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Abstract— The SLAM system plays a pivotal role in robotic
mapping and localization, leveraging various sensor technolo-
gies to achieve precision. Traditional passive sensors, such as
RGB cameras, offer high-resolution imagery at a lower cost for
SLAM applications, yet they fall short in accurately estimating
3D positions and camera motions. On the other hand, LiDARs
excel in generating accurate 3D maps but often come at a
higher price and lower resolution. While active illumination
sensors like LiDAR provide precise depth estimation, the
prohibitive cost of high-resolution LiDAR systems restricts their
widespread adoption across diverse applications. Although 2D
single-beam LiDAR is more affordable, its limited depth sensing
capability hampers comprehensive environmental perception.
Addressing these limitations, this paper introduces a deep
learning framework aimed at enhancing SLAM performance
through the strategic fusion of camera and 2D LiDAR data. Our
approach employs a novel self-supervised network alongside
an economical single-beam LiDAR, striving to achieve or
surpass the performance of more expensive LiDAR systems.
The integration of single-beam LiDAR with our system allows
for dynamic adjustment of scale uncertainty in depth maps
generated by monocular camera systems within SLAM. Con-
sequently, this fusion method enjoys the high-resolution and
accuracy benefits of advanced LiDAR systems with the cost-
effectiveness of 2D LiDAR sensors. Through this innovative
combination, we demonstrate a SLAM system that not only
maintains high fidelity in mapping and localization but also
ensures affordability and broad applicability.

I. INTRODUCTION

Simultaneous Localization and Mapping (SLAM) is a
critical area of robotics, underpinning critical applications
such as autonomous vehicles [1], [2], [3], interactive robotics
[4], and 3D scene reconstruction [5], [6]. Its utility extends
across diverse tasks including localization, mapping [7], [8],
[9], and the facilitation of collaborative robotic interactions.

Traditionally, SLAM methodologies leverage both active
sensors (e.g., RGB-D cameras and LiDAR) for direct depth
estimation, and passive image matching techniques (e.g.,
stereo vision) to infer 3D spatial information. While RGB-
D cameras offer utility in indoor settings within constrained
ranges (e.g., 0.25-5.46m for Azure Kinect) due to IR signal
sensitivity, their application is limited in outdoor environ-
ments. Conversely, LIDAR sensors, celebrated for their pre-
cision in depth measurement and extensive sensing range,
have become staples in mobile robotics and autonomous
driving. However, the adoption of high-resolution LiDAR
systems is hindered by prohibitive costs (e.g., Ouster OS-
2-64 LiDAR priced at approximately 24,000 USD) and
the inherent sparsity of LiDAR-generated point clouds. The
reliance on monocular cameras for passive depth estimation
introduces scale ambiguity. The disparity in depth distribu-
tion and percentage errors for proximal scenes remains a
challenge, underscoring the limitations of scale consistency

in monocular visual SLAM. Though being able to estimate
rough scale, a notable drawback in stereo vision systems is a
fixed baseline for 3D reconstruction, limiting the valid range.

Current advances employing convolutional neural net-
works (CNNs) have not fully mitigated scale uncertainty in
SLAM outputs relative to ground truth. While self-supervised
learning schemes show promise in deducing relative depth
maps and camera trajectories, achieving precise absolute
depths and spatial positioning remains elusive. Moreover,
supervised learning approaches necessitate densely labeled
ground truth data, incurring large costs, and their accuracy
is contingent upon the diversity of training scenarios. Such
models often falter in untrained, novel environments, exac-
erbating inaccuracies in practical deployments.

In this paper, we introduce a cost-effective SLAM frame-
work that synergistically combines a 2D single-beam LIDAR
with a camera. Our approach is centered around a novel
neural network architecture comprising a self-supervised
CNN for single image depth estimation, and a multi-layer
perceptron (MLP) network. The latter dynamically adjusts
the depth map informed by 2D LiDAR inputs, enhancing
the precision of the SLAM process. Specifically, we develop
a deep learning model capable of extracting scene depth from
consecutive images, facilitating the construction of 3D maps
and accurate camera motion estimation. With sequential
images, the camera trajectory is refined through a dedicated
camera pose estimation network.

To overcome the limitations of conventional global scaling
methods, we employ an MLP network trained to accurately
predict the scale of depth maps derived from the CNN.
This network leverages image pixels corresponding to single-
beam LiDAR points for fine-tuning, subsequently applying
these refined scales to enhance all pixel depth values across
the image, thereby enabling the recovery of a comprehensive
3D map alongside the estimated camera trajectory. Our
framework is rigorously evaluated on the public raw KITTI
dataset, where we simulate single-beam LiDAR data from
sparse LiDAR inputs to test our 3D maps and camera motion
estimation methods.

The primary contributions of our work are fourfold: 1)
We propose a feasible SLAM solution that achieves high-
precision 3D mapping and camera motion estimation at
low cost. 2) Our framework effectively extends the util-
ity of 2D single-beam LiDAR to full image resolution,
presenting a viable low-cost alternative to expensive high-
beam LiDAR systems for accurate, real-world 3D mapping.
3) We introduce an innovative approach utilizing an MLP
network to dynamically learn scaling factors for significantly
improving the accuracy of 3D mapping in a variety of unseen
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An overview of our training framework designed for use with monocular sequential images. Our architecture incorporates a 2D LiDAR point

array and sequential images as inputs. The system comprises a depth estimation network that generates initial depth maps. These initial maps, along with
single-beam LiDAR points, are input into a refinement MLP network designed to dynamically adjust the depth scale within the image, resulting in refined
depth maps. Additionally, our pose estimation component utilizes a CNN-RNN structure to estimate relative poses throughout the image sequence. The
integration of estimated trajectory data with refined depths enables the reconstruction of a comprehensive and detailed 3D scene.

scenarios, which correspondingly corrects the scales of mo-
tion estimation and enhances its accuracy. 4) Our proposed
model demonstrates robust performance on both monocu-
lar sequences and stereo sequences as input, showcasing
its potential for broad application in self-supervised depth
estimation strategies. The different training frameworks are
illustrated in Figures 1 and 2.

II. RELATED WORK

Self-supervised SLAM systems have made significant
advances by learning depth estimation and camera ego-
motion from monocular video sequences through unsuper-
vised methods [10], [11], [12], [13], [14], [15], [16], [17],
[18], [19], [20], [21], [22], [23], [24]. The incorporation
of Generative Adversarial Networks (GANs) has further
refined depth estimation accuracy [25], [26], [27]. Moreover,
recent efforts have expanded to joint learning with ancillary
tasks such as optical flow [15], keyframe detection [28],
and modeling uncertainty [29], enhancing the robustness
and utility of SLAM systems. A few pioneering studies
have begun to address these challenges. Zhou et al. [18]
introduced the use of optical flow as a supervisory signal
specifically to mitigate the difficulties encountered in low-
texture environments. Bian et al. [30] developed a weak
image rectification strategy aimed at enhancing the effective-
ness of unsupervised loss constraints for depth estimation in
such challenging scenes. These efforts represent initial strides
towards extending the applicability of SLAM systems to a
broader range of environments, acknowledging the need for
further research in this area.

Supervised depth prediction and SLAM have seen sig-
nificant advancements [31], [32], [33], [34], [35], primarily
through innovative feature representation extraction from
images. Eigen et al. [36] utilized a multi-scale convolutional
neural network, inspired by AlexNet [37], to progressively
refine depth maps. Liu et al. [32] combined deep neural
networks with continuous conditional random fields (CRF) to
enhance depth information learning. Expanding on this, Qi
et al. [33] explored geometric relationships between depth

maps and surface normals using a dual-stream CNN ap-
proach. Concurrently, Demon et al. [35] developed an end-to-
end network that simultaneously estimates scene depth and
camera motion from image sequences, incorporating known
optical flow. Luo et al. [38] introduced a network for single
image depth estimation that leverages depth labels and stereo
pairs, simulating one stereo view from another and adopting
a fully-supervised training regimen akin to [39]. While
these methods have shown the ability to generate plausible
depth estimations from single images, their performance is
notably constrained in unfamiliar scenarios. Furthermore, a
critical limitation is the requirement for extensive labeled
datasets, often exceeding 10,000 pixel-level, aligned ground
truth depth images, which poses a significant challenge for
many applications due to the difficulty in obtaining such
comprehensive datasets.

Fusion of camera and LiDAR enhances depth perception
through integrating 3D LiDAR sensing and imagery. Badino
et al. [40] enhanced stereo matching by incorporating Li-
DAR data as a priori disparity estimates to constrain search
regions. Maddern et al. [41] devised an efficient probabilistic
model that merges 3D LiDAR data with stereo images
to produce dense depth maps in real-time. More recently,
Kihong et al. [42] introduced a two-stage cascade deep neural
network that integrates 3D LiDAR and stereo disparity maps
to yield high-precision disparities. However, these methods
face limitations in areas lacking sparse LiDAR points, and
the reliance on 3D LiDAR data for network inputs [40], [41]
and training labels [42] incurs substantial costs, limiting their
accessibility for mass market applications. To address these
challenges, we propose an unsupervised convolutional neural
network (CNN) model that estimates high-precision depth
from a single image, complemented by a low-cost single-
beam LiDAR to produce reliable, high-precision depth maps.
These maps can be integrated with estimated camera trajec-
tories from sequential images to reconstruct comprehensive
3D maps. Our approach represents the first to leverage an
online training algorithm combining a single-beam LiDAR
with a single camera in a unified network, achieving full-
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resolution, high-precision depth estimation and 3D mapping.

III. SLAM BASED ON CAMERA-2D LIDAR FUSION

We will first calibrate the camera and 2D LiDAR to fuse
the sensing outputs following [43]. The process involves
capturing a 2D image and a 3D point arrangement from
the combined camera-LiDAR module. Calibration involves
selecting sets of vertical lines on three calibration boards
at varying distances, identifying LiDAR response points
on these lines, and forming LiDAR-camera correspondence
pairs.

Eighteen correspondences are established from three plane
distances to estimate the extrinsic transformation between
the camera and LiDAR using the Direct Linear Transform
(DLT) method within a RANSAC loop. This results in a 6-
DOF transformation matrix that converts 3D points from the
LiDAR’s world coordinate system to the camera’s coordinate
system, expressed through a specific relationship involving
rotation matrices and translation vectors.

We then propose a 3D mapping system that incorporates
this LiDAR-camera fusion with monocular sequential cues,
as depicted in Fig. 1. This system includes a self-supervised
network that updates the depth estimation network, depth
refinement network, and pose tracking network. Inputs in-
clude a monocular RGB video and corresponding 2D LiDAR
line points, with outputs comprising a globally consistent 6-
DoF camera trajectory and refined estimated scene depth for
complete 3D map recovery.

Leveraging sequential images, the combination of single-
beam LiDAR with a normal camera allows for more ac-
curate training of depth and motion estimation CNNs from
unlabeled videos. Specifically, the pose estimation network,
trained on adjacent local frames, regresses a group of relative
poses, while the depth estimation network generates corre-
sponding depth maps. These maps, along with 2D LiDAR
points, are input into the depth refinement MLP to correct the
local scale across depth ranges, with geometric constraints
between refined depth maps and estimated relative motions
guiding self-training and complete 3D scene recovery.

To address the challenge of scaling ambiguity in depth
estimation, which varies with object distance, we integrate
estimated dense disparity maps with 2D LiDAR points
using a Multilayer Perceptron Neural Network (MLP). This
approach, which contrasts with the direct application of a
global scale factor common in existing methods, utilizes an
MLP with a two hidden-layer structure to align predicted
depth values with actual LiDAR measurements, effectively
predicting local scale factors.

A. Multi-view Re-projection Loss

Given consecutive images I; and I, alongside refined
depth map D, and camera motion P;_,; 1, pixel correspon-
dence is calculated to project pixels from target to reference
images using the camera’s intrinsic matrix K:

Pr+1 = KPt—>t+1D(pt)K71pt (D

Aiming for a seamless reconstruction, we determine the
minimal photometric loss across frames by computing:

N

Lphoto = Z

i=1

where p combines L1 loss and SSIM for robust image
reconstruction, defined as:

1 — SSIM(14, I
p(I1,I2) = o (2( Ll

B. Moving Masking Strategy

min

I, Iy 2
b (it} P( ty 1t Ht) ()
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To address scene dynamics, a masking strategy excludes
regions with significant motion or occlusion, defined by
depth inconsistency:

. |D§+1(p) - D£+1(P)|

Dui(p) = 4
4s1®) = B )+ Dpy0) @

Here, D} 1 represents the depth map projected from ;14 to
I using estimated motion, and D , is the directly estimated
depth for I;;;. The moving mask, computed from depth
inconsistency Dg; f ¢, reduces the influence of moving objects
and occlusions on the learning process:

Mmom'ng =1~ Ddiff (P) (5)

This mask, M,0ving, ranges from O to 1, assigning lower
weights to pixels within moving or occluded regions to
mitigate their impact on the estimation of camera poses and
dense depth maps.

Given the occurrence of static frames in certain scenes,
which could potentially affect the learning of camera motion,
we implement an auto-masking technique to selectively
compute photometric loss, thus filtering out points whose
relative motion corresponds precisely to the camera’s motion:

[V B T L O DI A (RY
auto 0, otherwise

Here, My, acts as a binary mask, where I; is the image
warped from I;; using the refined depth map and relative
motion estimation. This auto-masking strategy effectively
discriminates against static areas in the scene, ensuring that
the training process focuses on areas with discernible relative
motion, enhancing the accuracy of motion estimation.

Through these methodologies, our system proficiently
fuses single-beam LiDAR data with monocular video inputs
to train deep neural networks for accurate depth and mo-
tion estimation. This fusion, supported by innovative loss
functions and masking strategies, allows for the effective
reconstruction of detailed 3D scenes from relatively sparse
and inexpensive LiDAR data, alongside commonly available
video sequences. The synergistic use of geometric con-
straints and self-supervised learning paradigms facilitates the
generation of globally consistent depth maps and camera
trajectories, marking a significant advancement in the field
of 3D scene reconstruction.

(6)

C. Refined Multi-view Re-projection

Implementing masking strategies enables us to refine the
multi-view re-projection loss L by focusing on static scenes
and minimizing attention to moving and occluded objects.
The refined loss function L, fineq considers both moving
and static masks to concentrate on relevant regions as:
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Our training framework leverages 2D LiDAR point arrays and stereo images (left L and right R) as inputs, enabling the production of high-

precision depth maps from just one image and a single LiDAR beam in real-world applications. This system integrates offline calibration between the 2D
LIDAR and a color camera to establish pixel-point correspondences, utilizing a stereo camera setup for initial depth estimation training. In practice, depth
maps are generated online from single images via a pre-trained system, with LiDAR points aligned using a pre-calibrated LiDAR-camera matrix. An MLP
network, refined by aligning LiDAR depth points with image pixel depths, accurately adjusts depth scales within the image. This innovative approach

effectively enhances 2D LiDAR’s capabilities to full-resolution 3D mapping.
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Fig. 3. Illustration of fusing the estimated depth maps into a global volume
with the corresponding estimated camera poses.

min

N
Lrefined = E Mmom'ng - Mstatic - ] .
t'e{t—i,t+i}

i=1

P(Im It’ﬁt)

(7
This adjustment ensures that the network’s focus is di-

rected towards areas of the image less likely to be affected
by dynamic changes or occlusions, thereby improving the
robustness of depth estimation.

D. Dense Map Building from Multiple Depths

The construction of a dense map leverages the Truncated
Signed Distance Function (TSDF) fusion method, integrating
multiple estimated depths D(t = 1,2,...,T), estimated
poses P,, and camera intrinsics K into a discretized signed
distance function S; € RX*Y*Z and corresponding weight
function W, € RX¥*Y*Z_ Ag an incremental process, each
new depth map is assimilated using the update equations:

_ Wiii(2) - Vica (@) + we(@) - v ()
N Wi—1(x) + we () ®

Wi(z) = Wi () + we(z) 9)

where V; and W, initiate from empty volumes V, and Wj.
This process allows for the continuous updating of the signed
distance v; and the corresponding weight w;, cumulatively
integrating depth information over time into the final TSDF
volume. Correspondingly, the input I; to the depth fusion
module is comprised of the estimated depth, the camera
poses, and the camera intrinsics, mapped as:

It — [-thtuc] — [Dt7Wt717‘/tfl]

Vi(x)

(10)

The truncation depth distance is set to 80 meters for out-
door scenes and 10 meters for indoor scenarios, optimizing
the process for different environments by mitigating depth
noise and enhancing the efficiency of the fusion strategy.
Fig. 3 illustrates the fusion process.

E. Stereo SLAM Based on Camera-2D LIDAR Fusion

Incorporating a monocular training strategy, while advan-
tageous, introduces challenges such as motion confusion
that can lead to erroneous infinite depth estimations for
objects moving at the camera’s speed. This issue, however, is
mitigated in single-image estimation frameworks. To enhance
scene reconstruction accuracy, we integrate stereo image
pairs and single-beam LiDAR data. This approach, described
in Fig. 2, inputs left image sequences from adjacent time
points into the depth estimation and pose estimation networks
to initially generate left disparity maps estimated from stereo
pairs and relative motion estimations. Subsequently, these
depth maps are refined using single-beam 2D LiDAR points
to dynamically adjust the local scale.

The refinement process ensures that the disparity conforms
to geometric relationships derived from both monocular
video sequences and stereo image pairs, forming spatial-
temporal optimization constraints. This dual constraint al-
lows for the disparity to satisfy not only the refined multi-
view re-projection loss but also the left-right appearance
matching loss, thereby resolving the motion confusion and
improving depth estimation accuracy across the scene.

IV. EXPERIMENTAL RESULTS

A. Data Description

To validate our approach on a widely recognized dataset,
we utilize the public KITTI dataset [52] for training our
disparity estimation network on outdoor scenes. Specifi-
cally, the KITTI Eigen split serves as our training and
evaluation ground, encompassing 22,600 images across 29
scenes for training, alongside 697 images for benchmarking
against contemporary methodologies. To mirror our single-
beam LiDAR-camera setup, we commence with stereo color
images for initial training, subsequently narrowing down
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Fig. 4. Our dataset’s visual comparison showcases our method’s performance against leading alternatives. The presentation sequence is as follows: First
to seventh row: Input color images; Depth maps generated by our approach; Watson et al. [44]; Godard et al. [17]; Guizilini et al. [45]; Bian et al. [46];
Corresponding ground truth depth maps.

Method Supervision | Resolution | Abs Rel | SqRel | RMSE | RMSElog | § < 1.25 | 6 < 1.25% | § < 1.253
StMLearner [14] M 416 x128 0.198 1.836 6.565 0.275 0.718 0.901 0.960
DDVO [47] M 416 x128 0.151 1.257 5.583 0.228 0.810 0.936 0.974
EPC++ [48] M 256 x 832 1.414 1.029 5.350 0.216 0.816 0.941 0.976
Vid2Depth [13] M 416 x128 0.163 1.240 6.220 0.250 0.762 0.916 0.968
SC-SfMLearner [49] M 832 %256 0.137 1.089 5.439 0.217 0.830 0.942 0.975
Monodepth2 [17] M 640 x192 0.115 0.903 4.863 0.193 0.877 0.959 0.981
SuperDepth [50] M 1024 %382 0.112 0.875 4.958 0.207 0.852 0.947 0.977
PackNet-StM [45] M 640 x192 0.111 0.785 4.601 0.189 0.878 0.960 0.982
HR-Depth [20] M 640 x192 0.109 0.792 4.632 0.185 0.884 0.962 0.983
Lite-Mono [21] M 640 x192 0.110 0.802 4.671 0.186 0.879 0.961 0.982
Ours M 640 x192 0.102 0.793 4.612 0.187 0.884 0.962 0.983
Depth-vo-feap [51] MS 608 %160 0.144 1.391 5.869 0.241 0.803 0.928 0.969
EPC++ [48] MS 256 x 832 0.128 0.935 5.011 0.209 0.831 0.945 0.979
Monodepth2 [17] MS 640 x192 0.106 0.818 4.750 0.196 0.874 0.957 0.979
HR-Depth [20] MS 640 x192 0.107 0.785 4.612 0.185 0.887 0.962 0.982
Ours MS 640 x192 0.101 0.719 4.561 0.177 0.889 0.965 0.984

TABLE I

QUANTITATIVE DEPTH ESTIMATION RESULTS ON KITTI EIGEN TEST SPLIT. METHODS TRAINED WITH ONLY MONOCULAR IMAGE SEQUENCES ARE
PRESENTED IN THE UPPER PART AND THOSE ALSO COMBINING STEREO IMAGE PAIRS DURING THE TRAINING PROCESS ARE PROVIDED IN THE

el REE
L Y -

Fig. 5. The ablation study outcomes for our configurations are concisely
depicted as follows, arranged top to bottom for clarity: input images (with
2D LiDAR); Depth map from stereo sequence; Depth estimation from mono
sequence; Depth map only based on stereo images.

BOTTOM PART.

Each dataset split undergoes 50 epochs of training with a
batch size of 8. Input images undergo random cropping
and resizing to dimensions of 640 x 192. Optimization
is facilitated through the Adam optimizer, configured with
B = 0.9 and B2 = 0.99, and a learning rate that halves
every 20 epochs. The depth-fitting MLP network features two
hidden layers, each with 10 units, to mitigate overfitting risks.
Data augmentation strategies, including random adjustments
to contrast, brightness, and color within a 0.8 to 1.2 range,
enhance the robustness of our training process.

C. Comparison with the state-of-the-art methods

Qualitative assessments of our methodologies based only
on mono image sequence, stereo images, and stereo se-
quence—are illustrated in Fig. 4. When compared with
state-of-the-art (SOTA) techniques [44], [17], [45], [46], our

LiDAR inputs to single-line points from the provided multi-
beam data. This process, coupled with our MLP neural
network and local scaling strategy, yields refined depth maps

for comparative analysis with recent advancements.
B. Training Configuration

Our depth estimation network, developed in PyTorch,
leverages dual GeForce GTX 4090 GPUs for processing.

approaches excel in retaining intricate scene details such as
traffic signs, trees, and vehicles.

Table I presents a comprehensive comparison of our
proposed method against state-of-the-art techniques on the
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Fig. 6.

We present a side-by-side comparison of 3D map reconstructions and estimated trajectory paths. From left to right, the sequence showcases:

the red 3D map and a detailed zoom-in on the point cloud for a single frame, as produced by Monodepth2 [17], SC-SfMLearner [46], and our proposed
method. The ground truth trajectory, depicted by a green line, is superimposed on each reconstructed map to facilitate direct comparison of the estimated

paths with actual movement.

KITTI Eigen test split. Our approach, when trained solely on
monocular video sequences, significantly surpasses compet-
ing methods across accuracy metrics (d1, d2, d3) and demon-
strates substantial improvements in error metrics, particularly
in Abs Rel and RMSE log. Incorporating stereo information
into our single-beam LiDAR-camera fusion model, as dis-
cussed in Sec. III-E, yields further enhancements in accuracy
and reductions in error, outperforming networks trained only
with monocular inputs. Remarkably, our monocularly trained
depth estimation already exceeds the performance of meth-
ods utilizing both monocular and stereo images, attributing
to the efficacy of our single-beam LiDAR fusion module.

D. Ablation Studies and Analysis

A series of ablation studies detailed in Table II explore
various configurations of our model. The inclusion of the
refinement MLP network significantly betters both error and
accuracy metrics across the mono sequence, stereo pairs,
and stereo sequence setups, with notable improvements in
RMSE and §; accuracy. Integrating sequential data with
spatial stereo data for training slightly enhances depth es-
timation, attributable to the additional geometric constraints
and optimization opportunities afforded by combining stereo
and adjacent view information.

Without Refinement MLP network
Abs Rel / Sq Rel / RMSE | & < 1.25/0 < 1.257/0 < 1.25
0.12470.915 / 4.985 0.861 70956/ 0.981
0.115 7 0.897 7 5.047 0.854 70949 /0975
0.113/0.833 / 4.901 0.861 /0.956 / 0.981

TABLE I
ABLATION RESULTS ON DEPTH ESTIMATION FOR DIFFERENT SETTINGS

With Refinement MLP network
Abs Rel / Sq Rel /RMSE | & < 1.25/8 < 1.257/8 < 1.25
0.10270.793 7 4612 0.884 7 0.962 7 0983
0.106 7 0.786 7 4.582 087170951 /0982
0.10170.719 7 4561 0.889 /0.965 / 0.984

AND COMPONENTS OF THE PROPOSED MODEL.

The ablation analysis for our method encompasses both
quantitative and qualitative dimensions, with the outcomes il-
lustrated in Fig. 5. The comparison reveals that the integrated
stereo sequence (displayed in the second row) markedly
outperforms the results obtained from solely monocular
sequence (third row) or stereo pairs (fourth row) settings.
Specifically, the combined method excels in accurately de-
lineating clear object contours and edges, such as those of
bicyclists, cars, and trees, within the test images, showcasing
its superior scene reconstruction capability.

E. Comparisons of 3D Mapping and Estimated Trajectories.

Figure 6 illustrates the textured 3D maps and per-frame
point clouds produced by various methods for Sequences 09
and 10 of the KITTI dataset. To adapt to the extensive depth
range encountered in outdoor scenes, we optimized depth
fusion by reducing voxel size. This adjustment enables our
method to generate comprehensive 3D maps that are visually
coherent. Unlike the outcomes observed with the approaches
by [17] and [46], our 3D maps exhibit consistent 3D mapping
and motion trajectory accuracy over long operation time,
underpinning the robustness of our technique.

The superiority of our method is underscored in the
estimated trajectories depicted in Fig. 6. When juxtaposed
with the ground truth (green line), our trajectory estimation
closely aligns, demonstrating remarkable accuracy. Specif-
ically, for Sequence 09, our method precisely captures the
closed loop characteristic of the trajectory, a critical attribute
not as accurately replicated by competing methods, which
displays discernible discrepancies at the loop’s start and end
points.

V. CONCLUSION

In this study, we introduce a fusion-based lightweight
SLAM framework aimed at achieving high-precision 3D
mapping and camera motion estimation economically. Uti-
lizing a novel approach that aligns 2D single-beam LiDAR
data with image-derived depth maps, our system extends
LiDAR’s capabilities to generate detailed, full-resolution 3D
maps. Starting with disparity estimation from single images,
our network harnesses the precision of sparse LiDAR points
and the broader coverage of estimated depth maps to produce
refined, accurate depth information. This process facilitates
the creation of comprehensive 3D maps and camera motion
estimation, with continuous online learning enhancing real-
world adaptability across varied environments. Our method
represents a pioneering SLAM system development effort to
integrate affordable 2D LiDAR and camera data for detailed
motion estimation and full-resolution 3D mapping.

Ack: This publication is based upon work supported by NSF
under Awards No. 2334624, No. 2334690, and No. 2334246.
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