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Abstract— Thermal imaging is effective in low-light or night-
time conditions due to its ability to capture thermal radiation
differences, but lacks texture compared to visible images.
Conversely, visible images retain more texture information,
particularly during the daytime, but perform poorly at night.
To address the limitations of both modalities, recent methods
have utilized fusion techniques to generate images that combine
thermal and visible properties. This paper presents an end-to-
end fusion network leveraging generative adversarial networks
(GANSs) to fuse salient components from both modalities. Our
network includes a generator and two discriminators. The
generator produces fusion images with salient objects using
a specially designed CloU loss, while the discriminators ensure
that the fused images are salient at both holistic and local scales.
One discriminator encourages the fused images to resemble
visible images overall, while the other ensures that targeted
objects in the fused images are as salient as in thermal images.
Our method effectively preserves thermal radiation of salient
objects in infrared images while incorporating the textures of
visible images.

I. INTRODUCTION

Fusion aims to combine salient features from different
modalities’ images, resulting in a single image that retains
the strengths of both. Thermal images, also known as long-
wave infrared images, capture objects via thermal radiation,
while visible images provide texture and intensity informa-
tion. The fused result offers a comprehensive and clear de-
piction by leveraging the complementarity of the modalities.
The key challenge in fusion is to extract effective salient
features from different image types and merge them into a
single image. Various fusion methods have been developed,
including multi-scale transform [34], [20], [21], non-multi-
scale transform [16], [49], [3], [15], sparse representation
[22], [52], [45], and saliency-based methods [53], [11].
These methods focus on manual feature extraction and fusion
rules for improved performance. However, as fusion quality
requirements advance, the complexity of fusion rules and
feature extraction methods increases, posing limitations in
terms of computational cost and implementation difficulty.

Early learning-based approaches focused on feature ex-
traction, while traditional fusion rules were used for the
fusion process [24], [19]. Manual fusion rules may overlook
salient features, degrading the quality of the fused image.
To address this, fusion methods based on regular GANs and
their variants have been proposed to overcome the lack of
ground truth. However, these GAN-based methods tend to
make the fused image resemble one source image, leading to
the loss of critical information from the other source images.
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Motivated by recent advancements in GAN-based image
fusion techniques [30], [29], we introduce a novel ap-
proach for fusing thermal and visible images using a dual-
discriminator least-squares generative adversarial network
(GAN) [54]. Our method aims to seamlessly combine the
thermal pixel intensities of target objects with the holistic vis-
ible appearance and textures. The generator of our network
is tasked with producing fused images that capture both the
thermal radiation characteristics of objects and the detailed
textures present in visible images, leveraging the Complete
Intersection over Union (CloU) constraint [54]. Additionally,
our approach employs two discriminators, each focusing on
different aspects of the fusion process: one emphasizing
texture clues from visible images and the other ensuring the
preservation of salient intensity clues from thermal images.
By adopting this architecture, we eliminate the need for
manual fusion rule design.

In summary, our contributions are threefold: (1) We pro-
pose an end-to-end TVFusionGAN framework for infrared
and visible image fusion, offering a seamless fusion process
without the need for manual intervention. (2) Through the
utilization of two discriminators with distinct emphases, our
model effectively preserves both holistic texture information
from visible images and local salient object information
from thermal images. (3) Our proposed structure optimally
leverages the benefits of enriched image information obtained
from the two discriminators, while maintaining high fusion
efficiency with a single generator.

II. RELATED WORK

Conventional Image Fusion Methods: Multi-scale trans-
form is a widely adopted approach in image fusion, involv-
ing decomposing infrared and visible images into different
scales and fusing them using specific fusion rules. Pyramidal
transforms [43], [4], [26], wavelet transform [34], [25], and
curvelet transform [5], [6], [7] are among the most classical
methods, along with their variants [20].

Non-multi-scale transform methods encompass various
techniques not solely reliant on multi-scale transform. These
include non-linear methods, pixel-level weighted averaging,
estimation-based methods, and color composite fusion. Ther-
rien et al. [41] proposed a spatially adaptive enhancement
approach followed by fusion to combine low-light visible
and infrared images, demonstrating effective performance
[81, [9], [10]. Principal component analysis (PCA) [39]
and adaptive weighted averaging [17] are two representative
pixel-level methods. Estimation-based approaches, such as
maximum a posteriori (MAP) theory, utilize prior and image
formation models. For instance, Shen et al. [40] introduced a
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Ilustration of the proposed image fusion pipeline. The generator synthesizes a fused image from input thermal and visible images. Discriminator 1

emphasizes preserving holistic visual characteristics, while Discriminator 2 ensures the retention of salient objects from the thermal imagery. The network

architecture on the right illustrates the components and their connections.

hierarchical multivariate conditional Gaussian random field
model based on physiological findings for local contrast
detection probability. Additionally, color composite fusion
methods have been explored [1], [50].

Sparse representation methods utilize an over-complete
dictionary to represent images with sparse coefficients, facil-
itating efficient representation of salient features [51], [35],
[22]. These methods are less susceptible to mis-registration
and leverage fixed-basis functions. Yang and Li proposed a
multi-focus image fusion technique employing sparse repre-
sentation [51]. Pati et al. introduced an orthogonal matching
pursuit (OMP) algorithm for obtaining sparse coefficients
[35]. Additionally, Li et al. proposed a Dictionary Learning
method with Group Sparsity and Graph Regularization (DL-
GSGR), ensuring group sparsity and preserving local group
geometrical structure [22].

Saliency-based techniques improve the visual quality of
fused images by highlighting salient objects and pixel in-
tensities. Zhang et al. [53] introduced a hybrid method that
integrates multi-scale decomposition and saliency detection
to retain global salient edges, local salient objects, and object
contrast. However, these approaches frequently incorporate
similar salient features, such as edges and lines, and depend
on manual feature extraction and fusion rules, resulting in
complex implementations to achieve enhanced performance.

Learning-based image fusion: In addition to the afore-
mentioned methods, deep learning-based approaches [37],
[19], [18], [30], [29], [28], [14], [23] have garnered signifi-
cant attention for their ability to extract salient features from
various image types. These methods leverage convolutional
neural networks (CNNs) for feature extraction combined
with manual fusion rules [37], [19], [18]. For instance,
Prabhakar et al. introduced Deepfuse [37], an unsupervised
CNN fusion architecture operating in the Y channel of two
YCbCr images for multi-exposure fusion. The generated
luminance channel (Yj,seq) is then merged with Cbyyseq
and C7yyseq using different fusion strategies [36], [42],
[46]. Liu et al. [19] proposed a fusion model based on a
deep CNN to generate an accurate score map, followed by
their fusion scheme for obtaining the final fusion results. Li
and Wu presented DenseFuse [18], a learning-based network
consisting of an encoder for feature extraction and a decoder

for fusion image reconstruction. While DenseFuse employs
offline fusion strategies during testing, these strategies are
applied between the encoder and decoder networks. Notably,
the CNN-based fusion models mentioned above rely on
manual methods to obtain the final fusion result.
Subsequently, GAN-based fusion methods automate the
fusion process by establishing an adversarial game between a
generator and a discriminator [30], [28], [29]. The generator
synthesizes a fusion image sample from infrared and visible
images to deceive the discriminator, which distinguishes
real and fake data. Various improved GAN-based fusion
methods have been proposed, including least-squares GANs
and conditional GANs. These methods enhance the fusion
process by incorporating additional loss functions in the
generator. For instance, Ma et al. [29] introduced a dual-
discriminator conditional GAN with an improved generator
loss, where the discriminators specialize in analyzing the
infrared and visible properties within the fused image.

ITII. TVFUSIONGAN ADVERSARIAL NETWORK

The proposed model leverages an adversarial game be-
tween a dual-discriminator and a generator to reconstruct
fused images, incorporating a CIoU constraint and a salient
target-based constraint. The salient target-based constraint
ensures that the pixel intensities of the fused image closely
match those of the corresponding objects in the thermal
images, while preserving the holistic intensity texture infor-
mation from the visible images.

A. Multi-level Adversarial Learning Network

Figure 1 illustrates the dual-discriminator generative ad-
versarial fusion framework. This framework jointly learns
an image that captures the object’s thermal radiation from
the infrared image and appearance texture from the visible
image. The framework consists of three parts.

In Fig. 1, the blue-marked network on the left side
represents the generative network. It employs an encoder-
decoder structure, depicted in the middle of the right side,
with the concatenated infrared and visible grayscale images
as input. The encoder network consists of a convolutional
layer (C1) and a dense block for salient feature extraction.
C1 utilizes a 3 x 3 filter and batch normalization [13] for
preliminary feature extraction. The dense block comprises
four convolutional layers, each with a 3 x 3 filter and
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batch normalization, where the inputs to each layer are the
concatenation of outputs from the previous layers. The dense
block aims to preserve more salient features for subsequent
fusion. The decoder network includes five convolutional
layers, each with a 3 x 3 filter, for further interpreting the
feature representations. The final fused image is generated
using the tanh activation function.

The second component, referred to as Discriminator 1 in
Fig. 1, is responsible for discerning whether the input image
is real or fake, with the objective of ensuring that the fused
images resemble visible images. It comprises five convolu-
tional layers followed by a linear layer for classification.
Each convolutional layer, excluding the first one, employs
a 3 x 3 filter and utilizes the leaky ReLLU activation function
[32]. Batch normalization is applied to the second through
fifth layers, while the final layer serves as a linear classifier.

The third component, labeled as Discriminator 2, shares
a similar architecture and functionality with Discriminator
1. However, its objective is to align specific target objects
in the fused images with their corresponding objects in the
infrared images. Objects with salient temperature in infrared
images exhibit clearer and brighter pixel intensities compared
to visible images. Discriminator 2 is also composed of
five convolutional layers followed by a linear layer. The
first layer does not include a batch normalization layer,
while the subsequent convolutional layers mirror those of
Discriminator 1 from the second to fifth layers.

B. Fusion loss constraints

We adopt Least Squares Generative Adversarial Networks
(LSGANS) proposed by Mao et al. [33] to tackle the thermal
and visible image fusion challenge. LSGANs have been
shown to enhance the quality of generated images compared
to other GAN variants and offer improved training stability
over Wasserstein GANs (WGANSs) [2] and standard GANS.
WGANSs tend to have slow convergence speeds, while stan-
dard GANs may suffer from the gradient vanishing problem
during training. The objective function of TVFusionGAN in
our task is as follows:

1

. 1
min (D) = 5 Bonyp, (D(@)0)* + 5 Bznp. (D(G(2)) = a)?

L By (D(G(2)) = 0

mci:n L(G) = 5

1
where D and G represent the discriminator and generat(or),
respectively. The coding mechanism of TVFusionGAN is
reflected in the labels a, b, and c. a and b represent fake
and real images, respectively, while c signifies that D treats
the data generated by G as real data. There are generally
two methods to determine the values of a, b, and ¢ in Eq.
1. One method sets b — ¢ = 1 and b — a = 2, making
the objective function equivalent to Pearson 2 divergence.
Typically, a = —1, b = 1, and ¢ = 0 in this case. Another
method sets b = c. These two methods usually yield similar
performance.

Building upon LSGANSs, we propose the loss function for
our fusion network, comprising three components: the loss
function for the generator (G), discriminator 1 (D1), and

discriminator 2 (D2). The generator G constraint includes
adversarial loss, infrared intensity loss, gradient loss, and
ClIoU loss, formulated as:

Lg = Lagw + MLir + A2Lgra + A3Lcrov 2

where L represents the total loss of G. A1, Ag, and A3
are weights for the three losses. L,q4, is the adversarial loss
between G and the two discriminators D1 and D2 as:
Laav = E (D1 (G (Concat (Ig, Iy'))) — ¢)* +
aE (D, (Crop (G (Concat (Ig, Iy')))) — ¢)*
where I and Iy represent the infrared and visible images,
respectively. The “Crop” operation denotes cropping the
fused images using known bounding box coordinates to
ensure the fused component closer to real thermal data. c is
the value that generator aims for the discriminator to believe
for real data, and we set ¢ = 0. « is the weight for D2.
Lir and Ly, represent the pixel intensity loss of infrared
images and the gradient loss of visible images, respectively.
Thermal radiation features in infrared images are represented
by their pixel intensities, while appearance texture features
in visible images are expressed through their gradients [27].
Therefore, these two losses individually aim to enforce the
fused images Iy to have similar pixel intensities with Ip at
the instance object level and similar gradients with Iy, at the
entire image level. The two losses are defined as:
Lir + Lyra = |Ir = Irlp + lgra (Ir) — gra (Iv) | @)
where || - || p represents the matrix Frobenius norm and gra
denotes the gradient operation. The components of Loy
utilize an existing object detection model (Detectron2) to
detect objects in fused images in real-time. Then, the CloU
is calculated using the known bounding box coordinates to
enhance fused images with more object details and improve
object detection performance. The loss equation is as:
BN B 2 (B,B%)
|B U B9t| c?
where B and BY' represent the detected bounding boxes
from Detectron2 and the ground truth bounding boxes,
respectively. p(-) denotes the Euclidean distance, and c is
the diagonal length of the smallest box enclosing the two
bounding boxes. « is the weight function, and v measures the
similarity of aspect ratios. The CIoU loss is chosen because
it better describes the regression of rectangular boxes.
Discriminators Dy and D» engage in an adversarial game
with the generator to discern whether the generated data is
real or fake in each discriminator. The discriminator loss
reflects the distribution of input data. The loss of D; is
defined as follows:
Lpi = E(Dy (Iy) —b)* + E(Dy (Ip) —a)®>  (6)
Different from the D; loss function, Dy crops the cor-
responding objects in the infrared images I and the fused
images Iy using known bounding boxes. Subsequently, it
reshapes the cropped images (Ig,,,,/F.,,) to match the
resolution of the input of Dy. This process aims to ensure
that the objects in the fused images closely resemble those
in original infrared images. Do loss can be formulated as:

3)

Lerov =1 +av (5
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Fig. 2. Visual comparisons on KAIST dataset between our results and other state-of-the-art methods. From top to bottom: visible images, infrared images,
and fusion results of GFF [20], GTF [27], VSMWLS [31], DenseFuse [18], FusionGAN [30], DDcGAN [29], and our proposed method.

2
, (7)
where a and b in both Lp; and Lpy are set to —1 and 1
respectively in our paper.
IV. EXPERIMENT RESULTS AND ANALYSIS

A. Datasets

We evaluate our model on both KAIST [12] and TNO
[44] datasets. For the TNO dataset, the model is trained
on the KAIST dataset and tested on the TNO dataset.
The KAIST dataset is a multi-spectral pedestrian detection
benchmark dataset comprising approximately 95,000 color-
thermal image pairs, each with dimensions of 640 x 480. The
dataset annotations satisfy our loss requirements, eliminating
the need for post-processing. During training, we randomly
selected 8,500 images containing pedestrians, while 2,000
images were reserved for testing. The TNO dataset, widely
used for infrared and visible image fusion, features diverse
military-related scenes. It comprises 60 pairs of infrared and
visible images, distributed across three sequences with 19,
23, and 18 image pairs each. We set the loss weights as
a:3, )\1:1.9, )\2:2,3.11(1)\3:1.
B. Training Details

During training, we utilize a batch size of n for the
input pairs of infrared and visible images to train the two
discriminators. The discriminators are optimized once using
the RMSprop optimizer with a learning rate of 1 x 10~%.
Subsequently, the generator is trained using the same opti-
mizer with a learning rate of 2 x 104, We set n = 16, and
the loss weights as a = 3, Ay = 1.9, Ao = 2, and A3 = 1.
Training is conducted on an NVIDIA Tesla P40 GPU with
24GB GPU memory, employing PyTorch 1.5.0 with CUDA
10.1. In testing phase, we evaluate the performance of our
model on both KAIST and TNO datasets.

LD2 =F (-D2 (IR_crop ) - b)2 +E (DQ (IF_crop ) - CL)

C. Comparison with State-of-the-art Methods

1) Qualitative results and analysis: We compare our
proposed method visually with recent state-of-the-art fusion
methods, including GFF [20], GTF [27], VSMWLS [31],
DenseFuse [18], FusionGAN [30], and DDcGAN [29], on
the KAIST and TNO datasets. Our approach preserves more
details from both infrared and visible images, as illustrated
in Fig. 2 and Fig. 3. The boundaries of objects in our
fused images are clearer, with higher intensity contrast, en-
abling better distinction of temperature features, particularly
for pedestrians, from the background. Moreover, our fused
images maintain extensive texture information from visible
images, such as clouds, grass, and pavilion structures.

We present visual results from our model and other state-
of-the-art methods on the KAIST dataset (Fig. 2). Our
network generates fusion images with enhanced details from
both infrared and visible images. The proposed CloU loss
and D- loss effectively preserve local thermal radiation in
infrared images, particularly for pedestrians. The designated
gradient loss and D loss successfully retain holistic appear-
ance textures from visible images.

In the first column, pedestrians exhibit enhanced texture
and clearer appearance, retaining edge contour information
and intensities of pedestrian’s infrared radiation. The second
column preserves visible image textures, such as sidewalk
and wall textures, along with prominent surface temperature
information of pedestrians in infrared images. The third
column retains both thermal radiation (mid-road pedestrians)
and clear textures (vehicle wheels and billboard text). Similar
performance is observed in the fourth and fifth columns,
highlighting pedestrians in different scenes. Even in the
absence of pedestrians in source images (last column), our
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Fig. 3. Visual comparisons on the TNO dataset between our method and state-of-the-art techniques. From top to bottom: visible images, infrared images,
and fusion outcomes of GFF [20], GTF [27], VSMWLS [31], DenseFuse [18], FusionGAN [30], DDcGAN [29], and our proposed method.

fused image exhibits extensive details, including fine and
scattered tree shadows on roads.

We also present visual results from our model and other
state-of-the-art approaches on the TNO dataset (Fig. 3). Our
fusion results comprehensively capture the main features
of both infrared and visual images. The thermal radiation
of pedestrians in the source infrared image is effectively
preserved in the last three columns. Extensive texture in-
formation from the source visual image is clearly retained in
our fused results, such as the windows of the helicopter (first
column), building contour (second column), streetlight, and
pavilion (fourth column), as well as railing and pavement
(fifth column).

The fused result in the second column exhibits higher
contrast and more prominent textures compared to other
methods, showcasing the combination of thermal radiation
from the source infrared image and edge contour information
from the source visible image, as seen in the examples.

2) Quantitative Results and Analysis: To provide a quanti-
tative evaluation, we present results obtained from our model
and other methods using five evaluation metrics: entropy
(EN) [38], spatial frequency (SF), standard deviation (SD),
structural similarity index measure (SSIM) [47], and corre-
lation coefficient (CC). Each metric is calculated between
the fusion image and both the visual and infrared images,
with the average of the two metrics taken into account. The

summarized quantitative analysis results are presented in the
left side of Table I.

Entropy (EN) indicates the richness of information in
the image, with higher values suggesting more information
content. Spatial frequency (SF) reflects the presence of edges
and appearance textures, with larger values indicating richer

details. Standard deviation (SD) measures the contrast of
the image, with higher values indicating greater contrast.
Structural similarity index measure (SSIM) and correlation
coefficient (CC) both assess the similarity between the fused
image and the source images.

While our model shows slightly lower EN and SD metric
results compared to DDcGAN, the visual inspection reveals
that our fusion results contain more details and exhibit more
obvious contrast on both datasets. Despite having an SSIM
result equal to FusionGAN on the TNO dataset, our CC
metric result is superior to FusionGAN, reflecting similar
performance as SSIM. Moreover, our numerical results out-
perform other methods under most evaluation metrics. These
findings suggest that our model effectively preserves salient
features on both holistic and local scales.

3) Object Detection Verification: To further assess the
effectiveness of our fused images, we conduct object de-
tection comparisons across various fusion methods and the
two source images. Fig. 4 illustrates the results, showcasing
the stability and robustness of our fused images in object
detection tasks, despite some bounding boxes in our results
not being complete compared to ground truth.

On the KAIST dataset, in the daytime scene depicted in the
first row, our detection results exhibit complete and accurate
consistency with the ground truth. Notably, our method
outperforms other results, except for the source visible image
and the GFF method’s fused image. Although the source
visible image and the GFF method’s fused image achieve
identical object detection results as the ground truth, they
lack crucial thermal radiation information from the infrared
image. This limitation is reflected in the similarity between
fused images of the GFF method and source visible images.
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Datasets Meltrics GFF [20]  GTF [27] VSMWLS [31]  DenseFuse [18] FusionGAN [30] DDcGAN [29]  Ours Metrics VIS R GFF [20]  GTF [27] VSMWLS [31]  DenseFuse [18]  FusionGAN [30] DDcGAN [29] Ours

EN [38] 5.96 6.03 5. . 6.38 6.67 6.51 Precision  50.00%  53.84%  42.85% 43.75% .29 % 53.33% 60.00% 33.33% 54.83%
SF 6.94 6.18 5.64 5.85 5.83 10.10 10.25

KAIST SD 22.90 24.08 20.08 27.72 25.45 40.43 39.58 37.04%  25.93% 33.33% 25.93% 33.33% 29.63% 22.22% 17.41% 40.74 %
SSIM[47] 0.48 0.39 0.51 0.44 0.53 0.50 0.58

cc 0.46 0.41 0.50 051 0.44 0.55 0.57 29.50%  20.56%  25.84%  22.42% 29.53% 25.84% 16.85% 14.94% 31.00 %

EN [38] 6.38 6.01 5.89 6.43 6.44 7.42 6.64 Precision  66.67%  71.43% 75.00% 66.67% 71.43% 85.71% 57.14% 42.86% 85.71 %
SF 6.99 6.28 5.74 5.95 5.25 11.72 11.83

TNO SD 20.97 23.46 23.82 24.72 28.43 45.58 40.02 25.00%  62.50% 37.50% 50.00% 62.50% 75.00 % 50.00% 37.50% 75.00 %
SSIM [47] 0.40 0.50 0.45 0.47 0.57 0.51 0.57

cc .4 0.48 0.51 0.53 0.44 0.52 0.56 23.33%  24.29% 25.00% 23.33% 24.29% 28.14 % 21.43% 18.57% 28.14 %

TABLE 1

THE OVERALL EVALUATIONS OF IMAGE FUSION EFFECT AND ITS APPLICATIONS ON OBJECT DETECTION ARE PRESENTED. ON THE LEFT, THE FUSED
RESULTS OF QUANTITATIVE ANALYSIS ON BOTH KAIST AND TNO DATASETS ARE SHOWN WITH FIVE EVALUATION METRICS: ENTROPY (EN),

SPATIAL FREQUENCY (SF), STANDARD DEVIATION (SD), STRUCTURAL SIMILARITY INDEX MEASURE (SSIM), AND CORRELATION COEFFICIENT
(CC). ON THE RIGHT, THE OBJECT DETECTION RESULTS OF QUANTITATIVE ANALYSIS ON BOTH KAIST AND TNO DATASETS ARE DISPLAYED WITH
THREE EVALUATION METRICS: PRECISION, RECALL, AND MEAN AVERAGE PRECISION (MAP). BOLD FONT INDICATES THE BEST RESULT.

In the night scene depicted in the second row, our fused
result significantly outperforms both source images and other
methods, enhancing the intensity of pedestrians. Conse-
quently, some pedestrians undetectable in other methods
become detectable in ours, such as the two pedestrians on the
left of the image. Moving to the TNO dataset, as shown in the
last two rows of Figure 4, our fused image’s detection results
surpass those of other methods and both source images,
aligning well with the ground truth. While visual detection
results in several other fusion methods may appear similar
to ours, the comprehensive quantitative results demonstrate
the superiority of our fusion approach.

Overall, our fused images not only achieve better object
detection but also contain richer scene information com-
pared to any single source image. The success of object
detection further validates the effectiveness of our pro-
posed fusion model. We also provide quantitative results
for object detection performance, comparing our approach
with others. Three evaluation metrics, precision, recall, and
mean average precision (mAP), are employed to assess the
quality of our fused images. These metrics are defined as
follows: precision = %, recall = 52 and mAP =
> Average Precision/N (Classes). True Positives (TP) and
False Positives (FP) are determined using Intersection over
Union (IoU) with a threshold of 0.5. A detected bounding
box is labeled TP if its IoU is greater than or equal to
0.5; otherwise, it is labeled FP. P in the recall equation
represents the total number of ground truth bounding boxes.

Higher values for these metrics indicate better quality of
fused images.

The results presented on the right side of Table I for
both datasets show that our method outperforms both source
images and other fusion methods in terms of recall and mAP
on the KAIST dataset, except for slightly lower mAP value
compared to VSMWLS. Our recall results indicate that our
method can detect the most correct items compared to others.
On the TNO dataset, our quantitative results surpass both
source images and other fusion methods.

V. CONCLUSION

This paper presents a novel fusion approach based on gen-
erative adversarial networks. We introduce TVFusionGAN,
which incorporates two discriminators and a generator in its
training scheme to generate fused images with rich details.
To establish a reliable image fusion model, we introduce the
ClIoU loss in the generator to enhance the quality of the fused
image, aiming to facilitate subsequent object detection. One
discriminator is dedicated to preserving the holistic textures
of visible images, while the other focuses on enhancing the
instance-level salience of the fused image, particularly for
pedestrians. Despite being trained on the KAIST dataset, our
fusion model demonstrates exceptional performance on the
TNO dataset as well.

Acknowledgement: This publication is based upon work
supported by NSF under Awards No. 2334246 and 2334690.
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