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Abstract—We introduce a distortion measure for images,
Wasserstein distortion, that simultaneously generalizes pixel-level
fidelity on the one hand and realism or perceptual quality on
the other. We discuss its metric properties. Pairs of images that
are close under Wasserstein distortion illustrate its utility. In
particular, we generate random images that have high fidelity
to a reference image in one location of the image and smoothly
transition to an independent realization as one moves away from
this point. Wasserstein distortion represents a generalization and
synthesis of prior work on texture generation, image realism and
distortion, and models of the early human visual system, in the
form of an optimizable metric in the mathematical sense.

Index Terms—Information Theory, Realism, Texture Synthesis,
Distortion-Realism Tradeoff, Distortion-Perception Tradeoff

I. INTRODUCTION

Classical image compression algorithms are optimized to
achieve high pixel-level fidelity between the source and the
reconstruction. That is, one views images as vectors in Eu-
clidean space and seeks to minimize the distance between the
original and reproduction using metrics such as PSNR, SSIM,
etc. While effective to a large extent, these objectives have
long been known to introduce artifacts, such as blurriness, into
the reconstructed image [1]. Similar artifacts arise in image
denoising, deblurring, and super-resolution.

Recently, it has been observed that such artifacts can be
reduced if one simultaneously maximizes the realism' of the
reconstructed images. Specifically, one seeks to minimize the
distance between some distribution induced by the recon-
structed images and the corresponding distribution for natural
images [2]. A reconstruction algorithm that ensures that these
distributions are close will naturally be free of obvious arti-
facts; the two distributions cannot be close if one is supported
on the space of crisp images and the other is supported on the
space of blurry images. Image reconstruction under realism
constraints has been a subject of intensive research of late,
both of an experimental (e.g. [3]) and theoretical (e.g. [4])
nature.

Up to now, the dual objectives of fidelity and realism have
been treated as distinct and even in tension (e.g. [2], [5]). Yet
they represent two attempts to capture the same notion, namely
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the image quality perceived by a human observer. It is natural
then to seek a simultaneous generalization of the two. Such a
generalization could be more aligned with human perception
than either objective alone, or even a linear combination of
the two. The main contribution of this paper is one such
generalization, Wasserstein distortion, which is grounded in
models of the Human Visual System (HVS).

Realism objectives take several forms depending on how
one induces a probability distribution from images: the distri-
bution induced by the ensemble of full resolution images [6],
a distribution over patches by selecting a patch at random
from within a randomly selected image [7], or the distribution
over patches within a given image induced by selecting a
location at random and extracting the resulting patch [8].
Theoretical studies have tended to focus on the first approach
while experimental studies have focused more on patches. We
shall focus on the third approach because it lends itself more
naturally to unification with fidelity: both depend only on the
image under examination without reference to other images in
the ensemble. That said, the proposed Wasserstein distortion
can be extended naturally to videos and other sequences of
images and in this way it generalizes the other notions of
realism.

Our simultaneous generalization of fidelity and realism is
based in theories of the HVS, as noted above; namely it
resorts to computing summary statistics [9]-[11]. In particular,
Freeman and Simoncelli [12] propose a model of the HVS
focusing on the ventral stream. The visual field is divided
into various receptive fields, and the ventral stream extracts
information from each of them. The receptive fields grow with
eccentricity, as depicted in Fig. 1. In the visual periphery, the
receptive fields are large and only the response statistics are
acquired. In the fovea, i.e., the center of gaze, the receptive
field is assumed small enough that the statistics uniquely
determine the image itself. See [12] for a complete description
of the model. One virtue of this model is that it does not
require separate theories of foveal and peripheral vision: the
distinction between the two is simply the result of different
receptive field sizes.

This unification of foveal and peripheral vision likewise
suggests a way of unifying fidelity and realism objectives. For
each location in an image, we compute the distribution of
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Fig. 1. Receptive fields in the ventral stream grow with eccentricity.

features locally around that point using a weight function that
decreases with increasing distance. The Wasserstein distance
between the distributions computed for a particular location
in two images measures the discrepancy between the images
at that point. The overall distortion between the two images
is then the sum of these Wasserstein distances across all
locations. We call this Wasserstein distortion. If when con-
structing the distribution of features around a point, we use
a strict notion of locality, i.e., a weight function that falls off
quickly with increasing distance, then this reduces to a fidelity
measure, akin to small receptive fields in the HVS model [12].
If we use a loose notion of locality, i.e., a weight function that
falls off slowly with distance, then this reduces to a realism
measure, akin to large receptive fields. Between the two is an
intermediate regime with elements of both.

We propose the use of a one-parameter family of weight
functions, where the parameter (o) governs how strictly lo-
cality is defined. We find that to obtain good results requires
careful selection of the family, especially its spectral proper-
ties. We prove that under a properly chosen weight function,
Wasserstein distortion is a proper metric.

The balance of the paper is organized as follows. Section II
consists of a mathematical description of Wasserstein distor-
tion. Section IIT discusses metric properties of the distortion
measure. Section [V contains our experimental results, specif-
ically randomly generated images that are close to references
under our distortion measure. An extended version of the
paper with additional commentary and experimental results
is available [13].

II. DEFINITION OF WASSERSTEIN DISTORTION

We turn to defining Wasserstein distortion between a ref-
erence image, represented by a sequence x = {x,}2 __,
and a reconstructed image, denoted by X = {Z,}0_ .
For notational simplicity, we shall consider 1-D sequences of
infinite length, the 2-D case being a straightforward extension.

Let T denote the unit advance operation, i.e., if x’ = Tx

then
(D

oT by T*.

’
Ty = Tn+1-

We denote the k-fold composition 7o T o - --

Let ¢(x) : R” + R? denote a vector of local features
of {z,}22__ about n = 0. The simplest example is the

coordinate map, ¢(x) = xzo. More generally, ¢(-) can take
the form of a convolution with a kernel «(-)

(@)

or, since ¢ may be vector-valued, it can take the form of a
convolution with several kernels of the form in (2). There
exist multiple choices of ¢(-): a steerable pyramid (e.g. [14]),
convolution with a kernel as in (2) with random weights
followed by a nonlinear activation function [15], a trained
multi-layer convolutional neural network [16], etc.

Define the sequence z by

zn = ¢(T"x) 3)

and note that z, € R? for each n. We view z as a represen-
tation of the image x in feature space.

Let ¢, (k), k € Z, denote a family of probability mass func-
tions (PMFs) over the integers, parameterized by 0 < o < oo,
satisfying:

P.1 For any o and k, ¢, (k) = q,(—k);
P.2 For any o and k,k’ € Z such that |k| < |K/|, ¢,(k) >
C_Ia(k/);
P3 If 0 = 0, g, is the Kronecker delta function, i.e., qo(k) =
1 k=0
0 k#0
P4 For all k, ¢, (k) is continuous in ¢ at o = 0;
P.5 There exists ¢ > 0 and K so that for all k£ such that
|k] > K, g,(k) is nondecreasing in o over the range
[0, €]; and
P.6 For any k, lim,_, o g, (k) = 0.
We call ¢, () the pooling PMF and o the pooling width or
pooling parameter. One PMF satisfying P.1-P.6 is the two-
sided geometric distribution,

et e e if g >0
(k) =<1 ifo=0and k=0 (4
0 otherwise.

In practice, the size of the pooling region, or equivalently
o, would vary across image. We define the o-map: o(n) to
allow o to depend on n.

From the sequence x, we define a sequence of probability
measures Yo = {Yn,o(n) e oo Vid

Yn,o(n) = Z QU(n)(k)(Sszrka )

k=—00

where z is related to x through (3) and §. denotes the
Dirac delta measure. Each measure y,, ;) in the sequence
represents the statistics of the features pooled across a region
centered at n with effective width o. Note that all measures in
y share the same countable support set in R?; they differ only
in the probability that they assign to the points in this set. See
Fig. 2. Similarly, we define x = {Z,,}2° _ ., 2 ={2,}32 _ ..
and Yo = {Un,0(n) }ne— oo for the reconstructed image.

Let d : R? x R?  [0,00) denote an arbitrary distortion
measure over the feature space. One natural choice is Eu-
clidean distance

(6)

d(z,2) = ||z = 22,
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although in general we do not even assume that d is a
metric. We define the distortion between the reference and
reconstructed images at location n to be

Dn,a(n) = W;])) (yn,a(n),gn,a(n)) ) @)

where W, denotes the Wasserstein distance of order p [17,
Def. 6.1]%:
Wy(p.p) = inf

E {d”(Z, Z)} v ®)
Zeop,Zrp

where p and p are probability measures on R¢. The distortion
over a block {—N, ..., N} is defined as the spatial average

N

1
D=D(x,x') = 2N+1 > Dyoin)- )
N

Wasserstein distance is widely employed due to its favorable
theoretical properties. In practice one might adopt a proxy for
(8) that is easier to compute. Following the approach used
with Fréchet Inception Distance (FID) [18], one could replace
(8) with

= @3 + Te(C + C = 2(CY2CCY2)2). (10)

This is equivalent to Wg’ if we take p = 2, d to be
Euclidean distance, and assume that p (resp. p) is Gaussian
with mean p (resp. 1) and covariance matrix C' (resp. C‘). In
our experiments, we simplify this even further by assuming
that the features are uncorrelated,

— ) + <\/V7— \/;z>2

where p; and V; are the mean and variance of the ith
component under p and similarly for p. This is justified when
the feature set is overcomplete because the correlation between
two features is likely to be captured by some third feature, as
noted previously by [19]. Other possible proxies include sliced
Wasserstein distance [20], Sinkhorn distance [21], Maximum
Mean Discrepancy (MMD) [22], or the distance between Gram
matrices [16].

The idea of measuring the discrepancy between images via
the Wasserstein distance, or some proxy thereof, between dis-
tributions in feature space is not new (e.g. [19], [20]). As they
are concerned with ergodic textures or image stylization, these
applications effectively assume a form of spatial homogeneity,
which corresponds to the regime of large pooling regions
(0 — o0) in our formulation, and empirical distributions with
equal weights over the pixels. That is, the pooling PMF in
(5) is taken to be uniform over a large interval centered at
zero (e.g., Eq. (1) of [23]). Our goal here is to lift fidelity
and realism into a common framework by considering the full
range of o values, and we shall see next that for small or
moderate values of o, the uniform PMF is problematic.

d

> (ui

i=1

an

2We refer to W, as the Wasserstein distance even though it is not
necessarily a metric if d is not a metric.
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Fig. 2. A pictorial illustration of (5). In the right plot, the size of the disk
indicates the probability mass and the vertical coordinate of the center of the
disk indicates the value.

III. METRIC PROPERTIES OF WASSERSTEIN DISTORTION

As 0 — 0, one can show that Wasserstein distortion
converges to the conventional distortion between z and Z
as measured by d raised to the p-th power [13]. If the
source and reconstruction represent ergodic processes, then
as 0 — oo, Wasserstein distortion converges almost surely
to the Wasserstein distance, again to the p-th power, between
the marginal distributions of Z and Z [13]. In the 0 —
regime, Wasserstein distortion will therefore not be a true
metric in that certain pairs of distinct x and x’ will have
zero distortion, e.g., a pair of realizations drawn independently
from the same ergodic process. Practically speaking, when o
is large, the Wasserstein distortion between two independent
realizations of the same texture will be essentially zero. When
o 1s small, however, we want Wasserstein distortion to behave
as a conventional distortion measure and as such it is desirable
that it be a metric or a power thereof. In particular, we desire
that it satisfy positivity, i.e., that D(x,x’) > 0 with equality
if and only if x = x’.

Whether Wasserstein distortion satisfies positivity at finite o
depends crucially on the choice of the pooling PMF. Consider,
for example, the popular uniform PMF:

12
0 otherwise. (12)

In this case Wasserstein distortion does not satisfy positivity,
even over the feature space, for any m: a periodic signal
with period 2m + 1 and its shifted variants would be dis-
tinct sequences with distortion zero. In practice, this means
that Wasserstein distortion with a uniform pooling PMF is
oblivious to certain blocking artifacts [13].

The problem lies with the spectrum of the pooling PMF.
This is easiest to see in the case of MMD, for which the
Wasserstein distortion reduces to the squared Euclidean dis-
tance between the convolution of the feature vectors with the
pooling PMF. Thus if the pooling PMF has a spectral null,
feature vectors that have all of their energy located at the
null are indistinguishable from zero. Conversely, if the pooling
PMF has no spectral nulls, then Wasserstein distortion is the
p-th power of a metric, as we state next. For this theorem,
we assume that x and x’ (resp. z and z') are finite-length
sequences, and the indexing in (5) is wraparound. For the
proof, please see the full version [13].
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Theorem IIl.1. For any 0 < o < oo, if d is a metric and
4o (+) has no spectral nulls, then D(z,2')'/? is a metric. If, in
addition, ¢(-) is invertible then D(x,x')'/? is also a metric.

When o is large, the PMF will be nearly flat over a wide
range, so its spectrum will necessarily decay quickly. For small
o, the PMF is concentrated in time, so the spectrum can be
made nearly flat in frequency if one chooses. Theoretically
speaking, we need only to avoid PMFs with spectral nulls,
such as the uniform distribution, to ensure positivity. Practi-
cally speaking, we desire pooling PMFs with a good condition
number, meaning that the ratio of the maximum of the power
spectrum to its minimum is small. In this vein, we note that the
two-sided geometric PMF in (4) is well-conditioned, whereas
the raised-cosine-type PMF used in [12, Eq. (9) with ¢ = 1/2]
has a condition number that is larger by almost four orders
of magnitude for pooling regions around size 20. Note that
papers in the literature that rely on uniform PMFs are focused
on realism, i.e., the large o regime, for which the presence of
spectral nulls is less of a concern.

IV. EXPERIMENTS

We validate Wasserstein distortion using the method es-
poused by [24], namely by taking an image of random pixels
and iteratively modifying it to reduce its Wasserstein distortion
to given a reference image. Following [16], we use as our
feature map selected activations within the VGG-19 network
with some modifications. We use the scalar Gaussianized
Wasserstein distance in (11) as a computational proxy for (8).
For the pooling PMF, we take the horizontal and vertical
offsets to be i.i.d. according to the two-sided geometric distri-
bution in (4), conditioned on landing within the boundaries of
the image. We minimize the Wasserstein distortion between
the reference and reconstructed images using the L-BFGS
algorithm [25] with 4,000 iterations and an early stopping
criterion. For a detailed explanation, please refer to the full
version [13].

A. Pinned Texture Synthesis

We consider texture images, with o varying spatially over
the image. Specifically, we set ¢ = 0 for pixels near the center;
other pixels are assigned a o proportional to their distance to
the nearest pixel with ¢ = 0, with the proportionality constant
chosen so that the outermost pixels have a o that is comparable
to the width of the image. The choice of having o grow
linearly with distance to the region of interest is supported
by studies of the HVS. There are both physiological [26] and
operational [12] evidences that the size of the receptive fields
in the HVS grows linearly with eccentricity. If one seeks to
produce images that are difficult for a human observer to easily
distinguish, it is natural to match the pooling regions to the
corresponding receptive fields when the gaze is focused on
the 0 = 0 region. Under this o-map, Wasserstein distortion
behaves like a fidelity measure in the center of the image
and a realism measure along the edges, with an interpolation
of the two in between. The results are shown in Fig. 3. The
o = 0 points have the effect of pinning the reconstruction

to the original in the center, with a gradual transition to an
independent realization at the edge.

B. Reproduction of Natural Images with Saliency Maps

We use the SALICON dataset [27] which provides a saliency
map for each image that we use to produce a o-map. Specif-
ically, we set a saliency threshold above which pixels are
declared high-salient. For such pixels we set ¢ = 0. For all
other pixels o is proportional to the distance to the nearest
high-salient point, with the proportionality constant such that
the farthest points should have a ¢ value on par with the width
of the image.

The results are shown in Fig. 4. For images for which the
non-salient regions are primarily textures, the reproductions
are plausible replacements for the originals. In some other
cases, the images appear to be plausible replacements if one
focuses on high-salient regions, but not if one scrutinizes the
entire image. This suggests that Wasserstein distortion can
capture the discrepancy observed by a human viewer focused
on high-salient regions.

It should be emphasized that the process of producing the
reconstructions in Fig. 4 requires no pre-processing or manual
labeling. In particular, it is not necessary to segment the image.
Given a binarized saliency map, the o-map can be constructed
automatically using the above procedure, at which point the
Wasserstein distortion is well defined.

Due to file size constraints, the images in this paper are
compressed. For uncompressed images and additional results,
please see the full version [13].
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Fig. 4. For each row, the first image is the reference image and the second is the reproduction; the third is the difference between the two; and the fourth
is the saliency map from SALICON before binarization. In the high saliency regions, the reconstruction exhibits pixel-level fidelity. Elsewhere, it exhibits
realism or an interpolation of the two. Note that the goal of this experiment is not to reproduce images that withstand visual scrutiny in all regions, but to
demonstrate how Wasserstein distortion becomes increasingly permissive to error towards the visual periphery, and that the errors that are permitted can be
quite difficult to spot when viewing the salient regions at an appropriate distance. The misplaced foul lines in the fifth example are likely a manifestation
of VGG-19’s recognized difficulty with reproducing long linear features in textures (e.g. [28], [29]). This is evidenced through the last example, where the
reference image has been downsampled so that VGG-19 better captures the long-range dependence. Compare with [12, Fig. 2].
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