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Abstract— The SLAM system plays a pivotal role in robotic
mapping and localization, leveraging various sensor technolo-
gies to achieve precision. Traditional passive sensors, such as
RGB cameras, offer high-resolution imagery at a lower cost for
SLAM applications, yet they fall short in accurately estimating
3D positions and camera motions. On the other hand, LiDARs
excel in generating accurate 3D maps but often come at a
higher price and lower resolution. While active illumination
sensors like LiDAR provide precise depth estimation, the
prohibitive cost of high-resolution LiDAR systems restricts their
widespread adoption across diverse applications. Although 2D
single-beam LiDAR is more affordable, its limited depth sensing
capability hampers comprehensive environmental perception.
Addressing these limitations, this paper introduces a deep
learning framework aimed at enhancing SLAM performance
through the strategic fusion of camera and 2D LiDAR data. Our
approach employs a novel self-supervised network alongside
an economical single-beam LiDAR, striving to achieve or
surpass the performance of more expensive LiDAR systems.
The integration of single-beam LiDAR with our system allows
for dynamic adjustment of scale uncertainty in depth maps
generated by monocular camera systems within SLAM. Con-
sequently, this fusion method enjoys the high-resolution and
accuracy benefits of advanced LiDAR systems with the cost-
effectiveness of 2D LiDAR sensors. Through this innovative
combination, we demonstrate a SLAM system that not only
maintains high fidelity in mapping and localization but also
ensures affordability and broad applicability.

I. INTRODUCTION

Simultaneous Localization and Mapping (SLAM) is a

critical area of robotics, underpinning critical applications

such as autonomous vehicles [1], [2], [3], interactive robotics

[4], and 3D scene reconstruction [5], [6]. Its utility extends

across diverse tasks including localization, mapping [7], [8],

[9], and the facilitation of collaborative robotic interactions.

Traditionally, SLAM methodologies leverage both active

sensors (e.g., RGB-D cameras and LiDAR) for direct depth

estimation, and passive image matching techniques (e.g.,

stereo vision) to infer 3D spatial information. While RGB-

D cameras offer utility in indoor settings within constrained

ranges (e.g., 0.25-5.46m for Azure Kinect) due to IR signal

sensitivity, their application is limited in outdoor environ-

ments. Conversely, LiDAR sensors, celebrated for their pre-

cision in depth measurement and extensive sensing range,

have become staples in mobile robotics and autonomous

driving. However, the adoption of high-resolution LiDAR

systems is hindered by prohibitive costs (e.g., Ouster OS-

2-64 LiDAR priced at approximately 24,000 USD) and

the inherent sparsity of LiDAR-generated point clouds. The

reliance on monocular cameras for passive depth estimation

introduces scale ambiguity. The disparity in depth distribu-

tion and percentage errors for proximal scenes remains a

challenge, underscoring the limitations of scale consistency

in monocular visual SLAM. Though being able to estimate

rough scale, a notable drawback in stereo vision systems is a

fixed baseline for 3D reconstruction, limiting the valid range.

Current advances employing convolutional neural net-

works (CNNs) have not fully mitigated scale uncertainty in

SLAM outputs relative to ground truth. While self-supervised

learning schemes show promise in deducing relative depth

maps and camera trajectories, achieving precise absolute

depths and spatial positioning remains elusive. Moreover,

supervised learning approaches necessitate densely labeled

ground truth data, incurring large costs, and their accuracy

is contingent upon the diversity of training scenarios. Such

models often falter in untrained, novel environments, exac-

erbating inaccuracies in practical deployments.

In this paper, we introduce a cost-effective SLAM frame-

work that synergistically combines a 2D single-beam LIDAR

with a camera. Our approach is centered around a novel

neural network architecture comprising a self-supervised

CNN for single image depth estimation, and a multi-layer

perceptron (MLP) network. The latter dynamically adjusts

the depth map informed by 2D LiDAR inputs, enhancing

the precision of the SLAM process. Specifically, we develop

a deep learning model capable of extracting scene depth from

consecutive images, facilitating the construction of 3D maps

and accurate camera motion estimation. With sequential

images, the camera trajectory is refined through a dedicated

camera pose estimation network.

To overcome the limitations of conventional global scaling

methods, we employ an MLP network trained to accurately

predict the scale of depth maps derived from the CNN.

This network leverages image pixels corresponding to single-

beam LiDAR points for fine-tuning, subsequently applying

these refined scales to enhance all pixel depth values across

the image, thereby enabling the recovery of a comprehensive

3D map alongside the estimated camera trajectory. Our

framework is rigorously evaluated on the public raw KITTI

dataset, where we simulate single-beam LiDAR data from

sparse LiDAR inputs to test our 3D maps and camera motion

estimation methods.

The primary contributions of our work are fourfold: 1)

We propose a feasible SLAM solution that achieves high-

precision 3D mapping and camera motion estimation at

low cost. 2) Our framework effectively extends the util-

ity of 2D single-beam LiDAR to full image resolution,

presenting a viable low-cost alternative to expensive high-

beam LiDAR systems for accurate, real-world 3D mapping.

3) We introduce an innovative approach utilizing an MLP

network to dynamically learn scaling factors for significantly

improving the accuracy of 3D mapping in a variety of unseen
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Fig. 1. An overview of our training framework designed for use with monocular sequential images. Our architecture incorporates a 2D LiDAR point
array and sequential images as inputs. The system comprises a depth estimation network that generates initial depth maps. These initial maps, along with
single-beam LiDAR points, are input into a refinement MLP network designed to dynamically adjust the depth scale within the image, resulting in refined
depth maps. Additionally, our pose estimation component utilizes a CNN-RNN structure to estimate relative poses throughout the image sequence. The
integration of estimated trajectory data with refined depths enables the reconstruction of a comprehensive and detailed 3D scene.

scenarios, which correspondingly corrects the scales of mo-

tion estimation and enhances its accuracy. 4) Our proposed

model demonstrates robust performance on both monocu-

lar sequences and stereo sequences as input, showcasing

its potential for broad application in self-supervised depth

estimation strategies. The different training frameworks are

illustrated in Figures 1 and 2.

II. RELATED WORK

Self-supervised SLAM systems have made significant

advances by learning depth estimation and camera ego-

motion from monocular video sequences through unsuper-

vised methods [10], [11], [12], [13], [14], [15], [16], [17],

[18], [19], [20], [21], [22], [23], [24]. The incorporation

of Generative Adversarial Networks (GANs) has further

refined depth estimation accuracy [25], [26], [27]. Moreover,

recent efforts have expanded to joint learning with ancillary

tasks such as optical flow [15], keyframe detection [28],

and modeling uncertainty [29], enhancing the robustness

and utility of SLAM systems. A few pioneering studies

have begun to address these challenges. Zhou et al. [18]

introduced the use of optical flow as a supervisory signal

specifically to mitigate the difficulties encountered in low-

texture environments. Bian et al. [30] developed a weak

image rectification strategy aimed at enhancing the effective-

ness of unsupervised loss constraints for depth estimation in

such challenging scenes. These efforts represent initial strides

towards extending the applicability of SLAM systems to a

broader range of environments, acknowledging the need for

further research in this area.

Supervised depth prediction and SLAM have seen sig-

nificant advancements [31], [32], [33], [34], [35], primarily

through innovative feature representation extraction from

images. Eigen et al. [36] utilized a multi-scale convolutional

neural network, inspired by AlexNet [37], to progressively

refine depth maps. Liu et al. [32] combined deep neural

networks with continuous conditional random fields (CRF) to

enhance depth information learning. Expanding on this, Qi

et al. [33] explored geometric relationships between depth

maps and surface normals using a dual-stream CNN ap-

proach. Concurrently, Demon et al. [35] developed an end-to-

end network that simultaneously estimates scene depth and

camera motion from image sequences, incorporating known

optical flow. Luo et al. [38] introduced a network for single

image depth estimation that leverages depth labels and stereo

pairs, simulating one stereo view from another and adopting

a fully-supervised training regimen akin to [39]. While

these methods have shown the ability to generate plausible

depth estimations from single images, their performance is

notably constrained in unfamiliar scenarios. Furthermore, a

critical limitation is the requirement for extensive labeled

datasets, often exceeding 10,000 pixel-level, aligned ground

truth depth images, which poses a significant challenge for

many applications due to the difficulty in obtaining such

comprehensive datasets.

Fusion of camera and LiDAR enhances depth perception

through integrating 3D LiDAR sensing and imagery. Badino

et al. [40] enhanced stereo matching by incorporating Li-

DAR data as a priori disparity estimates to constrain search

regions. Maddern et al. [41] devised an efficient probabilistic

model that merges 3D LiDAR data with stereo images

to produce dense depth maps in real-time. More recently,

Kihong et al. [42] introduced a two-stage cascade deep neural

network that integrates 3D LiDAR and stereo disparity maps

to yield high-precision disparities. However, these methods

face limitations in areas lacking sparse LiDAR points, and

the reliance on 3D LiDAR data for network inputs [40], [41]

and training labels [42] incurs substantial costs, limiting their

accessibility for mass market applications. To address these

challenges, we propose an unsupervised convolutional neural

network (CNN) model that estimates high-precision depth

from a single image, complemented by a low-cost single-

beam LiDAR to produce reliable, high-precision depth maps.

These maps can be integrated with estimated camera trajec-

tories from sequential images to reconstruct comprehensive

3D maps. Our approach represents the first to leverage an

online training algorithm combining a single-beam LiDAR

with a single camera in a unified network, achieving full-
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resolution, high-precision depth estimation and 3D mapping.

III. SLAM BASED ON CAMERA-2D LIDAR FUSION

We will first calibrate the camera and 2D LiDAR to fuse

the sensing outputs following [43]. The process involves

capturing a 2D image and a 3D point arrangement from

the combined camera-LiDAR module. Calibration involves

selecting sets of vertical lines on three calibration boards

at varying distances, identifying LiDAR response points

on these lines, and forming LiDAR-camera correspondence

pairs.

Eighteen correspondences are established from three plane

distances to estimate the extrinsic transformation between

the camera and LiDAR using the Direct Linear Transform

(DLT) method within a RANSAC loop. This results in a 6-

DOF transformation matrix that converts 3D points from the

LiDAR’s world coordinate system to the camera’s coordinate

system, expressed through a specific relationship involving

rotation matrices and translation vectors.

We then propose a 3D mapping system that incorporates

this LiDAR-camera fusion with monocular sequential cues,

as depicted in Fig. 1. This system includes a self-supervised

network that updates the depth estimation network, depth

refinement network, and pose tracking network. Inputs in-

clude a monocular RGB video and corresponding 2D LiDAR

line points, with outputs comprising a globally consistent 6-

DoF camera trajectory and refined estimated scene depth for

complete 3D map recovery.

Leveraging sequential images, the combination of single-

beam LiDAR with a normal camera allows for more ac-

curate training of depth and motion estimation CNNs from

unlabeled videos. Specifically, the pose estimation network,

trained on adjacent local frames, regresses a group of relative

poses, while the depth estimation network generates corre-

sponding depth maps. These maps, along with 2D LiDAR

points, are input into the depth refinement MLP to correct the

local scale across depth ranges, with geometric constraints

between refined depth maps and estimated relative motions

guiding self-training and complete 3D scene recovery.

To address the challenge of scaling ambiguity in depth

estimation, which varies with object distance, we integrate

estimated dense disparity maps with 2D LiDAR points

using a Multilayer Perceptron Neural Network (MLP). This

approach, which contrasts with the direct application of a

global scale factor common in existing methods, utilizes an

MLP with a two hidden-layer structure to align predicted

depth values with actual LiDAR measurements, effectively

predicting local scale factors.

A. Multi-view Re-projection Loss

Given consecutive images It and It+1, alongside refined

depth map Dt and camera motion Pt→t+1, pixel correspon-

dence is calculated to project pixels from target to reference

images using the camera’s intrinsic matrix K:

pt+1 = KPt→t+1D̃(pt)K
−1pt (1)

Aiming for a seamless reconstruction, we determine the

minimal photometric loss across frames by computing:

Lphoto =

N
∑

i=1

min
t′∈{t−i,t+i}

ρ(It, It′→t) (2)

where ρ combines L1 loss and SSIM for robust image

reconstruction, defined as:

ρ(I1, I2) = α

(

1− SSIM(I1, I2)

2

)

+(1−α)∥I1−I2∥1 (3)

B. Moving Masking Strategy

To address scene dynamics, a masking strategy excludes

regions with significant motion or occlusion, defined by

depth inconsistency:

Ddiff (p) =
|Dt

t+1(p)−D′
t+1(p)|

Dt
t+1(p) +D′

t+1(p)
(4)

Here, Dt
t+1 represents the depth map projected from It+1 to

It using estimated motion, and D′
t+1 is the directly estimated

depth for It+1. The moving mask, computed from depth

inconsistency Ddiff , reduces the influence of moving objects

and occlusions on the learning process:

Mmoving = 1−Ddiff (p) (5)

This mask, Mmoving , ranges from 0 to 1, assigning lower

weights to pixels within moving or occluded regions to

mitigate their impact on the estimation of camera poses and

dense depth maps.

Given the occurrence of static frames in certain scenes,

which could potentially affect the learning of camera motion,

we implement an auto-masking technique to selectively

compute photometric loss, thus filtering out points whose

relative motion corresponds precisely to the camera’s motion:

Mauto =

{

1, if ∥It − I ′t∥1 < ∥It − It+1∥1
0, otherwise

(6)

Here, Mauto acts as a binary mask, where I ′t is the image

warped from It+1 using the refined depth map and relative

motion estimation. This auto-masking strategy effectively

discriminates against static areas in the scene, ensuring that

the training process focuses on areas with discernible relative

motion, enhancing the accuracy of motion estimation.

Through these methodologies, our system proficiently

fuses single-beam LiDAR data with monocular video inputs

to train deep neural networks for accurate depth and mo-

tion estimation. This fusion, supported by innovative loss

functions and masking strategies, allows for the effective

reconstruction of detailed 3D scenes from relatively sparse

and inexpensive LiDAR data, alongside commonly available

video sequences. The synergistic use of geometric con-

straints and self-supervised learning paradigms facilitates the

generation of globally consistent depth maps and camera

trajectories, marking a significant advancement in the field

of 3D scene reconstruction.

C. Refined Multi-view Re-projection

Implementing masking strategies enables us to refine the

multi-view re-projection loss L by focusing on static scenes

and minimizing attention to moving and occluded objects.

The refined loss function Lrefined considers both moving

and static masks to concentrate on relevant regions as:
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Fig. 2. Our training framework leverages 2D LiDAR point arrays and stereo images (left L and right R) as inputs, enabling the production of high-
precision depth maps from just one image and a single LiDAR beam in real-world applications. This system integrates offline calibration between the 2D
LIDAR and a color camera to establish pixel-point correspondences, utilizing a stereo camera setup for initial depth estimation training. In practice, depth
maps are generated online from single images via a pre-trained system, with LiDAR points aligned using a pre-calibrated LiDAR-camera matrix. An MLP
network, refined by aligning LiDAR depth points with image pixel depths, accurately adjusts depth scales within the image. This innovative approach
effectively enhances 2D LiDAR’s capabilities to full-resolution 3D mapping.

Fig. 3. Illustration of fusing the estimated depth maps into a global volume
with the corresponding estimated camera poses.

Lrefined =

N
∑

i=1

Mmoving ·Mstatic · min
t′∈{t−i,t+i}

ρ(It, It′→t)

(7)
This adjustment ensures that the network’s focus is di-

rected towards areas of the image less likely to be affected

by dynamic changes or occlusions, thereby improving the

robustness of depth estimation.

D. Dense Map Building from Multiple Depths

The construction of a dense map leverages the Truncated

Signed Distance Function (TSDF) fusion method, integrating

multiple estimated depths D̃(t = 1, 2, ..., T ), estimated

poses P̃t, and camera intrinsics Kt into a discretized signed

distance function St ∈ R
X×Y×Z and corresponding weight

function Wt ∈ R
X×Y×Z . As an incremental process, each

new depth map is assimilated using the update equations:

Vt(x) =
Wt−1(x) · Vt−1(x) + wt(x) · vt(x)

Wt−1(x) + wt(x)
(8)

Wt(x) = Wt−1(x) + wt(x) (9)

where Vt and Wt initiate from empty volumes V0 and W0.

This process allows for the continuous updating of the signed

distance vt and the corresponding weight wt, cumulatively

integrating depth information over time into the final TSDF

volume. Correspondingly, the input It to the depth fusion

module is comprised of the estimated depth, the camera

poses, and the camera intrinsics, mapped as:

It 7−→ [D̃t, P̃t, C] 7−→ [D̃t,Wt−1, Vt−1] (10)

The truncation depth distance is set to 80 meters for out-

door scenes and 10 meters for indoor scenarios, optimizing

the process for different environments by mitigating depth

noise and enhancing the efficiency of the fusion strategy.

Fig. 3 illustrates the fusion process.

E. Stereo SLAM Based on Camera-2D LIDAR Fusion

Incorporating a monocular training strategy, while advan-

tageous, introduces challenges such as motion confusion

that can lead to erroneous infinite depth estimations for

objects moving at the camera’s speed. This issue, however, is

mitigated in single-image estimation frameworks. To enhance

scene reconstruction accuracy, we integrate stereo image

pairs and single-beam LiDAR data. This approach, described

in Fig. 2, inputs left image sequences from adjacent time

points into the depth estimation and pose estimation networks

to initially generate left disparity maps estimated from stereo

pairs and relative motion estimations. Subsequently, these

depth maps are refined using single-beam 2D LiDAR points

to dynamically adjust the local scale.

The refinement process ensures that the disparity conforms

to geometric relationships derived from both monocular

video sequences and stereo image pairs, forming spatial-

temporal optimization constraints. This dual constraint al-

lows for the disparity to satisfy not only the refined multi-

view re-projection loss but also the left-right appearance

matching loss, thereby resolving the motion confusion and

improving depth estimation accuracy across the scene.

IV. EXPERIMENTAL RESULTS

A. Data Description

To validate our approach on a widely recognized dataset,

we utilize the public KITTI dataset [52] for training our

disparity estimation network on outdoor scenes. Specifi-

cally, the KITTI Eigen split serves as our training and

evaluation ground, encompassing 22,600 images across 29

scenes for training, alongside 697 images for benchmarking

against contemporary methodologies. To mirror our single-

beam LiDAR-camera setup, we commence with stereo color

images for initial training, subsequently narrowing down

Authorized licensed use limited to: University of Georgia. Downloaded on May 11,2025 at 01:38:25 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 4. Our dataset’s visual comparison showcases our method’s performance against leading alternatives. The presentation sequence is as follows: First
to seventh row: Input color images; Depth maps generated by our approach; Watson et al. [44]; Godard et al. [17]; Guizilini et al. [45]; Bian et al. [46];
Corresponding ground truth depth maps.

Method Supervision Resolution Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

SfMLearner [14] M 416 ×128 0.198 1.836 6.565 0.275 0.718 0.901 0.960
DDVO [47] M 416 ×128 0.151 1.257 5.583 0.228 0.810 0.936 0.974
EPC++ [48] M 256 ×832 1.414 1.029 5.350 0.216 0.816 0.941 0.976

Vid2Depth [13] M 416 ×128 0.163 1.240 6.220 0.250 0.762 0.916 0.968
SC-SfMLearner [49] M 832 ×256 0.137 1.089 5.439 0.217 0.830 0.942 0.975

Monodepth2 [17] M 640 ×192 0.115 0.903 4.863 0.193 0.877 0.959 0.981
SuperDepth [50] M 1024 ×382 0.112 0.875 4.958 0.207 0.852 0.947 0.977

PackNet-SfM [45] M 640 ×192 0.111 0.785 4.601 0.189 0.878 0.960 0.982
HR-Depth [20] M 640 ×192 0.109 0.792 4.632 0.185 0.884 0.962 0.983
Lite-Mono [21] M 640 ×192 0.110 0.802 4.671 0.186 0.879 0.961 0.982

Ours M 640 ×192 0.102 0.793 4.612 0.187 0.884 0.962 0.983
Depth-vo-feap [51] MS 608 ×160 0.144 1.391 5.869 0.241 0.803 0.928 0.969

EPC++ [48] MS 256 ×832 0.128 0.935 5.011 0.209 0.831 0.945 0.979
Monodepth2 [17] MS 640 ×192 0.106 0.818 4.750 0.196 0.874 0.957 0.979
HR-Depth [20] MS 640 ×192 0.107 0.785 4.612 0.185 0.887 0.962 0.982

Ours MS 640 ×192 0.101 0.719 4.561 0.177 0.889 0.965 0.984

TABLE I

QUANTITATIVE DEPTH ESTIMATION RESULTS ON KITTI EIGEN TEST SPLIT. METHODS TRAINED WITH ONLY MONOCULAR IMAGE SEQUENCES ARE

PRESENTED IN THE UPPER PART AND THOSE ALSO COMBINING STEREO IMAGE PAIRS DURING THE TRAINING PROCESS ARE PROVIDED IN THE

BOTTOM PART.

Fig. 5. The ablation study outcomes for our configurations are concisely
depicted as follows, arranged top to bottom for clarity: input images (with
2D LiDAR); Depth map from stereo sequence; Depth estimation from mono
sequence; Depth map only based on stereo images.

LiDAR inputs to single-line points from the provided multi-

beam data. This process, coupled with our MLP neural

network and local scaling strategy, yields refined depth maps

for comparative analysis with recent advancements.

B. Training Configuration

Our depth estimation network, developed in PyTorch,

leverages dual GeForce GTX 4090 GPUs for processing.

Each dataset split undergoes 50 epochs of training with a

batch size of 8. Input images undergo random cropping

and resizing to dimensions of 640 × 192. Optimization

is facilitated through the Adam optimizer, configured with

β1 = 0.9 and β2 = 0.99, and a learning rate that halves

every 20 epochs. The depth-fitting MLP network features two

hidden layers, each with 10 units, to mitigate overfitting risks.

Data augmentation strategies, including random adjustments

to contrast, brightness, and color within a 0.8 to 1.2 range,

enhance the robustness of our training process.

C. Comparison with the state-of-the-art methods

Qualitative assessments of our methodologies based only

on mono image sequence, stereo images, and stereo se-

quence—are illustrated in Fig. 4. When compared with

state-of-the-art (SOTA) techniques [44], [17], [45], [46], our

approaches excel in retaining intricate scene details such as

traffic signs, trees, and vehicles.

Table I presents a comprehensive comparison of our

proposed method against state-of-the-art techniques on the
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Fig. 6. We present a side-by-side comparison of 3D map reconstructions and estimated trajectory paths. From left to right, the sequence showcases:
the red 3D map and a detailed zoom-in on the point cloud for a single frame, as produced by Monodepth2 [17], SC-SfMLearner [46], and our proposed
method. The ground truth trajectory, depicted by a green line, is superimposed on each reconstructed map to facilitate direct comparison of the estimated
paths with actual movement.

KITTI Eigen test split. Our approach, when trained solely on

monocular video sequences, significantly surpasses compet-

ing methods across accuracy metrics (δ1, δ2, δ3) and demon-

strates substantial improvements in error metrics, particularly

in Abs Rel and RMSE log. Incorporating stereo information

into our single-beam LiDAR-camera fusion model, as dis-

cussed in Sec. III-E, yields further enhancements in accuracy

and reductions in error, outperforming networks trained only

with monocular inputs. Remarkably, our monocularly trained

depth estimation already exceeds the performance of meth-

ods utilizing both monocular and stereo images, attributing

to the efficacy of our single-beam LiDAR fusion module.

D. Ablation Studies and Analysis

A series of ablation studies detailed in Table II explore

various configurations of our model. The inclusion of the

refinement MLP network significantly betters both error and

accuracy metrics across the mono sequence, stereo pairs,

and stereo sequence setups, with notable improvements in

RMSE and δ1 accuracy. Integrating sequential data with

spatial stereo data for training slightly enhances depth es-

timation, attributable to the additional geometric constraints

and optimization opportunities afforded by combining stereo

and adjacent view information.

Without Refinement MLP network With Refinement MLP network

Settings Abs Rel / Sq Rel / RMSE δ < 1.25/δ < 1.252/δ < 1.253 Abs Rel / Sq Rel / RMSE δ < 1.25/δ < 1.252/δ < 1.253

Mono sequence 0.124 / 0.915 / 4.985 0.861 / 0.956/ 0.981 0.102 / 0.793 / 4.612 0.884 / 0.962 / 0.983

Stereo pairs 0.115 / 0.897 / 5.047 0.854 / 0.949 / 0.975 0.106 / 0.786 / 4.582 0.871 / 0.951 / 0.982

Stereo sequence 0.113 / 0.833 / 4.901 0.861 / 0.956 / 0.981 0.101 / 0.719 / 4.561 0.889 / 0.965 / 0.984

TABLE II

ABLATION RESULTS ON DEPTH ESTIMATION FOR DIFFERENT SETTINGS

AND COMPONENTS OF THE PROPOSED MODEL.

The ablation analysis for our method encompasses both

quantitative and qualitative dimensions, with the outcomes il-

lustrated in Fig. 5. The comparison reveals that the integrated

stereo sequence (displayed in the second row) markedly

outperforms the results obtained from solely monocular

sequence (third row) or stereo pairs (fourth row) settings.

Specifically, the combined method excels in accurately de-

lineating clear object contours and edges, such as those of

bicyclists, cars, and trees, within the test images, showcasing

its superior scene reconstruction capability.

E. Comparisons of 3D Mapping and Estimated Trajectories.

Figure 6 illustrates the textured 3D maps and per-frame

point clouds produced by various methods for Sequences 09

and 10 of the KITTI dataset. To adapt to the extensive depth

range encountered in outdoor scenes, we optimized depth

fusion by reducing voxel size. This adjustment enables our

method to generate comprehensive 3D maps that are visually

coherent. Unlike the outcomes observed with the approaches

by [17] and [46], our 3D maps exhibit consistent 3D mapping

and motion trajectory accuracy over long operation time,

underpinning the robustness of our technique.

The superiority of our method is underscored in the

estimated trajectories depicted in Fig. 6. When juxtaposed

with the ground truth (green line), our trajectory estimation

closely aligns, demonstrating remarkable accuracy. Specif-

ically, for Sequence 09, our method precisely captures the

closed loop characteristic of the trajectory, a critical attribute

not as accurately replicated by competing methods, which

displays discernible discrepancies at the loop’s start and end

points.

V. CONCLUSION

In this study, we introduce a fusion-based lightweight

SLAM framework aimed at achieving high-precision 3D

mapping and camera motion estimation economically. Uti-

lizing a novel approach that aligns 2D single-beam LiDAR

data with image-derived depth maps, our system extends

LiDAR’s capabilities to generate detailed, full-resolution 3D

maps. Starting with disparity estimation from single images,

our network harnesses the precision of sparse LiDAR points

and the broader coverage of estimated depth maps to produce

refined, accurate depth information. This process facilitates

the creation of comprehensive 3D maps and camera motion

estimation, with continuous online learning enhancing real-

world adaptability across varied environments. Our method

represents a pioneering SLAM system development effort to

integrate affordable 2D LiDAR and camera data for detailed

motion estimation and full-resolution 3D mapping.
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