « as follows:
Hence, with A = —\* in (132), we have Cy
€= —
P(pu(a",Y") < d+e) no
n C = Clnlia
—nR(t,d, * ) ) .
e Rbde) Z exXp <)‘ Z(Zl - d1)> Then we obtain
Zn:l 3 z; <d+e€ =1 O
P> P (pn(x Y™ <d—+ 1)
cry(z1)ra(z2) - ra(zn).
(135) > exp (fnR(t, d,p) — C’l)\*nlfa)
n (135), performing a change of variable u; = z; — d; and B e A Z U; < Cyn'~@
defining 7;(u) = r;(u + d;) for each 1 < i < n, we obtain -
(138)
P(pn(2",Y") <d+e) : :
n To proceed further, we consider two cases parametrized by
o—nR(t,dp) Z exp ()\* ZW) 71 (ur) a nonnegative; number Cs:
u™3l uilen i= 1) var (Z%:I Ui) <Gy nz:za
. 7’2(1&) e 'Fn(Zn) 2) var (21‘:1 Ui) 2 Con
n n where var(-) denotes the variance. In the first case above
e "L | | exp ( 2 Z Ui) 1 (Z U, < e n)] ’ a simple application of Chebyshev’s inequality to (138) yields
C
(136) P (pn(x Y™ <d+ 1)
whére 'Ul,'Ug, o Un are indNependent random variables and S g—nR(tdp)-Ciani = (1 @ (139)
Ui is distributed according to 7;(-). We next need to show that = C?
the distribution of U; can be written as For the second case, we use the Berry-Esseen theorem. Each
Ui = p(;,Y;) Z Qpiaklzi)p(zi, k), (137) Ui has support set

hep Supp( ) - {p(x“ ) di ke B}7
where d; is as defined in (133). Since we are only considering
AT E— A (=N the space of uniformly bounded distortion measures, it is easy
ri(z) = fi(z)e to see from the definition of d; that
= 37 QU (k)L (pla k) = 2) e T AR

keB

where the random variable Y; ~ Qpa(-|zi). We have

Supp(Uz) - [_pmax> pmax] .
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Clearly, each U; has finite second- and third-order moments
which we denote by E[U?] = 02 and E[|U;|?] = ;. Hence,
we can apply the Berry-Esseen theorem for non-identically

distributed summands [44]:

(i 20+ )
n(X

> exp (—nR(t, d,p) — Cl)\*nlfo‘)

-P —Clnlia < ZU; < C’lnlf"‘

i=1
= exp (—nR(t,d, p) — C1\*n' ™)
11—« n . 11—«
P O”l _ < 2z Ui < _Gin
Vi1 Viinol T VXiop
> exp (—nR(t,d, p) — C1A*n' %)
Fn Clnl—a Fn Clnl—a ’

Z?=1 01'2 Z?:l 01‘2

whenre F,, denotes the cumulative distribution function of
# Now by Berry-Esseen theorem, we have that for

V2Xiiio
all n there exists an absolute constant C such that

n -3/2
s <Col Y o?
=1

n

Z i
i=1

sup [Fy(s) —
seR

Since we have

n

2 : 2 22«
g; 2 CQTL

i=1

and n; < p3 . for all 1 <i < n, we can write

9o\ —3/2
Sup | (s) — @(s)] < Co (Con® ™)™ npf
se
CO(pmax)3
= (Ca)3/2p2—3a"
Using the above bound in (140), we obtain
C
P (pn(xn7yn) <d+ 1)
> exp (—nR(t, d,p) — C’l)\*nl_o‘)
11—« 11—«
Y |- __Gn 7 .
Zz/*l 0; Zl’*l a;
_ 2C(O(pmax)3
(Cy)3/2p2—3a
> exp (—nR(t,d, p) — C1A*n' %)

Cl Cl
. <(I) (na_l/meax) a q) <_ na_1/2pmax>

N 2CvO (pmax)3
(02)3/2,”27304 ’
(141)

where we used the upper bound

n
§ : 2 2

g; § "Pmax
i=1
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in the last inequality above. We now evaluate the expression
n (141) as follows:

Cl Cl
® (nal/mea) - P <_na1/2pmax>

n*= 1/2ﬂm’xx 2
_ —11 /2d
= T

vV 27r -

/ 2pmax
n®= 1/2Pmax 2
> 1— = )de
V2 2
i 1/2Pmax
20, cs

_ _ . (142)
mﬂa_l/meax 3\/%713&_3/2 (pm&x)g

We can use (142) in (141) to obtain
C
P (pn@c",Y") <d+ 1)
> exp (—nR(t, d,p) — C’l)\*nl_o‘)
( 2C B Cc3
A /27rna71/2pmax 3 /27Tn3a73/2(pmax)3

_ 200 (pmax)3
(02)3/2n2—3a

> exp (—nR(t, d,p) — C’l)\*nl_“)

2CO(pmax)3 )

Cq
. < 27Tna71/2pmax - (02)3/2n2730¢

(143)
where inequality (143) follows by assuming

Note that the lower bounds in (139) and (143) hold uniformly
for all ¢ € P, (A) and p € D. Taking the minimum of (139)
and (143) gives the result of Lemma 9.
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