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Abstract— Thermal imaging is effective in low-light or night-
time conditions due to its ability to capture thermal radiation
differences, but lacks texture compared to visible images.
Conversely, visible images retain more texture information,
particularly during the daytime, but perform poorly at night.
To address the limitations of both modalities, recent methods
have utilized fusion techniques to generate images that combine
thermal and visible properties. This paper presents an end-to-
end fusion network leveraging generative adversarial networks
(GANs) to fuse salient components from both modalities. Our
network includes a generator and two discriminators. The
generator produces fusion images with salient objects using
a specially designed CIoU loss, while the discriminators ensure
that the fused images are salient at both holistic and local scales.
One discriminator encourages the fused images to resemble
visible images overall, while the other ensures that targeted
objects in the fused images are as salient as in thermal images.
Our method effectively preserves thermal radiation of salient
objects in infrared images while incorporating the textures of
visible images.

I. INTRODUCTION

Fusion aims to combine salient features from different

modalities’ images, resulting in a single image that retains

the strengths of both. Thermal images, also known as long-

wave infrared images, capture objects via thermal radiation,

while visible images provide texture and intensity informa-

tion. The fused result offers a comprehensive and clear de-

piction by leveraging the complementarity of the modalities.

The key challenge in fusion is to extract effective salient

features from different image types and merge them into a

single image. Various fusion methods have been developed,

including multi-scale transform [34], [20], [21], non-multi-

scale transform [16], [49], [3], [15], sparse representation

[22], [52], [45], and saliency-based methods [53], [11].

These methods focus on manual feature extraction and fusion

rules for improved performance. However, as fusion quality

requirements advance, the complexity of fusion rules and

feature extraction methods increases, posing limitations in

terms of computational cost and implementation difficulty.

Early learning-based approaches focused on feature ex-

traction, while traditional fusion rules were used for the

fusion process [24], [19]. Manual fusion rules may overlook

salient features, degrading the quality of the fused image.

To address this, fusion methods based on regular GANs and

their variants have been proposed to overcome the lack of

ground truth. However, these GAN-based methods tend to

make the fused image resemble one source image, leading to

the loss of critical information from the other source images.
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Motivated by recent advancements in GAN-based image

fusion techniques [30], [29], we introduce a novel ap-

proach for fusing thermal and visible images using a dual-

discriminator least-squares generative adversarial network

(GAN) [54]. Our method aims to seamlessly combine the

thermal pixel intensities of target objects with the holistic vis-

ible appearance and textures. The generator of our network

is tasked with producing fused images that capture both the

thermal radiation characteristics of objects and the detailed

textures present in visible images, leveraging the Complete

Intersection over Union (CIoU) constraint [54]. Additionally,

our approach employs two discriminators, each focusing on

different aspects of the fusion process: one emphasizing

texture clues from visible images and the other ensuring the

preservation of salient intensity clues from thermal images.

By adopting this architecture, we eliminate the need for

manual fusion rule design.

In summary, our contributions are threefold: (1) We pro-

pose an end-to-end TVFusionGAN framework for infrared

and visible image fusion, offering a seamless fusion process

without the need for manual intervention. (2) Through the

utilization of two discriminators with distinct emphases, our

model effectively preserves both holistic texture information

from visible images and local salient object information

from thermal images. (3) Our proposed structure optimally

leverages the benefits of enriched image information obtained

from the two discriminators, while maintaining high fusion

efficiency with a single generator.

II. RELATED WORK

Conventional Image Fusion Methods: Multi-scale trans-

form is a widely adopted approach in image fusion, involv-

ing decomposing infrared and visible images into different

scales and fusing them using specific fusion rules. Pyramidal

transforms [43], [4], [26], wavelet transform [34], [25], and

curvelet transform [5], [6], [7] are among the most classical

methods, along with their variants [20].

Non-multi-scale transform methods encompass various

techniques not solely reliant on multi-scale transform. These

include non-linear methods, pixel-level weighted averaging,

estimation-based methods, and color composite fusion. Ther-

rien et al. [41] proposed a spatially adaptive enhancement

approach followed by fusion to combine low-light visible

and infrared images, demonstrating effective performance

[8], [9], [10]. Principal component analysis (PCA) [39]

and adaptive weighted averaging [17] are two representative

pixel-level methods. Estimation-based approaches, such as

maximum a posteriori (MAP) theory, utilize prior and image

formation models. For instance, Shen et al. [40] introduced a
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Fig. 1. Illustration of the proposed image fusion pipeline. The generator synthesizes a fused image from input thermal and visible images. Discriminator 1
emphasizes preserving holistic visual characteristics, while Discriminator 2 ensures the retention of salient objects from the thermal imagery. The network
architecture on the right illustrates the components and their connections.

hierarchical multivariate conditional Gaussian random field

model based on physiological findings for local contrast

detection probability. Additionally, color composite fusion

methods have been explored [1], [50].

Sparse representation methods utilize an over-complete

dictionary to represent images with sparse coefficients, facil-

itating efficient representation of salient features [51], [35],

[22]. These methods are less susceptible to mis-registration

and leverage fixed-basis functions. Yang and Li proposed a

multi-focus image fusion technique employing sparse repre-

sentation [51]. Pati et al. introduced an orthogonal matching

pursuit (OMP) algorithm for obtaining sparse coefficients

[35]. Additionally, Li et al. proposed a Dictionary Learning

method with Group Sparsity and Graph Regularization (DL-

GSGR), ensuring group sparsity and preserving local group

geometrical structure [22].

Saliency-based techniques improve the visual quality of

fused images by highlighting salient objects and pixel in-

tensities. Zhang et al. [53] introduced a hybrid method that

integrates multi-scale decomposition and saliency detection

to retain global salient edges, local salient objects, and object

contrast. However, these approaches frequently incorporate

similar salient features, such as edges and lines, and depend

on manual feature extraction and fusion rules, resulting in

complex implementations to achieve enhanced performance.

Learning-based image fusion: In addition to the afore-

mentioned methods, deep learning-based approaches [37],

[19], [18], [30], [29], [28], [14], [23] have garnered signifi-

cant attention for their ability to extract salient features from

various image types. These methods leverage convolutional

neural networks (CNNs) for feature extraction combined

with manual fusion rules [37], [19], [18]. For instance,

Prabhakar et al. introduced Deepfuse [37], an unsupervised

CNN fusion architecture operating in the Y channel of two

YCbCr images for multi-exposure fusion. The generated

luminance channel (Yfused) is then merged with Cbfused
and Crfused using different fusion strategies [36], [42],

[46]. Liu et al. [19] proposed a fusion model based on a

deep CNN to generate an accurate score map, followed by

their fusion scheme for obtaining the final fusion results. Li

and Wu presented DenseFuse [18], a learning-based network

consisting of an encoder for feature extraction and a decoder

for fusion image reconstruction. While DenseFuse employs

offline fusion strategies during testing, these strategies are

applied between the encoder and decoder networks. Notably,

the CNN-based fusion models mentioned above rely on

manual methods to obtain the final fusion result.

Subsequently, GAN-based fusion methods automate the

fusion process by establishing an adversarial game between a

generator and a discriminator [30], [28], [29]. The generator

synthesizes a fusion image sample from infrared and visible

images to deceive the discriminator, which distinguishes

real and fake data. Various improved GAN-based fusion

methods have been proposed, including least-squares GANs

and conditional GANs. These methods enhance the fusion

process by incorporating additional loss functions in the

generator. For instance, Ma et al. [29] introduced a dual-

discriminator conditional GAN with an improved generator

loss, where the discriminators specialize in analyzing the

infrared and visible properties within the fused image.

III. TVFUSIONGAN ADVERSARIAL NETWORK

The proposed model leverages an adversarial game be-

tween a dual-discriminator and a generator to reconstruct

fused images, incorporating a CIoU constraint and a salient

target-based constraint. The salient target-based constraint

ensures that the pixel intensities of the fused image closely

match those of the corresponding objects in the thermal

images, while preserving the holistic intensity texture infor-

mation from the visible images.

A. Multi-level Adversarial Learning Network

Figure 1 illustrates the dual-discriminator generative ad-

versarial fusion framework. This framework jointly learns

an image that captures the object’s thermal radiation from

the infrared image and appearance texture from the visible

image. The framework consists of three parts.

In Fig. 1, the blue-marked network on the left side

represents the generative network. It employs an encoder-

decoder structure, depicted in the middle of the right side,

with the concatenated infrared and visible grayscale images

as input. The encoder network consists of a convolutional

layer (C1) and a dense block for salient feature extraction.

C1 utilizes a 3 × 3 filter and batch normalization [13] for

preliminary feature extraction. The dense block comprises

four convolutional layers, each with a 3 × 3 filter and
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batch normalization, where the inputs to each layer are the

concatenation of outputs from the previous layers. The dense

block aims to preserve more salient features for subsequent

fusion. The decoder network includes five convolutional

layers, each with a 3 × 3 filter, for further interpreting the

feature representations. The final fused image is generated

using the tanh activation function.

The second component, referred to as Discriminator 1 in

Fig. 1, is responsible for discerning whether the input image

is real or fake, with the objective of ensuring that the fused

images resemble visible images. It comprises five convolu-

tional layers followed by a linear layer for classification.

Each convolutional layer, excluding the first one, employs

a 3×3 filter and utilizes the leaky ReLU activation function

[32]. Batch normalization is applied to the second through

fifth layers, while the final layer serves as a linear classifier.

The third component, labeled as Discriminator 2, shares

a similar architecture and functionality with Discriminator

1. However, its objective is to align specific target objects

in the fused images with their corresponding objects in the

infrared images. Objects with salient temperature in infrared

images exhibit clearer and brighter pixel intensities compared

to visible images. Discriminator 2 is also composed of

five convolutional layers followed by a linear layer. The

first layer does not include a batch normalization layer,

while the subsequent convolutional layers mirror those of

Discriminator 1 from the second to fifth layers.

B. Fusion loss constraints

We adopt Least Squares Generative Adversarial Networks

(LSGANs) proposed by Mao et al. [33] to tackle the thermal

and visible image fusion challenge. LSGANs have been

shown to enhance the quality of generated images compared

to other GAN variants and offer improved training stability

over Wasserstein GANs (WGANs) [2] and standard GANs.

WGANs tend to have slow convergence speeds, while stan-

dard GANs may suffer from the gradient vanishing problem

during training. The objective function of TVFusionGAN in

our task is as follows:

min
D

L(D) =
1

2
Ex∼px

(D(x)b)2 +
1

2
Ez∼pz

(D(G(z))− a)2

min
G

L(G) =
1

2
Ez∼pz

(D(G(z))− c)2

(1)
where D and G represent the discriminator and generator,

respectively. The coding mechanism of TVFusionGAN is

reflected in the labels a, b, and c. a and b represent fake

and real images, respectively, while c signifies that D treats

the data generated by G as real data. There are generally

two methods to determine the values of a, b, and c in Eq.

1. One method sets b − c = 1 and b − a = 2, making

the objective function equivalent to Pearson χ2 divergence.

Typically, a = −1, b = 1, and c = 0 in this case. Another

method sets b = c. These two methods usually yield similar

performance.

Building upon LSGANs, we propose the loss function for

our fusion network, comprising three components: the loss

function for the generator (G), discriminator 1 (D1), and

discriminator 2 (D2). The generator G constraint includes

adversarial loss, infrared intensity loss, gradient loss, and

CIoU loss, formulated as:

LG = Ladv + λ1LIR + λ2Lgra + λ3LCIoU (2)

where LG represents the total loss of G. λ1, λ2, and λ3

are weights for the three losses. Ladv is the adversarial loss

between G and the two discriminators D1 and D2 as:

Ladv = E (D1 (G (Concat (IR, IV )))− c)
2
+

αE (D2 (Crop (G (Concat (IR, IV ))))− c)
2

(3)

where IR and IV represent the infrared and visible images,

respectively. The ”Crop” operation denotes cropping the

fused images using known bounding box coordinates to

ensure the fused component closer to real thermal data. c is

the value that generator aims for the discriminator to believe

for real data, and we set c = 0. α is the weight for D2.

LIR and Lgra represent the pixel intensity loss of infrared

images and the gradient loss of visible images, respectively.

Thermal radiation features in infrared images are represented

by their pixel intensities, while appearance texture features

in visible images are expressed through their gradients [27].

Therefore, these two losses individually aim to enforce the

fused images IF to have similar pixel intensities with IR at

the instance object level and similar gradients with IV at the

entire image level. The two losses are defined as:

LIR +Lgra = ∥IF − IR∥
2

F + ∥gra (IF )− gra (IV )∥
2

F (4)

where ∥ · ∥F represents the matrix Frobenius norm and gra
denotes the gradient operation. The components of LCIoU

utilize an existing object detection model (Detectron2) to

detect objects in fused images in real-time. Then, the CIoU

is calculated using the known bounding box coordinates to

enhance fused images with more object details and improve

object detection performance. The loss equation is as:

LCIoU = 1−
|B ∩Bgt|

|B ∪Bgt|
+

ρ2 (B,Bgt)

c2
+ αν (5)

where B and Bgt represent the detected bounding boxes

from Detectron2 and the ground truth bounding boxes,

respectively. ρ(·) denotes the Euclidean distance, and c is

the diagonal length of the smallest box enclosing the two

bounding boxes. α is the weight function, and ν measures the

similarity of aspect ratios. The CIoU loss is chosen because

it better describes the regression of rectangular boxes.

Discriminators D1 and D2 engage in an adversarial game

with the generator to discern whether the generated data is

real or fake in each discriminator. The discriminator loss

reflects the distribution of input data. The loss of D1 is

defined as follows:

LD1 = E (D1 (IV )− b)
2
+ E (D1 (IF )− a)

2
(6)

Different from the D1 loss function, D2 crops the cor-

responding objects in the infrared images IR and the fused

images IF using known bounding boxes. Subsequently, it

reshapes the cropped images (IRcrop
, IFcrop

) to match the

resolution of the input of D2. This process aims to ensure

that the objects in the fused images closely resemble those

in original infrared images. D2 loss can be formulated as:
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Fig. 2. Visual comparisons on KAIST dataset between our results and other state-of-the-art methods. From top to bottom: visible images, infrared images,
and fusion results of GFF [20], GTF [27], VSMWLS [31], DenseFuse [18], FusionGAN [30], DDcGAN [29], and our proposed method.

LD2 = E
(

D2

(

IR
−

crop

)

− b
)2

+ E
(

D2

(

IF
−

crop

)

− a
)2

(7)
where a and b in both LD1 and LD2 are set to −1 and 1
respectively in our paper.

IV. EXPERIMENT RESULTS AND ANALYSIS

A. Datasets

We evaluate our model on both KAIST [12] and TNO

[44] datasets. For the TNO dataset, the model is trained

on the KAIST dataset and tested on the TNO dataset.

The KAIST dataset is a multi-spectral pedestrian detection

benchmark dataset comprising approximately 95,000 color-

thermal image pairs, each with dimensions of 640×480. The

dataset annotations satisfy our loss requirements, eliminating

the need for post-processing. During training, we randomly

selected 8,500 images containing pedestrians, while 2,000

images were reserved for testing. The TNO dataset, widely

used for infrared and visible image fusion, features diverse

military-related scenes. It comprises 60 pairs of infrared and

visible images, distributed across three sequences with 19,

23, and 18 image pairs each. We set the loss weights as

α = 3, λ1 = 1.9, λ2 = 2, and λ3 = 1.

B. Training Details

During training, we utilize a batch size of n for the

input pairs of infrared and visible images to train the two

discriminators. The discriminators are optimized once using

the RMSprop optimizer with a learning rate of 1 × 10−4.

Subsequently, the generator is trained using the same opti-

mizer with a learning rate of 2× 10−4. We set n = 16, and

the loss weights as α = 3, λ1 = 1.9, λ2 = 2, and λ3 = 1.

Training is conducted on an NVIDIA Tesla P40 GPU with

24GB GPU memory, employing PyTorch 1.5.0 with CUDA

10.1. In testing phase, we evaluate the performance of our

model on both KAIST and TNO datasets.

C. Comparison with State-of-the-art Methods

1) Qualitative results and analysis: We compare our

proposed method visually with recent state-of-the-art fusion

methods, including GFF [20], GTF [27], VSMWLS [31],

DenseFuse [18], FusionGAN [30], and DDcGAN [29], on

the KAIST and TNO datasets. Our approach preserves more

details from both infrared and visible images, as illustrated

in Fig. 2 and Fig. 3. The boundaries of objects in our

fused images are clearer, with higher intensity contrast, en-

abling better distinction of temperature features, particularly

for pedestrians, from the background. Moreover, our fused

images maintain extensive texture information from visible

images, such as clouds, grass, and pavilion structures.

We present visual results from our model and other state-

of-the-art methods on the KAIST dataset (Fig. 2). Our

network generates fusion images with enhanced details from

both infrared and visible images. The proposed CIoU loss

and D2 loss effectively preserve local thermal radiation in

infrared images, particularly for pedestrians. The designated

gradient loss and D1 loss successfully retain holistic appear-

ance textures from visible images.

In the first column, pedestrians exhibit enhanced texture

and clearer appearance, retaining edge contour information

and intensities of pedestrian’s infrared radiation. The second

column preserves visible image textures, such as sidewalk

and wall textures, along with prominent surface temperature

information of pedestrians in infrared images. The third

column retains both thermal radiation (mid-road pedestrians)

and clear textures (vehicle wheels and billboard text). Similar

performance is observed in the fourth and fifth columns,

highlighting pedestrians in different scenes. Even in the

absence of pedestrians in source images (last column), our
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Fig. 3. Visual comparisons on the TNO dataset between our method and state-of-the-art techniques. From top to bottom: visible images, infrared images,
and fusion outcomes of GFF [20], GTF [27], VSMWLS [31], DenseFuse [18], FusionGAN [30], DDcGAN [29], and our proposed method.

fused image exhibits extensive details, including fine and

scattered tree shadows on roads.

We also present visual results from our model and other

state-of-the-art approaches on the TNO dataset (Fig. 3). Our

fusion results comprehensively capture the main features

of both infrared and visual images. The thermal radiation

of pedestrians in the source infrared image is effectively

preserved in the last three columns. Extensive texture in-

formation from the source visual image is clearly retained in

our fused results, such as the windows of the helicopter (first

column), building contour (second column), streetlight, and

pavilion (fourth column), as well as railing and pavement

(fifth column).

The fused result in the second column exhibits higher

contrast and more prominent textures compared to other

methods, showcasing the combination of thermal radiation

from the source infrared image and edge contour information

from the source visible image, as seen in the examples.

2) Quantitative Results and Analysis: To provide a quanti-

tative evaluation, we present results obtained from our model

and other methods using five evaluation metrics: entropy

(EN) [38], spatial frequency (SF), standard deviation (SD),

structural similarity index measure (SSIM) [47], and corre-

lation coefficient (CC). Each metric is calculated between

the fusion image and both the visual and infrared images,

with the average of the two metrics taken into account. The

summarized quantitative analysis results are presented in the

left side of Table I.

Entropy (EN) indicates the richness of information in

the image, with higher values suggesting more information

content. Spatial frequency (SF) reflects the presence of edges

and appearance textures, with larger values indicating richer

details. Standard deviation (SD) measures the contrast of

the image, with higher values indicating greater contrast.

Structural similarity index measure (SSIM) and correlation

coefficient (CC) both assess the similarity between the fused

image and the source images.

While our model shows slightly lower EN and SD metric

results compared to DDcGAN, the visual inspection reveals

that our fusion results contain more details and exhibit more

obvious contrast on both datasets. Despite having an SSIM

result equal to FusionGAN on the TNO dataset, our CC

metric result is superior to FusionGAN, reflecting similar

performance as SSIM. Moreover, our numerical results out-

perform other methods under most evaluation metrics. These

findings suggest that our model effectively preserves salient

features on both holistic and local scales.

3) Object Detection Verification: To further assess the

effectiveness of our fused images, we conduct object de-

tection comparisons across various fusion methods and the

two source images. Fig. 4 illustrates the results, showcasing

the stability and robustness of our fused images in object

detection tasks, despite some bounding boxes in our results

not being complete compared to ground truth.

On the KAIST dataset, in the daytime scene depicted in the

first row, our detection results exhibit complete and accurate

consistency with the ground truth. Notably, our method

outperforms other results, except for the source visible image

and the GFF method’s fused image. Although the source

visible image and the GFF method’s fused image achieve

identical object detection results as the ground truth, they

lack crucial thermal radiation information from the infrared

image. This limitation is reflected in the similarity between

fused images of the GFF method and source visible images.
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Fig. 4. Object detection results for fused images in different methods. Detection performance on both KAIST and TNO datasets are evaluated using
Detectron2 [48]. Red and green bounding boxes respectively represent detected boxes and ground truth boxes.

Datasets Metrics GFF [20] GTF [27] VSMWLS [31] DenseFuse [18] FusionGAN [30] DDcGAN [29] Ours Metrics VIS IR GFF [20] GTF [27] VSMWLS [31] DenseFuse [18] FusionGAN [30] DDcGAN [29] Ours

KAIST

EN [38] 5.96 6.03 5.48 6.34 6.38 6.67 6.51 Precision 50.00% 53.84% 42.85% 43.75% 64.29 % 53.33% 60.00% 33.33% 54.83%
SF 6.94 6.18 5.64 5.85 5.83 10.10 10.25

SD 22.90 24.08 20.08 27.72 25.45 40.43 39.58 Recall 37.04% 25.93% 33.33% 25.93% 33.33% 29.63% 22.22% 17.41% 40.74 %
SSIM[47] 0.48 0.39 0.51 0.44 0.53 0.50 0.58

CC 0.46 0.41 0.50 0.51 0.44 0.55 0.57 mAP 29.50% 20.56% 25.84% 22.42% 29.53% 25.84% 16.85% 14.94% 31.00 %

TNO

EN [38] 6.38 6.01 5.89 6.43 6.44 7.42 6.64 Precision 66.67% 71.43% 75.00% 66.67% 71.43% 85.71% 57.14% 42.86% 85.71 %

SF 6.99 6.28 5.74 5.95 5.25 11.72 11.83 .
SD 20.97 23.46 23.82 24.72 28.43 45.58 40.02 Recall 25.00% 62.50% 37.50% 50.00% 62.50% 75.00 % 50.00% 37.50% 75.00 %

SSIM [47] 0.40 0.50 0.45 0.47 0.57 0.51 0.57
CC 0.47 0.48 0.51 0.53 0.44 0.52 0.56 mAP 23.33% 24.29% 25.00% 23.33% 24.29% 28.14 % 21.43% 18.57% 28.14 %

TABLE I

THE OVERALL EVALUATIONS OF IMAGE FUSION EFFECT AND ITS APPLICATIONS ON OBJECT DETECTION ARE PRESENTED. ON THE LEFT, THE FUSED

RESULTS OF QUANTITATIVE ANALYSIS ON BOTH KAIST AND TNO DATASETS ARE SHOWN WITH FIVE EVALUATION METRICS: ENTROPY (EN),

SPATIAL FREQUENCY (SF), STANDARD DEVIATION (SD), STRUCTURAL SIMILARITY INDEX MEASURE (SSIM), AND CORRELATION COEFFICIENT

(CC). ON THE RIGHT, THE OBJECT DETECTION RESULTS OF QUANTITATIVE ANALYSIS ON BOTH KAIST AND TNO DATASETS ARE DISPLAYED WITH

THREE EVALUATION METRICS: PRECISION, RECALL, AND MEAN AVERAGE PRECISION (MAP). BOLD FONT INDICATES THE BEST RESULT.

In the night scene depicted in the second row, our fused

result significantly outperforms both source images and other

methods, enhancing the intensity of pedestrians. Conse-

quently, some pedestrians undetectable in other methods

become detectable in ours, such as the two pedestrians on the

left of the image. Moving to the TNO dataset, as shown in the

last two rows of Figure 4, our fused image’s detection results

surpass those of other methods and both source images,

aligning well with the ground truth. While visual detection

results in several other fusion methods may appear similar

to ours, the comprehensive quantitative results demonstrate

the superiority of our fusion approach.

Overall, our fused images not only achieve better object

detection but also contain richer scene information com-

pared to any single source image. The success of object

detection further validates the effectiveness of our pro-

posed fusion model. We also provide quantitative results

for object detection performance, comparing our approach

with others. Three evaluation metrics, precision, recall, and

mean average precision (mAP), are employed to assess the

quality of our fused images. These metrics are defined as

follows: precision = TPs
TPs+FPs

, recall = TPs
P

, and mAP =
∑

Average Precision/N(Classes). True Positives (TP) and

False Positives (FP) are determined using Intersection over

Union (IoU) with a threshold of 0.5. A detected bounding

box is labeled TP if its IoU is greater than or equal to

0.5; otherwise, it is labeled FP. P in the recall equation

represents the total number of ground truth bounding boxes.

Higher values for these metrics indicate better quality of

fused images.

The results presented on the right side of Table I for

both datasets show that our method outperforms both source

images and other fusion methods in terms of recall and mAP

on the KAIST dataset, except for slightly lower mAP value

compared to VSMWLS. Our recall results indicate that our

method can detect the most correct items compared to others.

On the TNO dataset, our quantitative results surpass both

source images and other fusion methods.

V. CONCLUSION

This paper presents a novel fusion approach based on gen-

erative adversarial networks. We introduce TVFusionGAN,

which incorporates two discriminators and a generator in its

training scheme to generate fused images with rich details.

To establish a reliable image fusion model, we introduce the

CIoU loss in the generator to enhance the quality of the fused

image, aiming to facilitate subsequent object detection. One

discriminator is dedicated to preserving the holistic textures

of visible images, while the other focuses on enhancing the

instance-level salience of the fused image, particularly for

pedestrians. Despite being trained on the KAIST dataset, our

fusion model demonstrates exceptional performance on the

TNO dataset as well.
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