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Abstract

We consider parahoric Bruhat–Tits group schemes over a smooth projective curve and
torsors under them. If the characteristic of the ground field is either zero or positive but
not too small and the generic fiber is absolutely simple and simply connected, we show
that such group schemes can be written as invariants of reductive group schemes over
a tame cover of the curve. We relate the torsors under the Bruhat–Tits group scheme
and torsors under the reductive group scheme over the cover which are equivariant for
the action of the covering group. For this, we develop a theory of local types for such
equivariant torsors. We also relate the moduli stacks of torsors under the Bruhat–Tits
group scheme and equivariant torsors under the reductive group scheme over the cover.

1. Introduction

G-bundles on a smooth projective curve over a field k were first considered in [PR10]. Here G is
a parahoric Bruhat–Tits group scheme over X, that is, a smooth group scheme with reductive
generic fiber and such that all fibers over closed points are parahoric group schemes in the sense of
Bruhat–Tits (the terminology is due to Heinloth [Hei10]). The most obvious examples are given
by reductive group schemes over the curve. For various reasons, it is useful to have a concrete
description of G and of its torsors. One reason is to give a Verlinde formula for the stack of
G-bundles, as conjectured in [PR10]; cf. [Dam20, HK23, DM23].

The first aim of the present paper is to give a concrete description of general parahoric Bruhat–
Tits group schemes. This is done in terms of reductive group schemes over Galois coverings of
the curve and is inspired by a paper by Balaji–Seshadri [BS15]. In [BS15], Bruhat–Tits group
schemes are considered which are of the form G = (ResX→/X(GX→))!, where X →/X is a Galois
cover of curves with Galois group ! and where GX→ is the constant group scheme over X →

corresponding to a semi-simple simply connected group G over k, equipped with an action of !;
cf. also [Dam24, HK23]. In op. cit., it is assumed that the ground field k has characteristic zero.
One of our main results is that, at least if k is algebraically closed and excluding small positive
characteristics (for classical groups, it is su”cient to exclude p = 2), any parahoric Bruhat–Tits
group scheme G over a curve X with generic fiber an absolutely simple simply connected group
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On tamely ramified G-bundles on curves

is of the form G = (ResX→/X(G→))!, where X →/X is a tame Galois covering and where G
→ is

a reductive group scheme over X →. This class is strictly larger than the class considered in [BS15]
or in [HK23] since, for example, here G

→ is not necessarily a constant group scheme.

Once Bruhat–Tits group schemes are presented in this way (by reductive group schemes over
coverings), it becomes natural to try to describe related concepts in terms of such a presentation.
The second aim of this paper is to understand G-torsors in terms of this presentation of G. It
may at first glance seem reasonable to guess that the functor P

→
→↑ P = (ResX→/X(P →))! on

the category of G→-bundles on X → with compatible !-action yields a G-bundle and even gives
an equivalence of categories with the category of G-bundles on X. However, this turns out
not to be the case, not even when G

→ = GX→ , as was pointed out by Damiolini [Dam24]. In
[Dam24], it is explained (in the context of [BS15]) how to understand these “(G→,!)-bundles” in
terms of torsors under parahoric Bruhat–Tits group schemes which are “twisted versions” of G.
Furthermore, Damiolini introduces local obstructions (“local types of (G→,!)-bundles”) which
characterize those (G→,!)-bundles having the same associated twisted parahoric Bruhat–Tits
group schemes. Here we will give a concrete cohomological expression for Damiolini’s local types;
see also [DH23].

The third aim of this paper is to establish corresponding facts for the moduli stacks of G-
bundles, respectively (G→,!)-bundles. It turns out that (G→,!)-bundles on X → with a fixed local
type ω can be related to torsors for a “twisted” parahoric Bruhat–Tits group scheme ω

G over the
base curve X. This is interesting even when G

→ = G↓k X → is constant over X → and we take ! to
act trivially on G, in which case G = G ↓k X. In fact, Balaji–Seshadri [BS15] mostly consider
this particular special case.

The motivation given above for considering (G→,!)-bundles onX → is in a sense askew to the his-
torical development. Indeed, in Grothendieck’s Bourbaki talk [Gro95] on Weil’sMémoire [Wei38],
Grothendieck starts with an analytic space X → (over C) which is equipped with a faithful and
properly discontinuous action of a discrete group !→ (with finite stabilizer groups), and consid-
ers analytic (G,!→)-bundles on X →, where G is a complex Lie group. Let X = X →/!. When the
action of ! is free, Grothendieck notes that there is an equivalence between (G,!→)-bundles on
X → and G-bundles on X. In general, he gives a cohomological presentation of the set of isomor-
phism classes of (G,!→)-bundles on X → (see [Gro95, § 1, no. 3]), and he identifies among the set
of (G,!→)-bundles on X → those that correspond to (G,!→)-divisors in the sense of Weil [Wei38]
on X → (these are the generalizations to arbitrary G of the matrix divisors in the case of G = GLn,
which can be identified with vector bundles in the case where X → is a projective variety [Gro95,
§ 2, no. 3]). He also gives a local classification of (G,!→)-bundles on X → at x→ ↔ X → in terms
of H1(!x→ , G) when X → is smooth of dimension 1; see [Gro95, § 2, Proposition 1]. Grothendieck
remarks in [Gro95, § 2, no. 6] that one can express (G,!→)-bundles on X → purely in terms of X
and the local data at the points of the branch locus of the map X →

↑ X, provided that X → is a
smooth algebraic curve. Grothendieck stops short of providing a definitive result. This may be
related to the fact that in our set-up, even when G

→ = G↓kX → is constant over X → and we take !
to act trivially on G, we need the twisted forms ω

G over X to accommodate all (G,!→)-bundles
on X →. In other words, the results, both of this paper and of Balaji–Seshadri [BS15] described in
the previous paragraph, may be considered as making precise these remarks of Grothendieck.

The motivation of Weil and Grothendieck is geometric (in fact, they work over C as a base
field), as is that of Balaji–Seshadri, Damiolini, and Hong. However, there is also motivation from
arithmetic. Indeed, a similar situation, in which X →/X is replaced by a tamely ramified cover
of spectra of power series rings, arises in the study of the moduli and deformation spaces of
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local Galois representations with fixed inertia types as in the work of Caraiani–Levin [CL18]
and Caraiani–Emerton-Gee–Savitt [CEGS22]. In these papers, the inertia type determines the
analogue of the local type of a corresponding Breuil–Kisin module and thus prescribes a parahoric
group scheme and a torsor under it. As a further link between the geometric and the arithmetic
situation, we also note that the proof of the purity theorem for (G→,!)-bundles here is inspired by
our proof in the tame case [PR24b] of Anschütz’ extension theorem on G-torsors on the punctured
spectrum of Ainf ; see [Ans22].

Let us now formulate our main results, making the simplifying assumption that G is semi-
simple and simply connected and that the ground field k is algebraically closed (in the body
of the text, we are more specific as to our precise assumptions). The first result concerns the
structure of Bruhat–Tits group schemes; cf. Theorem 2.6.

Theorem 1.1. Let G be a parahoric Bruhat–Tits group scheme over X such that its generic

fiber G is (simply connected and) absolutely simple. Assume p ↗= 2 if G is a classical group,

p ↗= 2, 3 if G is not of type E8, and p ↗= 2, 3, 5 if G is of type E8. Then there exist a tame Galois

covering X →/X with Galois group ! and a reductive group scheme G
→
over X →

with generic fiber

G→ = G↘k(X) k(X
→) to which the !-action on G→

extends such that G = ResX→/X(G→)!.

The proof is based on an amusing analogous local result in Bruhat–Tits theory (Proposi-
tion 2.7) which represents a parahoric subgroup as the set of rational points of a hyperspecial
parahoric subgroup for a finite extension of the local field. Similar results in characteristic zero,
based on a local result in a loop group context, also appear in work of Damiolini and Hong [DH23].

The next result concerns the description of G-bundles in terms of the presentation of G in
the form of Theorem 1.1. More precisely, for the next results, let X →/X be a tame Galois cover-
ing X →/X with Galois group !, and let G→ be a parahoric Bruhat–Tits group scheme over X → with
generic fiberG→ = G↘k(X)k(X

→) to which the !-action onG→ extends such that G = ResX→/X(G→)!.
Any G-bundle defines a (G→,!)-bundle, that is, a G

→-bundle with a !-action compatible with the
!-action on G

→, and this association defines a fully faithful functor; cf. Proposition 3.2. The failure
of essential surjectivity is described by the following result; cf. Propositions 6.1 and 6.5.

Theorem 1.2. There is an exact sequence of pointed sets, where in the middle is the set of

isomorphism classes of (G→,!)-bundles on X →
,

0 ≃↑ H1(X,G) ≃↑ H1(X →;!,G→)
LT

≃≃≃↑

∏

x↑B
H1

(
!x→ , Ḡ→red

x→ (k)
)
. (1.1)

Here B ⇐ X is the (finite) branch locus of ε : X →
↑ X, for x ↔ B a lift x→ of x to X →

is chosen,

Ḡ
→red
x→ denotes the maximal reductive quotient of the special fiber of G

→
over x→, and !x→ is the

stabilizer of x→ in !.

Furthermore, the map LT is surjective, and the fiber of LT over ω ↔
∏

x↑B H1
(
!x→ , Ḡ→red

x→ (k)
)

can be identified with H1(X,ωG). Here
ω
G is a parahoric Bruhat–Tits group scheme over X

with generic fiber G whose localizations
ω
Gx = ω

G ↓X Spec (Ox) at the completed local rings are

isomorphic to Gx at all points x outside B and which can be described explicitly in terms of ω
for all x ↔ B.

There are two possible approaches to the explicit determination of the cohomology set
H1

(
!x→ , Ḡ→red

x→ (k)
)
occurring in (1.1). This is the set of “local types” at x→. The first approach

also appears in [DH23] (with a di#erent proof), and both approaches also appear under special
hypotheses in [BS15]. The first approach is via a !x→-stable maximal torus T of Ḡ→red

x→ , with Weyl
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group W , and uses the bijection

H1
(
!x→ , Ḡ→red

x→ (k)
)
=

[
ker(N!x→ : T (k) ≃↑ T (k))/I!x→T (k)

]
/W!x→ ;

cf. (5.2) and (5.3). Here N!x→ =
∑

ε↑!x→
ϑ is the norm element, and I!x→ the augmentation ideal

in the group algebra Z[!x→ ].

The second approach is via the Bruhat–Tits building B(G,Kx). Namely, we establish a bi-
jection

H1
(
!x→ , Ḡ→red

x→ (k)
)
= G(Kx)\

(
B(G,Kx) ⇒ (G(K →

x→) · ax)
)
;

cf. Proposition 5.4. Here G(Ox) is the stabilizer of the point ax ↔ B(G,Kx), and G(K →
x→) · ax

denotes the G(K →
x→)-orbit of ax, where we use the natural embedding B(G,Kx) ⇐ B(G,K →

x→).

Our final result concerns the moduli stacks BunG of G-bundles and Bun(G→,!) of (G
→,!)-bundles;

cf. Theorem 7.1. These are smooth algebraic stacks over k.

Theorem 1.3. (a) The local type map

LT: Bun(G→,!)(k) ≃↑
∏

x↑B
H1

(
!x→ , Ḡ→red

x→ (k)
)

is locally constant.

(b) For each element ω ↔
∏

x↑B H1
(
!x→ , Ḡ→red

x→ (k)
)
, let (Bun(G→,!))ω be the open and closed sub-

stack where the value of LT equals ω . Fix a point in (Bun(G→,!))ω (k). Then there is a canonical

isomorphism of algebraic stacks

(Bun(G→,!))ω ⇑ Bun ωG

preserving the base points. Here
ω
G is the parahoric Bruhat–Tits group scheme from Theorem

1.2. Hence

Bun(G→,!) ⇑
⊔

ω↑
∏

x↑B H1(!x→ ,Ḡ→red
x→ (k))

Bun ωG .

This theorem implies, by Heinloth’s connectedness theorem [Hei10], that

ε0(Bun(G→,!)) =
∏

x↑B
H1

(
!x→ , Ḡ→red

x→ (k)
)
.

The lay-out of the paper is as follows. In Section 2, we introduce Bruhat–Tits group schemes
and prove Theorem 1.1. In Section 3, we discuss the key concept of (G→,!)-bundles and their
relation to G-bundles. In Section 4, we prove the purity theorem, Theorem 4.2, which is the basis
of the local constancy statement in Theorem 1.3. A key argument in the proof of Theorem 4.2
is due to Scholze. In Section 5, we discuss the local analogue of (G→,!)-bundles and give their
classification. In Section 6, these local results are used to prove Theorem 1.2. We also give
a variant over a finite base field k. In Section 7, we prove Theorem 1.3. In the final section,
Section 8, we speculate how one could possibly express other objects associated with parahoric
Bruhat–Tits group schemes over X in terms of a presentation by a reductive group scheme over
a Galois cover of X.

Finally, in the appendix, B. Conrad gives a proof of the Hasse principle for adjoint groups
over function fields with finite field of constants.

Notation. Let X be a curve, that is, a geometrically connected smooth projective scheme
of dimension 1 over a perfect field k. We denote by k(X) or simply K its function field. For
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a closed point x, we denote by OX,x its local ring and by k(x) its residue field. We denote
by Ox the completion of OX,x, by Kx its fraction field, and by Oh

X,x
, respectively Osh

X,x
, its

henselization, respectively strict henselization. If x̄ is a geometric point over x, we denote by
Ox̄ the strict completion of OX,x, a complete local ring with residue field k(x̄). We also write
Kx̄ for its fraction field. If G is a scheme over X (respectively over Spec (K)), we write Gx for
G ↓X Spec (Ox) (respectively, for G ↓Spec (K) Spec (Kx)).

2. Tamely ramified Bruhat–Tits group schemes

2.1 Bruhat–Tits group schemes

A Bruhat–Tits (BT ) group scheme over the curve X is a smooth group scheme G over X such
that its generic fiber G = G ↓X Spec (k(X)) is reductive and such that, for every closed point
x ↔ X, the base change G ↓X Spec (Ox) is a Bruhat–Tits group scheme over the completion
Ox of the local ring OX,x for G ↓X Spec (Kx). This last condition means that G ↓X Spec (Ox)
is a quasi-parahoric group scheme over Ox; that is, G ↓X Spec (Ox) is a smooth a”ne group
scheme such that G(Ox̄) is a quasi-parahoric subgroup of G(Kx̄). Recall that a quasi-parahoric
subgroup of G(Kx̄) is a bounded subgroup that contains a parahoric subgroup with finite index;
cf. [PR24a]. A parahoric Bruhat–Tits group scheme overX is the neutral component of a Bruhat–
Tits group scheme. Equivalently, it is a smooth group scheme G over X such that its generic fiber
G = G↓X Spec (k(X)) is reductive and such that, for every closed point x ↔ X, the base change
G ↓X Spec (Ox) is a parahoric Bruhat–Tits group scheme. We also say that G is a (parahoric)
BT group scheme for G.

Remark 2.1. (i) A particular kind of quasi-parahoric group scheme arises as the stabilizer of
a point ax in the extended Bruhat–Tits building Be(G ↘k(X) Kx,Kx); that is, G(Ox̄) is the
stabilizer in G(Kx̄) of ax. A stabilizer Bruhat–Tits group scheme over X is a BT group scheme
such that G↓X Spec (Ox) is the stabilizer Bruhat–Tits group scheme corresponding to a point ax
in the extended Bruhat–Tits building Be(G↘k(X)Kx,Kx) for every x ↔ X. Note that in general,
a parahoric group scheme is not necessarily of this form. In what follows, we also write simply
Be(G,Kx) for Be(G↘k(X) Kx,Kx).

(ii) If G is simply connected, then any quasi-parahoric group scheme is automatically connected,
so it is a parahoric BT group scheme and a stabilizer BT group scheme.

(iii) Any reductive group scheme over X is a parahoric BT group scheme and a stabilizer BT
group scheme. Indeed, this is a statement of Bruhat–Tits theory of group schemes over Ox. After
an étale extension, we may assume that we are concerned with a split group. Then the assertion
follows from [BT84, § 4.6.22].

We decided to put the emphasis on stabilizer BT group schemes since they seem well adapted
to our way of giving a concrete presentation of BT group schemes over X; cf. the introduction.

2.2 BT group schemes and coverings

Let X →
↑ X be a Galois cover, with finite Galois group !. In other words, X → is the normalization

of X in a finite (separable) Galois extension K → of k(X) with Galois group !. We allow the
field of constants of X → to be a finite extension of k (hence X → is a curve in our sense over a
finite extension k→ of k). For x→ ↔ X →, we denote by ε(x→), or simply x, its image in X. We
denote by !x→ ⇐ ! the inertia subgroup at x→. Let G be a reductive group over k(X), and set
G→ = G↘k(X) k(X

→). There are two constructions of BT group schemes for G, respectively G→.
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(i) Let G be a stabilizer BT group scheme for G over X. The base change group G→ acts on
the extended BT building Be(G,K →

x→) for every x→ ↔ X →. Indeed, for this we identify Be(G,K →
x→)

with Be(G→,K →
x→). Furthermore, for any x→ ↔ X →, the base change Gx ↘Ox O→

x→ fixes the point
ax ↔ Be(G,Kx) corresponding to the group Gx. Here we consider ax as a point of Be(G,K →

x→),
using the natural embedding Be(G,Kx) ↑ Be(G,K →

x→). Hence, denoting by G
→
ax

the stabilizer
group scheme for G→

↘k(X) K
→
x→ defined by the point ax ↔ Be(G→,K →

x→), we obtain a morphism
extending the identity in the generic fibers,

Gax ↘Ox O→
x→ ≃↑ G

→
ax
. (2.1)

This morphism is an isomorphism when x→ is outside the ramification locus R→ of X →
↑ X.

Hence, by Beauville–Laszlo glueing along the finitely many points of R→, there exists a unique
smooth group scheme G

→ over X → such that G
→
|(X→\R→) = G ↓X (X →

\ R→) and such that the map

G ↓X Spec (O→
x→) ↑ G

→
↓X→ Spec (O→

x→) is identified with the map (2.1) for every x→ ↔ X →. Hence
G
→ is a stabilizer BT group scheme for G→ over X →.

(ii) Conversely, assume that the Galois covering X →/X is tame; that is, all the inertia sub-
groups !x→ of ! are of order prime to char k. Let G→ be a stabilizer BT group scheme for G→ on X →

obtained from a collection of points ax in the buildings for G ↘K Kx. Then G
→ has a !-action,

inducing in the generic fiber the given !-action on G→. Then, using [BT84, Proposition 1.7.6],
we see that G = ResX→/X(G→)! is a stabilizer BT group scheme for G over X for the points ax.
Indeed, the generic fiber of G is identified with G, the Spec (Ox̄)-points of G give the correct
stabilizer subgroups for all x, and the smoothness of G follows from Edixhoven’s lemma [Edi92].

Definition 2.2. Let X →/X be a tame Galois cover with Galois group !. Let G be a reductive
group over K and G→ its base change over K →. Let G, respectively G

→, be stabilizer BT group
schemes for G, respectively G→, over X, respectively X →. Then G and G

→ are said to be !-related if
both are the stabilizer groups related to the same collection of points {ax ↔ Be(G,Kx) | x ↔ X}.
In this case, G = ResX→/X(G→)!.

Remark 2.3. Note that for any stabilizer BT group scheme G for G, there is a unique stabilizer
BT group scheme G

→ for G→ such that G and G
→ are !-related. On the other hand, a !-invariant

stabilizer BT group G
→ for G→ is not in general part of a pair (G,G→) of !-related stabilizer BT

group schemes (although this does hold if G is semi-simple simply connected). This phenomenon
is illustrated by the example of the projective linear group G of a quaternion algebra over a local
field F : after base change by a quadratic extension F →/F , the group G→ = G↘F F → is isomorphic
to PGL2. Then both the unique !-invariant Iwahori subgroup of G→ and its normalizer are !-
invariant stabilizer groups, but only the latter is the stabilizer of a !-invariant point in the
building and hence is part of a !-related pair of stabilizer groups.

Proposition 2.4. Let X →/X be a tame Galois cover with Galois group !, and G and G→
as

above.

(a) Any parahoric group scheme G over X is of the form (ResX→/X(G→)!)↓, where G
→
is the

stabilizer Bruhat–Tits group scheme for G→
over X →

which is !-related to a stabilizer group

scheme G
ϑ
with G as its connected component. Here the parahoric group scheme (G→)↓ with

its !-action is uniquely determined from G.

(b) Assume that G or, equivalently, G→
is semi-simple simply connected. Then, starting with

G, applying procedure (i) to obtain the parahoric BT group scheme G
→
with !-action, and

then applying procedure (ii) to G
→
with its !-action gives back G. Conversely, start with

a collection of points {ax ↔ Be(G,Kx) | x ↔ X} and a parahoric BT group scheme G
→
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with !-action such that G
→
x→ is the stabilizer group for aϖ(x→) ↔ B(G,K →

x→). Then applying

procedure (ii) gives a parahoric BT group scheme G which, upon applying procedure (i),
gives back G

→
with its !-action.

Proof. This follows from the discussion above.

Remark 2.5. In the above set-up, if G is reductive and G and G
→ are !-related, then G

→ is also re-
ductive. This follows from the fact that all hyperspecial points of Be(G,Kx) remain hyperspecial
in Be(G,K →

x→).

Theorem 2.6. Assume that G is absolutely simple and simply connected. We also make the

following assumption on p: none if G is of type A and splits over an unramified extension, p ↗= 2
if G is of di!erent classical type, p ↗= 2, 3 if G is of non-classical type not equal to E8, and

p ↗= 2, 3, 5 if G is of type E8. Let G be a Bruhat–Tits group scheme for G over X. After a finite

extension of the base field k, there exists a tame Galois covering X →/X of curves over k with

Galois group ! and a reductive group scheme G
→
over X →

such that G and G
→
are !-related.

Remark. Note that “G classical” in the theorem excludes the trialitarian forms of D4.

This is a global consequence of the following statement of Bruhat–Tits theory which seems new
(related statements appear in work of Larsen [Lar95, Lemma 2.4] and Gille [Gil02, Lemma 2.2];
see also [Cot23, Lemma 4.3]). Here, by a local field we mean a field which is complete for a
discrete valuation, with perfect residue field.

Proposition 2.7. Let G be a semi-simple simply connected group over a local field F , and

let G be a parahoric group scheme for G over OF . Then there exist a finite extension F →/F
such that G→ = G↘F F →

is split and a hyperspecial parahoric group scheme G
→
for G→

such that

G(OF ) = G(F ) ⇒ G
→(OF →) and G

(
O

F̆

)
= G

(
F̆
)
⇒ G

→(O
F̆ →). Here F̆ , respectively F̆ →

, denotes the

completion of the maximal unramified extension of F , respectively F → (in a common algebraic

closure).

We make the following assumption on p: none if G is of type A and splits over an unramified

extension, p ↗= 2 if G is of di!erent classical type, p ↗= 2, 3 if G is of non-classical type not equal

to E8, and p ↗= 2, 3, 5 if G is of type E8. Then F →
can be chosen to be tamely ramified, provided

that G is tamely ramified.

Proof (following an e-mail of G. Prasad). We may assume that G is simple. Let K be a finite
unramified extension of F such that the relative rank of G does not increase if we make a further
unramified extension of K. Then G is quasi-split over K since by Steinberg’s theorem it is quasi-
split over the maximal unramified extension of F . Let ! denote the Galois group of K/F . The
building of G(F ) is the fixed-point set under the action of ! on the building of G(K). Now
every vertex in the building of G(F ) is just the barycenter of a minimal !-stable facet of the
building of G(K); cf. [BT84, Théorème 5.1.25]. Therefore, its coordinates in terms of a basis
of the a”ne root system (determined by an alcove in an apartment containing the facet) are
rational numbers. Hence we may represent the parahoric group G(OF ) as the stabilizer group of
a point aG in the building of G(K) with rational coordinates. We note that if k is algebraically
closed, then this first step does not occur.

Now there is a minimal Galois extension K → of K over which G splits. Let $ be the Galois
group of K →/K. Every facet of the building of G(K) consists of $-fixed points contained in
a union of finitely many $-stable facets of the building of G(K →).
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From the above, we conclude that the point aG in the building ofG(F ) has rational coordinates
in terms of any basis of the a”ne root system ofG/K → (determined by a chamber in the apartment
containing the vertex of the building of G(F )).

We claim that the point aG is special in the building of G(F →), where F → is a suitable ramified
extension of K →. (Note that for a split group, special is the same as hyperspecial.) This statement
is also proved in [Lar95, Lemma 2.4]. Let us see what an extension F → of ramification degree n
of K → does to an apartment of the building of G(K →). Since G/K → is split, any such apartment
is also an apartment of the building of G(F →), but the facets get subdivided—for example, every
1-dimensional facet gets subdivided into n equal-length facets. Now since, as observed above,
the coordinates of aG are rational numbers, by choosing F → of su”ciently divisible ramification
degree over K →, we can ensure that in the corresponding building of G(F →), every root hyperplane
has a parallel root hyperplane that passes through aG , making aG special.

We now want to find a tamely ramified extension F →/K with the required properties if G
splits over a tame extension of F . Let us first assume that G is absolutely simple. Then the
splitting field K → has degree 1, 2, 3, or 6 over K, and for a classical group degree at most 2. We
may assume that aG lies in the fundamental alcove a inside the standard apartment. The vertices
of a have rational coordinates, where the denominators only involve the prime number 2 if G is
of classical type, the primes 2, 3 if G is not of type E8, and the primes 2, 3, 5 if G is of type
E8. Hence if aG is a vertex, by choosing F →/K → to have ramification degree only containing the
above prime factors, we may achieve that aG is a special vertex in the building of G(F →); cf. also
[Gil02, Lemma 2.2]. If G is a classical group, since we exclude p = 2, the extension F →/F is tame.
A similar argument applies if G is not of type E8 (in which case we exclude p = 2, 3) or if G is
of type E8 (in which case we exclude p = 2, 3, 5). If aG lies in the interior of a simplex of positive
dimension, then, after changing aG inside the interior of this simplex, we find a tamely ramified
extension F → such that aG is a vertex and then proceed as before. Note that aG is fixed under
the Galois group of F →/K; hence the parahoric group scheme G

→ corresponding to the vertex aG
in the building of G over F → is equipped with an action of the Galois group extending the action
on G→ = G↘K F →.

Now let G be tamely ramified but not necessarily absolutely simple. We can quickly reduce to
the case where G is simple. Then we may write G = Res

F̃ /F
(H), where F̃ /F is a tamely ramified

extension and H is an absolutely simple group over F̃ (which splits over a tame extension). Now
we apply the argument above to H/F̃ and the parahoric for H corresponding to aG ↔ B(G,F ) =
B
(
H, F̃

)
and deduce the assertion for G/F and the parahoric G.

Proof of Theorem 2.6. Recall that we now assume that G is absolutely simple. Note that under
our assumptions on p, the group G splits over a tame extension of K = k(X). Let S be the
finite set of points of X such that G is not reductive. There is a finite extension k1 of k with the
following property: For each x ↔ S, the reductive group G↘K Kx has the same relative rank over
the unramified extension Kx,1 of Kx with residue field k(x)k1 as over the maximal unramified
extension of Kx in a separable closure Ksep

x . Then G↘KKx,1 is residually split and quasi-split for
all x ↔ S. We now consider the group scheme G1 = G ↓X X1 over the base change X1 = X ↘k k1
(which is a curve over k1 in our sense). For simplicity, we denote X1 again by X and omit the
subscript 1 in all that follows. We will apply Proposition 2.7 and its proof to G↓X Spec (Ox) and
F = Kx for x ↔ S: There are tame Galois extensions {F →

x/Kx | x ↔ S} such that G↓X Spec (Ox)
is the stabilizer group scheme of a point aG,x in the building of G(Kx) and aG,x is hyperspecial
when considered as a point of the building of G(F →

x). In fact, the argument in the proof shows
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that the hyperspecial subgroup of G(F →
x) that corresponds to the point aG,x in the building of

G(F →
x) is stable by the action of Gal(F →

x/Kx). Then the corresponding reductive group scheme
G
→
x is equipped with an action of Gal(F →

x/Kx) extending the action on G↘K F →
x.

We now want to find a tame Galois extension K →/K such that for every place x→ of K →

over a place x ↔ S, the extension K →
x→ of Kx contains a conjugate of F →

x. For each x ↔ S, the
extension F →

x/Kx is obtained by adjoining the roots of a monic polynomial Px with coe”cients
in Kx. By perhaps enlarging these extensions, we may assume that they all have the same
degree d. Now we find a monic polynomial P of degree d with coe”cients in K whose coe”cients
are su”ciently close to those of Px for each x ↔ S. Then by Krasner’s lemma, the local field
extension of Kx generated by the roots of P is isomorphic to F →

x for every x ↔ S. The roots of P
generate a field extension K →→/K which is separable of degree d and such that K →→

x ⇑ F →
x for all

x ↔ S. Now the normal hull of K →→ yields the desired extension K →/K. Let k→ be the algebraic
closure of k in K →. Then k→ is a finite extension of k, and X → is an algebraic curve over k→, which
is a tame Galois cover of X ↘k k→ which satisfies our requirements.

Let ε : X →
↑ X be the cover corresponding to K →/K. Then G defines a BT group scheme G

→

over X → such that G→
|X→\ϖ↓1(S)

= G ↓X

(
X \ ε↔1(S)

)
and such that for every x→ ↔ X →, the group

scheme G→
↓X→ Spec (O→

x→) corresponds to the hyperspecial point aG,ϖ(x→) of the building of G(K →
x→);

cf. the beginning of Section 2.2 and Remark 2.5. Hence all localizations of G→ are reductive, and
hence G→ is a reductive group scheme over X →. By construction, we see that G→ supports an action
of the Galois group ! = Gal(K →/K) which covers the !-action on X → and that G and G

→ are
!-related.

2.3 Some variants and further discussion

It is of interest to know when we can achieve the conclusion in Theorem 2.6 without first making
a finite extension of the base field k. This can be done provided that we exclude a few more
“small characteristics” and is a consequence of the following variant of the local Proposition 2.7.

Proposition 2.8. Let G be an absolutely simple simply connected group over a local field F ,

and let G be a parahoric group scheme for G over OF . Assume that p does not divide 2(n + 1)
if G is of type An, p ↗= 2 if G is classical not of type An, p ↗= 2, 3 if G is not classical and not of

type E8, and p ↗= 2, 3, 5 if G is of type E8.

Then there exist a finite tame Galois extension F →/F such that G ↘F F →
is split and a hy-

perspecial group scheme G
→
of G(F →) such that G

→
is stable under the action of Gal(F →/F ) on

G↘F F →
and such that

G =
(
ResOF →/OF

G
→)Gal(F

→
/F )

.

(This identity implies G(OF ) = G(F ) ⇒ G
→(OF →), G(O

F̆
) = G

(
F̆
)
⇒ G

→(O
F̆ →
)
.)

Proof. We re-examine the proof of Proposition 2.7, keeping the same notation. Here we assume
that G is absolutely simple. We will show that there is a G

→ as in the conclusion of Proposition 2.7
which, in addition, is Gal(F →/F )-stable. The argument shows that the desired statement will
follow if there is a tame extension F →/F , constructed as in the proof of Proposition 2.7, which is
Galois and is such that the (hyperspecial) vertex aG ↔ B(G,F →) which appears in the last step
of the argument is fixed by the action of the Galois group of F →/F (and not just of F →/K). This
can be arranged if we can express G as the stabilizer of a point aG ↔ B(G,F ) whose coordinates
in B(G,K →) have denominators which are relatively prime to the characteristic p. Recall that,
since K/F is an unramified Galois extension, the vertices in B(G,F ) are the barycenters of
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minimal Gal(K/F )-stable facets in B(G,K). The action of Gal(K/F ) on an alcove of B(G,K)
is described via automorphisms of the corresponding (possibly twisted) a”ne Dynkin diagram.
The coordinates of these barycenters are sums of the coordinates of vertices divided by numbers
which are factors of the order of the image of Gal(K/F ) in the automorphism group of the a”ne
Dynkin diagram. Note that the automorphism group of an a”ne Dynkin diagram either is trivial
or has order which involves only the prime factors 2 and 3 in all cases, except in the case of
(untwisted) type An, in which the order is 2(n+1) (see for example the tables in [Gro12, § 6]; cf.
Remark 2.9 below). By using this, combined with the arguments in the proof of Proposition 2.7,
we obtain:

The group scheme G is the stabilizer of a point aG ↔ B(G,F ) whose coordinates in B(G,K →)
have denominators which are 1 or only involve the following prime numbers:

• 2, for all classical types except An;

• 2 and the prime divisors of n+ 1, for type An;

• 2, 3, for all types except An and E8;

• 2, 3, 5, for type E8.

Using the discussion in Section 2.2, we see that this implies the statement.

Remark 2.9. (i) Suppose that G is of type An, and let R be the corresponding (twisted) a”ne
Dynkin diagram. There are two possibilities: R = An or R = 2An. The automorphism groups
are Aut(An) ⇑ Z/(n + 1)Z ⊋ S2, or Aut

(
2A2m+1

)
⇑ S2 or Aut

(
2A2m

)
= (1); see [Gro12, § 6].

The Galois group Gal(K/F ) acts on the base alcove of B(G,K) via a homomorphism

Gal(K/F ) ≃↑ Aut(R) .

Denote by ϖ the order of the image of this homomorphism; this order is a divisor of 2(n + 1).
The argument in the proof above actually shows that the conclusion of Proposition 2.8 is true
for G, provided that we just exclude the primes p that divide ϖ.

(ii) Suppose that F has finite residue field. By consulting the list in [Gro12, § 7], we see that
ϖ > 2 only when G = A↗

1
, the norm 1 units of a F -central simple algebra A ⇑ Mr↗r(D), with D

a division algebra of index m > 1. In this case, n+ 1 = rm and ϖ = m.

(iii) Consider G = D↗
1
, the norm 1 units of a F -central division algebra D of invariant 1/d,

where F has finite residue field. In this case, the a”ne Dynkin diagram is Ad and ϖ = d. Take
G to be the unique Iwahori subgroup of G. Here the building B(G,F ) = {⇓} is a one-point set
and aG = ⇓. In the proof of Proposition 2.8, we can take K to be the unramified extension of
F of degree d. The point ⇓ is the barycenter of an alcove in B(G,K) = B(SLd,K) and has
coordinates with denominator d. Unless we base change to an extension of F with ramification
degree divisible by d, we cannot make ⇓ hyperspecial. Using this, we can see that for this example,
the conclusion of Proposition 2.8 does not hold if the characteristic p divides d = ϖ.

We can now deduce the following variant of the global Theorem 2.6. We keep the same
notation.

Theorem 2.10. Assume that G is absolutely simple and simply connected. Also assume that p
does not divide 2(n+ 1) if G is of type An, p ↗= 2 if G is classical not of type An, p ↗= 2, 3 if G is

not classical and not of type E8, and p ↗= 2, 3, 5 if G is of type E8.

Let G be a Bruhat–Tits group scheme for G over X. There exist a tame Galois covering X →/X
with Galois group ! and a reductive group scheme G

→
over X →

such that G and G
→
are !-related.
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Proof. This follows by the argument in the proof of Theorem 2.6 by using Proposition 2.8 instead
of Proposition 2.7. Note that in this case, we do not need the finite base field extension k1 of k
which appears in the proof of Theorem 2.6. On the other hand, we have to accept that the
covering X → is a curve over a finite extension k→ of k.

Remark 2.11. Suppose that G = A↗
1

is the group of norm 1 units of A = Mr↗r(D), with D
a division k(X)-algebra of index m = (n+ 1)/r. Then Theorem 2.10 holds for G after replacing
2(n+ 1) by m.

Remark 2.12. We therefore see that, excluding small characteristics, parahoric group schemes
on the given curve X for an absolutely simple simply connected group arise from reductive
group schemes over coverings X →/X by the simple operation of “!-invariants in restrictions of
scalars.” Such group schemes are considered in characteristic zero by Balaji–Seshadri [BS15],
Damiolini [Dam24], and Hong–Kumar [HK23] when the reductive group scheme over X → is con-
stant, that is, of the formH↓Spec (k)X

→ forH over k. However, in general, reductive group schemes
over X → are not of this form. An example is given by G

→ = GL(V) for a vector bundle on X →.
Another example is given by the unitary group associated with an étale double covering X̃ →/X →

and a nowhere-degenerate hermitian form on a vector bundle on X̃ →, provided p ↗= 2.

It seems impossible to classify all reductive groups over X →. Indeed, for vector bundles V

and V
→, we have GL(V) ⇑ GL(V →) if and only if V ⇑ V

→
↘L for a line bundle L; hence classifying

reductive groups over X → with generic fiber GLn is essentially equivalent to classifying all vector
bundles of rank n, which is impossible if n ↭ 2 and X → has higher genus.

Note that when k is algebraically closed, G→ is quasi-split (Steinberg’s theorem [Ser02, § III.2.3,
Theorem 1→, plus Remark 1 at end of § III.2.3]). The following proposition deals with the quasi-
splitness over X → (existence of a relative Borel subgroup).

Proposition 2.13. Let G be a reductive group scheme over a curve X. Assume that the base

field k is either algebraically closed or finite. Then G admits a Borel group over X; that is, there

exists a smooth closed subgroup scheme B of G which is a Borel subgroup in every fiber of G.

Proof. First let k be algebraically closed. Then the generic fiber of G is quasi-split, as mentioned
above. Therefore, there exists a Borel subgroup in the generic fiber. This Borel subgroup extends
over all of X by the valuative criterion of properness since the scheme of Borel subgroups is
projective over X.

Now let k be finite. The previous argument shows that it su”ces to prove that the generic
fiber G of G is quasi-split. But every localization Gx is quasi-split. Indeed, this follows by the
smoothness of the scheme of Borel subgroups from the fact that the reduction Ḡx is quasi-split
(any linear algebraic group over a finite field is quasi-split; cf. [Ser02, § III.2.2, Theorem 1 plus
§ III.2.3, Example (a) for Theorem 1→]). Let G0 be the quasi-split inner form of G. The assertion
now follows from the exactness of the localization sequence (Hasse principle for adjoint groups
over a global field)

0 ≃↑ H1(K,G0,ad) ≃↑
∏

x↑X
H1(Kx, G0,ad) .

We refer to the appendix for a proof of the Hasse principle for adjoint groups over a global field
of positive characteristic.

The following proposition clarifies the nature of the reductive group schemes overX appearing
in [BS15].
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Proposition 2.14. Let G be a reductive group scheme over the curve X such that the generic

fiber G is constant, that is, of the form G = H ↘k K. Then G is a form of H; that is, locally on

X (for the étale or fppf topology), G is isomorphic to the constant group scheme H ↓Spec (k) X.

Furthermore, there is an open subset U ⇐ X such that G|U is constant, that is, isomorphic to

H ↓Spec k U .

Proof. The first part of the statement easily follows from the fact that reductive group schemes
are, locally for the étale topology on the base, split; see for example [Con14, Lemma 5.1.3]. The
second claim quickly follows from the fact that any isomorphism between G ↓X Spec (K) and
H ↘k K extends to an open subset of X.

Example 2.15. The following class of examples of stabilizer BT group schemes over X is con-
sidered by Balaji–Seshadri [BS15] and Hong–Kumar [HK23]. Assume for simplicity that k is
algebraically closed. Let X →/X be a tame Galois covering with Galois group !. Let G be a reduc-
tive group over K. We assume that the base change group G→ is a constant group scheme; that is,
G→ = H ↓Spec (k) Spec (K

→) for a reductive group H over k (which is split since k is algebraically
closed). ThenG arises by descent and corresponds to a cohomology class c ↔ H1(!,Aut(H↘kK →)).
Let G→ = H↓Spec (k)X

→, the constant reductive group scheme over X →. Let G be defined by descent
from G

→ by a cocycle ϱ : ! ↑ Aut(H↓kX →) = Aut(H) representing the given cohomology class c.
Then G

→ is a stabilizer BT group scheme, cf. Remark 2.1(iii), and hence so is G, and (G,G→) are
!-related. Since the Galois group ! acts trivially on Aut(H), the cocycle condition says that
ϱ : ! ↑ Aut(H) is a group homomorphism.

After choosing a pinning, we have an isomorphism Aut(H) ⇑ Had(k) ⫅̸ Aut(Dyn(H)). We
consider the following two extreme cases:

(1) ϱ : ! ↑ Had(k). In fact, for simplicity, we assume that ϱ lifts to a homomorphism ϱ̃ : ! ↑

H(k). In this case, by Steinberg’s theorem, the cohomology class c̃ ↔ H1(!, H(K →)) obtained by
composing ϱ̃ with H(k) ↑ H(K →) is trivial; that is, there exists a g ↔ H(K →) such that ϱ̃(ϑ) =
g↔1ϑ(g). Hence G ⇑ H ↓Spec (k) Spec (K) is constant. Then, under this identification, we have
G(Ox) ⇑ H(Kx)⇒ gH(O→

x→)g↔1 for every x→ ↔ X →. In other words, G corresponds to the stabilizer
BT group scheme corresponding to the collection of points {ax = g · a0,x ↔ Be(H,Kx) | x ↔ X},
where a0,x denotes the base point of the building of the split group H over K →

x→ . Note that the
point ax is independent of the choice of x→ over x and lies in the building over Kx.

(2) ς : ! ↑ Aut(Dyn(H)). In this case, G is a quasi-split outer form of H over K, and for every
point x ↔ X, the localization Gx is the stabilizer BT group scheme corresponding to a point
ax ↔ Be(G,Kx) which, when considered as a point of the building Be(G,K →

x→) = Be(H,K →
x→), is

a special point of the split group H over K →
x→ .

3. Tamely ramified G-bundles and (G→,!)-bundles

Recall that by the Tannakian formalism of Broshi [Bro13], for any smooth a”ne group scheme G
over a Dedekind scheme X, the two possible notions of G-bundles coincide: G-torsors (for the fpqc
topology, or the fppf topology, or the étale topology, these are all equivalent), and fiber functors
on the category of representations of G (that is, group scheme homomorphisms ς : G ↑ GL(V),
where V is a vector bundle on X).

3.1 (G→,!)-bundles

The following key definition is due to Balaji–Seshadri [BS15].
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Definition 3.1. Let X →/X be a finite Galois covering with Galois group !. Let G→ be a stabilizer
Bruhat–Tits group scheme over X equipped with a lifting of the action of !. A (G→,!)-bundle is
a G

→-bundle with a !-action compatible with the !-action on G
→.

There is the following stack-theoretic interpretation of (G→,!)-bundles. Consider the quotient
stack X := [X →/!] which supports a natural morphism given by taking quotients by the action
of !,

q : X = [X →/!] ≃↑ X . (3.1)

The group scheme G
→ over X → with its semi-linear !-action gives G := [G→/!]. The natural

morphism G := [G→/!] ↑ X = [X →/!] is representable by a (relative) smooth a”ne group
scheme. The groupoid of (G→,!)-bundles over X → is naturally equivalent to the groupoid of G-
bundles (that is, G-torsors) over X. This can be seen by using the Tannakian description and
a corresponding equivalence statement for the exact tensor categories of vector bundles.

Proposition 3.2. Let X →/X be a finite tame Galois covering with Galois group !. Let G and G
→

be !-related stabilizer Bruhat–Tits group schemes over X and X →
, respectively. Any G-bundle P

on X defines a (G→,!)-bundle P →
on X →

such that P = ResX→/X(P →)!. This defines a fully faithful

functor

{G-bundles on X} →≃↑ {(G→,!)-bundles on X →
} .

Proof. Let P be a G-bundle. The associated (G→,!)-bundle P → is characterized by two properties.
Recall the ramification locus R ⇐ X → of ε : X →

↑ X. First, the restriction of P → to X →
\R is equal

to the pullback of P to X →
\R. Second, for each x→ ↔ R, there is a map of torsors

P ↓X Spec (O→
x→) ≃↑ P

→
↓X→ Spec (O→

x→) ,

compatible with the natural map of group schemes G ↓X Spec (O→
x→) ↑ G

→
↓X→ Spec (O→

x→).

Let P1 and P2 be two G-bundles with associated (G→,!)-bundles P
→
1
and P

→
2
. We need to

see that any isomorphism φ→ : P →
1
↑ P

→
2
comes from a unique isomorphism φ : P1 ↑ P2. But

G = ResX→/X(G→)! implies that the natural map Pi ↑ ResX→/X(P →
i
)! is an isomorphism for

i = 1, 2, whence the assertion.

Let P
→ be a (G→,!)-bundle on X →. Then ResX→/X(P →)! is equipped with a G-action. The

observation of Damiolini [Dam24] is that it is not always true1 that ResX→/X(P →)! is a G-bundle
on X. In other words, the functor in Proposition 3.2 is not essentially surjective.

Remark 3.3. Let G be a reductive group scheme over X such that its generic fiber is constant.
By Proposition 2.14, the group scheme G is a form of H. Assume that G is a strong inner form;
that is, G = Aut(P0) for a H-torsor P0 on X. Then there is an equivalence of categories between
the category of G-torsors on X and the category of H-torsors on X: indeed, P0 defines a fiber
functor with values in the category of vector bundles on X of the category of representations
of H. In other words, P0 is a right H-torsor and a left G-torsor, and the equivalence is given by
P →↑ P ↓

G
P0. This remark applies in particular to H = GLn and shows that for any strong

inner form G of GLn, the category of G-bundles on X is equivalent to the category of vector
bundles of rank n on X. For example, if G = GL(V) for a vector bundle V of rank r on X, then
the category of G-bundles is equivalent to the category of vector bundles of rank r on X.

1The example of Damiolini does not involve parahoric group schemes, and therefore one might argue that it
possibly does not apply in our context. However, Proposition 6.1 shows that it does.
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4. Purity for (G→,!)-bundles

In this section, we continue to assume that X →/X is a finite tame Galois covering of curves over k
with Galois group !. Let G and G

→ be !-related stabilizer Bruhat–Tits group schemes over X
and X →, respectively.

Recall the notion of an S-family of G-bundles on X: by definition, this is a G-bundle on S↓X.
Similarly, there is the notion of an S-family of a (G→,!)-bundles on X →: by definition, this is a
G
→-bundle on S↓X → equipped with a semi-linear !-action (semi-linear for the OX→-factor). Let P →

be an S-family of G→-bundles on X → with semi-linear action of !. Then ResX→/X(P →)! is a smooth
scheme over S↓X, equipped with an action of the parahoric group scheme G; cf. Proposition 3.2.
In fact, it is a pseudo-torsor under G; that is, if ResX→/X(P →)!(T ) ↗= ⇔ for a S-scheme T , then

the action of G(T ↓X) on ResX→/X(P →)!(T ) is simply transitive.

Proposition 4.1. There is a maximal open subset U ⇐ S such that
(
ResX→/X(P →)!

)
|U↗X

is

a G-torsor.

Proof. What is preventing ResX→/X(P →)! from being a G-torsor is that the fiber over (s, x) ↔ S↓X

may be empty. The set of such (s, x) is closed by the smoothness of ResX→/X(P →)!. Therefore, U
is the complement of the projection of this closed subset to S (which is closed by the properness
of X).

The purity theorem in question is the following statement.

Theorem 4.2. Let P
→
be an S-family of (G→,!)-bundles on X →

. Assume that there is an open

dense subset U ⇐ S such that the induced U -family
(
ResX→/X(P →)!

)
|U↗X

is a U -family of G-

bundles. Then ResX→/X(P →)! is an S-family of G-bundles.

Proof. Let B be the branch locus of X →
↑ X; in other words, denoting by R→ the inverse image

of B, the morphism X →
\ R→

↑ X \ B is étale, and B is minimal with this property. It is easy
to see that the restriction of ResX→/X(P →)! to S ↓ (X \ B) is a G-bundle. Let s ↔ S \ U and

x ↔ B. Then what has to be shown is that the fiber of ResX→/X(P →)! in (s, x) ↔ S ↓X is non-

empty. Indeed, if this fiber is non-empty, a section can be lifted to a section of ResX→/X(P →)!

over an open neighborhood (use the smoothness of ResX→/X(P →)!); hence by varying x, we see

that ResX→/X(P →)! is a G-torsor over S ↓X (use the properness of X).

Assume, toward a contradiction, that the fiber of ResX→/X(P →)! over (s, x) is empty. By
making a base change Spec (V ) ↑ S, where V is a complete discrete valuation ring (DVR) with
residue field k(s), mapping the special point to s and the generic point to U , we may assume
S = Spec (V ). Also, by localizing around (s, x) and completing, we can consider the situation
over S ↓ Xx, where Xx is the completion of X at x. Let V = (S ↓ Xx) \ (s, x). Then V is the
punctured spectrum of a 2-dimensional regular local ring R. The restriction of ResX→/X(P →)!

to V is a G-torsor. If the fiber at the special point is empty, then P := (ResX→/X(P →)!)|V =

ResX→/X(P →)! is an a”ne scheme. Let X →
x = Xx ↓X X →, and set V

→ = V ↓Xx X →
x. Then we see

that P ↓V V
→ = P ↓Xx X →

x is also a”ne. Consider the push-out morphism

p : P ↓V V
→
≃↑ P

→
|V → .

It induces a map on cohomology,

H1
(
P

→
|V → ,O

)
≃↑ H1(P ↓V V

→,O) . (4.1)
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The map (4.1) is an isomorphism up to bounded ε-torsion, where ε denotes a uniformizer of Xx.
Indeed, since p is an a”ne morphism, the map (4.1) is induced by the map of sheaves on P

→
|V →

given by

OP →
|V→

≃↑ p↘(OP↗VV →) ,

and this map is injective, with cokernel a skyscraper sheaf on V
→
↓V

(
(S ↓ {x}) ⇒ V

)
.

Now the target of the map (4.1) is H1(P ↓V V
→,O) = 0 since P ↓V V

→ is a”ne. On the other
hand, P →

|V → is a trivial G→-torsor over Spec (R→) = S ↓ X →
x, which is a product of complete local

rings. Hence the source of the map (4.1) can be identified with H1(V →,O)↘H0(G→,O). Let m be
the maximal ideal of R→. Since H1(V →,O) = H2

m(R
→) is not of bounded ε-torsion (it contains the

images of ε↔a↼↔b
↔ R→

ϖϱ for any a > 0, b > 0, where ↼ is a uniformizer of V ), this gives the
desired contradiction.

Remark 4.3. The argument in the proof of Theorem 4.2 is due to Scholze and is used in [PR24b,
§ 5] to give a simple proof of Anschütz’ extension theorem in the case of essentially tamely ramified
groups.

5. Types of local (G→,!)-bundles

In this section, we consider the local analogue of (G→,!)-bundles. More precisely, let O→/O be
a finite extension of strictly henselian DVRs with Galois group ! = Gal(F →/F ). Let G be a re-
ductive group over F and G→ its base change to F →. Also, let G→ be a smooth group scheme over
Spec (O→) with generic fiber G→ which supports a compatible !-action.

The notion of a (G→,!)-bundle over Spec (O→) is clear; cf. Definition 3.1. As usual, we denote
by H1(Spec (O→);!,G→) the set of isomorphism classes of these bundles; cf. [Gro57, Chapter V].
We call this set, the “set of (local) types of (G→,!)-bundles over O→.”

5.1 Types

The following proposition gives a classification of (G→,!)-bundles over O→.

Proposition 5.1. There are natural bijections

H1(Spec (O→);!,G→)
≃

≃≃↑ H1(!,G→(O→))
≃

≃≃↑ G(F )\
(
G→(F →)/G→(O→)

)
!
.

Proof. The existence of the first bijection follows easily from the definitions. Indeed, since G
→

is smooth and O→ strictly henselian, every (G→,!)-bundle P
→ over Spec (O→) is trivial as a G

→-
bundle; after picking a section of P →, the structure of a (G→,!)-bundle is described by a 1-cocycle
ϱ : ! ↑ G

→(O→).

It remains to explain the second bijection. The essential ingredient here is Steinberg’s theorem,
which implies that H1(!, G→(F →)) = 0. Using this, the result quickly follows from [Ser02, § I.5,
Proposition 36, Corollary 1]. In fact, the bijection

H1(!,G→(O→))
≃

≃≃↑ G(F )\
(
G→(F →)/G→(O→)

)
!

is given as follows. Starting with a 1-cocycle ϱ : ! ↑ G
→(O→), by Steinberg’s theorem, there is an

h ↔ G→(F →) such that ϱ(ϑ) = h↔1ϑ(h). Since ϱ(ϑ) ↔ G
→(O→), we have h ·G→(O→) ↔ (G→(F →)/G→(O→))!,

and the map is given by sending the class of the cocycle ϱ to the G(F )-orbit of h · G
→(O→).

Remark 5.2. Suppose that O→ is a complete DVR with finite residue field, G→ is semi-simple and
simply connected, and G

→ has connected special fiber. Then the conclusion of Proposition 5.1
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continues to hold. The proof is by the same argument using the following ingredients: By the
smoothness of G→ and Lang’s theorem on the triviality of H1 of a connected algebraic group over
a finite field (see [Ser02, § III.2.3, Example (a) for Theorem 1→]), we see that every (G→,!)-bundle
P

→ over Spec (O→) is trivial as a G
→-bundle, and we again have H1(!, G→(F →)) = 0 by work of

Bruhat–Tits [BT87a, Théorème 4.7].

5.2 Types for BT group schemes

Now assume that F →/F is a tamely ramified extension. Then the extended building Be(G,F )
is identified with the !-fixed points Be(G→, F →)! of the extended building Be(G→, F →) under its
Galois !-action [PY02]. Also assume that G→ is a BT group scheme and that, in fact, G→(O) is the
stabilizer G→(F )a in G→(F ) of a point a ↔ Be(G→, F →) which is fixed by !; that is, a ↔ Be(G,F ).
Let G = (ResO→/OG

→)!. Then G is a BT group scheme over O, and G(O) is the stabilizer G(F )a
in G(F ) of the point a now considered in the building Be(G,F ). In other words, G and G

→ are
!-related stabilizer BT group schemes.

Lemma 5.3. Under the above assumptions, there is a bijective map

(G→(F →)/G→(O→))!
≃

≃≃↑ Be(G,F ) ⇒
(
G→(F →) · a

)

given by h · G
→(O→) →↑ h · a. In the target, the intersection takes place in Be(G→, F →).

Proof. This follows from the definitions since G
→(O→) is the stabilizer of a in G→(F →) and since we

have Be(G,F ) = Be(G→, F →)!.

Combining with Proposition 5.1, we obtain the following.

Proposition 5.4. There are natural bijections

H1(Spec (O→);!,G→)
≃

≃≃↑ H1(!,G→(O→))
≃

≃≃↑ G(F )\
(
Be(G,F ) ⇒ (G→(F →) · a)

)
.

Corollary 5.5. The set of types H1(Spec (O→);!,G→) is finite.

Proof. Every orbit of the G(F )-action on Be(G,F ) has a representative in the closure of an
alcove in Be(G,F ), and such a closed alcove has a finite intersection with a G→(F →)-orbit.

Example 5.6. Assume O = k[[↼]] and O→ = k[[↼→]], where k is an algebraically closed field.
Assume that G and G

→ are !-related stabilizer BT group schemes as above. Then G→(F →)/G→(O→)
is in equivariant bijection with the set of k-valued points of the (partial) a”ne flag variety
FG→ = LG→/L+

G
→; cf. [PR08]. Hence (G→(F →)/G→(O→))! ⇑ FG→(k)! are the !-fixed points of

FG→(k); the group G(F ) = LG(k) acts, and Proposition 5.1 gives

H1(Spec (O→);!,G→)
≃

≃≃↑ H1(!,G→(O→))
≃

≃≃↑ LG(k)\FG→(k)! .

Remark 5.7. Denote by Ḡ
→red the maximal “reductive” quotient of the special fiber Ḡ

→ of G
→

over O→, that is, the quotient of Ḡ
→ by the unipotent radical of its neutral component. Note

that as an exemption to our usual conventions, this group might not be connected (whence the
quotation marks). However, connectedness holds if G→ is a parahoric group scheme.

The kernel of the natural homomorphism G
→(O→) ↑ Ḡ

→red(k) consists of the k-points of a
pro-unipotent group, and this map is surjective by the smoothness of G→. Since, by our tameness
hypothesis, the order of ! is prime to the residue characteristic of k, a standard argument gives
that G→(O→) ↑ Ḡ

→red(k) induces a bijection

H1(!,G→(O→))
≃

≃≃↑ H1(!, Ḡ→red(k)) . (5.1)
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This bijection gives an alternative approach to the explicit determination of the set of local types
of (G→,!)-bundles over O→, especially when Ḡ

→ is connected. Let us explain this.

Let us assume that H = Ḡ
→red is a connected reductive group over the algebraically closed

field k. Since the extension F →/F is supposed to be tame, we may identify ! with µe, where
e = [F → : F ] is prime to char k.

By [Ste68, Theorem 7.5], there exist a maximal torus T of H and a Borel subgroup B
containing T which are !-stable. Fix such a T , with Weyl group W . Then the natural map
H1(!, T (k)) ↑ H1(!, H(k)) is surjective and induces a bijection

H1(!, H(k)) = H1(!, T (k))/W! ; (5.2)

cf. [PZ13, Proof of Proposition 2.4]. This action is given as follows: Choose a generator ϑ0 ↔ !. Let
w ↔ W! and lift w to ẇ ↔ N(T ). Set tw := ẇ↔1ϑ0(ẇ). Suppose that an element [t] ↔ H1(!, T (k))
is represented by t ↔ T (k). Then set [t] ·w =

[
ẇ↔1tẇ · tw

]
=

[
ẇ↔1tϑ0(ẇ)

]
; that is, w acts on t by

ϑ0-conjugation by ẇ.

Note that since ! is a cyclic finite group, there is an identification

H1(!, T (k)) = ker
(
N! : T (k) ≃↑ T (k)

)
/I!T (k) ; (5.3)

cf. [AW67, § 8]. Here N! =
∑

ε↑! ϑ ↔ Z[!] is the norm element in the group ring, and I! =
ker(Z[!] ↑ Z) is the augmentation ideal.

Example 5.8. (1) Consider H = SLn for n > 2, with ! = Z/2, acting by the involution

A →≃↑ ϑ(A) := J↔1
(
At

)↔1
J , J = antidiag(1, . . . , 1) .

This stabilizes the upper triangular Borel and the diagonal torus T = {diag(z1, . . . , zn) |z1 · · · zn=
1}. We have

ϑ(z1, . . . , zn) =
(
z↔1

n , . . . , z↔1

1

)
.

(a) The odd case: n = 2m+ 1. Then

ker
(
N! : T (k) ≃↑ T (k)

)
=

{(
z1, . . . , zm, 1, z↔1

m , . . . , z↔1

1

)}
.

We can write
(
z1, . . . , zm, 1, z↔1

m , . . . , z↔1

1

)
= (1≃ϑ)

(
z1, . . . , zm, (z1 · · · zm)↔1, 1, . . . , 1

)
, and so, by

(5.3), we have H1(!, T (k)) = (1), hence H1(!, H(k)) = (1).
(b) The even case: n = 2m. Then

ker
(
N! : T (k) ≃↑ T (k)

)
=

{
(z1, . . . , zm, zm, . . . , z1) | (z1 · · · zm)2 = 1

}
.

We have

(1≃ ϑ)(a1, . . . , an) = (a2ma1, . . . , am+1am, amam+1, . . . , a1a2m) .

Since a1 · · · a2m = 1, the product of the first m entries above is equal to 1. We can now see that
the map

(z1, . . . , zm, zm, . . . , z1) →≃↑ z1 · · · zm

induces H1(!, T (k)) ⇑ {±1}. Let us also consider the action of W ε on H1(!, T (k)).

We claim that there is a single W ε-orbit in H1(!, T (k)) ⇑ {±1}. To show this, it is enough
to produce one element of W ε that takes the neutral class 1 to the class ≃1 which is represented
by (1, . . . , 1,≃1,≃1, 1, . . . , 1). Note that ϑ acts on W = S2m as conjugation by the permutation
J = s1 2ms2 2m↔1 · · · smm+1. Consider w = smm+1 ↔ W ε , which we lift to ẇ = the matrix in SL2m

with central block
(

0 1
↔1 0

)
and entries 1 on the rest of the diagonal. We now calculate that

tw = ẇ↔1ϑ(ẇ) = diag(1, . . . , 1,≃1,≃1, 1 . . . , 1) .
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This shows that [1] · w = [(1, . . . , 1,≃1,≃1, 1, . . . , 1)] and proves our claim. Hence we have
H1(!, H(k)) = (1).

(2) Let us consider the following variation of case (1.b) (which will become relevant in Exam-
ple 5.12(2) below). ConsiderH = SLn for n = 2m ↭ 4, with ! = Z/2 acting by the automorphism

A →≃↑ ϑ→(A) := J →↔1
(
At

)↔1
J → , J → = ↽ · J = ↽ · antidiag(1, . . . , 1) ,

where ↽ = diag
(
(≃1)(m), 1(m)

)
↔ T (k). For w = smm+1 and ẇ as in case (1.b) above, we obtain

ϑ→(ẇ) = ẇ, so tw = 1. In fact, we can see that in this case, the W ε-action on H1(!, T (k)) ⇑ {±1}
is trivial, and so there are two orbits. Hence H1(!, H(k)) ⇑ Z/2Z.

This result shows that the W ε-action on H1(!, T (k)) is subtle and can change when we
compose ϑ with an inner automorphism.

5.3 Twisted forms

We place ourselves in the situation of Section 5.2. Given a type ω ↔ H1(Spec (O→);!,G→), we let
h · a ↔ Be(G,F ) be an element of the G(F )-orbit that is the image of ω under the bijection of
Proposition 5.4.

Definition 5.9. The BT group scheme ω
G corresponding to the type ω is the unique BT group

scheme such that
ω
G(O) = G(F )h·a ;

that is, ω
G is the stabilizer BT group scheme corresponding to h · a ↔ Be(G,F ).

Note that this is an abuse of terminology and notation since ω
G is only determined from ω up

to G(F )-conjugation. For the neutral type, we can choose h = 1 and get the BT group scheme G.

Remark 5.10. Here is a slight variation on the definition of ω
G. Let ϱ : ! ↑ G

→(O→) be a cocycle
in the class of ω . Consider the reductive group ςG over F obtained by inner-twisting G by ϱ, so

ςG(F ) =
{
g→ ↔ G→(F →) | ϱ(ϑ) · ϑ(g→) · ϱ(ϑ)↔1 = g→, ↖ϑ

}
⇐ G→(F →) .

Since F →/F is tamely ramified, the building Be(ςG,F ) is identified with the !-fixed points of the
building Be(G→, F →) with !-action given by the usual Galois action composed with the adjoint
action via ϱ. Since ϱ takes values in G

→(O→), the point a is also fixed by the new !-action, which
is the Galois action “twisted” by ϱ as above; hence a also lies in Be(ςG,F ). We set

ω
G(O) =ςG(F ) ⇒ G

→(O→) ,

which is the stabilizer of the same point a ↔ Be(ςG,F ) ⇐ Be(G→, F →) in ςG(F ). This also defines
a BT group scheme ς

G over O.

Recall that we have h ↔ G→(F →) with ϱ(ϑ) = h↔1ϑ(h). We now see that g →↑ hgh↔1 gives an
isomorphism of group schemes over F ,

ςG
≃

≃≃↑ G .

This isomorphism extends to an isomorphism of group schemes over O,
ς
G =ω

G .

Hence ς
G is an alternative definition of ω

G.

Assume G
→ = G ↘O O→. Then ς

G = ResO→/O(G ↘O O→)!, where the !-action is given by the
usual Galois action composed with the adjoint action via ϱ, and so

ResO→/O(G ↘O O→)! =ω
G .
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The above isomorphism also appears in [BS15, Theorem 2.3.1] and [DH23, Theorem 4.1.2],
under certain assumptions, when G→ is constant. In these papers, it appears with an alternative
description of ω

G which we explain in Section 5.4.

Example 5.11. Let G = SL2, and let F →/F be totally ramified of degree n which is prime to
char(k). Consider the standard apartment, which is identified with R such that the fundamental
domain for the a”ne Weyl group of SL2(F ) is the interval [0, 1] and the fundamental domain for
the a”ne Weyl group of SL2(F →) is the interval [0, 1/n]. Let us consider a = 1/n. In this case, G
is an Iwahori group scheme over O, and G

→ is a reductive group scheme over O→. Then any point
in the building of SL2(F →) in the SL2(F →)-orbit of a is conjugate under SL2(F →) to a point in the
standard apartment of the form 1/n+2i/n. Since we are interested in the SL2(F )-orbits of these
points, we may assume 0 < 1/n + 2i/n < 1 or 1 ↫ 1/n + 2i/n < 2. The point 1 gives a type ω
with ω

G the non-standard hyperspecial parahoric group scheme, that is, a reductive group scheme
over O such that ω

G(O) is not conjugate to SL2(O) under SL2(F ). This case only occurs when n
is odd. For all other types ω , the the group scheme ω

G is an Iwahori group scheme. The points
with 0 < 1/n+ 2i/n < 1 are conjugate to the points with 1 < 1/n+ 2i/n < 2. Summarizing, we
see that there are [(n+ 1)/2] types; if n is odd, there is precisely one type with hyperspecial ω

G

(which is non-standard), and if n is even, there is none.

This number of types can also be found easily by using (5.1) and (5.2). We haveH = Ḡ
→ = SL2,

and the action of ! = Z/n on H is trivial. Take T =
{
diag

(
a, a↔1

)
| a ↔ k↗

}
. We have ker

(
N!

)
={

diag
(
a, a↔1

)
| an = 1

}
and I!T (k) = {1}. HenceH1(!, T (k)) = Hom(Z/n, T (k)) ⇑ {a | an = 1}

with the W -action, where W = Z/2, taking a to a↔1. We can now see that there are [(n+ 1)/2]
orbits for the action of W on H1(!, T (k)).

Example 5.12. Let G = SUn

(
F̃ /F

)
be the quasi-split special unitary group of size n ↭ 3 cor-

responding to a ramified quadratic extension F̃ of F . Set F → = F̃ and ! = Gal(F →/F ) ⇑ Z/2
with the non-trivial Galois automorphism denoted by a →↑ ā. Let ε be a uniformizer of F → with
ε̄ = ≃ε. Set

V → = (F →)n = spanF →{e1, . . . , en} ,

and consider the perfect F →/F -hermitian bilinear form ⇀ : V →
↓V →

↑ F → determined by ⇀(ei, ej) =
ϖi,n+1↔j . Then

G(F ) =
{
A ↔ EndF →(V →) | ⇀(Av1, Av2) = ⇀(v1, v2), ↖v1, v2 ↔ V →, det(A) = 1

}
.

There is a corresponding anti-involution A →↑ A↘ on AutF →(V →) = GLF →(V →) defined by ⇀(Av1, v2)
= ⇀(v1, A↘v2). This induces the involution inv : A →↑ (A↘)↔1 and G(F ) = {A ↔ AutF →(V →) |

A↘A = 1, det(A) = 1} = SL(V →)inv=1.

In what follows, we will use the standard description of the building B(SUn(F →/F )) as a subset
of B(SLn, F →) which is given by considering self-dual periodic O→-lattice chains; see [BT87b],
[PR08, § 4.a]. We consider two cases:

(1) The odd case: n = 2m + 1 ↭ 3. Choose a special vertex a in the building of G(F ), and
consider the corresponding special maximal parahoric group scheme G. By [PR08, § 4.a], there
is an F →-basis {fi} of V → such that ⇀(fi, fj) = ϖi,n+1↔j and such that one of the following occurs:

(a) G(O) is the stabilizer of %→
0
= spanO→{f1, . . . , fn} in G(F ).

(b) G(O) is the stabilizer of %→
m = spanO→

{
ε↔1f1, . . . ,ε↔1fm, fm+1, . . . , fn

}
in G(F ).

Now set G→ = SLn,F → = SL(V →), and take G
→ to be the hyperspecial group scheme which

corresponds to the lattice %→ = %→
0
, respectively %→

m, that is, with G
→(O→) = Aut(%→) ⇒ SLn(F →).
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Then

G = (ResF →/FSLn,F →)! , G = (ResO→/OG
→)! ,

so G and G
→ are !-related. In this case, the SLn(F →)-orbit of a in the building B(SLn, F →) consists

of the vertices corresponding to the O→-lattices %→→ = g · %→, g ↔ SLn(F →); we can see that these
vertices are !-fixed only when the lattices are self-dual, that is, satisfy %→→⇐ = %→→ in case (a) and
ε%→→

⇐ %→→⇐ with dimk(%→→⇐/ε%→→) = 1 in case (b). But it follows from [PR08, § 4.a] that all such
lattices are in the G(F )-orbit of %→

0
, respectively %→

m. Hence, in each of these cases, there is only
the neutral type. This also follows from (5.1), (5.2), and Example 5.8(1). Indeed, in case (a),

the involution inv is given by A →↑ ϑ(A) = J↔1
·
(
Āt

)↔1
· J , with J = antidiag(1, . . . , 1) for

A ↔ SLn(O→). Example 5.8(1) applies to H = SLn,k = Ḡ
→red and gives H1(!, T (k)) = (1). The

same holds in case (b): we again have H1(!, T (k)) = (1).

(2) The even case: n = 2m ↭ 4. Choose a special vertex a in the building of G(F ), and
consider the corresponding special maximal parahoric group scheme G. By [PR08, § 4.a], there
is an F →-basis {fi} of V → such that ⇀(fi, fj) = ϖi,n+1↔j and such that G(O) is the stabilizer of

%→
m = spanO→

{
ε↔1f1, . . . ,ε

↔1fm, fm+1, . . . , f2m
}

in G(F ). Notice that %→⇐
m = ε↔1%→

m. (There are actually two types of special vertices, but they are
conjugate by U2m(F →/F )—although not by SU2m(F →/F ); see below.) Take G→ to be the stabilizer
of %→

m in SLn,F → . Then G = (ResO→/OG
→)!, and so G and G

→ are !-related. To write G explicitly as
the invariants of an involution on SLn, we need to express the hermitian form in an O→-basis of
%→
m. In the natural O→-basis given above, ⇀ is given by the matrix

H = ≃ε↔1
· diag(≃1, . . . ,≃1, 1, . . . , 1) · J .

The involution is given by A →↑ ϑ→(A) = H̄↔1
(
Āt

)↔1
· H̄ = J →↔1

(
Āt

)↔1
J →, where we set J → =

diag
(
(≃1)(m), 1(m)

)
· J . Then (5.1) and (5.2) and the calculation in Example 5.8(2) imply that

there are two types, corresponding to the two orbits there.

From the building perspective, we can see the two types as follows. The SLn(F →)-orbit of a
consists of the vertices corresponding to O→-lattices %→ = g · %→

m, g ↔ SLn(F →); we can see that
these vertices are !-fixed only when the lattices satisfy %→⇐ = ε%→. By [PR08], such lattices are
in two SU2m(F →/F )-orbits. The first is the orbit of a; this is the neutral type. The second is the
orbit under G(F ) of the other special vertex a→, which corresponds to the lattice

%→
m→ = spanO→

{
ε↔1f1, . . . ,ε

↔1fm↔1, fm,ε↔1fm+1, fm+2, . . . , f2m
}
.

Note that %→⇐
m→ = ε↔1%→

m→ and also that fm →↑ εfm, fm+1 →↑ ε↔1fm, fi →↑ fi for all i ↗= m, m+ 1
gives a transformation of determinant 1 that takes %→

m to %→
m→ ; hence a and a→ are indeed in the

same SLn(F →)-orbit. Also note that a and a→ are in the same Un(F →/F )-orbit (since fm →↑ fm+1,
fm+1 →↑ fm, fi →↑ fi for i ↗= m,m+1 is a unitary transformation) but not in the same SUn(F →/F )-
orbit. The stabilizer of the lattice %→

m→ in the special unitary group is the twisted parahoric group
G(F )a→ associated with the non-neutral type.

Remark 5.13. In the even case n = 2m, we can also choose G to be the stabilizer of the self-
dual lattice %→

0
= spanO→{f1, f2, . . . , f2m} in the basis above and G

→ = SL(%→
0
). Then, using

Example 5.8(1.b), we see that there is only the neutral type.
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5.4 Relation to [BS15] and [DH23]

In [BS15, § 2.3], Balaji–Seshadri (see also Damilioni–Hong [DH23, § 4]) consider the case where
H = Ḡ

→red is connected and the action of ! on H(k) is trivial. In this case,

H1(!, H(k)) = H1(!, T (k))/W = Hom(!, T (k))/W

= Hom(µe, T )/W = Hom(X↘(T ),Z/eZ)/W ;
(5.4)

cf. (5.2). The injection Z/eZ ⇐ Q/Z given by 1 →↑ e↔1modZ induces the injection

Hom(X↘(T ),Z/eZ) ⇐ Hom(X↘(T ),Q/Z) = Hom(X↘(T ),Q)/X↘(T ) .

Now assume that H is semi-simple and simply connected over k, and consider G = H ↘k O,
G
→ = H ↘k O→. In this case, Balaji–Seshadri give an alternative way to describe the twisted BT

group associated with a local type. Indeed, using the a”ne Weyl group Wa” = W ⊋X↘(T ) and
combining with (5.4), we see that

H1(!, H(k)) = Hom(X↘(T ),Z/eZ)/W ⇐ Hom(X↘(T ),R)/Wa” .

Now Hom(X↘(T ),R) is the apartment corresponding to the torus T↘kF in the building ofH↘kF
over F . Hence we can use the above to identify H1(!, H(k)) with a subset of a fixed alcove in
that building. In particular, each local type ω ↔ H1(!, H(k)) gives a well-defined point [ω ] in
the fixed alcove. The stabilizer of this point defines a parahoric group scheme for H ↘k F . We
claim that this parahoric agrees up to conjugation by H(F ) with the parahoric group scheme ω

G

associated with the local type ω .

Recall the maximal torus T ⇐ H over k; then T ↘k F is a maximal torus of G = H ↘k F ,
and the hyperspecial point a ↔ B(G,F ) that corresponds to G(O) = H ↘k O is a base point 0 of
the apartment A(T ↘k F ) = X↘(T )↘Z R for T ↘k F . Suppose that the local type ω is given by
a cocycle ϱ : ! ↑ G

→(O→) = H(O→). Denote by ϱ̄ : ! ↑ H(k) the reduction of ϱ modulo ↼→. We can
replace ϱ with a cohomologous cocycle ϱ→ with the property that ϱ̄→ takes values in the k-points
of T . Then, by lifting, we find ϱ→→ : ! ↑ T (O→), which is cohomologous to ϱ→. Hence, replacing ϱ
with ϱ→→, we may assume from the start that the local type is given by a cocycle ϱ : ! ↑ T (O→).
Let h = t ↔ T (F →) be such that ϱ(ϑ) = t↔1ϑ(t), and take

ω
G(O) = G(F )t·a = G(F ) ⇒ tH(O→)t↔1 .

The point t · a lies in the apartment A(T ↘k F ) = X↘(T ) ↘Z R, and it remains to see that its
Wa” -orbit agrees with the Wa” -orbit of the point [ω ] above.

Let us make explicit the isomorphism ! = µe. Choose uniformizers ↼ ↔ O and ↼→
↔ O→

such that ↼→e = ↼. Then ϑ(↼→) = ⇁(ϑ)↼→ for ⇁(ϑ) ↔ µe, and the isomorphism is given by
ϑ →↑ ⇁(ϑ). Choose an isomorphism T ⇑ Gr

m and a primitive eth root of unity ⇁ = ⇁e ↔ k↘

which also determines a generator ϑφ ↔ !. Suppose that ϱ̄ : ! ↑ T (k) = (k↘)r is given by
ϱ̄(ϑφ) = (⇁a1 , . . . , ⇁ar), 0 ↫ ai < e. Then we can take t = (↼→ai , . . . ,↼→ar) ↔ T (F →) = (F →↗)r;
the corresponding translation element in X↘(T ) ↘Z R = Rr is (a1/e, . . . , ar/e), and t · a =
(a1/e, . . . , ar/e) + 0. This has the same Wa” -orbit as the point [ω ] above.

6. Global (G→,!)-bundles and their local types

We now return to the global set-up. Let X →/X be a tame Galois cover with Galois group !.
Let G be a reductive group over K and G→ its base change over K →. Let G, respectively G

→, be
!-related stabilizer BT group schemes for G, respectively G→, corresponding to the collection of
points {ax ↔ Be(G,Kx) | x ↔ X}. Recall that then G = ResX→/X(G→)!; cf. Definition 2.2.
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6.1 A Leray exact sequence

Recall from Section 3.1 the stack-theoretic interpretation of (G→,!)-bundles. It uses the quotient
stack X := [X →/!], which supports a natural morphism

q : X = [X →/!] ≃↑ X . (6.1)

Also recall the natural morphism G := [G→/!] ↑ X = [X →/!] which is representable by a (relative)
smooth a”ne group scheme. The groupoid of (G→,!)-bundles over X → is naturally equivalent to
the groupoid of G-bundles (that is, G-torsors) over X; cf. Section 3.1 We now consider the
corresponding set of isomorphism classes

H1(X,G) ↙= H1(X →;!,G→) .

(Here we can use the étale topology.) This is the global analogue of the set appearing in Section 5.

Proposition 6.1. There is an exact sequence of pointed sets

0 ≃↑ H1(X,G) ≃↑ H1(X →;!,G→)
LT

≃≃≃↑

∏

x↑B
H1(Ix→ , Ḡ→red

x→ (k̄))Gal(k̄/k(x)) . (6.2)

Here B ⇐ X is the (finite) branch locus of ε : X →
↑ X, for x ↔ B a lift x→ of x to X →

is chosen,

and Ḡ
→red
x→ denotes the maximal reductive quotient of the special fiber of G

→
over x→. Also, Ix→ ⇐ !

is the inertia subgroup.

If k is algebraically closed, then (6.2) is an exact sequence of pointed sets

0 ≃↑ H1(X,G) ≃↑ H1(X →;!,G→)
LT

≃≃≃↑

∏

x↑B
H1(!x→ , Ḡ→red

x→ (k)) , (6.3)

where !x→ = Ix→ is the stabilizer of x→ ↔ X →.

Remark 6.2. We note that an analogue (in his context) of this exact sequence appears in
Grothendieck’s Bourbaki talk [Gro95, display (II), p. 59]. He also describes in terms of automor-
phism sheaves the fibers of the second map; cf. Proposition 6.5(b) below. However, Grothendieck’s
expressions for the terms on the right in (6.3) and the automorphism sheaves is less precise.

Proof. By [Gir71, Proposition V.3.1.3], there is an exact sequence of pointed sets

0 ≃↑ H1(X,R0q↘G) ≃↑ H1(X,G) ≃↑ H0(X,R1q↘G) , (6.4)

where the derived images Riq↘ are for q = qet : Xet ↑ Xet. (This can be viewed as a non-abelian
“Leray type” sequence; cf. [Dou82, § 1]). Hence it remains to determine Riq↘(G) for i = 0, 1.

Since ResX→/X(G→)(S) = G
→(X →

↓X S), for any X-scheme S, we have

R0q↘(G) = H0(!,ResX→/X(G→)) = (ResX→/X(G→))! = G ,

where we also denote by G the étale group sheaf over X corresponding to the group scheme G.

Let x→ and x be points of X → and X with ε(x→) = x. Denote by !x→ ⇐ ! the stabilizer (decom-

position) subgroup of x→, and recall the inertia subgroup Ix→ ⇐ !x→ . Set Oh

X,x
(x→) =

(
Oh

X→,x→
)Ix→ ,

so that Oh

X,x
(x→)/Oh

X,x
is an unramified Galois extension with group !x→/Ix→ = Gal(k(x→)/k(x)).

Then there is a !-equivariant isomorphism of algebras [Ray70]

OX→ ↘OX Oh

X,x(x
→) ⇑ Ind!Ix→O

h

X→,x→ .

This gives

[X →/!]↓X Spec
(
Osh

X,x

)
⇑

[
Spec

(
Osh

X→,x→
)
/Ix→

]
.
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Hence the stalk of the étale sheaf R1q↘G at the geometric point x̄ given by k(x) ⇐ k(x→) ⇐ k̄ =
k(x̄) is the Gal(k̄/k(x))-set

H1
(
X →

↓X Spec
(
Osh

X,x

)
;!,G→)

⇑ H1
(
Spec

(
Osh

X→,x→
)
; Ix→ ,G→) .

Since G
→ is smooth, all G→-torsors over Spec

(
Osh

X→,x→
)
are trivial and by Proposition 5.1

H1
(
Spec

(
Osh

X→,x→
)
; Ix→ ,G→)

⇑ H1
(
Ix→ ,G→(Osh

X→,x→
))

.

In particular, if x lies on the complement U = X \ B of the branch locus B of X →
↑ X, then

(R1q↘G)x̄ = (0). Artin approximation implies that the injection Osh

X→,x→ ↪↑ O→
x̄→ induces a bijection

H1
(
Ix→ ,G→(Osh

X→,x→
))

⇑ H1
(
Ix→ ,G→(O→

x̄→
))

.

Recall that we assume that the cover X →
↑ X is tamely ramified, so all the inertia groups Ix→

have order prime to the characteristic of k. Therefore, using that the kernel of G→
x→ ↑ Ḡ

→red
x→ is

pro-unipotent, we obtain

H1
(
Ix→ ,G→(Osh

X→,x→
))

⇑ H1
(
Ix→ ,G→(O→

x̄→
))

⇑ H1
(
Ix→ , Ḡ→red

x→ (k̄)
)
.

This completes the proof of the proposition.

Definition 6.3. Let P → be a (G→,!)-bundle over X →. The cohomology class

LTx→(P →) ↔ H1
(
Ix→ , Ḡ→red

x→ (k̄)
)
= H1

(
Ix→ ,G→(O→

x̄→
))

is called the local type of P → at x→.

Note that if x→
i
, i = 1, 2, are two points of X → both mapping to x, there is a ϑ ↔ ! with

ϑ(x→
1
) = x→

2
and we can use a lift of ϑ to identify H1

(
Ix→

1
, Ḡ→red

x→
1

(k̄)
)
⇑ H1

(
Ix→

2
, Ḡ→red

x→
2

(k̄)
)
. The maps

LTx→
1
and LTx→

2
are compatible with such an identification. We will often abuse notation and

write LTx instead of LTx→ .

Remark 6.4. If k is a finite field and the fiber of G→ at x→ is connected, then every G
→-torsor is

trivial over Spec (Oh

X→,x→) by the smoothness of G→ and Lang’s theorem. Under these assumptions,

a similar construction using restriction to Spec
(
Oh

X→,x→
)
allows us to define the local type of

a (G→,!)-bundle P
→ over X → at x→ as an element in H1

(
Ix→ , Ḡ→red

x→ (k(x→))
)
. This maps to the local

type LTx→(P →) ↔ H1
(
Ix→ , Ḡ→red

x→ (k̄)
)
given above.

6.2 Bundles with fixed local type (algebraically closed ground field)

Let us now assume that k is algebraically closed. Under these assumptions, we will study the
fibers of the map

LT: H1
(
[X →/!], [G→/!]

)
≃↑

∏

x↑B
H1

(
!x→ ,G→(O→

x→
))

=
∏

x↑B
H1

(
!x→ , Ḡ→red

x→ (k)
)
. (6.5)

Proposition 6.5. (a) The map (6.5) is surjective.

(b) Let ω ↔
∏

x↑B H1
(
!x→ , Ḡ→red

x→ (k)
)
. Fix a (G→,!)-bundle P →

with LT (P →) = ω , and let G
↼
be the

corresponding “twist” of G, so that there is a bijection between the set of isomorphism classes

of (G→,!)-bundles over X →
with local type ω and the set of isomorphism classes of G

↼
-bundles

over X; that is, there is a bijection

LT↔1(ω) ⇑ H1
(
X,G↼

)
;

cf. [Gir71, Propositions V.3.1.4 and V.3.1.6].
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Then G
↼
is a stabilizer BT group scheme

ω
G for G such that for x /↔ B, there is an isomorphism

ω
Gx ⇑ Gx and such that, for x ↔ B, denoting the component of ω at x by ωx, the group scheme

ω
Gx is isomorphic to the twisted form

ωxGx of Gx. (See Definition 5.9 for the definition of the BT

group scheme
ωxGx over Spec (Ox).)

Proof. (a) Starting from ω = (ωx)x↑B, we will create a G→-torsor over X → by glueing à la Beauville–
Laszlo the trivial G→-torsors over U → = ε↔1(U) and over

⊔
x→↑X→\U → Spec (O→

x→) by using inner
automorphisms given by elements hx→ ↔ G→(K →

x→). For each x ↔ B, choose a preimage x→, and
represent the class ωx by a cocycle ϱ : ! ↑ G

→(O→
x→). Then by Section 5.1, we can write ϱ(ϑ) =

h↔1ϑ(h) for some h = hx→ ↔ G→(K →
x→). Write {x→ = x→

1
, x→

2
, . . . , x→

f
} for the f = [! : !x→ ] points

on X → above x and choose ϑi ↔ ! such that x→
i
= ϑi(x→). Then set hx→

i
= ϑi(hx→). The condition

that h↔1

x→ ϑ(hx→) ↔ G
→(O→

x→) for all ϑ ↔ !x→ implies that the G
→-torsor over X → defined by glueing

via {hx→ | x→ ↔ X →
\U →

} acquires a compatible !-structure, and so it is a (G→,!)-torsor. It has the
local type ω by construction.

(b) Fix a (G→,!)-bundle P
→ whose isomorphism class lies in LT↔1(ω). By [Gir71, Proposi-

tions V.3.1.4 and V.3.1.6], the set LT↔1(ω) is in bijection with the set of isomorphism classes of
G
↼-bundles over X, where G

↼ is the twist

G
↼ := R0q↘(Aut(P →)) = (ResX→/XAut(P →))! .

We now prove that G↼ has the asserted properties. By Steinberg’s theorem, the (G→,!)-bundle P →

is generically trivial. Hence there exists an a”ne open subset UP → ⇐ X such that the restriction
of P → to ε↔1(UP →) is trivial. Choose a trivialization, that is, a (G→,!)-isomorphism

aUP→ : P
→
↓X→ ε↔1(UP →) ⇑ G

→
↓X→ ε↔1(UP →) ,

which also gives G↼
↓X UP → ⇑ G ↓X UP → . Let x→ ↔ X → with ε(x→) = x, choose a section

ax→ : P →
↓X→ Spec (O→

x→) ⇑ G
→
↓X→ Spec (O→

x→) ,

and set hx→ =
(
aUP→ | Spec K→

x→
· ax→↔1

| Spec K→
x→

)
(1) ↔ G→(K →

x→). Then we can identify

P
→(O→

x→) = G
→(O→

x→) · h↔1

x→ ⇐ G→(K →
x→) .

For ϑ ↔ !x→ , we have h↔1

x→ ϑ(hx→) ↔ G
→(O→

x→); the local type of P
→ at x→ is given by the class

of the 1-cocycle ϑ →↑ h↔1

x→ ϑ(hx→). If x ↔ B, then since the local type of P
→ at x→ is ωx, the

map ϑ →↑ h↔1

x→ ϑ(hx→) gives a 1-cocycle in the cohomology class of ωx. Similarly, if x /↔ B, then
since the local type of P → at x→ is trivial, the map ϑ →↑ h↔1

x→ ϑ(hx→) gives the trivial cohomology
class. We can now check that the completions of G↼ and ω

G agree at all points, that is, that
there are group scheme isomorphisms G

↼
x ⇑

ωxGx, for all x ↔ X, which are compatible with
G
↼
↓X UP → ⇑ G ↓X UP → = ω

G ↓X UP → . Let x ↔ B. It is enough to check agreement of the point
sets G↼(Ox) with ωxGx(Ox) under our identifications. On the one hand,

G
↼(Ox) = Aut(P →(Ox))

! = Aut(P →(O→
x→))!x→ = Aut

(
G
→(O→

x→) · h↔1

x→
)
!x→ .

On the other hand, ωxGx(Ox) is the stabilizer of hx→ ·ax in G(Kx); cf. Definition 5.9. In particular,
we have

ωxG(Ox) =
(
hx→G

→(O→
x→)h↔1

x→
)
!x→ , (6.6)

which proves the claim. For x /↔ B, a similar argument applies.

Remark 6.6. In part (b) and when B ↗= ⇔, the proof actually gives the additional information
that the restrictions of G↼ and G over U = X \B are isomorphic group schemes. This is because
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the GU -bundle (ResX→/X(P →)|U )
! is trivial by [Hei10, Theorem 4], so we can take UP → = U in the

argument. If B = ⇔, that is, the cover X →
↑ X is unramified, then G

↼ = Aut(P), the strong inner
form of G defined by the G-torsor P = (ResX→/X(P →))!.

Remark 6.7. It should be pointed out that the notation ω
G is somewhat misleading since the

group scheme G↼ depends on P
→. Relatedly, the group scheme ω

G does not seem to be determined
(up to isomorphism) by its above description through its localizations at all points x ↔ X.

Remark 6.8. Let us collect here some facts on the triviality of G-bundles.

(i) First, there is Heinloth’s result [Hei10, Theorem 4]: it states for a parahoric BT group scheme
G on X for a simply connected group G that an S-family of G-bundles on X becomes trivial on
(X \ {x}) ↓ S→ after an étale extension S→

↑ S. If G is semi-simple but not necessarily simply
connected, one has to allow an fppf base change S→

↑ S; cf. [Hei10, Theorem 5].

(ii) For the next result, let us introduce the following terminology; cf. [Har67]. Let G be a re-
ductive group scheme over a Dedekind ring A with semi-simple simply connected generic fiber.
A G-bundle on Spec (A) is rationally quasi-trivial if the associated strong inner form of G over
the fraction field is quasi-split. Then a rationally quasi-trivial G-bundle is trivial; cf. [Har67,
Satz 3.3].

(iii) Let A be the a”ne ring of a proper open subset U of a curve X over a field k. If k is
algebraically closed, then by Steinberg’s theorem, the hypothesis of rational quasi-triviality in
Harder’s result above is automatic. When k is finite, this is not true and the triviality of G-bundles
over Spec (A) in item (ii) can fail if G↘K Kx is anisotropic for all x ↔ X \ U .

(iv) Let X be a curve over an algebraically closed field k. Let G be a parahoric BT group scheme
over X for a semi-simple simply connected group G over k(X). Let U be an open subset such that
G|U is a reductive group scheme over U . Then a G-torsor over U extends to a G-torsor over X.
Indeed, the G-torsor on U is trivial. The analogous statement also holds when k is finite, even
though the G-torsor on U may not be trivial. Indeed, this follows by Beauville–Laszlo glueing at
the missing points x ↔ X \ U , using H1(Kx, G) = 0.

6.3 Bundles with fixed local type (finite ground field)

In this subsection, we assume that the ground field k is finite and indicate a variant of the previous
subsection. Recall from Remark 6.4 the definition of the local type LTx→(P →)↔H1

(
Ix→ , Ḡ→red

x→ (k(x→))
)

of the (G→,!)-bundle P
→. We obtain the map analogous to (6.5),

LT: H1([X →/!], [G→/!]) ≃↑
∏

x↑B
H1

(
Ix→ , Ḡ→red

x→ (k(x→))
)
. (6.7)

The analogue of Proposition 6.5 is the following statement.

Proposition 6.9. (a) The map (6.7) is surjective.

(b) Let ω ↔
∏

x↑B H1
(
Ix→ , Ḡ→red

x→ (k(x→))
)
. Fix a (G→,!)-bundle P

→
with LT (P →) = ω , and let G

↼

be the corresponding strong inner form of G, so that there is a bijection between the set of

isomorphism classes of (G→,!)-bundles over X →
with local type ω and the set of isomorphism

classes of G
↼
-bundles over X; that is, there is a bijection

LT↔1(ω) ⇑ H1
(
X,G↼

)
;

cf. [Gir71, Propositions V.3.1.4 and V.3.1.6].
Assume that G and G→

are semi-simple and simply connected. Then G
↼
is a parahoric BT

group scheme
ω
G such that, for x /↔ B, there is an isomorphism

ω
Gx ⇑ Gx and such that, for x ↔ B,
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for ωx the component of ω at x, the group scheme
ω
Gx is isomorphic to the twisted form

ωxGx

of Gx.

Proof. Here the definition of ωxGx is analogous to Definition 5.9: In Definition 5.9, Steinberg’s
theorem (in the local situation) enters, which allows us to trivialize the cocycle ϱ : ! ↑ G

→(O→
x→)

corresponding to ωx and construct the element h entering in the definition of ωxGx in loc. cit.
Here, instead of Steinberg’s local theorem, we use Remark 5.2. In fact, once we replace, in the
arguments in the proof of Proposition 6.5, the local Steinberg theorem with Remark 5.2 and
the global Steinberg theorem with Harder’s theorem [Har75] that H1(K,G) = 0 when G is
semi-simple simply connected, the proof goes through with no changes.

Remark 6.10. Note that Remark 6.6 does not extend to the case where k is a finite field: if B ↗= ⇔,
we do not know that G↼

U
⇑ GU in general. This is because of the possible existence of non-trivial

G-torsors over U ; see Remark 6.8(iii).

7. Moduli of G-bundles and of (G→,!)-bundles

We denote by BunG the stack of G-bundles on X. For any smooth a”ne group scheme G over X,
this is an algebraic stack which is smooth over Spec (k); cf. [Hei10, Proposition 1].

In the context of Definition 3.1, we also have the stack Bun(G→,!) of (G→,!)-bundles on X →.
Note that the extra datum that defines a (G→,!)-structure on a G

→-bundle P
→ consists of G

→-
automorphisms ⇀ε : ϑ↘(P →)

≃
≃↑ P

→ between P
→ and its pullbacks ϑ↘(P →), for all ϑ ↔ !, which

satisfy certain compatibilities. From the representability of BunG→ , it now follows with standard
arguments that Bun(G→,!) also defines an algebraic stack.

Theorem 7.1. Let k be algebraically closed. Let X →/X be a finite tame Galois covering with

Galois group !. Let G and G
→
be !-related stabilizer Bruhat–Tits group schemes over X and X →

,

respectively.

(a) The local type map

LT: Bun(G→,!)(k) ≃↑
∏

x↑B
H1(!x→ ,G→(O→

x→))

is locally constant.

(b) For each element ω ↔
∏

x↑B H1(!x→ ,G→(O→
x→)), let (Bun(G→,!))ω be the open and closed sub-

stack where the value of LT equals ω . Fix a point in (Bun(G→,!))ω (k). Then there is a canonical

isomorphism of algebraic stacks

(Bun(G→,!))ω ⇑ Bun ωG

preserving the base points. Here
ω
G is the stabilizer BT group scheme on X from Proposi-

tion 6.5.

The theorem immediately implies the following.

Corollary 7.2. In the situation of Theorem 7.1, fix for each ω ↔
∏

x↑B H1(!x→ ,G→(O→
x→)) an

element Pω with LT(Pω ) = ω , with associated stabilizer BT group scheme
ω
G. Then there is

a natural isomorphism

Bun(G→,!) ⇑
⊔

ω↑
∏

x↑B H1(!x→ ,G→(O→
x→ ))

Bun ωG .
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As another consequence, we note the following.

Corollary 7.3. The algebraic stack Bun(G→,!) is smooth over Spec (k). If G and G→
are semi-

simple and simply connected, each summand (Bun(G→,!))ω is connected and hence

ε0(Bun(G→,!)) =
∏

x↑B
H1(!x→ ,G→(O→

x→)) .

Proof. The first assertion follows from the smoothness of BunG for any smooth a”ne group
scheme G over X; cf. above. The second assertion follows from Heinloth’s theorem that BunG is
connected for any parahoric BT group scheme with semi-simple simply connected generic fiber;
cf. [Hei10, Theorem 2].

Proof of Theorem 7.1. By Theorem 4.2, the natural map

BunG ≃↑ Bun(G→,!)

is an open and closed embedding. On the other hand, by Proposition 6.1, a point in BunG→,!(k)
lies in BunG(k) if and only if it is mapped under the local type map to the distinguished ele-
ment ω0. Hence LT↔1(ω0) is open and closed in Bun(G→,!). Now let ω be arbitrary, and fix a point
P ↔ BunG→,!(k) mapping to ω under LT; cf. Proposition 6.5. Recall that associated with P is
a stabilizer BT group scheme ω

G over X with generic fiber G such that the associated parahoric
BT group scheme on X → is identified with G

→, compatibly with its !-action; cf. Proposition 6.5.
Furthermore, a point in Bun(G→,!)(k) lies in BunωG(k) if and only if it is mapped under the local

type map to ω . Applying Theorem 4.2 to ω
G instead of G implies that LT↔1(ω) can be identified

with the k-valued points of the open and closed substack Bun ωG of Bun(G→,!). Theorem 7.1 is
proved.

8. Concluding remarks

The main thrust of the whole paper is to represent a BT group scheme on the curve X as
G = ResX→/X(G→)!, where G→ is a reductive group scheme over the tame cover X → with compatible
!-action. In this spirit, it seems natural to express objects associated with G in terms of G→ with
its !-action. We did this here for the theory of G-bundles and their moduli stacks. But there are
more objects associated with G (or G) which one might view with profit from this point of view.
We collect in this section a few (half-baked?) suggestions for further work inspired by this point
of view. In this section, for simplicity, we make the blanket assumption that G is a semi-simple
simply connected group and denote by G a parahoric BT group scheme for G over X.

8.1 Uniformization

Recall that Heinloth [Hei10] has proved the uniformization theorem for G-bundles, as conjectured
in [PR10, Conjecture 3.3]: for any x ↔ X, there is a presentation

BunG ⇑ !X\{x}(G)\LGx/L
+
Gx . (8.1)

In light of a presentation of G in terms of a tame Galois cover X →/X and a reductive group scheme
G
→ over X →, it seems reasonable to connect this presentation to the uniformization theorem

for G
→ which is more standard; cf. [PR08]. Note that in the context of [HK23], that is, when

G
→ = H ↓Spec (k) X

→ for a k-group H equipped with an action ς : ! ↑ Aut(H), Hong and
Kumar consider the stack of quasi-parabolic G-bundles (these are G-bundles with an additional
(“parabolic”) structure) and prove an analogous uniformization theorem, where one divides out
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on the left by !X→\ϖ↓1(x)(G
→)!. It would be interesting to establish such a uniformization statement

in our more general context.

8.2 The Verlinde formula

In [PR10, Conjecture 3.7], a finite-dimensional space of conformal blocks H0(BunG ,L) is intro-
duced for certain line bundles on BunG , and the question is raised whether there is an explicit
expression for its dimension (a Verlinde formula). In the context of [HK23], such a formula is
given in [HK24] and in [DM23]. It would be interesting to give such a formula in general, starting
from an explicit presentation of the parahoric BT group scheme G via a reductive group scheme
over a Galois cover of X.

8.3 The Tamagawa number

Assume the ground field k to be finite. Let ω(G) be the Tamagawa number of G. Recall Weil’s
conjecture that ω(G) = 1; cf. [Kot88]. It is known to hold if G is split [Har74] and even when
G is quasi-split. A proof has been announced in general by Gaitsgory–Lurie [GL19]. Here we
are interested in a relative set-up and hope to connect a general G to the quasi-split case. More
precisely, we assume that there exists a tame Galois cover X →/X with Galois group ! such that
the fixed parahoric G is of the form G = ResX→/X(G→)!, where G

→ is a reductive group scheme
overX →. ThenG→ is quasi-split; cf. Proposition 2.13. It might be fruitful to compare the Tamagawa
numbers of G and G→ by relating the volumes of G and G

→. Note that this is di#erent from the
Langlands–Kottwitz approach [Kot88], in which one compares the Tamagawa numbers of G and
its quasi-split inner form. In relation to this, one might also wonder about the existence of a
suitable invariant (an “equivariant (G→,!)-Tamagawa number”) for [G→/!] over the orbifold curve
[X →/!] that would facilitate the comparison.
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Appendix. On the Hasse principle in the function field case

Brian Conrad

A connected semisimple group G over a global field k is said to satisfy the Hasse principle if
the natural map of sets

ςG : H1(k,G) ≃↑
∏

v

H1(kv, G)

is injective. It is a fundamental result due to Kneser [Kne69], Harder [Har65, Har66]), and
Chernousov [Che89] over number fields, and Harder [Har75, Satz A] over global function fields,
that any simply connected G satisfies the Hasse principle (see [PR94, Theorem 6.6] for an expo-
sition of the complete proof over number fields and [Gar10] for a wider context).

In this appendix, we explain how that implies the Hasse principle for G which are either
of adjoint type or absolutely simple over global function fields, a case not as readily found in
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the literature as number fields. These facts are well known to experts. (See Remark A.3 for
the relation with arguments over number fields. We deduce the absolutely simple case from the
adjoint-type case, whereas over number fields the proof in the literature proceeds in the opposite
direction.)

Our main aim is to give a proof of the following.

Theorem A.1. If G is of adjoint type over a global function field k, then it satisfies the Hasse

principle.

To begin the proof of Theorem A.1, let q : G̃ ↑ G be the simply connected central cover
and µ = Z

G̃
be the (scheme-theoretic) center of G̃. We have a short exact sequence of k-group

schemes

1 ≃↑ µ ≃↑ G̃ ≃↑ G ≃↑ 1 (A.2)

for the fppf topology, where µ is a finite k-group scheme of multiplicative type. We will proceed
in two steps:

Step 1: Let G be a semi-simple group scheme over k such that

X2(k, µ) := ker

(
H2(k, µ) ≃↑

∏

v

H2(kv, µ)

)

vanishes. Then G satisfies the Hasse principle.
This step does not use the hypothesis that G is of adjoint type (it works for any connected

semisimple k-group G).

Step 2: Let G be adjoint. Then X2(k, µ) = 0.

First we carry out Step 1. Pick ξ ↔ H1(k,G), and consider any ξ→ in the ςG-fiber through ξ.
We want to show ξ→ = ξ. By applying the standard twisting argument that replaces G with its
twist by ξ, we reduce to the case ξ = 1. In other words, it su”ces to show X1(k,G) = 1. We have
H1

(
kv, G̃

)
= 1 for every place v of k since kv is non-archimedean (this vanishing is due to Kneser

and Bruhat–Tits [BT87a, Théorème 4.7(ii)]). Hence H1
(
k, G̃

)
= 1 by the known Hasse principle

for G̃, so it su”ces to show that any element ξ→ ↔ X1(k,G) ⇐ H1(k,G) comes from H1
(
k, G̃

)
.

The short exact sequence (A.2) gives rise to an exact sequence of pointed fppf cohomology
sets

H1
(
k, G̃

)
≃↑ H1(k,G)

↽
≃↑ Ȟ2(k, µ)

and likewise compatibly with k replaced by any field extension (such as the completions kv).
Thus, X1(k,G) is carried by ϖ into

X̌2
(k, µ) := ker

(
Ȟ2(k, µ) ≃↑

∏

v

Ȟ2(kv, µ)

)
,

so it su”ces to show X̌2
(k, µ) = 1.

The natural edge map from Čech-H2 to derived H2 for abelian fppf sheaves on any scheme
is injective and is also compatible with pullback maps on the two sides (relative to any scheme

map), so X̌2
(k, µ) is naturally a subgroup of

X2(k, µ) := ker

(
H2(k, µ) ≃↑

∏

v

H2(kv, µ)

)
.

Therefore, the vanishing of X2(k, µ) implies the vanishing of X̌2
(k, µ). This finishes Step 1.
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Now we turn to Step 2. As for any connected reductive group over any field, G has a (unique
up to isomorphism) quasi-split inner form, and passing to an inner form does not a#ect the
scheme-theoretic center (by the very meaning of “inner form”). Such a form is also of adjoint
type, so for our purposes now we can assume that G is quasi-split. Let B be a Borel k-subgroup
of G and T a maximal k-torus in B (these tori are all k-isomorphic, being B/Ru(B)).

If (G0, T0, B0) is the corresponding split form of G (also of adjoint type), the Galois-twisting
by which the quasi-split G is made from G0 involves the finite group of diagram automorphisms
acting on T0 ⇐ G0 through a permutation action on the basis of X↘(T0) consisting of simple
positive roots relative to B0. Hence T is induced, so H1(k, T ) = 1.

The preimage T̃ ⇐G̃ of T under q : G̃ ↑ G is a maximal torus in the preimage B̃ = q↔1(B)⇐G̃
that is a Borel k-subgroup, and so T̃ is also induced (because the quasi-split simply connected G̃
is made from the split simply connected G̃0 through Galois-twisting by a finite group of diagram
automorphisms acting on T̃0 ⇐ G̃0 through a permutation action on the basis of X↘

(
T̃0

)
consisting

of simple positive coroots relative to B̃0). It follows that X2
(
k, T̃

)
= 1 by Shapiro’s lemma and

the global-to-local exact sequence of Brauer groups in class field theory for finite separable
extensions of k.

From the diagram of k-group schemes

1 ≃↑ µ ≃↑ T̃ ≃↑ T ≃↑ 1

that is short exact for the fppf topology, we get a long exact sequence of fppf cohomology groups

H1(k, T ) ≃↑ H2(k, µ) ≃↑ H2
(
k, T̃

)

and likewise with each kv in place of k. (Since T and T̃ are smooth, a result of Grothendieck
[Gro68, Théorème 11.7] ensures that the fppf cohomology of these tori in each positive degree
coincides with the Galois cohomology for these tori in that same degree over any field extensionK
of k. Thus, there is no ambiguity about the cohomology of tori appearing here.) Hence the above
vanishing properties for T and T̃ give an injection of X2(k, µ) into X2

(
k, T̃

)
= 1, so we are

done.

Corollary A.2. For absolutely simple G over a global function field k, the Hasse principle

holds.

Remark. Semisimple but not absolutely simple counterexamples to the Hasse principle are given
over every number field by Serre [Ser02, § III.4.7].

Proof. Since the Hasse principle is known for G that are either simply connected or of adjoint
type, it remains to treat the cases where G is neither simply connected nor of adjoint type. This
makes G of type An with n ↭ 3 or Dn with n ↭ 4 and µG := ker

(
G̃ ↑ G

)
a non-trivial proper

k-subgroup scheme of Z
G̃
. By Step 1 in the proof of Theorem A.1 (which applies to all connected

semisimple k-groups), it su”ces to show X2(k, µG) = 1.

For type D, necessarily µG = µ2 (as µ2 has no non-trivial Galois-twists) and X2(k, µm) = 1
for all m by the Brauer group argument as near the end of the proof of Step 2 in the proof
of Theorem A.1. For type An (with n ↭ 3), necessarily µG is either µd for some non-trivial
proper divisor d of n+1 or a quadratic Galois twist µd(▷) through inversion. It remains to show
X2(k, µd(▷)) = 1. If d = 2, then µd(▷) = µd, so we may assume d > 2. Then µd(▷) is the
center µG→ of an outer form G→ of SLd, such as a special unitary group SUd(K/k) associated with
a quadratic Galois extension K/k. But then X2(k, µd(▷)) = X2(k, µG→) = 1 by Step 2 in the
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proof of Theorem A.1. (This trick with SUd(K/k), suggested by S.Garibaldi, is much simpler
than the original argument.)

Remark A.3. For the interested reader, here is a comparison of the preceding arguments with two
primary references on the Hasse principle over number fields beyond the simply connected case:
the book [PR94] and the paper [San81]. Indeed, the proofs above adapt to work over number
fields (see below), so it is of interest to compare them with existing approaches.

Over number fields, Theorem A.1 is proved in [PR94, § 6.5, Theorem 6.22] in a di#erent way
using case-by-case determination of centers of various connected semisimple groups.

Sansuc [San81, Corollary 5.4(i), (ii)] also proves both Theorem A.1 and Corollary A.2 over
number fields (the E8-avoidance there became unnecessary via later work of Chernousov [Che89])
but with several key di#erences (especially in the presence of real places). Firstly, the analogue
of the argument in Step 1 is simpler over number fields since k-groups of finite type are smooth
when char(k) = 0 (so the distinction between Ȟi(k, C) and Hi(k, C) for commutative k-groups C
of finite type does not arise). On the other hand, the presence of archimedean places necessitates
the additional fact that the map

H1(k, µ) ≃↑
∏

v|⇒

H1(kv, µ) (A.3)

is surjective. This follows easily from real approximation for tori (and is valid for any diagonal-
izable group µ).

Secondly, in [San81] the logic of implication between the results is the other way around,
putting the emphasis on directly proving Corollary A.2. Finally, passage to a quasi-split inner
form is used in a rather di#erent way: instead of the induced property of tori of Borel k-subgroups
(for adjoint-type quasi-split G), the “meta-cyclic” property of the splitting field of the étale
Cartier dual of µG (for absolutely simple quasi-split G) is invoked (see [San81, Corollary 5.2] and
the end of the proof of [San81, Corollary 5.4]). That meta-cyclic property rests on knowledge of
the small automorphism groups of connected Dynkin diagrams.

Note here that Sansuc actually shows bijections [San81, Corollary 4.4, (4.3.2)]

ker ςG ⇑ X2(k, µ) ⇑ X1(k,X↘(µ))↘ (A.4)

(the E8-avoidance there became unnecessary via later work of Chernousov). The second iso-
morphism is given by Tate global duality for finite Galois modules over number fields [NSW08,
Theorem VIII.8.6.9]. (A somewhat di#erent proof of (A.4) is also provided by Kottwitz [Kot84,
(1.8.4) and (4.2.2)].)

Our proof of Theorem A.1 adapts to work over number fields, as follows. Using (A.4) (in fact,
only the simpler injectivity of the first map is needed), it is su”cient to prove the vanishing of
X2(k, µ) (and the surjectivity of (A.3)), completing Step 1 over number fields. Step 2 works as
written over all global fields, as does the deduction of Corollary A.2 from Theorem A.1.

Remark A.4. Here are some additional remarks on the literature. First, Step 1 also appears (for
number fields) in the lecture notes of Kneser [Kne69, § 5.2] and in the survey of Harder [Har75,
Satz 4.3.2]. The argument in Step 2 also appears (with a reference to another paper of Harder) in
[Har75, § 2, Bemerkung, p. 129] (the fact that this section treats groups of type A plays no role at
this point). As further more recent references in the function field case, we mention Česnavičius
[Čes15], Thǎńg [Thǎ08], and Rosengarten [Ros21].

826



On tamely ramified G-bundles on curves

References
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de nombres, J. reine angew. Math. 327 (1981), 12–80; doi:10.1515/crll.1981.327.12.

Ser02 J.-P. Serre, Galois Cohomology (Translated from the French by P. Ion and revised by the author.
Corrected reprint of the 1997 English edition), Springer Monogr. Math. (Springer-Verlag, Berlin,
2002); doi:10.1007/978-3-642-59141-9.

Ste68 R. Steinberg, Endomorphisms of linear algebraic groups, Mem. Amer. Math. Soc., vol. 80 (Amer.
Math. Soc., Providence, RI, 1968); doi:10.1090/memo/0080.
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