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Abstract—We introduce a distortion measure for images,
Wasserstein distortion, that simultaneously generalizes pixel-level
fidelity on the one hand and realism or perceptual quality on
the other. We discuss its metric properties. Pairs of images that
are close under Wasserstein distortion illustrate its utility. In
particular, we generate random images that have high fidelity
to a reference image in one location of the image and smoothly
transition to an independent realization as one moves away from
this point. Wasserstein distortion represents a generalization and
synthesis of prior work on texture generation, image realism and
distortion, and models of the early human visual system, in the
form of an optimizable metric in the mathematical sense.

Index Terms—Information Theory, Realism, Texture Synthesis,
Distortion-Realism Tradeoff, Distortion-Perception Tradeoff

I. INTRODUCTION

Classical image compression algorithms are optimized to

achieve high pixel-level fidelity between the source and the

reconstruction. That is, one views images as vectors in Eu-

clidean space and seeks to minimize the distance between the

original and reproduction using metrics such as PSNR, SSIM,

etc. While effective to a large extent, these objectives have

long been known to introduce artifacts, such as blurriness, into

the reconstructed image [1]. Similar artifacts arise in image

denoising, deblurring, and super-resolution.

Recently, it has been observed that such artifacts can be

reduced if one simultaneously maximizes the realism1 of the

reconstructed images. Specifically, one seeks to minimize the

distance between some distribution induced by the recon-

structed images and the corresponding distribution for natural

images [2]. A reconstruction algorithm that ensures that these

distributions are close will naturally be free of obvious arti-

facts; the two distributions cannot be close if one is supported

on the space of crisp images and the other is supported on the

space of blurry images. Image reconstruction under realism

constraints has been a subject of intensive research of late,

both of an experimental (e.g. [3]) and theoretical (e.g. [4])

nature.

Up to now, the dual objectives of fidelity and realism have

been treated as distinct and even in tension (e.g. [2], [5]). Yet

they represent two attempts to capture the same notion, namely

The first two authors were supported by the US National Science Founda-
tion under grant CCF-2306278 and a gift from Google.

1Realism is also referred to as perceptual quality by some authors.

the image quality perceived by a human observer. It is natural

then to seek a simultaneous generalization of the two. Such a

generalization could be more aligned with human perception

than either objective alone, or even a linear combination of

the two. The main contribution of this paper is one such

generalization, Wasserstein distortion, which is grounded in

models of the Human Visual System (HVS).

Realism objectives take several forms depending on how

one induces a probability distribution from images: the distri-

bution induced by the ensemble of full resolution images [6],

a distribution over patches by selecting a patch at random

from within a randomly selected image [7], or the distribution

over patches within a given image induced by selecting a

location at random and extracting the resulting patch [8].

Theoretical studies have tended to focus on the first approach

while experimental studies have focused more on patches. We

shall focus on the third approach because it lends itself more

naturally to unification with fidelity: both depend only on the

image under examination without reference to other images in

the ensemble. That said, the proposed Wasserstein distortion

can be extended naturally to videos and other sequences of

images and in this way it generalizes the other notions of

realism.

Our simultaneous generalization of fidelity and realism is

based in theories of the HVS, as noted above; namely it

resorts to computing summary statistics [9]–[11]. In particular,

Freeman and Simoncelli [12] propose a model of the HVS

focusing on the ventral stream. The visual field is divided

into various receptive fields, and the ventral stream extracts

information from each of them. The receptive fields grow with

eccentricity, as depicted in Fig. 1. In the visual periphery, the

receptive fields are large and only the response statistics are

acquired. In the fovea, i.e., the center of gaze, the receptive

field is assumed small enough that the statistics uniquely

determine the image itself. See [12] for a complete description

of the model. One virtue of this model is that it does not

require separate theories of foveal and peripheral vision: the

distinction between the two is simply the result of different

receptive field sizes.

This unification of foveal and peripheral vision likewise

suggests a way of unifying fidelity and realism objectives. For

each location in an image, we compute the distribution of
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although in general we do not even assume that d is a

metric. We define the distortion between the reference and

reconstructed images at location n to be

Dn,σ(n) = W p
p

�

yn,σ(n), ŷn,σ(n)
�

, (7)

where Wp denotes the Wasserstein distance of order p [17,

Def. 6.1]2:

Wp(ρ, ρ̂) = inf
Z⇠ρ,Ẑ⇠ρ̂

E

h

dp(Z, Ẑ)
i1/p

, (8)

where ρ and ρ̂ are probability measures on R
d. The distortion

over a block {−N, . . . , N} is defined as the spatial average

D = D(x,x0) =
1

2N + 1

N
X

n=�N

Dn,σ(n). (9)

Wasserstein distance is widely employed due to its favorable

theoretical properties. In practice one might adopt a proxy for

(8) that is easier to compute. Following the approach used

with Fréchet Inception Distance (FID) [18], one could replace

(8) with

||µ− µ̂||22 +Tr(C + Ĉ − 2(Ĉ1/2CĈ1/2)1/2). (10)

This is equivalent to W p
p if we take p = 2, d to be

Euclidean distance, and assume that ρ (resp. ρ̂) is Gaussian

with mean µ (resp. µ̂) and covariance matrix C (resp. Ĉ). In

our experiments, we simplify this even further by assuming

that the features are uncorrelated,

d
X

i=1

(µi − µ̂i)
2 +

✓

p

Vi −

q

V̂i

◆2

, (11)

where µi and Vi are the mean and variance of the ith
component under ρ and similarly for ρ̂. This is justified when

the feature set is overcomplete because the correlation between

two features is likely to be captured by some third feature, as

noted previously by [19]. Other possible proxies include sliced

Wasserstein distance [20], Sinkhorn distance [21], Maximum

Mean Discrepancy (MMD) [22], or the distance between Gram

matrices [16].

The idea of measuring the discrepancy between images via

the Wasserstein distance, or some proxy thereof, between dis-

tributions in feature space is not new (e.g. [19], [20]). As they

are concerned with ergodic textures or image stylization, these

applications effectively assume a form of spatial homogeneity,

which corresponds to the regime of large pooling regions

(σ → ∞) in our formulation, and empirical distributions with

equal weights over the pixels. That is, the pooling PMF in

(5) is taken to be uniform over a large interval centered at

zero (e.g., Eq. (1) of [23]). Our goal here is to lift fidelity

and realism into a common framework by considering the full

range of σ values, and we shall see next that for small or

moderate values of σ, the uniform PMF is problematic.

2We refer to Wp as the Wasserstein distance even though it is not
necessarily a metric if d is not a metric.

Fig. 2. A pictorial illustration of (5). In the right plot, the size of the disk
indicates the probability mass and the vertical coordinate of the center of the
disk indicates the value.

III. METRIC PROPERTIES OF WASSERSTEIN DISTORTION

As σ → 0, one can show that Wasserstein distortion

converges to the conventional distortion between z and ẑ

as measured by d raised to the p-th power [13]. If the

source and reconstruction represent ergodic processes, then

as σ → ∞, Wasserstein distortion converges almost surely

to the Wasserstein distance, again to the p-th power, between

the marginal distributions of Z and Ẑ [13]. In the σ → ∞

regime, Wasserstein distortion will therefore not be a true

metric in that certain pairs of distinct x and x
0 will have

zero distortion, e.g., a pair of realizations drawn independently

from the same ergodic process. Practically speaking, when σ

is large, the Wasserstein distortion between two independent

realizations of the same texture will be essentially zero. When

σ is small, however, we want Wasserstein distortion to behave

as a conventional distortion measure and as such it is desirable

that it be a metric or a power thereof. In particular, we desire

that it satisfy positivity, i.e., that D(x,x0) ≥ 0 with equality

if and only if x = x
0.

Whether Wasserstein distortion satisfies positivity at finite σ

depends crucially on the choice of the pooling PMF. Consider,

for example, the popular uniform PMF:

qm(k) =

(

1
2m+1 if |k| ≤ m

0 otherwise.
(12)

In this case Wasserstein distortion does not satisfy positivity,

even over the feature space, for any m: a periodic signal

with period 2m + 1 and its shifted variants would be dis-

tinct sequences with distortion zero. In practice, this means

that Wasserstein distortion with a uniform pooling PMF is

oblivious to certain blocking artifacts [13].

The problem lies with the spectrum of the pooling PMF.

This is easiest to see in the case of MMD, for which the

Wasserstein distortion reduces to the squared Euclidean dis-

tance between the convolution of the feature vectors with the

pooling PMF. Thus if the pooling PMF has a spectral null,

feature vectors that have all of their energy located at the

null are indistinguishable from zero. Conversely, if the pooling

PMF has no spectral nulls, then Wasserstein distortion is the

p-th power of a metric, as we state next. For this theorem,

we assume that x and x
0 (resp. z and z

0) are finite-length

sequences, and the indexing in (5) is wraparound. For the

proof, please see the full version [13].
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Theorem III.1. For any 0 ≤ σ < ∞, if d is a metric and

qσ(·) has no spectral nulls, then D(z, z0)1/p is a metric. If, in

addition, φ(·) is invertible then D(x,x0)1/p is also a metric.

When σ is large, the PMF will be nearly flat over a wide

range, so its spectrum will necessarily decay quickly. For small

σ, the PMF is concentrated in time, so the spectrum can be

made nearly flat in frequency if one chooses. Theoretically

speaking, we need only to avoid PMFs with spectral nulls,

such as the uniform distribution, to ensure positivity. Practi-

cally speaking, we desire pooling PMFs with a good condition

number, meaning that the ratio of the maximum of the power

spectrum to its minimum is small. In this vein, we note that the

two-sided geometric PMF in (4) is well-conditioned, whereas

the raised-cosine-type PMF used in [12, Eq. (9) with t = 1/2]

has a condition number that is larger by almost four orders

of magnitude for pooling regions around size 20. Note that

papers in the literature that rely on uniform PMFs are focused

on realism, i.e., the large σ regime, for which the presence of

spectral nulls is less of a concern.

IV. EXPERIMENTS

We validate Wasserstein distortion using the method es-

poused by [24], namely by taking an image of random pixels

and iteratively modifying it to reduce its Wasserstein distortion

to given a reference image. Following [16], we use as our

feature map selected activations within the VGG-19 network

with some modifications. We use the scalar Gaussianized

Wasserstein distance in (11) as a computational proxy for (8).

For the pooling PMF, we take the horizontal and vertical

offsets to be i.i.d. according to the two-sided geometric distri-

bution in (4), conditioned on landing within the boundaries of

the image. We minimize the Wasserstein distortion between

the reference and reconstructed images using the L-BFGS

algorithm [25] with 4, 000 iterations and an early stopping

criterion. For a detailed explanation, please refer to the full

version [13].

A. Pinned Texture Synthesis

We consider texture images, with σ varying spatially over

the image. Specifically, we set σ = 0 for pixels near the center;

other pixels are assigned a σ proportional to their distance to

the nearest pixel with σ = 0, with the proportionality constant

chosen so that the outermost pixels have a σ that is comparable

to the width of the image. The choice of having σ grow

linearly with distance to the region of interest is supported

by studies of the HVS. There are both physiological [26] and

operational [12] evidences that the size of the receptive fields

in the HVS grows linearly with eccentricity. If one seeks to

produce images that are difficult for a human observer to easily

distinguish, it is natural to match the pooling regions to the

corresponding receptive fields when the gaze is focused on

the σ = 0 region. Under this σ-map, Wasserstein distortion

behaves like a fidelity measure in the center of the image

and a realism measure along the edges, with an interpolation

of the two in between. The results are shown in Fig. 3. The

σ = 0 points have the effect of pinning the reconstruction

to the original in the center, with a gradual transition to an

independent realization at the edge.

B. Reproduction of Natural Images with Saliency Maps

We use the SALICON dataset [27] which provides a saliency

map for each image that we use to produce a σ-map. Specif-

ically, we set a saliency threshold above which pixels are

declared high-salient. For such pixels we set σ = 0. For all

other pixels σ is proportional to the distance to the nearest

high-salient point, with the proportionality constant such that

the farthest points should have a σ value on par with the width

of the image.

The results are shown in Fig. 4. For images for which the

non-salient regions are primarily textures, the reproductions

are plausible replacements for the originals. In some other

cases, the images appear to be plausible replacements if one

focuses on high-salient regions, but not if one scrutinizes the

entire image. This suggests that Wasserstein distortion can

capture the discrepancy observed by a human viewer focused

on high-salient regions.

It should be emphasized that the process of producing the

reconstructions in Fig. 4 requires no pre-processing or manual

labeling. In particular, it is not necessary to segment the image.

Given a binarized saliency map, the σ-map can be constructed

automatically using the above procedure, at which point the

Wasserstein distortion is well defined.

Due to file size constraints, the images in this paper are

compressed. For uncompressed images and additional results,

please see the full version [13].
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Fig. 4. For each row, the first image is the reference image and the second is the reproduction; the third is the difference between the two; and the fourth
is the saliency map from SALICON before binarization. In the high saliency regions, the reconstruction exhibits pixel-level fidelity. Elsewhere, it exhibits
realism or an interpolation of the two. Note that the goal of this experiment is not to reproduce images that withstand visual scrutiny in all regions, but to
demonstrate how Wasserstein distortion becomes increasingly permissive to error towards the visual periphery, and that the errors that are permitted can be
quite difficult to spot when viewing the salient regions at an appropriate distance. The misplaced foul lines in the fifth example are likely a manifestation
of VGG-19’s recognized difficulty with reproducing long linear features in textures (e.g. [28], [29]). This is evidenced through the last example, where the
reference image has been downsampled so that VGG-19 better captures the long-range dependence. Compare with [12, Fig. 2].
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