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Minimax Rate-Distortion
Adeel Mahmood and Aaron B. Wagner , Fellow, IEEE

Abstract— We show the existence of variable-rate rate-
distortion codes that meet the distortion constraint almost surely
and are minimax, i.e., strongly, universal with respect to an
unknown source distribution and a distortion measure that
is revealed only to the encoder and only at runtime. If we
only require minimax universality with respect to the source
distribution and not the distortion measure, then we provide

an achievable Õ(1/
√

n) redundancy rate, which we show
is optimal. This is in contrast to prior work on universal
lossy compression, which provides O(logn/n) redundancy
guarantees for weakly universal codes under various regular-
ity conditions. We show that either eliminating the regularity
conditions or upgrading to strong universality while keeping
these regularity conditions entails an inevitable increase in the

redundancy to Õ(1/
√

n). Our construction involves random
coding with non-i.i.d. codewords and a zero-rate uncoded trans-
mission scheme. The proof uses exact asymptotics from large
deviations, acceptance-rejection sampling, and the VC dimension
of distortion measures.

Index Terms— Lossy compression, universal source coding,
quantization, VC dimension, d-semifaithful code.

I. INTRODUCTION

C
ONSIDER the problem of lossy compression of a mem-

oryless source on a finite alphabet. Let Xn be an

independent and identically distributed (i.i.d.) source taking

values on a finite source alphabet A with cardinality J . Let

B be a finite reconstruction alphabet with cardinality K.

The fidelity criterion we consider is a single-letter distortion

measure ρ between source and reconstruction alphabets. We fix

a distortion level d > 0 and consider variable-rate codes

that meet the distortion constraint almost surely; such codes

are sometimes called d-semifaithful [1], [2]. It is well-known

that the minimum expected rate achievable asymptotically by

a prefix code optimized for a particular source distribution

p and distortion measure ρ is given by the rate-distortion

function R(p, d, ρ). In source coding theory, both lossless

and lossy compression, joint descriptions are more efficient

than individual descriptions [3]; hence, the source sequence
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Xn is compressed as an n-length block and past works have

analyzed the convergence of the average1 expected rate to

the rate-distortion function as a function of n. The resulting

performance metric, i.e., the difference between the average

expected rate and the rate-distortion function, is known as the

rate redundancy. When both the source p and the distortion

measure ρ are known ahead of time, [4, Theorem 5] has estab-

lished an achievable rate redundancy of lnn/n + o(lnn/n)
under some regularity conditions while [4, Theorem 4] has

given a converse result of 1/2 lnn/n + o(lnn/n). These

results stand in contrast to a rate redundancy of O(1/n)
[3, Thm. 5.4.2] for prefix lossless codes when the source

p is known, where the Shannon entropy H(p) replaces the

rate-distortion function in the definition of the rate redundancy.

In practice, the source distribution is rarely known, and

thus one seeks universal codes that do not require knowledge

of the source distribution and achieve the same asymptotic

performance of those that do. For an unknown i.i.d. source

p, let R(Cn, p) denote the expected rate of a prefix lossless

code Cn and let R(C̃n, p, d, ρ) denote the expected rate

of a prefix, d-semifaithful lossy code C̃n. Within the class

of universal codes, a distinction is made between weakly

universal and strongly universal codes [5]. A weakly universal

code is one with a rate that is guaranteed to converge to

the minimum asymptotic limit for each source distribution p,

with no guarantee that this convergence is uniform over p.

A strongly universal code is one whose rate converges to the

minimum asymptotic limit uniformly over all source distri-

butions. This distinction is analogous to the pointwise versus

uniform convergence of functions if we consider the expected

rate, R(Cn, p) or R(C̃n, p, d, ρ), as a function of p, where

R(Cn, p) converges to H(p) and R(C̃n, p, d, ρ) converges to

R(p, d, ρ). For lossless compression, the existence of strongly

universal codes is well known [6], [7], [8]. In fact, practical

codes are known that approach the entropy limit uniformly

over the unknown source distribution, and the optimal rate of

convergence has been characterized with precision [6], [7], [8]:

inf
Cn

sup
p

[R(Cn, p) − H(p)] =
J − 1

2

lnn

n
+ O

(

1

n

)

. (1)

Less is known, on the other hand, about universal lossy codes,

especially the minimax rate of convergence for

inf
C̃n

sup
p

[

R(C̃n, p, d, ρ) − R(p, d, ρ)
]

. (2)

The existence of weakly universal, prefix d-semifaithful codes

that achieve the rate-distortion function for any source distri-

bution under certain constraints is known, and their speed of

1Average expected rate means the expected rate divided by the block-
length n.
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convergence to the rate-distortion function has been bounded.

Under various regularity conditions, [2, Theorem 2] gives an

achievable weakly universal convergence rate of

inf
C̃n

[

R(C̃n, p, d, ρ) − R(p, d, ρ)
]

≤ (JK + J + 4)
lnn

n
+ O

(

1

n

)

. (3)

The pre-log factor in (3) has been improved in an unpublished

paper by Yang and Zhang [9] in which an achievable weakly

universal convergence rate of

inf
C̃n

[

R(C̃n, p, d, ρ) − R(p, d, ρ)
]

≤
(

K + 2

2

)

lnn

n
+ o

(

lnn

n

)

(4)

is shown under some regularity conditions. Furthermore,

a converse result in the same paper provides a lower bound of

inf
C̃n

[

R(C̃n, p, d, ρ) − R(p, d, ρ)
]

≥
(

K

2

)

lnn

n
+ o

(

lnn

n

)

(5)

for most sources p (but see Appendix D). Universal lossy

coding has also been considered with a fixed rate constraint

instead of a fixed distortion constraint. In this framework, the

performance metric used is called the distortion redundancy

which is defined as the difference between the expected

distortion and the distortion-rate function; see [10] and [11]

which give a weakly universal convergence rate of O(lnn/n)
for fixed-rate codes which is the same order of decay as

the weakly universal convergence rate known for optimal d-

semifaithful codes. In addition to the convergence of expected

rate, one can also analyze rates of almost-sure convergence.

Kontoyiannis [12] and Kontoyiannis and Zhang [13] give

bounds for almost-sure convergence to the rate-distortion

function instead of the convergence of expected rate.

None of the aforementioned results for lossy compression

are minimax, however; that is, the convergence to the rate-

distortion function is pointwise for each source distribution

as opposed to being uniform over the set of all possible

source distributions. With the exception of Kontoyiannis [12],

the above achievability results also apply only to source

distributions satisfying certain technical conditions. Some uni-

versal results of a minimax nature are available [14, Problem

9.2], [15], [16], [17], [18], [19], [20], [21], although none

provides an explicit bound on the minimax rate of convergence

to the rate-distortion function for d-semifaithful codes. Some

works have succeeded in obtaining minimax convergence rates

for operational rate redundancy [22] which is defined as the

difference between the average expected rate and the minimum

expected rate of an optimal nth order d-semifaithful code.

Let R∗(n, p, d, ρ) denote the optimal rate for a given n, p, d
and ρ:

R∗(n, p, d, ρ) = inf
C̃n

R(C̃n, p, d, ρ), (6)

where the infimum is over all prefix codes that are

d-semifaithful under ρ. Note that R∗(n, p, d, ρ) ≥ R(p, d, ρ)
for all n. The operational nature of (6) makes it an easier target

in some ways than the rate-distortion function. For instance,

it is easy to show (e.g., [18, Lemma 5]) that

inf
C̃n

sup
p

[

R(C̃n, p, d, ρ) − R∗(n, p, d, ρ)
]

≤ (J − 1)
lnn

n
+ O

(

1

n

)

. (7)

With respect to (w.r.t.) this operational rate redundancy, mini-

max results in more advanced settings have been shown. Silva

and Piantanida [18] have given convergence rates for

inf
C̃n

sup
p∈P∞

[

R(C̃n, p, d, ρ) − R∗(n, p, d, ρ)
]

,

where the supremum is over memoryless sources over count-

ably infinite alphabets whose probability mass functions are

dominated by summable envelope functions and where the

exact rate of convergence depends on the envelope function.

In a different setting called the generalized universal distor-

tion framework, [22] has given the following minimax rate of

convergence,

inf
C̃n

sup
p,ρ,d

[

R(C̃n, p, d, ρ) − R∗(n, p, d, ρ)
]

≤
(

J2K2 + J − 2
) lnn

n
+ O

(

1

n

)

, (8)

where the supremum is over memoryless sources over a

finite alphabet, all (unbounded) distortion measures ρ and all

distortion levels d > 0. The universal distortion framework

was comprehensively introduced in [22] and is a more general

setting in which the distortion measure ρ is not available at

design time and is available only at runtime and available only

to the encoder as an input. This introduces another dimension

of universality of the prefix d-semifaithful code, namely one

over the space of distortion measures, on top of its universality

w.r.t. p. The practical applications of a universal distortion

code are described in detail in [22]; briefly stated, it allows for

a flexible compression system which can meet the discordant

notions of distortions for different users and it also has use in

nonlinear transform coding. In a recent paper, under certain

technical assumptions, Merhav [23] proved the existence of

a universal distortion, prefix, d-semifaithful code for i.i.d.

sources whose average rate for each source sequence and input

distortion measure converges in a pointwise sense to the empir-

ical rate-distortion function R(t, d, ρ), where t is the empirical

distribution or the type of the source sequence. Furthermore,

under some regularity conditions, [22, Theorem 3] proved the

existence of a universal distortion, prefix d-semifaithful code

whose expected rate converges to the rate-distortion function

in a pointwise sense:

inf
C̃n

[

R(C̃n, p, d, ρ) − R(p, d, ρ)
]

≤
(

K + 2

2

)

lnn

n
+ o

(

lnn

n

)

, (9)

where pointwise means for every source p and input distortion

measure ρ. Note that (9) is a strengthening of the traditional

weakly universal result in (4) in the sense that it includes uni-

versality over distortion measures; both are weakly universal

results, however.
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In this paper, we obtain strongly universal (or minimax)

d-semifaithful codes in the universal distortion setting whose

expected rate converges uniformly to the rate-distortion func-

tion, i.e.,

lim
n→∞

inf
C̃n

sup
p,ρ

[

R(C̃n, p, d, ρ) − R(p, d, ρ)
]

= 0, (10)

where the infimum is over prefix, d-semifaithful codes in the

universal distortion setting. We consider strong universality in

the absence of any regularity conditions on the source p or

distortion measure ρ, except the assumption that the distortion

measures are uniformly bounded by some constant. Note that

the guarantee in (10) is stronger than that obtained by showing

that the redundancy in (2) tends to zero. For the quantity

in (2), we give an achievability result (Corollary 3) with an

explicit decay rate of O(ln3/2(n)/
√

n). We also establish a

converse result (Corollary 5) which says that the worst-case

redundancy of the best d-semifaithful code, even in the non-

universal setting, cannot be better than Ω(1/
√

n).
The rate redundancy in (10) is evidently upper bounded by

the sum of two limits,

lim sup
n→∞

inf
C̃n

sup
p,ρ

[

R(C̃n, p, d, ρ) − R∗(n, p, d, ρ)
]

+ lim sup
n→∞

sup
p,ρ

[R∗(n, p, d, ρ) − R(p, d, ρ)] ,
(11)

both nonnegative, the first of which one might call the price

of universality [11], [24]. The price of universality is zero

and the rate of convergence for the first term is O(lnn/n),
which follows from (8). Indeed, the encoder can communicate

the type t of the source sequence and the equivalence class2

of the distortion measure to the decoder, and then employ

an optimal d-semifaithful code w.r.t. a suitable representative

distortion measure from the equivalence class for sources that

are uniformly distributed over the type class t. Thus, if the

goal is to establish (10), one need only show that the second

term in (11) vanishes, namely that the worst-case redundancy

of the optimal prefix, d-semifaithful code in a non-universal

setup tends to zero.

Following precedent [2], [9], we shall adopt a more conve-

nient decomposition which upper bounds the rate redundancy

in (10) as

lim sup
n→∞

inf
C̃n

sup
p,ρ

[

R(C̃n, p, d, ρ) − E[R(T, d, ρ)]
]

+ lim sup
n→∞

sup
p,ρ

[E[R(T, d, ρ)] − R(p, d, ρ)] ,
(12)

where T is the n-type of the source sequence generated i.i.d.

according to p. Such a decomposition naturally arises in uni-

versal source coding where, in the absence of the knowledge

of the underlying source p, the type of the source sequence is

used as a proxy for p and convergence to the asymptotic limit

associated with T is achieved. Indeed, we show that unless

the difference between the expected rate of a code and the

expected rate-distortion function E[R(T, d, ρ)] tends to zero

2Although there is a continuum of distortion measures, for a given distortion
level, they can be divided into a polynomial number of equivalence classes
so that within an equivalence class, all distortion measures agree on which
sequences satisfy the distortion constraint. See [22, Proposition 1].

uniformly over both p and ρ as n tends to infinity, it is

not possible to have uniform convergence to the rate-

distortion function. Regarding the first term in (12), we show

(Theorems 1-4) that there exists a sequence of codes C̃n

satisfying

lim
n→∞

sup
p,ρ

[

R(C̃n, p, d, ρ) − E[R(T, d, ρ)]
]

· nα = 0

if α < 5/8.
(13)

Furthermore, it follows from our results (specifically

Theorems 1-4 and Lemmas 3 and 4) that

lim
n→∞

sup
p,ρ

∣

∣R∗(n, p, d, ρ) − E[R(T, d, ρ)]
∣

∣ · nα = 0

if α < 5/8.
(14)

Since the worst-case convergence to the rate-distortion func-

tion cannot be any faster than Ω(1/
√

n), as noted above,

it follows that, at least retrospectively, using the decomposition

in (12) instead of (11) does not entail any loss in the order

of convergence.

The second term in (12) poses a challenge since the

rate-distortion function R(p, d, ρ) is not well-behaved as a

function of p, e.g., it is not necessarily concave in p or dif-

ferentiable w.r.t. p. This makes the analysis more challenging

than in the lossless case, where the entropy function H(p)
is concave in p, which enables a simple upper bound of

E[H(T )] ≤ H(p). This also partially explains why results

in universal lossy coding are less well-developed, frequently

relying on various regularity conditions to obtain pointwise

convergence3 of E[R(T, d, ρ)] to R(p, d, ρ). Nevertheless,

we show (Lemma 5) that

lim
n→∞

sup
p,ρ

∣

∣

∣E[R(T, d, ρ)] − R(p, d, ρ)
∣

∣

∣ = 0, (15)

where the above result relies on a type concentration result

(Lemma 1) and uniform continuity of the rate-distortion func-

tion w.r.t. p and ρ (Lemma 2). We thus conclude (Corollary 1)

that codes that approach the rate-distortion function uniformly

with respect to both the source and the distortion measure

exist, i.e., the result in (10).
Note that this result does not provide an explicit bound

on the speed of convergence. However, using a result of

Palaiyanur and Sahai [25, Lemma 2], we show (Lemma 6)

that

lim
n→∞

sup
p

∣

∣

∣E[R(T, d, ρ)] − R(p, d, ρ)
∣

∣

∣ · nα = 0

if α < 1/2. (16)

Thus we have proven (Corollary 3) the existence of strongly

universal, prefix, d-semifaithful codes in the traditional uni-

versal setting with minimax redundancy at most (essentially)

1/
√

n:

lim
n→∞

inf
C̃n

sup
p

[

R(C̃n, p, d, ρ) − R(p, d, ρ)
]

· nα = 0

if α < 1/2. (17)

3See [22, Lemma 5] which extracts from [4] a pointwise o(ln n/n)
convergence of E[R(T, d, ρ)] to R(p, d, ρ).
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where the rate is controlled by the speed of convergence of the

code-independent quantity E[R(T, d, ρ)] to the rate-distortion

function, because the convergence of the expected rate to

E[R(T, d, ρ)] from (13) is faster. Lastly, we show (Lemma 7

and Corollary 5) that the 1/
√

n bound in both (16) and (17)
is tight. Specifically, (16) and (17) can be strengthened to, for

at least some ρ and d,

lim
n→∞

sup
p

∣

∣

∣
E[R(T, d, ρ)] − R(p, d, ρ)

∣

∣

∣
· nα = 0

⇐⇒ α < 1/2 (18)

and

lim
n→∞

inf
C̃n

sup
p

[

R(C̃n, p, d, ρ) − R(p, d, ρ)
]

· nα = 0

⇐⇒ α < 1/2, (19)

respectively.

The optimal rate of convergence of Õ(1/
√

n) stands in

stark contrast to the O(lnn/n) optimal convergence rate

in prior work on universal compression noted above. The

Õ(1/
√

n) rate is controlled by the worst-case convergence

rate of E[R(T, d, ρ)] to R(p, d, ρ) in (18). Indeed, R(T, d, ρ)
has a 1/

√
n spread around R(p, d, ρ) from central limit

theorem-type arguments. In typical cases, the positive and

negative deviations tend to cancel, leading to a O(log n/n)
redundancy. If R(p, d, ρ) is zero or nearly zero, however, then

R(T, d, ρ) has deviations in the positive direction only, which

explains the 1/
√

n redundancy. Note that this effect does

not arise in the lossless case because when H(p) = 0 we

have H(T ) = 0 almost surely. In the lossy context, prior

work on d-semifaithful coding, both non-universal [4] and

weakly universal [2], [9], [11], [13], [22], impose regularity

conditions on the source and distortion measure that have the

effect of excluding this phenomenon. We show that in the

absence of these regularity conditions, the optimal redundancy

is Õ(1/
√

n), even in the non-universal case (Corollary 5).

However, the 1/
√

n behavior does not come about solely

from relaxing the regularity conditions from previous works.

In Appendix D, we assume the regularity conditions in [4], [9],

and [11], where [9] in particular shows a pointwise rate redun-

dancy of O(lnn/n) for weakly universal codes. We prove

that under these conditions, imposing strong universality

worsens the redundancy from O(lnn/n) to Ω(1/
√

n). Thus

the O(lnn/n) redundancy finding is sensitive to both the

regularity conditions and the weak universality assumption.

Table I summarizes these results.

We prove analogous results to the above for non-prefix

codes, following developments in the lossless coding litera-

ture. Imposing the prefix constraint is rarely necessary when

considering block coding; as discussed in [27], when the

codeword is stored as a file, self-punctuating prefix codes are

not necessary since the start and end of the file are recorded

by the filesystem. Furthermore, imposing the prefix constraint

in universal lossless coding incurs an extra factor of lnn/n in

rate redundancy when compared to non-prefix codes, see, e.g.,

[8, Table I]. In the universal lossy coding setup considered in

this paper, we observe a similar penalty in the higher-order

terms of the rate redundancy, although the dominant term is

unaffected.

Table II compares the achievability results of this paper with

some of the previous work on d-semifaithful codes, focusing

only on the expected rate analysis.

Most existing works on universal lossy compression rely

on random code constructions that are analyzed using type-

theoretic tools. This analysis can be quite involved, and it

requires various technical conditions. In contrast, we use a

random code construction which relies on acceptance-rejection

sampling and exact asymptotics from large deviations in

place of type-theoretic methods. The codebook is generated

from a specific mixture distribution called the normalized

maximum-likelihood (NML) distribution (given in (40)). Such

mixture distributions have precedent in the context of universal

rate-distortion in the work of Kontoyiannis and Zhang [13].

Our approach obviates the need for the technical conditions

alluded to earlier. It also has the added advantage that it can

readily accommodate universality over the distortion measure,

albeit with the modification discussed next.

If one wishes to achieve universality with respect to the

distortion measure, then the usual random coding approach

is insufficient in the following sense. For any given source

distribution p and distortion measure ρ, it is well-known that

there exists a distribution over the reconstruction alphabet,

Qp,d,ρ, such that if Xn is i.i.d. p and Y n is i.i.d. Qp,d,ρ, with

Xn and Y n independent, then

lim
n→∞

− 1

n
ln P(ρ(Xn, Y n) ≤ d) = R(p, d, ρ) (20)

if the rate is measured in nats. Indeed, several achievability

schemes [4], [11], [22], [23] based on random coding rely

on lower bounding the probability that a random codeword

meets the distortion constraint with a given source sequence.

We show (Proposition 1) that such an argument cannot provide

uniform convergence over all source sequences xn and all

distortion measures ρ because

inf
xn,ρ

P(ρ(xn, Y n) ≤ d) = 0, (21)

where t is the type of xn and Y n is i.i.d. Qt,d,ρ.

We mitigate this shortcoming by providing leeway in the

allowed distortion which results in a nonvanishing lower bound

(Lemma 10 and (62)):

inf
xn,ρ

P
(

ρ(xn, Y n) ≤ d + 2ρmax

n5/8

)

e−nR(t,d,ρ)
≥ exp

(

−Ω
(

n3/8
))

.

(22)

The resulting code is not d-semifaithful, however. To make it

d-semifaithful, we employ a post-correction scheme that uses

uncoded (or uncompressed) transmission from the encoder to

the decoder to replace suitable symbols in the reconstruction

sequence so that the post-corrected sequence meets the dis-

tortion constraint. The word “uncoded” here means that there

is no compression and the number of post-correction bits sent

is essentially equal to the log of the alphabet size times the

number of replacement symbols (see (90) in the proof of

Theorem 1). This use of uncoded transmission is reminiscent

of schemes for achieving the rate-distortion function at very
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TABLE I

COMPARISON OF THE OPTIMAL RATE REDUNDANCY BETWEEN PREFIX LOSSLESS CODES, PREFIX d-SEMIFAITHFUL CODES FOR SOURCES SATISFYING

CERTAIN REGULARITY CONDITIONS (APPENDIX D), AND PREFIX d-SEMIFAITHFUL CODES FOR ARBITRARY SOURCE DISTRIBUTIONS, IN THE

CLASSICAL SETTING OF FIXED DISTORTION MEASURE. RESULTS WITHOUT A CITATION ARE FROM THIS PAPER

TABLE II

UNIVERSAL d-SEMIFAITHFUL ACHIEVABILITY RESULTS (PARTICULARIZED TO EXPECTED RATE FOR I.I.D. SOURCES WITH FINITE ALPHABETS)

low rates [29]. Uncoded transmission is also employed in the

recent work of the authors, mentioned above, for showing that

the price of universality over unknown distortion measures

is zero [22, Theorem 2]. Prior studies considered uncoded

transmission due to its simplicity, not because it outperforms

other schemes. It has also been considered in the context of

joint source-channel coding [30], [31], where it can outperform

other schemes. Its use in achieving universality appears to be

unique to this paper and [22].

The remainder of the paper is organized as follows.

Section II establishes the notation, definitions and basic

properties of various objects related to lossy compression.

Section III lists and discusses the main results of this paper.

Section IV states the known results about the Lagrange formu-

lation of the rate-distortion function. Section V develops the

d-covering lemmas whose proofs are given in appendices E

and F. Sections VI−VIII are devoted to the proofs of the main

theorems.

II. PRELIMINARIES

Without loss of generality, we let A = {1, 2, . . . , J} and

B = {1, 2, . . . ,K}. P(A) denotes the set of all probability

distributions on A. P(A|B) denotes the set of all conditional

distributions. In this paper, ln represents log to the base e,

log represents log to the base 2 and exp(x) is equal to e
to the power of x. Unless otherwise stated, all information

theoretic quantities will be measured in nats. For p ∈ P(A),

H(p) denotes the Shannon entropy. For p ∈ P(A) and

W ∈ P(B|A), H(W |p) denotes the conditional entropy

and I(p, W ) = I(X;Y ) denotes the mutual information

where (X, Y ) have the joint distribution given by p × W .

For p1 ∈ P(A) and p2 ∈ P(A), D(p1||p2) denotes the

relative entropy between the two probability distributions. For

any vector v ∈ R
m, ||v||1 will denote the l1 norm of v.

For any two m-dimensional vectors u = (u1, . . . , um) and

v = (v1, . . . , vm), ||v−u||2 will denote the Euclidean distance

between u and v. We use Φ(·) to denote the standard normal

cumulative distribution function (CDF).

For a given sequence xn ∈ An, the n-type t = t(xn) of xn

is defined as

t(j) =
1

n

n
∑

i=1

1(xi = j)

for all j ∈ A, where 1(.) is the standard indicator function.

Pn(A) denotes the set of all n-types on A. For a pair of

sequences xn ∈ An and yn ∈ Bn, the joint n-type s is defined

as

s(j, k) =
1

n

n
∑

i=1

1 (xi = j, yi = k)

for all j ∈ A and k ∈ B. Pn(A × B) denotes the set of all

joint n-types on A × B. For two sequences xn and yn with

n-types tx = t(xn) and ty = t(yn), the joint n-type s can
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also be written as

s(j, k) = tx(j)Wy(k|j) = ty(k)Wx(j|k),

where Wy is called a conditional type of yn given xn,

and Wx is called a conditional type of xn given yn. From

[14, Lemma 2.2], we have

|Pn(A)| ≤ (n + 1)J−1

|Pn(A × B)| ≤ (n + 1)JK−1. (23)

For a given type t ∈ Pn(A), Tn
A(t) is called the type class

where

Tn
A(t) = {xn ∈ An : t(xn) = t}.

For any given P ∈ P(A) or P ∈ P(B), Pn will denote

the n-fold product distribution induced by P . Let Xn be an

independent and identically distributed source. Let p ∈ P(A)
be the generic probability distribution of the source so that

Xn is distributed according to pn. The probability that Xn is

of type t satisfies [14, Lemma 2.6]

Pp (Xn ∈ Tn
A(t)) = pn (Tn

A(t)) ≤ exp (−nD(t||p)) . (24)

For a given source distribution p, it suffices to focus only

on sequence types t satisfying ||t − p||2 ≤ a
√

lnn/n, where

a ≥
√

2 + 2J . Source sequence types sufficiently away from

source distribution p have negligible probability for large n as

quantified by the following lemma ( [22, Lemma 1]):

Lemma 1: If a satisfies a ≥
√

2 + 2J , then for all p ∈
P(A) and all n ∈ N, we have

∑

t:||t−p||2>a
√

ln n/n

pn(Tn
A(t)) ≤ eJ−1

n2
.

We review the standard notations for asymptotic growth

rates which are used to describe the limiting behavior of

various functions (e.g., the expected rate) w.r.t. the blocklength

n. A function f(n) ∈ O(n) if there exist constants M > 0 and

N > 0 such that |f(n)| ≤ M n for all n > N . A function

f(n) ∈ Ω(n) if there exist constants M > 0 and N > 0 such

that |f(n)| ≥ M n for all n > N . A function f(n) ∈ o(n)
if for every ϵ > 0, there exists a constant N > 0 such that

|f(n)|/n ≤ ϵ for all n > N .

Let ρ : A × B → [0, ρmax] be a single letter distortion

measure and ρn(xn, yn) be its n-fold extension defined as

ρn(xn, yn) =
1

n

n
∑

i=1

ρ(xi, yi), (25)

where xn ∈ An, yn ∈ Bn.

Let D be the space of uniformly bounded distortion mea-

sures, i.e., fix some ρmax > 0 and let D denote those ρ such

that 0 ≤ ρ(j, k) ≤ ρmax for all j ∈ A, k ∈ B. All distortion

measures considered in this paper will be in D and ρmax will

denote the uniform bound on all ρ ∈ D. Furthermore, we will

assume that

max
j∈A

min
k∈B

ρ(j, k) = 0 for all ρ ∈ D. (26)

When the source distribution and the distortion measure are

fixed, (26) is without loss of generality [32, p. 26]. Here,

it is tantamount to having d represent the allowable excess

expected distortion above the minimum possible for the given

source distribution and distortion measure. For the universal

setup, this is preferable to having d represent a constraint on

the absolute expected distortion: a given d will be below the

minimum achievable expected distortion for some cases, for

instance.

For a given ρ ∈ D, p ∈ P(A) and d > 0, the rate-distortion

function R(p, d, ρ) is defined as [3, Theorem 10.2.1]

R(p, d, ρ)

= min
QB|A∈Qd,ρ

I(p, QB|A)

= min
QB|A∈Qd,ρ

∑

j,k

p(j)QB|A(k|j) ln

(

QB|A(k|j)
Q(k)

)

, (27)

where Q(k) =
∑

j∈A p(j)QB|A(k|j) and

Qd,ρ =







QB|A :
∑

j,k

p(j)QB|A(k|j)ρ(j, k) ≤ d







. (28)

For any given p and ρ, R(p, d, ρ) is nonincreasing, con-

vex and differentiable everywhere as a function of d except

possibly at d = mink∈B

∑

j∈A p(j)ρ(j, k) [14, Exercise

8.6], [3, Lemma 10.4.1]. In particular, for 0 < d <
mink∈B

∑

j∈A p(j)ρ(j, k), R(p, d, ρ) is strictly decreasing

in d. The function’s dependence on p for given d and ρ is

complex [33]. In particular, it is not concave in general.

For the given p, d and ρ, if Q∗
B|A solves (27), then Qp,d,ρ

defined as

Qp,d,ρ(k) =
∑

j∈A

p(j)Q∗
B|A(k|j) (29)

will be called an optimal (output) distribution on B associated

with p, d and ρ. The optimal transition probability matrix

Q∗
B|A or the optimal output distribution Qp,d,ρ may not be

unique4 for a given (p, d, ρ).
Lemma 2: For a fixed distortion level d > 0, the

rate-distortion function R(p, d, ρ) is uniformly continuous on

P(A) ×D.

Proof: The proof of Lemma 2 is given in Appendix A.

Remark 1: Throughout this paper, we will adopt the fol-

lowing metric on P(A) ×D:

||(p1, ρ1) − (p2, ρ2)||

=

√

∑

j∈A

(p1(j) − p2(j))2 +
∑

j∈A,k∈B

(ρ1(j, k) − ρ2(j, k))2

(30)

for any (p1, ρ1) and (p2, ρ2). Uniform continuity in Lemma 2

can be thought of with respect to this given metric.

Previous works on lossy coding [2], [4], [10], [11] have

primarily considered two kinds of block codes:

• fixed rate codes

• d-semifaithful codes

As mentioned before, we will focus on the latter.

4Lemma 7 in [11] gives sufficient conditions on the distortion measure
under which Qp,d,ρ is unique for all full support distributions p and for
K ≤ J . We will not assume these conditions in this paper.
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Definition 1: An nth order d-semifaithful block code is

defined by a triplet Cn = (ϕn, fn, gn):

ϕn : An → Bϕn ⊂ Bn

fn : Bϕn → B∗

gn : B∗ → Bϕn , (31)

where

• B∗ is a set of binary strings,

• (fn, gn) is a binary encoder and decoder pair,

• Bϕn
is the codebook, and

• ϕn is a d-quantizer, i.e., for all xn ∈ An, we have

ρn(xn, ϕn(xn)) ≤ d.

Remark 2: We consider a code Cn to be a random code

if any one of the functions ϕn, fn or gn is random. When

considering random codes, we assume that infinite common

randomness is available between the encoder and the decoder.

The performance of a d-semifaithful code Cn can be mea-

sured by the rate redundancy Rn(Cn, p, ρ) defined as

Rn(Cn, p, ρ) ≜
1

n
E [l (fn (ϕn(Xn))) ln 2] − R(p, d, ρ),

(32)

where E [l(fn(ϕn(Xn)))] is the expected length of the binary

string fn(ϕn(Xn)), the expectation being with respect to the

product distribution pn (as well as Cn if the code is itself

random) and the factor of ln 2 is because we measure coding

rate in nats.

In the universal distortion framework studied in [22], the

modified formulation of a d-semifaithful block code is given

as follows:
Definition 2: An nth order universal distortion

d-semifaithful code is defined by a triplet C̃n = (ϕn, fn, gn):

ϕn : An ×D → Bϕn
⊂ Bn

fn : Bϕn
→ B∗

gn : B∗ → Bϕn
, (33)

where D is the space of uniformly bounded distortion mea-

sures defined earlier. Thus the distortion measure is not known

in advance and only revealed to the d-quantizer at run-time.

Henceforth, we will use Cn to denote a code in the traditional

setting as in (31) and C̃n to denote a code in the universal

distortion setting as in (33). The rate redundancy in the

universal distortion setting is given by

Rn(C̃n, p, ρ) ≜
1

n
E [l (fn (ϕn(Xn, ρ))) ln 2] − R(p, d, ρ).

Viewing the codebook Bϕn
⊂ Bn as a set of indexed5

codewords available to both the encoder fn and decoder gn,

the encoder fn can map the integer index of the codeword to a

binary string followed by the decoder performing the inverse

mapping to recover the codeword. A frequently used integer-

to-binary encoding is based on Elias coding [34]. If yn
i ∈ Bϕn

is a codeword with index i, then with Elias coding [34], the

length of the binary encoding fn(yn
i ) satisfies

l(fn(yn
i )) ≤ ⌊log(i)⌋ + 2⌊log (⌊log(i)⌋ + 1)⌋ + 1. (34)

5Indexed as 1, 2, 3, . . .

Another integer-to-binary encoding is the fixed-to-variable one

given by

fn : {yn
1 , yn

2 , yn
3 , . . .} → {0, 1, 00, 01, 10, 11, 000, 001, . . .},

(35)

where the length of the binary encoding fn(yn
i ) satisfies

l(fn(yn
i )) ≤ 1 + log(i). (36)

The encoder fn is said to be a prefix code if for all i, j ∈ Z>0,

fn(yn
i ) is not a prefix of fn(yn

j ) so long as yn
i ̸= yn

j .

Otherwise, it is a non-prefix code. Elias encoding in (34)
results in a prefix code while the fixed-to-variable encoding

in (35) and (36) yields a non-prefix code.

While the expected rate of a d-semifaithful code with a

prefix encoder is strictly lower bounded by the rate-distortion

function [3, Secs. 5.4 and 10.4], this is not necessarily true

for a d-semifaithful code with a non-prefix encoder. However,

as we will show later, the rate-distortion function is still an

asymptotic lower bound in the non-prefix case.

Let P(An) be a set of probability distributions on An. Then

Shtarkov’s sum [35] for P(An) is defined as

Sn =
∑

xn∈An

sup
p∈P(An)

p(xn).

In particular, if P(An) is the set of i.i.d. distributions, then

we have

Sn =
∑

xn∈An

sup
p∈P(A)

pn(xn). (37)

Shtarkov [35] showed the important result that log Sn is

essentially (up to a discrepancy of at most 1/n) equal

to the universal lossless coding redundancy over the set

of distributions P(An). It is known from previous works

( [36], [37], [38], [39]) that the universal lossless coding

redundancy for i.i.d. sources taking values in alphabet A of

size J is given by

J − 1

2
log(n) − J − 1

2
log(2π) + log

(

Γ
(

1
2

)J

Γ
(

J
2

)

)

+ oJ(1),

(38)

where Γ(·) is the gamma function and oJ(1) → 0 as n → ∞ at

the rate determined only by J . Combining this with Shtarkov’s

result and changing base to natural log, we can express Sn

from (37) as

Sn =
∑

xn∈An

sup
p∈P(A)

pn(xn)

= exp

(

J − 1

2
lnn + ln

(

Γ
(

1
2

)J

(2π)
J−1

2 Γ
(

J
2

)

)

+ oJ(1)

)

.

(39)

The above result is used in constructing random codes (Theo-

rems 1 and 2) which use acceptance-rejection sampling using

the normalized maximum-likelihood distribution QNML ∈
P(Bn), specified by

QNML(yn) =

sup
q∈P(B)

qn(yn)

∑

zn∈Bn

sup
p∈P(B)

pn(zn)
, (40)
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to generate i.i.d. codewords from the optimal distribution

(Qt,d,ρ)n, where Qt,d,ρ is defined according to (29).

III. MAIN RESULTS

In this section, we list the main theorems of the paper. The-

orems 1− 4 are minimax achievability results in the universal

distortion setting which establish that the difference between

the expected rate and Ep [R(T, d, ρ)] is upper bounded by a

quantity that tends to zero at a rate independent of p and

ρ. Corollaries 1 and 2 are minimax results which establish

uniform convergence of the expected rate to R(p, d, ρ) over

all source distributions p ∈ P(A) and distortion measures

ρ ∈ D. Corollaries 3 and 4 are minimax results which establish

uniform convergence of the expected rate to R(p, d, ρ) over all

source distributions p ∈ P(A) with an explicit convergence

rate. Finally, Corollary 5 establishes that the order of the

minimax convergence rate of the previous two corollaries is

essentially optimal, ignoring logarithmic factors; see Table III

for a summary of main results. These results encompass both

random and deterministic coding schemes as well as both

prefix and non-prefix coding schemes.

For a given d > 0, p ∈ P(A) and ρ ∈ D, let

Ep [R(T, d, ρ)] =
∑

t∈Pn(A)

pn(Tn
A(t))R(t, d, ρ).

Throughout the rest of the paper, Ep will denote expectation

with respect to the source distribution p as above and Ec will

denote expectation with respect to the random code.

Theorem 1: Fix d > 0. Then for sufficiently large n, there

exists a universal random non-prefix d-semifaithful code C̃n =
(ϕn, fn, gn) for the universal distortion problem such that

sup
p∈P(A),ρ∈D

[

1

n
Ep [ln(2)Ec [l(fn(ϕn(Xn, ρ)))]]

− Ep [R(T, d, ρ)]
]

≤ 2ρmax ln(n)

d n5/8

+
4ρmax (min (ln(K), ln(J)) + ln(2))

d n5/8

+
K + 5/4

2

lnn

n
+

V1 + ln(8)

n
+

min (ln(K), ln(J))

n
,

where

V1 = ln

(

Γ
(

1
2

)K

(2π)
K−1

2 Γ
(

K
2

)

)

+ 2 ln(2).

Theorem 2: Fix d > 0. Then for sufficiently large n, there

exists a universal random prefix d-semifaithful code C̃n =
(ϕn, fn, gn) for the universal distortion problem such that

sup
p∈P(A),ρ∈D

[

1

n
Ep [ln(2)Ec [l(fn(ϕn(Xn, ρ)))]]

− Ep [R(T, d, ρ)]
]

≤ 2ρmax ln(n)

d n5/8

+
4ρmax (min (ln(K), ln(J)) + ln(2))

d n5/8

+
K + 21/4

2

lnn

n
+ G ln lnn

n
+

min (ln(K), ln(J)) + ln(4)

n
,

where G is a constant depending on J, K, ρmax and d.

Proof: The proofs of Theorems 1 and 2 are given in

Section VI.

Proof Outline: A random codebook with codewords drawn

according to the normalized maximum-likelihood distribution

QNML in (40) is available to both the encoder and decoder. For

any input source sequence xn with type t = t(xn) and input

distortion measure ρ, the encoder uses acceptance-rejection

sampling from QNML to obtain i.i.d. codewords according

to the optimal output distribution Qt,d,ρ. The encoder then

communicates to the decoder the index of the first accepted

codeword which meets the distortion constraint. The proof

then primarily relies on lower bounding the probability

P(ρn(xn, Y n) ≤ d) where Y n is i.i.d. according to Qt,d,ρ. For

minimax results, such a lower bound must hold uniformly for

all source sequences and distortion measures. As discussed in

the Introduction section in (21), a nonvanishing lower bound

is impossible to obtain as shown by a simple counterexample

in Proposition 1. Thus, as discussed in (22), we provide some

leeway in distortion and then use post-correction to satisfy

the distortion constraint. The lower bound to the probability

of meeting the relaxed distortion constraint is developed in

Lemmas 8-10 in Section V.

Remark 3: Prior work has focused on the existence of

deterministic universal codes, which is not directly implied by

Theorems 1 and 2. It is unclear that one should demand that

universal codes be deterministic, since in practice common

pseudo-randomness can be realized by having the encoder

communicate a seed to the decoder. Nevertheless, we prove

the existence of deterministic universal codes in the next

two theorems. Although the dominant term (∼ n−5/8) in

the achievability results of Theorems 1 − 4 is the same,

the random codes exhibit smaller penalty in higher-order

terms.

Theorem 3: Fix d > 0. Then for sufficiently large n, there

exists a universal deterministic non-prefix d-semifaithful code

C̃n = (ϕn, fn, gn) for the universal distortion problem such

that

sup
p∈P(A),ρ∈D

[

1

n
Ep [ln(2)l(fn(ϕn(Xn, ρ)))]

− Ep [R(T, d, ρ)]
]

≤ 2ρmax ln(n)

d n5/8

+
4ρmax (min (ln(K), ln(J)) + ln(2))

d n5/8

+
K + 5/4

2

lnn

n
+ γn

ln lnn

n
+ O

(

1

n

)

,

where V1 is as defined in Theorem 1,

γn = 1 +
ln(J2K2 + J − 1)

ln lnn
,

and the O(1/n) term depends only on J and K.

Proof: The proof of Theorem 3 is given in Section VII.

Theorem 4: Fix d > 0. Then for sufficiently large n,

there exists a universal deterministic prefix d-semifaithful code

C̃n = (ϕn, fn, gn) for the universal distortion problem such
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TABLE III

SUMMARY OF MAIN RESULTS

that

sup
p∈P(A),ρ∈D

[

1

n
Ep [ln(2)l(fn(ϕn(Xn, ρ)))]

− Ep [R(T, d, ρ)]
]

≤ 2ρmax ln(n)

d n5/8

+
4ρmax (min (ln(K), ln(J)) + ln(2))

d n5/8

+
K + 21/4

2

lnn

n
+ G ln lnn

n
+ O

(

1

n

)

,

where G is a constant depending on J, K, ρmax and d, and the

O(1/n) term depends only on J and K.

Proof: The proof of Theorem 4 is given in Section VIII.

Proof Outline: The proofs of Theorems 3 and 4 again rely

on a random coding argument as in the proofs of Theorems 1

and 2. While Theorems 1 and 2 showed that the random

code performs uniformly well in expectation, we must now

show that the random code performs uniformly well with high

probability. This is the key to derandomization, i.e., inferring

the existence of a deterministic code from a random one.

To achieve this objective, we used a uniform concentration

result for the random rate used to encode a sequence from

a given type class w.r.t. a given input distortion measure

followed by a union bound over all types and equivalence

classes of distortion measures.

Theorems 1 − 4 establish an O(n−5/8 lnn) achievable

rate for uniform convergence of the difference between

expected rate and Ep [R(T, d, ρ)] to zero. Concavity of the

rate-distortion function in the source distribution p would

enable application of Jensen’s inequality and thus, establish

convergence to the rate-distortion function. However, the

rate-distortion function R(p, d, ρ) is not necessarily concave

or even quasiconcave in p [33].

Our ultimate goal is to establish uniform convergence to

the rate-distortion function. It may seem that Ep [R(T, d, ρ)]
appearing as an intermediate quantity might be an artifact

of our analysis. However, the following lemmas based on

[22, Lemma 5], when combined with Theorems 1-4, establish

the important role of Ep [R(T, d, ρ)] in analyzing convergence

of the expected rate for any code.

Lemma 3: For all n ∈ N, any prefix d-semifaithful code

Cn = (ϕn, fn, gn) satisfies

1

n
Ep [l(fn(ϕn(Xn))) ln 2]

≥ Ep [R(T, d, ρ)] − (JK + J − 2)
lnn

n
− JK + J − 2

n

for all p ∈ P(A) and ρ ∈ D.

The next lemma shows that a uniform lower bound involv-

ing Ep [R(T, d, ρ)] holds for non-prefix d-semifaithful codes

as well.

Lemma 4: Any non-prefix d-semifaithful code Cn =
(ϕn, fn, gn) satisfies

1

n
Ep [l(fn(ϕn(Xn))) ln 2]

≥ Ep [R(T, d, ρ)] − (JK + J − 1)
lnn

n
+ o

(

lnn

n

)

for all p ∈ P(A) and ρ ∈ D, where the term o(lnn/n), when

divided by lnn/n, tends to zero at a rate determined only by

alphabet sizes J and K.
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For the proof of Lemma 3, see [22, Lemma 5]. The proof

of Lemma 4 is similar to Lemma 3 and is briefly outlined in

Appendix B.

Lemmas 3 and 4 in conjunction with Theorems 1−4 imply

that for an optimal d-semifaithful code, the difference between

its expected rate and Ep [R(T, d, ρ)] tends to zero uniformly.

Therefore, a necessary and sufficient condition for minimax

convergence of the expected rate of a d-semifaithful code to

the rate-distortion function R(p, d, ρ) is uniform convergence

of Ep[R(T, d, ρ)] to R(p, d, ρ), over all p and ρ. This condition

is indeed satisfied by virtue of the uniform continuity of the

rate-distortion function with respect to (p, ρ) (Lemma 2). The

following lemma synthesizes Lemmas 1 and 2 to establish

uniform convergence of Ep[R(T, d, ρ)] to R(p, d, ρ) over all

p and ρ.

Lemma 5: For any fixed d > 0, we have

lim
n→∞

sup
p∈P(A),ρ∈D

∣

∣Ep [R(T, d, ρ)] − R(p, d, ρ)
∣

∣ = 0.

Proof: The proof is given in Appendix C

While the rate-distortion function is a strict lower bound

for the expected rate of a d-semifaithful code with a pre-

fix encoder, Lemmas 4 and 5 imply that the rate-distortion

function is an asymptotic lower bound for the expected

rate of a d-semifaithful code with an arbitrary encoder. Let

Cd,pr be the set of all deterministic d-semifaithful codes

with a prefix encoder and Cd,npr be the set of all deter-

ministic d-semifaithful codes with an arbitrary encoder. The

following two corollaries directly follow from the results of

Theorems 1 − 4 and Lemmas 3 − 5.

Corollary 1 (Existence of minimax prefix codes): For any

fixed d > 0, we have

lim
n→∞

inf
(ϕn,fn,gn)∈Cd,pr

sup
p∈P(A),ρ∈D

[

ln(2)

n
Ep [l(fn(ϕn(Xn, ρ)))] − R(p, d, ρ)

]

= 0.

Corollary 2 (Existence of Minimax Arbitrary Codes): For

any fixed d > 0, we have

lim
n→∞

inf
(ϕn,fn,gn)∈Cd,npr

sup
p∈P(A),ρ∈D

[

ln(2)

n
Ep [l(fn(ϕn(Xn, ρ)))] − R(p, d, ρ)

]

= 0.

These corollaries do not have explicit bounds on the rate

of minimax convergence to the rate-distortion function owing

to the absence of explicit bounds for the convergence in

Lemma 5. However, Lemma 6, which uses uniform continuity

bounds from [25, Lemma 2], resolves this shortcoming. While

Lemma 6 is stronger than Lemma 5 because it provides an

explicit rate of convergence, it is weaker because it is not

uniform over distortion measures.

Lemma 6: Fix d > 0 and a distortion measure ρ. Then for

sufficiently large n, we have for all a ≥
√

2J + 2,

sup
p∈P(A)

∣

∣Ep [R(T, d, ρ)] − R(p, d, ρ)
∣

∣

≤ 7ρmax

ρmin

(

a
√

J

√

lnn

n

)

ln

(

J K
√

n

a
√

J lnn

)

+ ln(K)
eJ−1

n2
,

where

ρmin = min
(j,k):ρ(j,k)>0

ρ(j, k).

Remark 4: For any function f(n) ∈
O

(

√

ln n
n ln

(√

n
ln n

)

)

, we have f(n) ∈ O
(

ln3/2(n)√
n

)

.

Proof: [Proof of Lemma 6] Fix d > 0 and a distortion

measure ρ. For some a ≥
√

2J + 2, we start by writing

Ep[R(T, d, ρ)]

=
∑

t∈Pn(A)

pn(Tn
A(t))R(t, d, ρ)

=
∑

t:||t−p||2≤a
√

ln n/n

pn(Tn
A(t))R(t, d, ρ)

+
∑

t:||t−p||2>a
√

ln n/n

pn(Tn
A(t))R(t, d, ρ)

≤
∑

t:||t−p||2≤a
√

ln n/n

pn(Tn
A(t))R(t, d, ρ) + ln(K)

eJ−1

n2
,

(41)

where the last inequality follows from Lemma 1 and the fact

that R(t, d, ρ) ≤ ln(K) from the assumption in (26).
We now invoke [25, Lemma 2] which states that for any

p, q ∈ P(A) satisfying ||p − q||1 ≤ ρmin

4ρmax
and for any d > 0,

|R(p, d, ρ) − R(q, d, ρ)| ≤ 7ρmax

ρmin
||p − q||1 ln

(

J K

||p − q||1

)

.

(42)

For sufficiently large n, we can ensure

||t − p||1 ≤
√

J ||t − p||2

≤ a
√

J

√

lnn

n

≤ ρmin

4ρmax
. (43)

Therefore, using (42) in (41), we obtain

Ep [R(T, d, ρ)]

≤
∑

t:||t−p||2≤a
√

ln n/n

pn(Tn
A(t))

(

R(p, d, ρ) +
7ρmax

ρmin

× ||p − t||1 ln

(

J K

||p − t||1

))

+ ln(K)
eJ−1

n2

≤ R(p, d, ρ) +
7ρmax

ρmin

(

a
√

J

√

lnn

n

)

ln

(

J K
√

n

a
√

J lnn

)

+ ln(K)
eJ−1

n2
.

In the last inequality above, we use the fact that x ln(JK/x)
is an increasing function in x for all x ≤ JK/e and it is easy

to ensure ||t − p||1 ≤ JK/e for sufficiently large n using the

upper bound in (43).
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For the lower bound, we can write

Ep [R(T, d, ρ)]

≥
∑

t:||t−p||2≤a
√

ln n/n

pn(Tn
A(t))R(t, d, ρ). (44)

Then, for sufficiently large n, we can again apply the result

in (42) and, using a similar argument as before, obtain

Ep [R(T, d, ρ)]

≥ R(p, d, ρ) − 7ρmax

ρmin

(

a
√

J

√

lnn

n

)

ln

(

J K
√

n

a
√

J lnn

)

− ln(K)
eJ−1

n2
.

Using the simplification from Remark 4, the following two

corollaries follow from the results of Theorems 1 − 4 and

Lemmas 3, 4 and 6.

Corollary 3 (Minimax redundancy with prefix codes): Fix

d > 0 and some distortion measure ρ. Then

inf
(ϕn,fn,gn)∈Cd,pr

sup
p∈P(A)

[

ln(2)

n
Ep [l(fn(ϕn(Xn)))] − R(p, d, ρ)

]

= O

(

ln3/2(n)√
n

)

.

Corollary 4 (Minimax Redundancy With Arbitrary Codes):

Fix d > 0 and some distortion measure ρ. Then

inf
(ϕn,fn,gn)∈Cd,npr

sup
p∈P(A)

[

ln(2)

n
Ep [l(fn(ϕn(Xn)))] − R(p, d, ρ)

]

= O

(

ln3/2(n)√
n

)

.

One can obtain explicit bounds in Corollaries 3 and 4 from

the statements of Theorems 1 − 4 and Lemmas 3, 4 and 6.

We turn to impossibility results. We first show in Lemma 7

that the upper bound in Lemma 6 cannot be improved more

than logarithmically, i.e.,

sup
p∈P(A)

|Ep[R(T, d, ρ)] − R(p, d, ρ)| = Ω

(

1√
n

)

.

Lemma 7: Consider alphabets A = B = {0, 1} with dis-

tortion measure ρ(0, 0) = ρ(1, 1) = 0 and ρ(0, 1) = ρ(1, 0) =
ρmax > 0. Then for any distortion level d ∈ (0, ρmax/2),
if the source distribution is Bernoulli(d̄), where d̄ = d/ρmax,

we have6

Ep [R(T, d, ρ)] − R(p, d, ρ)

≥
[√

d̄(1 − d̄)

n
ln

(

1 − d̄

d̄

)

− 1

2n

]+

·

6We use the notation x+ = max(x, 0). Also note that the two terms on
the right-hand side of (45) are greater than zero for sufficiently large n.

[

Φ(2) − Φ(1) − (1 − d̄)2 + d̄2

√

nd̄(1 − d̄)

]+

(45)

for any n satisfying 2d̄ + 3

√

d̄(1−d̄)
n < 1.

Proof: Denoting the binary entropy function by Hb(·), we

have

Ep [R(T, d, ρ)]

=
∑

t∈Pn(A)

pn(Tn
A(t))R(t, d, ρ)

≥
∑

d̄+

√

d̄(1−d̄)
n <t(1)

≤d̄+2

√

d̄(1−d̄)
n

pn(Tn
A(t))

[

Hb(t(1)) − Hb(d̄)
]

≥
(

Hb

(

d̄ +

√

d̄(1 − d̄)

n

)

− Hb

(

d̄
)

)

P

(

d̄ +

√

d̄(1 − d̄)

n

<
1

n

n
∑

i=1

Xi ≤ d̄ + 2

√

d̄(1 − d̄)

n

)

, (46)

where the second inequality uses the assumption that 2d̄ +

3

√

d̄(1−d̄)
n < 1. By a simple Taylor series expansion,

Hb

(

d̄ +

√

d̄(1 − d̄)

n

)

− Hb

(

d̄
)

≥
√

d̄(1 − d̄)

n
ln

(

1 − d̄

d̄

)

− 1

2n
. (47)

A standard application of the Berry-Esseen theorem (with

constant 1/2 [40], [41]) yields

P

(

d̄ +

√

d̄(1 − d̄)

n
<

1

n

n
∑

i=1

Xi ≤ d̄ + 2

√

d̄(1 − d̄)

n

)

≥
[

Φ(2) − Φ(1) − (1 − d̄)2 + d̄2

√

nd̄(1 − d̄)

]

. (48)

Substituting (47) and (48) into (46) completes the proof.

By combining Lemma 7 with Lemmas 3 and 4, we obtain

in particular that, up to logarithmic factors, the redundancy

bounds in Corollaries 3 and 4 cannot be improved.

Corollary 5: Under the choice of ρ and d assumed in

Lemma 7,

lim inf
n→∞

sup
p∈P(A)

inf
(ϕn,fn,gn)∈Cd,pr

[

ln(2)

n
Ep [l(fn(ϕn(Xn)))]

− R(p, d, ρ)
]√

n > 0 (49)

lim inf
n→∞

sup
p∈P(A)

inf
(ϕn,fn,gn)∈Cd,npr

[

ln(2)

n
Ep [l(fn(ϕn(Xn)))]

− R(p, d, ρ)
]√

n > 0. (50)

Note that the lower bounds in Corollary 5 apply to the

max-min redundancy, i.e., the non-universal setup. Corollar-

ies 3 and 4, on the other hand, provide achievable results for

the min-max redundancy, i.e., the universal setup. It follows
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that the discrepancy between the max-min and min-max redun-

dancies, which is related to the price of universality, is no more

than logarithmic. Also note that the choice of ρ and d in crucial

in Lemma 7 and Corollary 5. If d is zero then the problem

reduces to the lossless case, for which (for prefix codes) the

max-min redundancy is O(1/n) [3, Thm. 5.4.1] and the min-

max redundancy is O(log n/n) [6]. If ρ(j, k) = 0 for all j
and k, then all forms of the redundancy are obviously zero.

IV. LAGRANGE FORMULATION OF

RATE-DISTORTION PROBLEM

The proofs of the main theorems rely on a Lagrangian

characterization of the rate-distortion function. For a given

t ∈ P(A), d > 0 and ρ ∈ D, an optimal solution Q∗
B|A

to the rate-distortion problem satisfies the following system of

equations:

Q∗
B|A(k|j) =

Qt,d,ρ(k) exp (−λ∗ρ(j, k))
∑

k′∈B

Qt,d,ρ(k′) exp (−λ∗ρ(j, k′))
(51)

∑

j∈A

t(j)
∑

k′∈B

Qt,d,ρ(k′) exp (−λ∗ρ(j, k′))
e−λ∗ρ(j,k)

{

= 1 if Qt,d,ρ(k) > 0

≤ 1 if Qt,d,ρ(k) = 0
(52)

λ∗





∑

j∈A,k∈B

t(j)Q∗
B|A(k|j)ρ(j, k)−d



 = 0 (53)

R(t, d, ρ)

= −λ∗d −
∑

j∈A

t(j) ln

(

∑

k′∈B

Qt,d,ρ(k′)e−λ∗ρ(j,k′)

)

,
(54)

where

−λ∗ ∈ ∂R(t, d, ρ)

∂d
(55)

and the right-hand side refers to the subdifferential of

R(t, d, ρ) with respect to d. Note that R(t, d, ρ) is differen-

tiable in d except possibly at the distortion associated with

zero rate:

min
k∈B

∑

j∈A

p(j)ρ(j, k), (56)

as noted earlier. The existence of the Lagrange multiplier λ∗

satisfying (55) follows from, e.g., [42, Thm. 29.1]. Then [42,

Thm. 28.4] guarantees that Q∗
B|A minimizes the Lagrangian,

in which case complementary slackness (53) must hold. Then

[14, Thm. 8.7] establishes the remaining assertions.

V. RANDOM d-BALL LEMMAS

Fix d > 0. For any given type t ∈ Pn(A) and distortion

measure ρ ∈ D, let (Q∗
B|A, λ∗) be a solution to the Lagrange

formulation of the rate-distortion problem in (51)− (54). Let

Qt,d,ρ be the corresponding optimal reconstruction distribution

on B defined in (29). The proofs of the main theorems of this

paper use a lower bound7 on

P (ρn(xn, Y n) ≤ d + ϵ) , (57)

where xn ∈ Tn
A(t), Y n is an i.i.d. sequence generated

according to Qt,d,ρ and ϵ is a real parameter. We derive this

lower bound through several successive lemmas.

For any given (t, d, ρ), define a sequence of independent

random variables U1, U2, . . . , Un as

Ui ≜ ρ(xi, Ỹi) −
∑

k∈B

Q∗
B|A(k|xi)ρ(xi, k), (58)

where Ỹi ∼ Q∗
B|A(·|xi).

Lemma 8 (Refined Lucky-Strike Lemma): Fix d > 0. For

any real number parameters ϵ and C, we have

P (ρn(xn, Y n) ≤ d + ϵ)

≥ exp (−nR(t, d, ρ)−Cλ∗) P

(

−C ≤
n
∑

i=1

Ui ≤ ϵ n

)

(59)

for all integers n, for all t ∈ Pn(A), ρ ∈ D and xn ∈ Tn
A(t),

where Y n is distributed according to (Qt,d,ρ)n.

The proof of Lemma 8 is given in Appendix E.

By making appropriate choices of parameters ϵ and C in

Lemma 8, we can further lower bound (59) using concentra-

tion results and the Berry-Esseen theorem.

Lemma 9: Fix d > 0. For any nonnegative numbers

C1, C2 and α, we have

P

(

ρn(xn, Y n) ≤ d +
C1

nα

)

≥ exp
(

−nR(t, d, ρ) − C1λ
∗n1−α

)

ξ (C1, C2, α)

for

n ≥
(

(C1)
2

3(ρmax)2

)
1

2α−1

,

for all t ∈ Pn(A), ρ ∈ D and xn ∈ Tn
A(t), where Y n is

distributed according to (Qt,d,ρ)n,

ξ (C1, C2, α) =

min

((

1 − C2

C2
1

)

,

(

C1√
2πnα−1/2ρmax

− 2C0(ρmax)
3

(C2)3/2n2−3α

))

,

and C0 is the absolute constant from Berry-Esseen theo-

rem [43].

The proof of Lemma 9 is given in Appendix F.

The final lemma in this sequence, which will be directly

used in proving the main theorems, follows as a direct

corollary of Lemma 9. Specifically, using the upper bound

C0 ≤ 0.56 [43] and choosing α = 5/8, C1 = 2ρmax and

C2 = 2.5(ρmax)
2 in Lemma 9, we obtain the following.

Lemma 10: Fix d > 0. Then for n ≥ 10, we have

P

(

ρn(xn, Y n) ≤ d +
2ρmax

n5/8

)

7This lower bound holds uniformly over all types t ∈ Pn(A), distortion
measures ρ ∈ D and all sequences xn ∈ T n

A(t).
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≥ exp

(

−nR(t, d, ρ) − 2ρmaxλ
∗n3/8 − 1

8
lnn + ln

(

1

2

))

,

(60)

for all t ∈ Pn(A), ρ ∈ D, xn ∈ Tn
A(t) and Y n distributed

according to (Qt,d,ρ)n.

Since λ∗ satisfies (55) and R(t, d, ρ) is convex in d and

satisfies R(t, d, ρ) ≤ min(log J, log K), we have8

λ∗ ≤ min(log J, log K)

d
. (61)

Substituting this into (60) gives the bound

P
(

ρn(xn, Y n) ≤ d + 2ρmax

n5/8

)

e−nR(t,d,ρ)

≥exp

(

−2ρmax min(log J, log K)n3/8

d
− 1

8
lnn+ln

(

1

2

))

,

(62)

which has the crucial property that the right-hand side decays

to zero subexponentially independently of t and ρ. This

uniformity relies on the leeway afforded by allowing the

code to violate the distortion constraint by 2ρmax/n5/8. The

following proposition shows that without such freedom, it is

not possible to have a nonvanishing lower bound, even for

a fixed n, that holds uniformly over source sequences and

distortion measures.

Proposition 1: Fix ρmax = 3, d = 1, and alphabets A =
{0, 1} and B = {0, 1, 2}. Then for all even n and ϵ > 0, there

exists xn and ρ such that for any optimal output distribution

Qt,d,ρ, we have

P(ρn(xn, Y n) ≤ d)

e−nR(t,d,ρ)
≤ ϵ,

where Y n is i.i.d. Qt,d,ρ and t is the type of xn.

Proof: Fix an even integer n and some ϵ > 0. First

consider the rate-distortion problem with distortion measure

ρ′ =

[

0 3 1
3 0 1

]

,

and a uniform source distribution p over A. Evidently

R(p, 1, ρ′) = 0 and since the rate-distortion function is

continuous in the distortion level [14, Lemma 7.2],

lim
δ→0

R(p, 1 − δ, ρ′) = 0. (63)

For some δ > 0, consider the perturbed distortion measure9

ρ =

[

0 3 1 + δ
3 0 1 + δ

]

,

with distortion constraint d = 1. The rate-distortion function

for this problem, R(p, 1, ρ), is clearly upper bounded by that

of the problem with distortion measure
[

δ 3 + δ 1 + δ
3 + δ δ 1 + δ

]

,

with distortion constraint d = 1, for which the rate-distortion

function is R(p, 1 − δ, ρ′). Thus, from (63), we have

lim
δ→0

R(p, d, ρ) = 0. (64)

8This observation was credited by Yu and Speed [2] to T. Linder.
9We suppress the dependence of ρ on δ.

Given any ϵ1 > 0, choose δ > 0 such that R(p, d, ρ) < ϵ1.

Let xn be any sequence with half zeros and half ones, and

let t denote its type. For the given (t, d, ρ), let (Q∗
B|A, λ∗) be

a solution to the Lagrange formulation of the rate-distortion

problem as described in Section IV and let Qt,d,ρ be the

corresponding optimal output distribution on {0, 1, 2} defined

via (29). Let Y n be i.i.d. Qt,d,ρ. From (136), we have (by

choosing ϵ = 0)

P(ρn(xn, Y n) ≤ d)

e−nR(t,d,ρ)
≤ P

(

n
∑

i=1

Ui ≤ 0

)

, (65)

where U1, . . . , Un are as defined in (58). Now since

D(t(·)Q∗
B|A(·|·)||t(·)Qt,d,ρ(·))

=
1

2
D(Q∗

B|A(·|0)||Qt,d,ρ(·)) +
1

2
D(Q∗

B|A(·|1)||Qt,d,ρ(·))
= R(t, d, ρ) < ϵ1,

we have D(Q∗
B|A(·|j)||Qt,d,ρ(·)) < 2ϵ1 for all j ∈ {0, 1}.

By Pinsker’s inequality [14, Prob. 3.18], we have

|Q∗
B|A(k|j) − Qt,d,ρ(k)| ≤

√
4ϵ1, (66)

for all k and j. Since Q∗
B|A(·|·) satisfies the distortion con-

straint,

1 ≥ 1

2

[

3Q∗
B|A(1|0) + (1 + δ)Q∗

B|A(2|0) + 3Q∗
B|A(0|1) +

(1 + δ)QB|A(2|1)
]

(a)

≥ 1

2

[

3Qt,d,ρ(1) + 3Qt,d,ρ(0) + 2(1 + δ)Qt,d,ρ(2) −
√

4ϵ1(8 + 2δ)
]

≥ 1

2

[

3 − Qt,d,ρ(2) −
√

4ϵ1(8 + 2δ)
]

,

which implies that

Qt,d,ρ(2) ≥ 1 −
√

4ϵ1(8 + 2δ).

Inequality (a) follows from (66). Then by the union bound

P

(

n
∑

i=1

Ui ≤ 0

)

≤
n
∑

i=1

P(Ui ≤ 0)

=
n

2

[

Q∗
B|A(0|0) + Q∗

B|A(1|1)
]

(a)

≤ n

2

[

Qt,d,ρ(0) + Qt,d,ρ(1) + 2
√

4ϵ1
]

=
n

2

[

2
√

4ϵ1 + 1 − Qt,d,ρ(2)
]

≤ n

2

[

2
√

4ϵ1 +
√

4ϵ1(8 + 2δ)
]

, (67)

where inequality (a) above uses (66). Finally, we can choose

ϵ1 and δ small enough so that (67) is less than ϵ.

VI. PROOF OF THEOREMS 1 AND 2

Fix d > 0. Let xn be the input source sequence and ρ be

the input distortion measure. Let

d′ ≜ d +
2ρmax

n5/8
. (68)
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We first encode the sequence xn using a random d′-
semifaithful code C̃n = (ϕn, fn, gn) and then use a

(deterministic) post-correction scheme to reduce distortion

from d′ to d. Let QNML ∈ P(Bn) be defined as

QNML(yn) =

sup
q∈P(B)

qn(yn)

Sn
, (69)

where

Sn =
∑

zn∈Bn

sup
p∈P(B)

pn(zn). (70)

Let Zn
1 , Zn

2 , Zn
3 , . . . be i.i.d. random vectors each distributed

according to QNML. The random codebook Bϕn ⊂ Bn,

Bϕn
= {Zn

1 , Zn
2 , Zn

3 , . . .},
is available to both the encoder and decoder.

Let t = t(xn) be the type of xn, where t ∈ Pn(A). For the

given (t, d, ρ), let (Q∗
B|A, λ∗) be a solution to the Lagrange

formulation of the rate-distortion problem in (51) − (54).
Let Qt,d,ρ be the corresponding optimal reconstruction

distribution on B. From the sequence {Zn
i }∞i=1, the encoder

uses acceptance-rejection method to derive a subsequence

{Zn
ij
}∞j=1, where Zn

i1
, Zn

i2
, Zn

i3
, . . . are i.i.d. random vectors

each distributed according to (Qt,d,ρ)n. It is easy to see that

max
yn∈Bn

∏n
i=1 Qt,d,ρ(yi)

QNML(yn)
≤ Sn.

The acceptance-rejection algorithm to construct the subse-

quence {Zn
ij
}∞j=1 is described below.

1) Set i = 1; j = 1.

2) Generate U ∼ Unif ([0, 1]).
3) If

U <
(Qt,d,ρ)n(Zn

i )

SnQNML(Zn
i )

, (success if true)

then set ij = i. Set i := i + 1; j := j + 1. Go back to

step 2.

4) Else set i := i + 1. Go back to step 2.

In each iteration of the above algorithm, Step 3 has success

probability of 1/Sn independent of other iterations.

Let J(xn) be the smallest integer such that Zn
iJ(xn)

satisfies

ρn(xn, Zn
iJ(xn)

) ≤ d +
2ρmax

n5/8
= d′.

We set

ϕn(xn, ρ) = Zn
iJ(xn)

. (71)

We can now either use a non-prefix fixed-to-variable

encoder (35) or a prefix Elias encoder (34) to encode the

index iJ(xn) of the codeword. Therefore, the length of the

binary encoding satisfies

l(fn(ϕn(xn, ρ))) ≤ 1 + log iJ(xn) (72)

if fn is a fixed-to-variable encoder or

l(fn(ϕn(xn, ρ))) ≤ ⌊log(iJ(xn))⌋
+ 2⌊log

(

⌊log(iJ(xn))⌋ + 1
)

⌋ + 1 (73)

if fn is an Elias encoder. The decoder gn then outputs Zn
iJ(xn)

as the reconstruction sequence.

We now evaluate the expected rate of this d′-semifaithful

coding scheme. For every sequence xn with type t = t(xn),
it is easy to see that J(xn) is a geometric random variable

with success parameter

P

(

ρn(xn, Y n) ≤ d +
2ρmax

n5/8

)

,

where Y n is an i.i.d. sequence with distribution (Qt,d,ρ)n and

P is the probability law associated with Y n. It also follows

that

E
[

iJ(xn) |J(xn) = 1
]

= Sn

E
[

iJ(xn) |J(xn) = 2
]

= 2Sn

...

E
[

iJ(xn) |J(xn)
]

= J(xn) Sn

=⇒ E
[

iJ(xn)

]

= SnE [J(xn)]

=
Sn

P
(

ρn(xn, Y n) ≤ d + 2ρmax

n5/8

) .

(74)

Alternatively, we can see that iJ(xn) is a geometric random

variable with success parameter

P
(

ρn(xn, Y n) ≤ d + 2ρmax

n5/8

)

Sn
, (75)

where in both (74) and (75), Y n is an i.i.d. sequence with

distribution (Qt,d,ρ)n. From (39), we obtain

E[iJ(xn)]

=

exp

(

K−1
2 lnn + ln

(

Γ( 1
2 )

K

(2π)
K−1

2 Γ(K
2 )

)

+ oK(1)

)

P
(

ρn(xn, Y n) ≤ d + 2ρmax

n5/8

) , (76)

where oK(1) → 0 as n → ∞ at the rate determined only by

K. For n ≥ 10, we can use the lower bound from Lemma 10

in (76) to obtain

E[iJ(xn)]

≤ exp

(

K − 1

2
lnn + ln

(

Γ
(

1
2

)K

(2π)
K−1

2 Γ
(

K
2

)

)

+ oK(1)

+nR(t, d, ρ) + 2λ∗ρmaxn
3/8 +

1

8
lnn + ln(2)

)

(77)

≤ exp

(

K − 1

2
lnn + ln

(

Γ
(

1
2

)K

(2π)
K−1

2 Γ
(

K
2

)

)

+ oK(1)

+nR(t, d, ρ) + 2
min (ln(K), ln(J))

d
ρmaxn

3/8

+
1

8
lnn + ln (2)

)

(78)

≤ exp

(

K − 3/4

2
lnn + ln

(

Γ
(

1
2

)K

(2π)
K−1

2 Γ
(

K
2

)

)
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+ n R(t, d, ρ) + 2
min (ln(K), ln(J))

d
ρmaxn

3/8 + 2 ln (2)

)

(79)

= exp

(

nR(t, d, ρ) +
K − 3/4

2
lnn

+ 2
min (ln(K), ln(J))

d
ρmaxn

3/8 + V1

)

, (80)

where we have defined the constant V1 for convenience:

V1 ≜ ln

(

Γ
(

1
2

)K

(2π)
K−1

2 Γ
(

K
2

)

)

+ 2 ln(2). (81)

In inequality (78), we use the assumption that (26) holds

which implies that R(t, d, ρ) ≤ min (ln(K), ln(J)). Then

it is easy to see by convexity of the rate-distortion func-

tion in d that any subderivative λ∗ is upper bounded

by min (ln(K), ln(J)) /d which explains inequality (78).
Inequality (79) follows by taking n sufficiently large such that

oK(1) ≤ 1. Since oK(1) tends to zero at a rate independent

of t and ρ, the bound in (79) and, therefore, in (80) hold

uniformly over all t ∈ Pn(A), all ρ ∈ D and all sequences

xn ∈ Tn
A(t).

Hence, when Xn is i.i.d. according to p, the total expected

rate in nats of the random d′-semifaithful code C̃n with a

fixed-to-variable encoder is

ln(2)

n
Ep [Ec [l(fn(ϕn(Xn, ρ)))]]

≤ ln(2)

n
Ep

[

Ec

[

1 + log iJ(Xn)

]]

(82)

≤ 1

n
Ep

[

ln(2) + ln
(

Ec

[

iJ(xn)

])]

(83)

≤ ln(2)

n
+

1

n
Ep

[

nR(t(Xn), d, ρ) +
K − 3/4

2
lnn +

2
min (ln(K), ln(J))

d
ρmaxn

3/8 + V1

]

= Ep [R(T, d, ρ)] +
K − 3/4

2

lnn

n

+
2 min (ln(K), ln(J))

d n5/8
ρmax +

V1 + ln(2)

n
. (84)

In inequality (82), we used (72). In inequality (83), we used

Jensen’s inequality.

Similarly, the total expected rate in nats of the random

d′-semifaithful code C̃n with an Elias encoder is

ln(2)

n
Ep [Ec [l(fn(ϕn(Xn, ρ)))]]

≤ ln(2)

n
Ep

[

Ec

[

⌊log(iJ(Xn))⌋
+ 2⌊log

(

⌊log(iJ(Xn))⌋ + 1
)

⌋ + 1
]]

(85)

≤ ln(2)

n
+

ln(2)

n
Ep

[

Ec

[

log(iJ(Xn))

+2 log
(

log(iJ(Xn)) + 1
)]]

≤ ln(2)

n
+

1

n
Ep

[

ln(Ec

[

iJ(Xn)

]

)

+2 ln
(

log(Ec

[

iJ(Xn)

]

) + 1
)]

(86)

In equality (85), we used (73). In inequality (86), we used

Jensen’s inequality.

For convenience, we evaluate the last two terms in (86)
separately and then add them together later. Using the same

definition of the constant V1 in (81), we have from (80) that

1

n
ln Ec[iJ(Xn)] ≤ R(t(Xn), d, ρ) +

K − 3/4

2

lnn

n

+
2 min (ln(K), ln(J))

d n5/8
ρmax +

V1

n
(87)

and

2

n
ln
(

log Ec[iJ(Xn)] + 1
)

≤ 2

n
ln

(

1

ln 2

(

nR(t(Xn), d, ρ) +
K − 3/4

2
lnn

+2
min (ln(K), ln(J))

d
ρmaxn

3/8 + V1 + ln(2)

))

=
2

n
ln

(

nR(t(Xn), d, ρ) +
K − 3/4

2
lnn

+2
min (ln(K), ln(J))

d
ρmaxn

3/8 + V1 + ln(2)

)

− 2 ln ln(2)

n
. (88)

We now use the bounds in (87) and (88) in (86). Since

R(t, d, ρ) ≤ ln(K), it is easy to see that there exist an integer

Z and a constant G such that for n ≥ Z , we have

ln(2)

n
Ep [Ec [l(fn(ϕn(Xn, ρ)))]]

≤ Ep [R(T, d, ρ)] +
K + 13/4

2

lnn

n

+
2 min (ln(K), ln(J))

d n5/8
ρmax + G ln lnn

n
. (89)

Note that Z and G are independent of t and ρ.

So far, we have constructed random non-prefix and prefix d′-
semifaithful codes with expected rates upper bounded by (84)
and (89), respectively. We now use post-correction to obtain

d-semifaithful codes. Let yn be the reconstruction sequence

corresponding to xn such that

ρn(xn, yn) =
1

n

n
∑

i=1

ρ(xi, yi) ≤ d′.

For any integer M < n, let {lm}M
m=1 be a sequence indexing

the M highest distortion letter pairs (xi, yi), i.e.,

ρ(xl1 , yl1) ≥ ρ(xl2 , yl2) ≥ · · · ≥ ρ(xlM , ylM ) ≥ ρ(xi, yi)

∀i /∈ {lm}M
m=1.

We replace

M =

⌈

2ρmax

d
n3/8

⌉

symbols, namely yl1 , yl2 , . . . , ylM , in yn to obtain another

sequence ŷn which satisfies ρn(xn, ŷn) ≤ d. From the

assumption in (26), we can choose the replacement symbols

ŷl1 , ŷl2 , . . . , ŷlM such that ρ(xlm , ŷlm) = 0 for all 1 ≤ m ≤
M . The post-corrected sequence ŷn reproduces xn within

distortion d since

ρn(xn, ŷn)
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=
1

n

∑

i∈{lm}M
m=1

ρ(xi, yi) +
1

n

∑

i/∈{lm}M
m=1

ρ(xi, yi)

=
1

n

∑

i/∈{lm}M
m=1

ρ(xi, yi)

=
n − M

n

1

n − M

∑

i/∈{lm}M
m=1

ρ(xi, yi)

≤ n − M

n

(

d +
2ρmax

n5/8

)

≤ d.

The encoder will need at most

M (log(n) + min (log(K), log(J)) + 2) (90)

bits using fixed-length encoding to convey this “post-

correction” information. Note that for the non-prefix

d′-semifaithful coding scheme from before, this “post-

correction” information needs to be sent before the variable

length encoding of the reconstruction sequence. The rate incre-

ment from the post-correction bits in (90) is upper bounded

by

ln(2)

n
(M (log(n) + min (log(K), log(J)) + 2))

≤ ln(n)

n
+ ln(n)

2ρmax

d n5/8

+
min (ln(K), ln(J))

n
+ min (ln(K), ln(J))

2ρmax

d n5/8

+
ln(4)

n
+

4ρmax

d n5/8
ln(2). (91)

Adding (91) to (84) and (89) establishes the results of

Theorems 1 and 2, respectively.

VII. PROOF OF THEOREM 3

Fix d > 0. In the proof of Theorem 1 (see (84)), we showed

that for sufficiently large n, there exists a universal random,

non-prefix d′-semifaithful code C̃n = (ϕn, fn, gn) satisfying

sup
p∈P(A),ρ∈D

[

1

n
Ep [ln(2)Ec [l(fn(ϕn(Xn, ρ)))]]

− Ep [R(T, d, ρ)]
]

≤ K − 3/4

2

lnn

n

+
2 min (ln(K), ln(J))

d n5/8
ρmax +

V1 + ln(2)

n
,

where V1 is given in (81) and d′ = d + 2ρmax/n5/8.

We will now use uppercase Φn to distinguish the random

d′-quantizer from a deterministic one for which we will use

lowercase ϕn.

For any sequence xn, we have

l(fn(Φn(xn, ρ))) ≤ 1 + log iJ(xn)

from (72). If xn ∈ Tn
A(t), then we know (see (75) and (80))

that iJ(xn) is a geometric random variable with parameter

gt,ρ

≥ exp

(

−nR(t, d, ρ) − K − 3/4

2
lnn

−2
min (ln(K), ln(J))

d
ρmaxn

3/8 − V1

)

. (92)

Let

γn ≜ 1 +
ln(J2K2 + J − 1)

ln lnn
, (93)

ζ ≜
2ρmax min (ln(K), ln(J))

d
n3/8

+
K − 3/4

2
lnn + V1 + γn ln lnn (94)

Denoting the probability law associated with the random code

C̃n by Pc(·), we have

Pc

(

l(fn(Φn(xn, ρ))) >
1

ln(2)

(

nR(t, d, ρ) + ln(2)

+
K − 3/4

2
lnn +

2n3/8 min (ln(K), ln(J))

d
ρmax

+ V1 + γn ln lnn
))

≤ Pc

(

1 + log iJ(xn) >
1

ln(2)

(

nR(t, d, ρ) + ln(2)

+
K − 3/4

2
lnn +

2n3/8 min (ln(K), ln(J))

d
ρmax

+ V1 + γn ln lnn
))

= Pc

(

iJ(xn) > exp
(

nR(t, d, ρ) +
K − 3/4

2
lnn

+
2n3/8 min (ln(K), ln(J))

d
ρmax + V1 + γn ln lnn

))

(95)

≤ (1 − gt,ρ)
exp
(

nR(t,d,ρ)+ζ
)

−1

≤
(

1 − exp

(

−nR(t, d, ρ) − K − 3/4

2
lnn − V1

− 2
min (ln(K), ln(J))

d
ρmaxn

3/8

))exp
(

n R(t,d,ρ)+ζ
)

−1

(a)

≤ exp
(

− exp (γn ln lnn) + exp
(

− nR(t, d, ρ)

− K − 3/4

2
lnn−V1−2

min (ln(K), ln(J))

d
ρmaxn

3/8
))

≤ e

nJ2K2+J−1
, (96)

where the inequality (a) above uses the inequality (1−x)y ≤
e−xy . Now if we let Xn

t ∼ Unif(Tn
A(t)) be a random sequence

uniformly distributed over the type class Tn
A(t), then

Pt,c

(

l(fn(Φn(Xn
t , ρ))) >

1

ln(2)

(

nR(t, d, ρ) + ln(2)

+
K − 3/4

2
lnn +

2n3/8 min (ln(K), ln(J))

d
ρmax

+ V1 + γn ln lnn
))

≤ e

nJ2K2+J−1
, (97)

where the last inequality above follows from (96).
We used Pt to denote the probability law associated with

the random sequence Xn
t ∼ Unif(Tn

A(t)). We next use PT to

denote the probability law associated with the collection of
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random sequences {Xn
t : t ∈ Pn(A)}. Taking a union bound

over all types gives

PT,c





⋃

t∈Pn(A)

{

l(fn(Φn(Xn
t , ρ))) >

1

ln(2)

(

nR(t, d, ρ)

+ ln(2) +
K − 3/4

2
lnn +

2n3/8 min (ln(K), ln(J))

d
ρmax

+ V1 + γn ln lnn
)

})

≤ (n + 1)J−1 e

nJ2K2+J−1

→ 0 as n → ∞. (98)

The above result proves that for large enough n, we have

with high probability that the length of binary encoding used

by the random d′-semifaithful code (Φn, fn, gn) to encode a

randomly chosen sequence Xn
t from any type class t does not

exceed

1

ln(2)

(

nR(t, d, ρ) + ln(2) +
K − 3/4

2
lnn

+
2n3/8 min (ln(K), ln(J))

d
ρmax + V1 + γn ln lnn

)

.

(99)

As we will show later, this result implies the existence of a

deterministic d′-semifaithful code which has uniformly good

performance over all types. However, our goal is to prove the

existence of a deterministic d′-semifaithful code in the univer-

sal distortion framework, i.e., one which has uniformly good

performance over all types as well as all distortion measures.

Since the set of distortion measures D is uncountably infinite,

a naive union bound similar to (98) fails. Instead, we invoke

the fact that the space of distortion measures D can be

partitioned into a polynomial number of equivalence classes.

For full explanation, we refer the reader to [22, Theorem 1].

Here, we merely state and use the following proposition which

is a straightforward corollary of [22, Proposition 1]:

Proposition 2: For a given blocklength n and distortion

level d, there are ξ ≤ (n+1)J2K2−1+1 equivalence classes of

D, denoted by [D]ρ1
, [D]ρ2

, . . . , [D]ρξ
, where ρ1, ρ2, . . . , ρξ

are arbitrarily chosen representative distortion measures. A d-

semifaithful code C̃n with respect to a distortion measure ρ
is also d-semifaithful with respect to all distortion measures

ρ′ ∈ [D]ρ in the same equivalence class.

We will make the choice of representative distortion measures

ρ1, ρ2, . . . , ρξ be a function of the type t. For every type t and

every equivalence class [D]ρi
, we choose the representative

distortion measure ρt
i ∈ [D]ρi

which satisfies

R(t, d, ρt
i) ≤ R(t, d, ρ) (100)

for all ρ ∈ [D]ρi
. Henceforth, the representative distor-

tion measures, chosen differently for each type, will be

ρt
1, ρ

t
2, . . . , ρ

t
ξ.

Now applying the union bound over the types and distortion

measures gives

PT,c





ξ
⋃

i=1

⋃

t∈Pn(A)

{

l(fn(Φn(Xn
t , ρt

i))) >
1

ln(2)

(

nR(t, d, ρt
i) + ln(2) +

K − 3/4

2
lnn + V1

+
2n3/8 min (ln(K), ln(J))

d
ρmax + γn ln lnn

)

})

≤
(

(n + 1)J2K2−1 + 1
)

(n + 1)J−1 e

nJ2K2+J−1

→ 0 as n → ∞. (101)

Also note that

PT,c





ξ
⋃

i=1

⋃

t∈Pn(A)

{

l(fn(Φn(Xn
t , ρt

i))) >
1

ln(2)

(

nR(t, d, ρt
i) + ln(2) +

K − 3/4

2
lnn

+
2n3/8 min (ln(K), ln(J))

d
ρmax + V1 + γn ln lnn

)

})

(102)

= ET,c



1





ξ
⋃

i=1

⋃

t∈Pn(A)

{

l(fn(Φn(Xn
t , ρt

i)))

>
1

ln(2)

(

nR(t, d, ρt
i) + ln(2) +

K − 3/4

2
lnn

+
2n3/8 min (ln(K), ln(J))

d
ρmax + V1 + γn ln lnn

)

})]

= Ec



ET



1





ξ
⋃

i=1

⋃

t∈Pn(A)

{

l(fn(Φn(Xn
t , ρt

i)))

>
1

ln(2)

(

nR(t, d, ρt
i) + ln(2) +

K − 3/4

2
lnn

+
2n3/8 min (ln(K), ln(J))

d
ρmax + V1

+ γn ln lnn
)

})∣

∣

∣

∣

∣

Φn

]]

≤
(

(n + 1)J2K2−1 + 1
)

(

(n + 1)J−1
) e

nJ2K2+J−1
. (103)

The above inequality implies that that there exists a determin-

istic d′-quantizer ϕn such that

ET



1





ξ
⋃

i=1

⋃

t∈Pn(A)

{

l(fn(Φn(Xn
t , ρt

i))) >
1

ln(2)

(

nR(t, d, ρt
i) + ln(2) +

K − 3/4

2
lnn +

2n3/8 min (ln(K), ln(J))

d
ρmax + V1

+ γn ln lnn
)

})∣

∣

∣

∣

∣

Φn = ϕn

]

≤
(

(n + 1)J2K2−1 + 1
)

(

(n + 1)J−1
) e

nJ2K2+J−1
. (104)

This in turn implies that

PT





ξ
⋃

i=1

⋃

t∈Pn(A)

{

l(fn(Φn(Xn
t , ρt

i))) >
1

ln(2)

(

nR(t, d, ρt
i)
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+ ln(2) +
K − 3/4

2
lnn +

2n3/8 min (ln(K), ln(J))

d
ρmax

+ V1 + γn ln lnn
)

}

∣

∣

∣Φn = ϕn

)

(a)
= PT





ξ
⋃

i=1

⋃

t∈Pn(A)

{

l(fn(ϕn(XN
t , ρt

i))) >
1

ln(2)

(

nR(t, d, ρt
i) + ln(2) +

K − 3/4

2
lnn

+
2n3/8 min (ln(K), ln(J))

d
ρmax+V1+γn ln lnn

)

})

≤
(

(n + 1)J2K2−1 + 1
)

(

(n + 1)J−1
) e

nJ2K2+J−1
. (105)

Equality (a) above follows from the independence of the

random code Φn and the random source sequence Xn
t .

Now we have a deterministic d′-semifaithful code

(ϕn, fn, gn) which, with high probability, has uniformly

good performance in encoding a random sequence Xn
t ∼

Unif(Tn
A(t)) for any type t and any of the chosen representa-

tive distortion measures ρt
1, ρ

t
2, . . . , ρ

t
ξ.

But we are interested in encoding an i.i.d. sequence Xn ∼
pn with respect to an arbitrary distortion measure. To accom-

plish this, we can use the code (ϕn, fn, gn) to construct

another code (ϕ̃n, f̃n, g̃n) as described next. For any given

sequence xn and input distortion measure ρ, let t = t(xn) be

the type and let ρ ∈ [D]ρt
i

for some 1 ≤ i ≤ ξ. The new code

(ϕ̃n, f̃n, g̃n) uses (ϕn, fn, gn) for encoding if (in Case 1)

l(fn(ϕn(xn, ρt
i)))

≤ 1

ln(2)

(

nR(t, d, ρt
i) + ln(2) +

K − 3/4

2
lnn

+
2n3/8 min (ln(K), ln(J))

d
ρmax + V1 + γn ln lnn

)

and otherwise (in Case 2), searches the entire Bn space to send

the index of a yn satisfying (ρt
i)n(xn, yn) ≤ d′. In both cases,

the distortion measure ρt
i is used because of the equivalence

ρt
i ∼ ρ from Proposition 2. The two cases can be indicated to

the decoder using a flag bit F , where F = 1 in Case 1 and

F = 0 in Case 2.

Hence, for any source distribution p ∈ P(A) and for any

ρ ∈ D, the expected rate in nats of (ϕ̃n, f̃n, g̃n) is

ln(2)

n
Ep

[

l(f̃n(ϕ̃n(Xn, ρ)))
]

(a)
=

ln(2)

n

∑

t∈Pn(A)

pn(Tn
A(t))Et

[

l(f̃n(ϕ̃n(Xn
t , ρ)))

]

≤
∑

t∈Pn(A)

pn(Tn
A(t))

[

R(t, d, ρt
i) +

K − 3/4

2

lnn

n

+
2 min (ln(K), ln(J))

d n5/8
ρmax +

V1 + ln(2)

n
+ γn

ln lnn

n

+
(

(n + 1)J2K2−1 + 1
)

(

(n + 1)J−1
) e

nJ2K2+J−1

(

lnK

+
ln(2)

n

)

+
ln(2)

n

]

= Ep

[

R(T, d, ρT
i )
]

+
K − 3/4

2

lnn

n

+
2 min (ln(K), ln(J))

d n5/8
ρmax +

V1 + ln(2)

n
+ γn

ln lnn

n

+
(

(n + 1)J2K2−1 + 1
)

(

(n + 1)J−1
) e

nJ2K2+J−1

(

lnK

+
ln(2)

n

)

+
ln(2)

n
(b)

≤ Ep [R(T, d, ρ)] +
K − 3/4

2

lnn

n

+
2 min (ln(K), ln(J))

d n5/8
ρmax +

V1 + ln(2)

n
+ γn

ln lnn

n

+
(

(n + 1)J2K2−1 + 1
)

(

(n + 1)J−1
) e

nJ2K2+J−1

(

lnK

+
ln(2)

n

)

+
ln(2)

n
. (106)

In equality (a), we use the fact that conditioned on the type,

Xn is distributed uniformly over the type class t, which we

denote by writing Xn
t . Equality (b) follows from (100).

Finally, we use post-correction to make the code

d-semifaithful. This post-correction was described in the

proof of Theorem 1 (Section VI), specifically (90) and (91).
By adding the rate increment from post-correction in (91) to

the expression in (106), the expected rate of the overall code

is upper bounded by

Ep [R(T, d, ρ)] +
2ρmax ln(n)

d n5/8

+
4ρmax (min (ln(K), ln(J)) + ln(2))

d n5/8
+

K + 5/4

2

lnn

n

+ γn
ln lnn

n

+
(

(n + 1)J2K2−1 + 1
)

(

(n + 1)J−1
) e

nJ2K2+J−1

(

lnK

+
ln(2)

n

)

+
V1 + ln(16) + min (ln(K), ln(J))

n
. (107)

The above bounds holds uniformly over P(A) ×D for suffi-

ciently large n. This finishes the proof of Theorem 3.

VIII. PROOF OF THEOREM 4

The proof of Theorem 4 is similar to the proof of The-

orem 3. Fix d > 0. In the proof of Theorem 2 (see (89)),
we showed that for sufficiently large n, there exists a uni-

versal random, prefix d′-semifaithful code C̃n = (ϕn, fn, gn)
satisfying

sup
p∈P(A),ρ∈D

[

1

n
Ep [ln(2)Ec [l(fn(ϕn(Xn, ρ)))]]

− Ep [R(T, d, ρ)]
]

≤ K + 13/4

2

lnn

n

+
2 min (ln(K), ln(J))

d n5/8
ρmax + G ln lnn

n
,

where G is a constant depending only on J, K, ρmax and d,

and d′ = d + 2ρmax/n5/8.

We will now use uppercase ΦN to distinguish the random

d′-quantizer from a deterministic one for which we will use

lowercase ϕN .
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For any sequence xn, we have

l(fn(Φn(xn, ρ)))

≤ ⌊log(iJ(xn))⌋ + 2⌊log
(

⌊log(iJ(xn))⌋ + 1
)

⌋ + 1 (108)

from (73). If xn ∈ Tn
A(t), then we know (see (75) and (80))

that iJ(xn) is a geometric random variable with parameter

gt,ρ

≥ exp

(

−nR(t, d, ρ) − K − 3/4

2
lnn

−2
min (ln(K), ln(J))

d
ρmaxn

3/8 − V1

)

. (109)

Let γn be as defined in (93). Then as shown in (95) − (96),
we have for any xn ∈ Tn

A(t),

Pc

(

iJ(xn) > exp

(

nR(t, d, ρ) +
K − 3/4

2
lnn

+
2n3/8 min (ln(K), ln(J))

d
ρmax + V1 + γn ln lnn

))

≤ e

nJ2K2+J−1
. (110)

In view of (108) and (110), we have that with probability at

least 1 − e/nJ2K2+J−1,

l(fn(Φn(xn, ρ)))

≤ log

[

exp

(

nR(t, d, ρ) +
K − 3/4

2
lnn +

2n3/8 min (ln(K), ln(J))

d
ρmax + V1 + γn ln lnn

)]

+ 2 log

(

log

[

exp

(

nR(t, d, ρ) +
K − 3/4

2
lnn

+
2n3/8 min (ln(K), ln(J))

d
ρmax + V1 + γn ln lnn

)]

+ 1

)

+ 1.

Since R(t, d, ρ) ≤ ln(K) and V1 and γ are independent of

t = t(xn) and ρ, it is easy to see that there exist an integer Z
and a constant G such that for n ≥ Z , we have

l(fn(Φn(xn, ρ)))

≤ 1

ln(2)

(

nR(t, d, ρ) +
K + 13/4

2
lnn

+
2n3/8 min (ln(K), ln(J))

d
ρmax + G ln lnn

)

with probability at least 1 − e/nJ2K2+J−1. Note that Z and

G depend on J , K and ρmax but do not depend on t and ρ.

Hence, for sufficiently large n, we have for any xn ∈ Tn
A(t),

Pc

(

l(fn(Φn(xn, ρ))) >
1

ln(2)

(

nR(t, d, ρ)

+
K + 13/4

2
lnn +

2n3/8 min (ln(K), ln(J))

d
ρmax

+ G ln lnn
)

)

≤ e

nJ2K2+J−1
. (111)

Now if we let Xn
t ∼ Unif(Tn

A(t)) be a random sequence

uniformly distributed over the type class Tn
A(t), then

Pt,c

(

l(fn(Φn(Xn
t , ρ))) >

1

ln(2)

(

nR(t, d, ρ)

+
K + 13/4

2
lnn +

2n3/8 min (ln(K), ln(J))

d
ρmax

+ G ln lnn
)

)

≤ e

nJ2K2+J−1
, (112)

where the inequality above follows from (111). Then similar to

the proof of Theorem 3 (see Proposition 2), applying a union

bound over the types and the specially chosen representative

distortion measures from their respective equivalence classes

(see (100)) gives

PT,c





ξ
⋃

i=1

⋃

t∈Pn(A)

{

l(fn(Φn(Xn
t , ρt

i))) >
1

ln(2)

(

nR(t, d, ρt
i) +

K + 13/4

2
lnn

+
2n3/8 min (ln(K), ln(J))

d
ρmax + G ln lnn

)}

)

≤
(

(n + 1)J2K2−1 + 1
)

(n + 1)J−1 e

nJ2K2+J−1

→ 0 as n → ∞. (113)

Then following the same line of argument as

in (101), (102), (103), (104) and (105), we have that for

sufficiently large n, there exists a deterministic d′-quantizer

ϕn satisfying

PT





ξ
⋃

i=1

⋃

t∈Pn(A)

{

l(fn(ϕn(Xn
t , ρt

i))) >
1

ln(2)

(

nR(t, d, ρt
i) +

K + 13/4

2
lnn

+
2n3/8 min (ln(K), ln(J))

d
ρmax + G ln lnn

)

})

≤
(

(n + 1)J2K2−1 + 1
)

(

(n + 1)J−1
) e

nJ2K2+J−1
.

Now we have a deterministic d′-semifaithful code (ϕn, fn, gn)
which, with high probability, has uniformly good performance

in encoding a random sequence Xn
t ∼ Unif(Tn

A(t)) for any

type t and any of the chosen representative distortion measures

ρt
1, ρ

t
2, . . . , ρ

t
ξ.

As in the proof of Theorem 3, using this code (ϕn, fn, gn),
we can construct another d′-semifaithful code (ϕ̃n, f̃n, g̃n)
which can encode an i.i.d. sequence Xn ∼ pn with respect

to an arbitrary distortion measure. For any given sequence xn

and input distortion measure ρ, let t = t(xn) be the type and

let ρ ∈ [D]ρt
i

for some 1 ≤ i ≤ ξ. The new code (ϕ̃n, f̃n, g̃n)
uses (ϕn, fn, gn) for encoding if (in Case 1)

l(fn(ϕn(xn, ρt
i)))

≤ 1

ln(2)

(

nR(t, d, ρt
i) +

K + 13/4

2
lnn

+
2n3/8 min (ln(K), ln(J))

d
ρmax + G ln lnn

)
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and otherwise (in Case 2), searches the entire Bn space to send

the index of a yn satisfying (ρt
i)n(xn, yn) ≤ d′. In both cases,

the distortion measure ρt
i is used because of the equivalence

ρt
i ∼ ρ from Proposition 2. The two cases can be indicated to

the decoder using a flag bit F , where F = 1 in Case 1 and

F = 0 in Case 2.

Hence, for any source distribution p ∈ P(A) and for any

ρ ∈ D, the expected rate in nats of (ϕ̃n, f̃n, g̃n) is

ln(2)

n
Ep

[

l(f̃n(ϕ̃n(Xn, ρ)))
]

(a)
=

ln(2)

n

∑

t∈Pn(A)

pn(Tn
A(t))Et

[

l(f̃n(ϕ̃n(Xn
t , ρ)))

]

≤
∑

t∈Pn(A)

pn(Tn
A(t))

[

R(t, d, ρt
i)

+
K + 13/4

2

lnn

n
+

2 min (ln(K), ln(J))

d n5/8
ρmax + G ln lnn

n

+
(

(n + 1)J2K2−1 + 1
)

(

(n + 1)J−1
) e

nJ2K2+J−1

(

lnK

+
ln(2)

n

)

+
ln(2)

n

]

= Ep

[

R(T, d, ρT
i )
]

+
K + 13/4

2

lnn

n

+
2 min (ln(K), ln(J))

d n5/8
ρmax + G ln lnn

n

+
(

(n + 1)J2K2−1 + 1
)

(

(n + 1)J−1
) e

nJ2K2+J−1

(

lnK

+
ln(2)

n

)

+
ln(2)

n
(b)

≤ Ep [R(T, d, ρ)] +
K + 13/4

2

lnn

n

+
2 min (ln(K), ln(J))

d n5/8
ρmax + G ln lnn

n

+
(

(n + 1)J2K2−1 + 1
)

(

(n + 1)J−1
) e

nJ2K2+J−1

(

lnK

+
ln(2)

n

)

+
ln(2)

n
. (114)

In equality (a), we use the fact that conditioned on the type,

Xn is distributed uniformly over the type class t, which we

denote by writing Xn
t . Equality (b) follows from (100).

Finally, we use post-correction to make the code d-

semifaithful. This post-correction was described in the proof of

Theorem 1 (Section VI), specifically (90) and (91). By adding

the rate increment from post-correction in (91) to the expres-

sion in (114), the expected rate of the overall code is upper

bounded by

Ep [R(T, d, ρ)] +
2ρmax ln(n)

d n5/8

+
4ρmax (min (ln(K), ln(J)) + ln(2))

d n5/8
+

K + 21/4

2

lnn

n

+ G ln lnn

n
+

(

(n + 1)J2K2−1 + 1
)

(

(n + 1)J−1
) e

nJ2K2+J−1

(

lnK

+
ln(2)

n

)

+
ln(16) + min (ln(K), ln(J))

n
.

This finishes the proof of Theorem 4.

APPENDIX A

PROOF OF LEMMA 2

Since P(A) × D is a compact set, it suffices to show that

R(p, d, ρ) is a continuous function of the pair (p, ρ). With

some abuse of notation, we define

ρ(p, W ) ≜
∑

j∈A,k∈B

p(j)W (k|j)ρ(j, k)

for any p ∈ P(A), W ∈ P(B|A) and ρ ∈ D.

Fix any (p∗, ρ∗) ∈ P(A) × D and let (p(m), ρ(m)) →
(p∗, ρ∗) as m → ∞ with respect to the metric defined in (30).
Since R(p, d, ρ) is continuous in d, it is possible to choose,

for every ϵ > 0, a Q ∈ P(B|A) satisfying ρ∗(p∗, Q) < d and

I(p∗, Q) < R(p∗, d, ρ∗)+ϵ. By continuity of I(p, W ) in p and

ρ(p, W ) in both p and ρ, it follows that for sufficiently large m,

we have ρ(m)(p(m), Q) < d and I(p(m), Q) < R(p∗, d, ρ∗)+ϵ.

Since R(p(m), d, ρ(m)) ≤ I(p(m), Q) eventually, we obtain

lim sup
m→∞

R(p(m), d, ρ(m)) ≤ R(p∗, d, ρ∗). (115)

On the other hand, let Q(m) ∈ P(B|A) achieve the minimum

in the definition of R(p(m), d, ρ(m)). Let {ml} be a subse-

quence such that Q(ml) → Q for some Q and

lim
l→∞

R(p(ml), d, ρ(ml)) = lim inf
m→∞

R(p(m), d, ρ(m)).

If d ≥ mink∈B

∑

j∈A p∗(j)ρ∗(j, k), then

0 = R(p∗, d, ρ∗) ≤ lim inf
m→∞

R(p(m), d, ρ(m)). (116)

If d < mink∈B

∑

j∈A p∗(j)ρ∗(j, k), then for sufficiently

large m, we have d < mink∈B

∑

j∈A p(m)(j)ρ(m)(j, k) and

therefore, ρ(m)(p(m), Q(m)) = d. The last assertion follows

from the fact that R(p, d, ρ) is strictly decreasing in d for

d ∈ (0,mink∈B

∑

j∈A p(j)ρ(j, k)). Now since

lim
l→∞

ρ(ml)(p(ml), Q(ml)) = ρ∗(p∗, Q) = d,

we obtain

R(p∗, d, ρ∗) ≤ I(p∗, Q)

= lim
l→∞

I(p(ml), Q(ml))

= lim inf
m→∞

R(p(m), d, ρ(m)). (117)

The result of Lemma 2 follows from (115), (116) and (117).

APPENDIX B

PROOF OF LEMMA 4

Fix d > 0 and let ρ be a fixed distortion measure. Let

Xn be an i.i.d. source sequence distributed according to

some distribution p ∈ P(A). For any d-semifaithful code

(ϕn, fn, gn), let Y n = gn(fn(ϕn(Xn))). It was shown in [22,

Appendix E] that

1

n
H(Y n)

≥ Ep [R(T, d, ρ)] − (JK + J − 2)
lnn

n
− JK + J − 2

n
.

(118)
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To prove Lemma 4, we only use the fact that the optimal

expected length L∗
n for a non-prefix code [27, Theorem 1]

satisfies L∗
n ≤ H(Y n) and

H(Y n) ≤ L∗
n + (L∗

n + 1) ln(L∗
n + 1) − L∗

n ln(L∗
n). (119)

Since (x+1) ln(x+1)−x ln(x) is non-decreasing in x, we can

use L∗
n ≤ H(Y n) ≤ n lnK to write (119) as

H(Y n)

≤ L∗
n + (n lnK + 1) ln(n lnK + 1) − (n lnK) ln(n lnK).

Hence, we have

1

n
Ep [l(fn(ϕn(Xn, ρ)))]

≥ 1

n
L∗

n

≥ 1

n
H(Y n) −

(

lnK +
1

n

)

ln(n lnK + 1)

+ (lnK) ln(n lnK)

(1)

≥ Ep [R(T, d, ρ)] − (JK + J − 2)
lnn

n
− JK + J − 2

n

−
(

lnK +
1

n

)

ln(n lnK + 1) + (lnK) ln(n lnK)

(2)

≥ Ep [R(T, d, ρ)] − (JK + J − 2)
lnn

n
− JK + J − 2

n

− (lnK) ln

(

1 +
1

n lnK

)

− lnn

n
− ln(2 lnK)

n

(3)
= Ep [R(T, d, ρ)] − (JK + J − 1)

lnn

n
+ o

(

lnn

n

)

.

Inequality (1) above follows from (118). Inequality (2) above

holds for n > 1
ln K . Equality (3) above holds because as n →

∞, ln(1 + 1/n) approaches zero faster than lnn/n. It is easy

to see that the o(lnn/n) term, when divided by lnn/n, tends

to zero at a rate determined only by alphabet sizes J and K.

APPENDIX C

PROOF OF LEMMA 5

For any a ≥
√

2J + 2, we have

Ep[R(T, d, ρ)]

=
∑

t∈Pn(A)

pn(Tn
A(t))R(t, d, ρ)

=
∑

t:||t−p||2≤a
√

ln n/n

pn(Tn
A(t))R(t, d, ρ)

+
∑

t:||t−p||2>a
√

ln n/n

pn(Tn
A(t))R(t, d, ρ)

≤
∑

t:||t−p||2≤a
√

ln n/n

pn(Tn
A(t))R(t, d, ρ) + ln(K)

eJ−1

n2
,

(120)

where the last inequality follows from Lemma 1 and the fact

that R(t, d, ρ) ≤ ln(K) from the assumption in (26). Now

since R(p, d, ρ) is uniformly continuous on P(A) × D by

Lemma 2, it admits a modulus of continuity ω(·) satisfying

limt→0 ω(t) = ω(0) = 0 and

|R(p1, d, ρ1) − R(p2, d, ρ2)| ≤ ω (||(p1, ρ1) − (p2, ρ2)||) .
(121)

Therefore, we can use (121) in (120) to obtain

Ep [R(T, d, ρ)]

≤
∑

t:||t−p||2≤a
√

ln n/n

pn(Tn
A(t))

(

R(p, d, ρ)

+ ω

(

a

√

lnn

n

))

+ ln(K)
eJ−1

n2

≤ R(p, d, ρ) + ω

(

a

√

lnn

n

)

+ ln(K)
eJ−1

n2
.

Similarly, we have

Ep [R(T, d, ρ)]

≥
∑

t:||t−p||2≤a
√

ln n/n

pn(Tn
A(t))R(t, d, ρ)

≥ R(p, d, ρ) − ω

(

a

√

lnn

n

)

− ln(K)
eJ−1

n2
.

APPENDIX D

STRONGLY UNIVERSAL CODES OVER A RESTRICTED SET

OF SOURCE DISTRIBUTIONS

The O(lnn/n) convergence rate for weakly universal d-

semifaithful codes in prior works holds under certain regularity

conditions on the source distribution and the distortion mea-

sure. Corollary 5 shows that eliminating these conditions

slows convergence rate to 1/
√

n, even in the non-universal

context. Here we show that with the regularity conditions

of [9] in place, upgrading to strong universality also slows

the convergence rate to O(1/
√

n).
For a given p ∈ P(A), d > 0 and ρ ∈ D, let (Q∗

B|A, λ∗) be

a solution to the Lagrange formulation of the rate-distortion

problem R(p, d, ρ) as in (51) − (55), and let Qp,d,ρ be

the corresponding optimal reconstruction distribution on B.

The assumed regularity conditions in [9] are, in our notation

(cf. [11]),

1) The matrix E(λ∗), defined by [E(λ∗)]j,k = e−λ∗ρ(j,k) is

full column rank.

2) p and Qp,d,ρ are both full support.

3) 0 < λ∗ < ∞.

4) The determinant of the Jacobian,

∂F (p, λ∗)

∂pj1∂pj2 · · · pjK
∂λ∗ , (122)

is nonzero for some 1 ≤ j1 < j2 · · · < jK ≤ J , where

F is the vector-valued function

F (p, λ∗) =















Qp,d,ρ(1)
Qp,d,ρ(2)

...

Qp,d,ρ(K)
d















, (123)
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where we have used the implicit one-to-one mapping

between λ∗ and d for a given p and ρ.

In fact, it is impossible to satisfy the fourth condition

because the first K components of F (p, λ∗) sum to one; thus,

their derivative with respect to any input must sum to zero.

This could potentially be rectified by redefining F as

F (p, λ∗) =















Qp,d,ρ(1)
Qp,d,ρ(2)

...

Qp,d,ρ(K − 1)
d















, (124)

and modifying the proofs accordingly. In any event, assump-

tion 4) is assumed in both the converse and achievability

results in [9] (and similarly in [11]), but is only used in the

proof of the converse result (and similarly in [11]). As such,

we will only consider the first three assumptions.

Lemma 11: Consider alphabets A = B = {0, 1}, fix the

distortion measure

ρ =

[

0 ρmax

ρmax 0

]

and distortion level d ∈ (0, ρmax/2). Let Pρ,d ⊂ P(A) be the

set of source distributions satisfying conditions 1)-3) above for

this choice of ρ. Then

lim inf
n→∞

inf
(ϕn,fn,gn)

sup
p∈Pρ,d

[

ln(2)

n
Ep [l(fn(ϕn(Xn)))]

− R(p, d, ρ)

]

√
n > 0,

where the infimum is over all (prefix or non-prefix)

d-semifaithful codes.

Proof: The proof is similar to that of Lemma 7 and Corol-

lary 5. Let pn ∈ P(A) be a sequence of source distributions

given by pn(1) = d̄ + 1/n, where d̄ ≜ d/ρmax, which is

well-defined for large n. Since d̄ ∈ (0, 1/2), we have, for

sufficiently large n, pn(1) ∈ (d̄, 1/2). Denoting the binary

entropy function by Hb(·), we have

Epn [R(T, d, ρ)]

=
∑

t∈Pn(A)

pn
n(Tn

A(t))R(t, d, ρ)

≥
∑

pn(1)+

√

pn(1)(1−pn(1))
n <t(1)

≤pn(1)+2

√

pn(1)(1−pn(1))
n

pn
n(Tn

A(t))
[

Hb(t(1)) − Hb(d̄)
]

≥
(

Hb

(

pn(1) +

√

pn(1)(1 − pn(1))

n

)

− Hb

(

d̄
)

)

·

P

(

pn(1) +

√

pn(1)(1 − pn(1))

n
<

1

n

n
∑

i=1

Xi

≤ pn(1) + 2

√

pn(1)(1 − pn(1))

n

)

, (125)

where the second inequality above assumes sufficiently large

n. By a simple Taylor series expansion,

Hb

(

pn(1) +

√

pn(1)(1 − pn(1))

n

)

− Hb

(

d̄
)

≥
(

1

n
+

√

pn(1)(1 − pn(1))

n

)

ln

(

1 − d̄

d̄

)

− 1

2d̄(1 − d̄)

(

1

n
+

√

pn(1)(1 − pn(1))

n

)2

≥
(

1

n
+

√

d̄(1 − d̄)

n

)

ln

(

1 − d̄

d̄

)

− 1

2d̄(1 − d̄)

(

1

n
+

√

pn(1)(1 − pn(1))

n

)2

.

(126)

A standard application of the Berry-Esseen theorem (with

constant 1/2 [40], [41]) yields

P

(

pn(1) +

√

pn(1)(1 − pn(1))

n
<

1

n

n
∑

i=1

Xi

≤ pn(1) + 2

√

pn(1)(1 − pn(1))

n

)

≥
[

Φ(2) − Φ(1) − (1 − pn(1))2 + pn(1)
2

√

npn(1)(1 − pn(1))

]

≥ 1

10
, (127)

for sufficiently large n. Substituting (126) and (127)
into (125), we have

Epn
[R(T, d, ρ)] − R(pn, d, ρ)

≥ 1

10

(

1

n
+

√

d̄(1 − d̄)

n

)

ln

(

1 − d̄

d̄

)

− 1

20 d̄(1 − d̄)

(

1

n
+

√

pn(1)(1 − pn(1))

n

)2

− R(pn, d, ρ)

= Ω

(

1√
n

)

, (128)

where the last equality above follows from the upper bound

R(pn, d, ρ)

≤ Hb(pn(1))

≤ 1

n
ln

(

1 − d̄

d̄

)

.

Now consider the subset P∗
ρ,d ⊂ P(A) defined as

P∗
ρ,d ≜ {p ∈ P(A) : d̄ < p(1) < 1/2}. (129)

We first check that the set P∗
ρ,d satisfies the

assumptions 1)-3), i.e., P∗
ρ,d ⊂ Pρ,d. Fix any p ∈ P∗

ρ,d

and let (Q∗
B|A, λ∗) be a solution to the Lagrange formulation
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of the rate-distortion problem in (51) − (55). Obviously p is

full-support, and we have

0 < d < min
k∈B

∑

j∈A

p(j)ρ(j, k). (130)

The matrix E(λ∗) associated with λ∗ and ρ,
[

1 e−λ∗ρmax

e−λ∗ρmax 1

]

,

is of full rank; hence, from [11, Lemma 7], the optimal output

distribution Qp,d,ρ is unique. From [3, Theorem 10.3.1], one

can infer that Qp,d,ρ is given by

(

Qp,d,ρ(0), Qp,d,ρ(1)
)

=

(

1 − p(1) − d̄

1 − 2d̄
,
p(1) − d̄

1 − 2d̄

)

, (131)

and it is easy to check that Qp,d,ρ is full-support for the

specified p, d and ρ. Furthermore, we have

λ∗ = − ∂

∂d
R(p, d, ρ)

= − ∂

∂d

[

Hb(p(1)) − Hb(d̄)
]

=
∂

∂d
Hb(d/ρmax),

=
1

ρmax
ln
(ρmax

d
− 1
)

.

Thus 0 < d < ρmax/2 implies that 0 < λ∗ < ∞. We conclude

that P∗
ρ,d ⊂ Pρ,d. Now the expected rate of a strongly universal

code (prefix or non-prefix) with uniform convergence over

P∗
ρ,d satisfies

sup
p∈P∗

ρ,d

[

ln(2)

n
Ep [l(fn(ϕn(Xn)))] − R(p, d, ρ)

]

(a)

≥ sup
p∈P∗

ρ,d

[

Ep [R(T, d, ρ)] − R(p, d, ρ) − (JK + J)
lnn

n

]

(b)

≥ Epn
[R(T, d, ρ)] − R(pn, d, ρ) − (JK + J)

lnn

n
(c)
= Ω

(

1√
n

)

.

Inequality (a) holds for sufficiently large n where we used

Lemmas 3 and 4 for prefix and non-prefix codes, respectively.

In inequality (b), we used the fact that the sequence of pn

satisfies pn ∈ P∗
ρ,d for every n. In equality (c), we used (128).

APPENDIX E

PROOF OF LEMMA 8

Fix d > 0. Let xn be a source sequence with type t = t(xn)
and ρ be a distortion measure. Let (Q∗

B|A, λ∗) be a solution

to the Lagrange formulation of the rate-distortion problem

as in (51) − (54) and Qt,d,ρ be the corresponding optimal

reconstruction distribution on B. Define Zi = ρ(xi, Yi) where

Yi ∼ Qt,d,ρ. Letting ϵ be any real number, we can write

P (ρn(xn, Y n) ≤ d + ϵ) = P

(

1

n

n
∑

i=1

Zi ≤ d + ϵ

)

.

Let fi be the probability mass function of Zi. The cumulant

generating function of Zi is defined as

Λi(λ) ≜ ln
(

E
[

eλZi
])

= ln

(

∑

k∈B

Qt,d,ρ(k)eλρ(xi,k)

)

.

The distribution of Zi depends on xi only through its value,

not the index. Hence, for each j ∈ A, define

Λ(j)(λ) ≜ ln

(

∑

k∈B

Qt,d,ρ(k)eλρ(j,k)

)

,

which is the cumulant generating function of Zi if xi = j.

We apply the exponential tilting technique to form the distri-

bution ri given by

ri(z)

fi(z)
= eλz−Λi(λ),

where λ is a parameter which will be chosen later. Further

define for each 1 ≤ i ≤ n

di ≜

∑

k∈B

Qt,d,ρ(k) ρ(xi, k) eλρ(xi,k)

∑

k′∈B

Qt,d,ρ(k′)eλρ(xi,k′)

and for each j ∈ A

d(j) ≜

∑

k∈B

Qt,d,ρ(k) ρ(j, k) eλρ(j,k)

∑

k′∈B

Qt,d,ρ(k′)eλρ(j,k′)
.

Then we have

P (ρn(xn, Y n) ≤ d + ϵ)

=
∑

zn: 1
n

n
∑

i=1
zi≤d+ϵ

f1(z1)f2(z2) · · · fn(zn)

= exp

(

n
∑

i=1

Λi(λ)

)

∑

zn: 1
n

n
∑

i=1
zi≤d+ϵ

exp

(

−
n
∑

i=1

λzi

)

· r1(z1)r2(z2) · · · rn(zn)

= exp

(

n
∑

i=1

Λi(λ)

)

∑

zn: 1
n

n
∑

i=1
zi≤d+ϵ

exp

(

−λ

n
∑

i=1

(zi − di

+ di)

)

r1(z1)r2(z2) · · · rn(zn)

= exp

(

−
n
∑

i=1

[λdi − Λi(λ) ]

)

∑

zn: 1
n

n
∑

i=1
zi≤d+ϵ

exp

(

− λ

·
n
∑

i=1

(zi − di)

)

r1(z1)r2(z2) · · · rn(zn)

= exp



−n



λ
∑

j∈A

t(j)d(j) −
∑

j∈A

t(j)Λ(j)(λ)









·
∑

zn: 1
n

n
∑

i=1
zi≤d+ϵ

exp

(

−λ

n
∑

i=1

(zi − di)

)

r1(z1)

· r2(z2) · · · rn(zn). (132)
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Now we fix λ = −λ∗ throughout. Then, from (51), we have

the following simplified expressions for di and d(j):

di =
∑

k∈B

Q∗
B|A(k|xi)ρ(xi, k) and (133)

d(j) =
∑

k∈B

Q∗
B|A(k|j)ρ(j, k). (134)

From (53), we have

− λ∗
∑

j∈A

t(j)d(j)

= −λ∗
∑

j∈A

t(j)
∑

k∈B

Q∗
B|A(k|j)ρ(j, k)

= −λ∗d,

Hence, we have from (54) that

exp



−n



−λ∗
∑

j∈A

t(j)d(j) −
∑

j∈A

t(j)Λ(j)(−λ∗)









= exp



−n



−λ∗d −
∑

j∈A

t(j)Λ(j)(−λ∗)









= exp (−nR(t, d, ρ)) .

Hence, with λ = −λ∗ in (132), we have

P (ρn(xn, Y n) ≤ d + ϵ)

= e−nR(t,d,ρ)
∑

zn: 1
n

n
∑

i=1
zi≤d+ϵ

exp

(

λ∗
n
∑

i=1

(zi − di)

)

· r1(z1)r2(z2) · · · rn(zn).
(135)

In (135), performing a change of variable ui = zi − di and

defining r̃i(u) = ri(u + di) for each 1 ≤ i ≤ n, we obtain

P (ρn(xn, Y n) ≤ d + ϵ)

= e−nR(t,d,ρ)
∑

un:
∑n

i=1 ui≤ϵ n

exp

(

λ∗
n
∑

i=1

ui

)

r̃1(u1)

· r̃2(u2) · · · r̃n(zn)

= e−nR(t,d,ρ)
E

[

exp

(

λ∗
n
∑

i=1

Ui

)

1

(

n
∑

i=1

Ui ≤ ϵ n

)]

,

(136)

where U1, U2, . . . , Un are independent random variables and

Ui is distributed according to r̃i(·). We next need to show that

the distribution of Ui can be written as

Ui = ρ(xi, Ỹi) −
∑

k∈B

Q∗
B|A(k|xi)ρ(xi, k), (137)

where the random variable Ỹi ∼ Q∗
B|A(·|xi). We have

ri(z) = fi(z)e−λ∗z−Λi(−λ∗)

=
∑

k∈B

Qt,d,ρ(k)1 (ρ(xi, k) = z) e−λ∗z−Λi(−λ∗)

=

∑

k∈B Qt,d,ρ(k)1(ρ(xi, k) = z)e−λ∗ρ(xi,k)

∑

k′∈B Qt,d,ρ(k′)e−λ∗ρ(xi,k′)

=
∑

k∈B

Q∗
B|A(k|xi)1(ρ(xi, k) = z),

where the last equality follows from (51). This shows that

ρ(xi, Ỹi) has the same distribution as ri(·). Hence, the asser-

tion in (137) follows from the fact that r̃i(u) = ri(u + di).
For any real number C, we can lower bound (136) as

P (ρn(xn, Y n) ≤ d + ϵ)

≥ e−nR(t,d,ρ)
E

[

exp

(

λ∗
n
∑

i=1

Ui

)

1

(

−C ≤
n
∑

i=1

Ui

≤ ϵ n

)]

≥ e−nR(t,d,ρ)−Cλ∗

P

(

−C ≤
n
∑

i=1

Ui ≤ ϵ n

)

.

This finishes the proof of Lemma 8.

APPENDIX F

PROOF OF LEMMA 9

We start with the result of Lemma 8 and reparametrize ϵ
and C in terms of nonnegative numbers C1 and α as follows:

ϵ =
C1

nα

C = C1n
1−α

Then we obtain

P

(

ρn(xn, Y n) ≤ d +
C1

nα

)

≥ exp
(

−nR(t, d, ρ) − C1λ
∗n1−α

)

· P

(

−C1n
1−α ≤

n
∑

i=1

Ui ≤ C1n
1−α

)

.

(138)

To proceed further, we consider two cases parametrized by

a nonnegative number C2:

1) var (
∑n

i=1 Ui) < C2 n2−2α

2) var (
∑n

i=1 Ui) ≥ C2 n2−2α

where var(·) denotes the variance. In the first case above,

a simple application of Chebyshev’s inequality to (138) yields

P

(

ρn(xn, Y n) ≤ d +
C1

nα

)

≥ e−nR(t,d,ρ)−C1λ∗n1−α

(

1 − C2

C2
1

)

. (139)

For the second case, we use the Berry-Esseen theorem. Each

Ui has support set

supp(Ui) = {ρ(xi, k) − di : k ∈ B} ,

where di is as defined in (133). Since we are only considering

the space of uniformly bounded distortion measures, it is easy

to see from the definition of di that

supp(Ui) ⊂ [−ρmax, ρmax].
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Clearly, each Ui has finite second- and third-order moments

which we denote by E[U2
i ] = σ2

i and E[|Ui|3] = ηi. Hence,

we can apply the Berry-Esseen theorem for non-identically

distributed summands [44]:

P

(

ρn(xn, Y n) ≤ d +
C1

nα

)

≥ exp
(

−nR(t, d, ρ) − C1λ
∗n1−α

)

· P

(

−C1n
1−α ≤

n
∑

i=1

Ui ≤ C1n
1−α

)

= exp
(

−nR(t, d, ρ) − C1λ
∗n1−α

)

· P
(

− C1n
1−α

√
∑n

i=1 σ2
i

≤
∑n

i=1 Ui
√
∑n

i=1 σ2
i

≤ C1n
1−α

√
∑n

i=1 σ2
i

)

≥ exp
(

−nR(t, d, ρ) − C1λ
∗n1−α

)

·
(

Fn

(

C1n
1−α

√
∑n

i=1 σ2
i

)

− Fn

(

− C1n
1−α

√
∑n

i=1 σ2
i

))

,

(140)

where Fn denotes the cumulative distribution function of
∑n

i=1 Ui√
∑n

i=1 σ2
i

. Now by Berry-Esseen theorem, we have that for

all n there exists an absolute constant C0 such that

sup
s∈R

|Fn(s) − Φ(s)| ≤ C0

(

n
∑

i=1

σ2
i

)−3/2 n
∑

i=1

ηi.

Since we have
n
∑

i=1

σ2
i ≥ C2n

2−2α

and ηi ≤ ρ3
max for all 1 ≤ i ≤ n, we can write

sup
s∈R

|Fn(s) − Φ(s)| ≤ C0

(

C2n
2−2α

)−3/2
nρ3

max

≤ C0(ρmax)
3

(C2)3/2n2−3α
.

Using the above bound in (140), we obtain

P

(

ρn(xn, Y n) ≤ d +
C1

nα

)

≥ exp
(

−nR(t, d, ρ) − C1λ
∗n1−α

)

·
(

Φ

(

C1n
1−α

√
∑n

i′=1 σ2
i

)

− Φ

(

− C1n
1−α

√
∑n

i′=1 σ2
i

)

− 2C0(ρmax)
3

(C2)3/2n2−3α

)

≥ exp
(

−nR(t, d, ρ) − C1λ
∗n1−α

)

·
(

Φ

(

C1

nα−1/2ρmax

)

− Φ

(

− C1

nα−1/2ρmax

)

− 2C0(ρmax)
3

(C2)3/2n2−3α

)

,

(141)

where we used the upper bound

n
∑

i=1

σ2
i ≤ nρ2

max

in the last inequality above. We now evaluate the expression

in (141) as follows:

Φ

(

C1

nα−1/2ρmax

)

− Φ

(

− C1

nα−1/2ρmax

)

=
1√
2π

∫

C1

nα−1/2ρmax

− C1

nα−1/2ρmax

e−x2/2dx

≥ 1√
2π

∫

C1

nα−1/2ρmax

− C1

nα−1/2ρmax

(

1 − x2

2

)

dx

=
2C1√

2πnα−1/2ρmax

− C3
1

3
√

2πn3α−3/2(ρmax)3
. (142)

We can use (142) in (141) to obtain

P

(

ρn(xn, Y n) ≤ d +
C1

nα

)

≥ exp
(

−nR(t, d, ρ) − C1λ
∗n1−α

)

·
(

2C1√
2πnα−1/2ρmax

− C3
1

3
√

2πn3α−3/2(ρmax)3

− 2C0(ρmax)
3

(C2)3/2n2−3α

)

≥ exp
(

−nR(t, d, ρ) − C1λ
∗n1−α

)

·
(

C1√
2πnα−1/2ρmax

− 2C0(ρmax)
3

(C2)3/2n2−3α

)

,

(143)

where inequality (143) follows by assuming

n ≥
(

(C1)
2

3(ρmax)2

)
1

2α−1

.

Note that the lower bounds in (139) and (143) hold uniformly

for all t ∈ Pn(A) and ρ ∈ D. Taking the minimum of (139)
and (143) gives the result of Lemma 9.
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