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Data-Driven Robust Acoustic Noise Filtering for
Atomic Force Microscope Image

Jiarong Chen

Abstracit—This article proposes a data-driven acoustic
vibration filtering technique to eliminate acoustic-caused
distortions in atomic force microscope (AFM) images. AFM
measurement is sensitive to external disturbances includ-
ing acoustic noises, as disturbance to the probe-sample
interaction directly results in distortions in the sample im-
ages obtained. Although conventional passive noise can-
cellation has been employed, limitation exists and resid-
ual noise still persists. The acoustic dynamics involved is
complicated, broadband, and not decaying with frequency
increase. More challenge arises in practice as the location
of the acoustic noise source tends to be unknown and
arbitrary, resulting in low signal to noise ratio (SNR) in
the acoustic signal measurement, and large error in the
acoustic dynamics quantified. In this work, we propose
a Wiener-filter-based robust filtering technique to improve
both the SNR of the acoustic signal measured and reduce
the error in the acoustic dynamics obtained. Then, a coher-
ence minimization approach is proposed to further enhance
the accuracy of the filter without modeling. Experimental
implementation is presented and discussed to illustrate the
proposed technique.

Index Terms—Acoustic noise filtering, atomic force mi-
croscope (AFM) imaging, coherence minimization, data-
driven, Wiener filter.

[. INTRODUCTION

N THIS article, a data-driven dynamics-based postfiltering
I technique is proposed to eliminate acoustic vibration-caused
distortions in atomic force microscope (AFM) images. As one
of the most important tools/instruments for nanoscience and
nanotechnology [1], AFM depends on the measurement and
manipulation of the interaction between a nano-size cantilever
probe and the sample—-based on the mechanical “touch to see”
principle [2]. Thus, external disturbances including acoustic
vibration can disturb the probe—sample interaction and distort
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the AFM measurement results [3]. Although passive noise ap-
paratuses have been employed to combat acoustic noise, such
a method—the de facto industry standard—faces limitations in
performance, usability, and cost. Whereas active acoustic can-
cellation, however, is challenging, particularly when the acoustic
noise is from an unknown and arbitrary location. Thus, this work
is motivated to tackle these challenges by developing a robust
filtering technique.

The effect of acoustic noise on AFM operation arises as
maintaining the probe—sample interaction closely around the set
point value is crucial in all AFM applications, ranging from
imaging [4], nanomechanical measurement [5], to probe-based
nanofabrication [6]. Extraneous probe vibration can be induced
both externally by disturbances including acoustic noise and
seismic vibrations and internally due to the excitement of the
dynamics and hysteresis adverse effects of the nanopositioning
system (from the piezo actuator to the cantilever probe) [7].
Although the internal adverse effects have been compensated for
through both hardware improvements (by increasing the band-
width of the piezo actuator and/or cantilever [8], [9]) and soft-
ware (algorithmic) enhancement (by developing more advanced
control techniques to better account for the dynamics and hys-
teresis effects [7], [10], [11]), compensation for the external ad-
verse effects has been largely limited to hardware means through
passive vibration/noise isolation apparatus [12], [13], [14], [15].
Although vibration and acoustic noise effects can be mitigated,
these passive apparatus are costly, bulky, and not compatible in
applications such as biomedical-related research, where AFM
needs to be integrated with other instruments such as optical
microscope [16]. Moreover, residual image distortion still per-
sists, and the image quality obtained cannot meet stringent re-
quirements in applications such as cleanroom nanometrology in
semi-conductor industry [1]. These acoustic-related issues have
limited the application and impact of AFM in these and other sci-
ence and engineering fields. However, unlike the development of
algorithms—control techniques—to account for the internal dis-
turbances in high-speed AFM operations [7], [17], few work has
been reported on active control of acoustic noise for AFM. Re-
cently, an inversion-based feedforward controller has been pro-
posed for online active noise control during AFM imaging [18].
Its performance, however, can be hindered by the hardware
constraints (e.g., online computation power and data acquisition
speed), the bandwidth limitation, and the unknown and arbitrary
location of the noise source. Thus, advanced algorithms need to
be developed to combat acoustic noise effect on AFM image.
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Challenges exist in eliminating acoustic-caused distortions in
AFM images. As the noise-caused distortion is coupled with the
sample topography in the images obtained, conventional filter-
ing techniques based on frequency-separation (e.g., low-pass,
band-pass, or notch filter) are ineffective. The acoustic-noise
dynamics, i.e., the dynamics from the acoustic noise to the
vibration response of the cantilever probe, is highly oscillatory
(i.e., contains multiple poles and zeros) and broadband, and
does not decay as frequency increases, making it difficult to em-
ploy model-based approaches along the framework of Kalman-
filtering [19]. This difficulty becomes even more so when the
location of the acoustic source is arbitrary and unknown—as
usually the case in practice. The unknown and arbitrary acoustic
source location can result in low signal to noise ratio (SNR)
in the acoustic signal measured, particularly when the sensor
(microphone) is distant away from the acoustic source, it is
practically unfeasible to relocate the sensor with respect to the
acoustic source. Moreover, the unknown acoustic source also
results in errors in the acoustic dynamics obtained as the acoustic
dynamics depends on the path of the noise propagation and varies
significantly as the distance and direction of the noise source
changes. Thus, for the filter to be effective, the complexity of
the acoustic dynamics and the unknown acoustic source location
effect must be addressed.

These challenges have been tackled recently through the de-
velopment of data-driven finite-impulse-response (FIR)-based
filtering techniques [20], [21]. The basic idea is to build the
filter based on the acoustic dynamics involved. To robustly cap-
ture the complicated acoustic dynamics, the FIR-representation
instead of a parameterized-model of the acoustic dynamics is
utilized [21]. By combining the FIR-based filter with an ad-
ditional nano-vibration sensor [21], the acoustic-caused AFM
image distortion can be reduced. The method, however, requires
special hardware modification (to install the specially designed
sensor), and does not account for the adverse effect of the
acoustic source location being arbitrary and unknown. This
issue might be mitigated by measuring the acoustic dynamics
responses for acoustic source at different locations and using
the responses to construct a dictionary (of acoustic dynamics)
to cover the entire operation area of interests [20]. Then, the
acoustic dynamics for a noise source at an unknown location can
be estimated via interpolation [20]. The filter is further enhanced
through a frequency-dependent modulator based on coherence
minimization. The efficacy of the technique has been demon-
strated and validated through AFM imaging experiments [20].
The performance of this method [20], however, depends on the
density and accuracy of the acoustic-dynamics (dictionary), and
constructing the dictionary can be time consuming and prone to
measurement uncertainties and acoustic dynamics variation—
not favored in practice, particularly when the acoustic source
location is unknown and arbitrary, and the SNR of the acoustic
noise is low. Therefore, efforts are needed to further enhance
the efficiency and robustness of the data-driven, dynamics-based
filtering of AFM images.

The main contribution of this article is the development of
a data-driven robust filtering technique to eliminate acoustic-
vibration caused distortions in AFM images. It is shown that
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Fig. 1. Experimental setup for studying acoustic noise effect on AFM
operation, where it is assumed that the location of the noise source
(speakers) is unknown while the sensor (microphone) is placed at fixed
and known location.

by only using the data measured during the imaging process
itself-without any a priori acoustic dynamics characterization,
an optimal filter can be constructed to minimize the the error
in estimating the acoustic signal, and an optimal filter can be
designed to minimize the image filtering error, respectively.
We show that these two optimal filters are readily given by
the Wiener filter [22] of the acoustic noise involved. Moreover,
the proposed filters are further optimized through a coherence
minimization based frequency modulator technique [20], such
that the uncertainties in the Wiener filter parameters caused
by limited measurements and other disturbances in practice
are accounted for. Compared to the previous work [20], the
proposed approach eliminates the need for constructing an
acoustic dynamics dictionary while preserving the performance
regardless the location of acoustic source. The proposed filtering
scheme is implemented in an AFM imaging experiment, and
the experimental results show that the image distortion can be
significantly reduced [23].

Il. DATA-DRIVEN ACOUSTIC FILTERING OF AFM IMAGE

A. Acoustic-Caused AFM Image Distortions: Problem
Formulation

It is important in AFM applications to eliminate external
disturbances such as acoustic noise. The basic principle of
AFM measurement is to manipulate the interaction between a
nanometer-size cantilever-tip and the sample surface and reg-
ulate the probe—sample interaction with nanoscale force and
displacement precision [4]. External disturbances like acoustic
noise can induce extraneous perturbation to the probe—sample
interaction, and thereby, loss of precision and quality in the
AFM measurements (see Fig. 1). More specifically, during the
tapping-mode (TM) imaging of AFM [2], the cantilever tip is
excited around the resonant frequency of the cantilever and
taps on the sample surface while scanning across the sampling
surface. During the scanning process, the tapping amplitude
is maintained around a prechosen constant level via feedback
control [24] (see Fig. 2). When the tip—sample interaction (i.e.,
the tip tapping) is well maintained, the sample topography
image can be obtained from the (vertical) displacement of the
cantilever. However, the mechanical structure of the AFM can
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Fig. 2. Schematic block diagram of the AFM imaging process with
acoustic noise.

be excited by the environmental disturbance like acoustic noise,
resulting in unwanted cantilever vibration and thereby, image
distortion (see Fig. 2).

In this work, we aim to develop a postimaging filtering tech-
nique to eliminate the acoustic noise effect without localizing
the acoustic source. Without loss of generality, we assume that

Assumption 1: The noise source is at a fixed but arbitrary and
unknown location.

Assumption 2: The acoustic noise n[k] is a zero-mean, band-
limited wide-sense stationary (WSS) random process [22], and
the variation of the primary acoustic noise dynamics (PAD) is
quasi static.

The PAD in Assumption 2 is the dynamics from the noise
signal (as the input) to the AFM image signal (as the output
response) [Gn(z) in Fig. 2]. Assumption 2 is reasonable as
the variation of the PAD is mainly caused by the change of
the noise source location, i.e., the noise propagation route and
the AFM configuration (e.g., mounting of the cantilever), both
remain unchanged during an imaging process but otherwise can
vary significantly in day-to-day operations.

The unknown acoustic source location (Assumption 1) results
in source-sensor noncollocation, which, in turn, imposes two
challenges to postimaging filtering of the acoustic noise: One,
large uncertainty/variation in both the PAD and the acoustic
noise measured (as both the PAD and the acoustic noise mea-
surement depend on the media path of the acoustic propaga-
tion), and second, low SNR when the sensor is distant away
from the acoustic source. In contract to our previous work that
tackled this noncollocation problem through a dictionary-based
approach [20], we propose to address these two challenges
without constructing the dictionary, and without even acquiring
additional acoustic signals a priori—We aim to only use the
signals measured during the imaging process itself.

Considering that there exists measurement disturbances in
the measured acoustic signal, e.g., other environmental and
electrical thermal noise, the total measured acoustic signal 7., [k]
can be represented as

N [k] = n*[k] + nglk] (1)

where, respectively, n*[k] is the “true” acoustic noise respon-
sible for the image distortion, and ng4[k] is the measurement
disturbance of the acoustic signal.

Thus, in the presence of acoustic noise, the measured AFM
image signal, z,, [k], becomes

zm (k] = zs[k] + znlk] + z4lK], for k=0,...,N; — 1, (2)

where zs[k] and z,[k] are the z-axis piezo displacement corre-
sponding to the sample topography and that due to the acoustic
noise, z¢[k| is the measurement disturbance of the image signal,
and Ny is the total number of sampling data acquired in the
given imaging process, respectively. As z,,[k] is used to plot
the sample topography image, in the following, z,[k], zs[k],
and z,[k] are called the measured image signal, the true sample
image signal, and the image disturbance signal, respectively.
Assumption 3: The acoustic measurement disturbance n4[k]
is a zero-mean WSS random process, mutually uncorrelated to
the acoustic noise n*[k], the true image signal z;[k], and the
measurement disturbance z4[k], respectively, i.e.,

E{nq[klzs[k — jl} =0 3)
E{n*[k]zs[k — j]} = 0,and 4)
E{n"[k]zalk — j]} =0 Q)

forany givenj(j = 0,1,2,..., N; — 1). Thus, the filtered image
signal, z;[-], can be obtained by estimating the image noise
signal, %, [k], and removing it accordingly, i.e.,

2f[k] = zm[k] — 2n[k], for k=0,....N; =1  (6)

and by Assumption 3, the filtering quality can be quantified by
the residual image error e, [k]

erlk] = znlk] — 2,[k] = 25 k] — zs[k] — za[k]. @)

Next, we formally state the acoustic-vibration filtering problem.

Data-driven Robust Filtering (DDRF) of Acoustic-caused
AFM Image Distortion: Let Assumptions 1-3 hold, the DDRF
problem is to design an optimal acoustic-noise filter and an
optimal acoustic-image filter directly from the data measured
during the imaging process, i.e., without an a priori acoustic
characterization process nor finding a parameterized model,
such that

O-1 By using the optimal acoustic-noise filter, the estimation of
the acoustic noise is unbiased

E(a[k]) = E(n"[k]) = 0 ®

and the variance of the estimation is minimized, i.e., for any
givenk (k=1,2,...,N;)
I}l{}cr}l Jn = E{e, K]} = E{n"[k] — a[k]}*. )
0-2 By using the optimal acoustic-image filter, the filtering of
the image signal is unbiased
E(e[k]) = E{z[k] — 2¢[k]} = 0. (10)

and the variance of the filtering is minimized, i.e., for any
givenk (k=1,2,...,N;)
min J, = E{e,[k]}*. (11)

We proceed by achieving these two objectives in order.
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B. [0-1] Optimal Acoustic-Noise Filter Design: A Wiener
Filter Approach

We propose to optimize the estimation of the acoustic noise
signal 7[-] in (9) based on the Wiener filtering theory [22].
The key idea is to exploit the high sensitivity of the AFM
measurement: the acoustic-caused disturbances in the AFM
image signals (i.e., the z-axis displacement and the cantilever
deflection signal as the responses to the acoustic signal)—can be
utilized to enhance the SNR of the acoustic noise measurement,
provided that the corresponding PAD can be accurately captured.
This is based on that the “true” noise signal n*[k] is related to
the image noise signal, z, [k], by

n'[k] = (gt * zn)[K]

where “*” denotes the discrete convolution operation, gy is the
impulse response of the inverse dynamics of the “exact” PAD
from the acoustic signal n*[k] to the image noise signal z,, €
RN (for j=0,1,..., N; — 1), respectively,

g:[Nr = 1]}]"
2 [Nr = 1])7

12)

13)
(14)

gt = [9:[0] gz[1] -~
Zn = [20[0] 2 [1] - -

However, as the image noise signal z, [k] is buried in the mea-
sured total image signal z,, [k], thereby, unknown in general, we
propose to estimate the acoustic noise signal 7i[k] by using the
measured z-axis displacement, i.e., the measured image signal
zm k], via

k] = [g: * (2m — Zm)][k] =

where g, € RVF is the acoustic filter designed based on an
estimation of the impulse response of the inverse dynamics
g, from the acoustic signal n*[k] to the measured total image
signal z,, [k], Z2m € RVF (fork=0,1,..., Ny — 1)is the vector
form of the measured image signal, z,, is the corresponding
expectation value and Z,,|[k] is called the unbiased measured
image signal, respectively,

8- *znllk]  (15)

g: = [9:[0]g:[1] -+~ g=[Ny — 1]})" (16)
Zm = [2m[0] 2 [1] -+ 2 [N — 17 17)
Zm = E(Zm) = E(2n + 25 +24) (by ()

= [2[0] 25[1] -+ 2s[ Ny — 1)]T = 2z (18)

where the last equation follows by the expectation of z,, and z,,
are zero by Assumptions 2 and 3. We seek the optimal filter g*
to minimize the power of the correlation between the estimated
acoustic measurement disturbance 74[k]

nalk] = nm k] — Alk] (19)
and the total measured image signal z,,[k]
I{gl}njn[ J1 & 1700 = Blaalkzmlk =51 ©0)

We show below that such a filter also minimizes the cost
function J,, in (9) as well. As all the signals in the above cost
function jn are available, this leads to a computational scheme
to obtain the optimal acoustic noise filter g,.
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Lemma 1: Let Assumptions 1-3 be hold, and the optimal
noise filter g, [k] be given by (15) to (20), then
1) The estimation of the acoustic noise is unbiased, i.e., (8)
holds, and
2) The variance of the noise estimation error J,, in (9) is min-
imized if and only if the square of the cross-correlation
T12[7] in (20) reaches its minimal value at zero, i.e., if and
only if .J,,[j] = O for any given j = 1,2,..., N; — 1.
Proof: The unbiased estimation (21) comes directly from
Assumption 2, as by (15)-(16)

E{n[k]} = E{[g: « 2] [k]}
= [g: * {E(2)}][F]
= [g: * [E(2n) + E(za)][#]
=[g: % (0+0)][k] =0

Next, we proceed by substituting (1), (2), (12), (15) into (9) to
rewrite the cost function .J,, as

2y

Jn = E{n’[k] — a[k]}?
= E{(ge *zn)[K] — [g: * (2)][k]}?
= E{(ge * zn)[k] — [: * (2n + za)][K]}?
= E{(g: — £:) * za]’[k] - 2[(gt — £:) * zn k]

As the image noise signal z,, [k] is driven by the acoustic noise
n*[k] whereas the image measurement disturbance z4[k] is not,
by Assumption 3

E(zqlk]lznlk —j]) =0, forj=1,2,...,N;—1 (23)
Hence in (22)
E{[(g¢ — &) * za|[K][8- * za][k]}

Z {g¢li]

{2

N;
[i]} znlk— J]] [Zgz[i]zd[ki]]}

i=0
=0
(24)
Substituting (24) into (22) yields
Jo = E{(gc — &) * zn]’[k]} + E{[g: xza’[k]}  (25)
And thus
aJy, . . .
5.0 =2E {;{{gz gelil}znlk — i} 2nlk — J]}

+2E {i{gz[i]zd[k — i }zalk — j]}

=0

=2 {g:[i] — glil} Runli — 41}
i=0
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N[ NI

+2) {ge[i] Raali — 51} (26) = l gzﬁann[i—»jﬂ : 31)
1=0 1=0

where Ry, [j] and Rg4[j] are the auto-correlation of z,[k] and
zq[k], respectively. As z,,[k] and z4[k] are both real signals, their
auto-correlations are symmetric, i.e., Rpn[i — j] = Rpnlj — 1]

and Ryq[i — j] = Raalj — 7] [2]. Therefore,
8Jn
=2 Z{gz - }Rnn[] - Z]
Ny
+2 " geli|Raals — 1]}
i=0

= 2[(g: — gt) * Ranl[j] + 2[g: * Raallj].

Next we show that the above partial derivative (27) equals to
the cost function in (20). Thus, the minimal of the cost function
Jy, is attained if and only if the cost function J,, reaches its
minimal at zero. By (1) and (12), the cross-correlation in (20),
T[], can be represented as

In = [B{(nm[k] — A[K]) (Zmlk — 51)})°
= [E{nm[k]Zulk — ] — Alk] (znlk — 51)})°
= [E{nm[k]Zm[k = jI} — E{alk]za[k - 1}
— E{a[k]zalk — j]})*

By (15) and the definition of convolution
E{a[k]znlk — j1} = E{(&: * Zm)[F|zn [k — j]}

(Zg i) 2m —%) nlk — J]}

—-E {i(gz[i]zn[k — ]z, [k — j])}

{ N;
=0
By Assumption 3

E {igz[i]zd[k —i]zn [k — j]}

27)

(28)

o

—@zn[k—j])} (29)

= igz [iE(zq[k — i)2n[k — j]) = 0.

i=0
(30)
Substituting (30) back into (29) yields

E{a[k]znlk — j1} =

S B (g i)l - ﬂzn[k—m]

=0

i=0

- [Z G- [ E(zn[k — iz, [k — j])]

Similarly,

ﬁl}f@HRmhﬂ] (32)
i=0
And
= E{n’[k]zp[k — j]} + E{na[k|zn[k — j]}
+ E{n"[k|zak — j]} + E{nalk]zak — j]}.  (33)
By Assumption 3,
E{nalk]zu[k — j]} = B{n*[Mzalk — j]} =0.  (34)
Substituting (34) into (33) yields
E{nm[k]Zm[k — j]} = E{n"[k]zn[k — j]}
- th nn _j . (35)

Hence, submitting (31), (32) and (35) back into (28) yields

Jn = {fj@ﬁ] — g2l Runli — 5] = i zHRddv—ﬂ}

= {[(g¢ — £-) * Run][j] — [&- * Rad][4]}*.

Thus, the proof is completed by combining (27) with (36). O

Next, we obtain the optimal filter g.[k] by minimizing the
cost function .J,, to zero. We rewrite .J, in the matrix form
as

Jn = E{nglk — jlzm[j]}?

= E{(nm[k — j] — (8 * Zm[k — j])zm 4]}
= {E{nmz,,} — E{zmz,, }g.}
— pu — Ryg, 37)

where R, is the auto-correlation matrix of measured image
signal z,, [k]

R, = E{zng‘l}

R.[0] R.[1] R.[N; —1]
N R.[0] R.[N; - 2]
R [N} 1] RZ[NII ) Rz.[O]
(38)
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and the vector py, is the cross-correlation between the measured
acoustic noise n,,, [k] and the measured image signal z,, [k]

Pn = {E{anE} £ [Pn(0) pr(=1) -+ pn(—=N1 + 1)]T~
(39)
Thus, by setting .J,, = 0 in (37), the optimal filter g* k] can
be readily obtained from (37) as a Wiener filter [22]

g =R, 'pn. (40)

As both the acoustic measurement disturbance n4[k] and
the total measured noise n,, [k] are WSS, the auto-correlation
matrix R, above is nonsingular for any nonzero measurement
disturbance ng4[k] [22]. Therefore, the estimated acoustic noise
is obtained as

(k] = g5 * (2m — Zm)][K] = (g5 * 2] [K].

Steepest Descent Method to Compute the Wiener Filter: Find-
ing the Wiener filter can be computationally costly when the
related acoustic dynamics is complicated and a high-order FIR
truncation of the Wiener filter (i.e., the order number N is large)
is needed. Thus, we utilize the steepest descent method [22] to
seek the optimal ¢%[k] via the following recursive iteration:

(41)

8.it1 = 8z + pa[i|E{zm i} (42)
where
Zeni = [Zm[i] 2m[i + 1] -+ zm[i + Np]]©
fori = 0,1,..., Ny — Ng. 43)

w € (0,1] is the step size, chosen to ensure the convergence
of the recursive iteration in (42), and initially g, o = 0. As the
expectation of E{z;} is, in general, unknown, the following
unbiased estimation is used [2]:

No—1
. 1 ¢
B{z} = lim < E; Zhoi (44)
i=
where N, is the number of samples used in the estimation. Thus,
the following estimation is employed by using the values of the
two signals at current sampling instant

(45)

E{Zm i} ~ Zm,i-

In the following, the optimal estimated filter obtained via (41)—
(45) is denoted as gl.

Modulator-Based Filter Optimization: As approximation
[see (45)] is inevitable in seeking the optimal acoustic-noise
filter §%[k] above, and extraneous error can also be introduced
due to the truncation involved in the Wiener filter, we propose the
following modulator-based method to minimize the approxima-
tion error and further enhance the optimal estimated disturbance
noise filter ! [-] in (40) in the frequency domain via

GL(E™) = ay(e/*)GL(e?") (46)
where CA?L (e7*) denotes the z-transform of the acoustic-noise
filter §1[], wp = ]’% fork=0,1,...,N;y — 1 Withws =27fs
are the discrete sampled frequencies, and o (e’“*) is the opti-
mal modulator to be determined, respectively. Specifically, the
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optimal modulator ai;(e/** ) is to minimize the filter error 4., [k]
0g:[k] = g:[k] — GL[K] (47)

where §i[k] is the exact optimal acoustic-noise filter given
by (40).

Itis shown in Lemma 2 below that minimization of the error of
the acoustic-noise filter g, [k] can be converted to minimizing
the coherence between the estimated measurement disturbance
n% k] and the unbiased measured image signal Z,,[k], i.e., find
at(e7“*) to minimize the coherence between 7 [k] and %, [k]

B[N (e7) Zon (1)
P, (544) Py, (5)

m

where

Cz(e?*) = (48)
Rae) = Nip(€44) = (€7 G2(E74) Zi ()
(49)
and Py, (e**) and Py (e7**) are the power spectral densities
of Ny(e?r) and Z,, (e7**), respectively.
Py (%) = [Na(&")|* Py, (%) = | Zpn(e?)|*.
(50)
Lemma 2: Let Assumptions 1-3 hold, then the error of the
noise filter §g. [k] is minimized in two-norm sense if and only if
at any given wy, the coherence between the estimated measure-
ment disturbance 7;[k] and the measured image signal Z,, [k],
C.,..(e7“r), is minimized.
Proof: By the Convolution theorem [25], the cost function in

(20) can be represented in frequency domain as
min J,, = {E[N})(e/*) Z,, (e7“*)]}? 51

and the coherence between 7, [k] and z,,, [k] at any given sampled
frequency wy, is given as

_ {EA[N;(ej“k)Zm(ej‘”’”‘)H2
Pn,(e7r) Py (el“r)
1
~ Py, (e7or) Py (ei)
{[Ge(e7% )= G (e7%) +6G . (7°F)| R.p, (e7F)
— [G.(e7%) = 6G(e7%F)| Raq(e7“F)}* (52)

Cz(e74%)

where Py, (e/“*) is the power spectral density of the estimated
measurement disturbance 714[k] [see (1)]. The above (52) and
(36) implies that the error in the estimated acoustic noise filter
Gt [k] compared with the true disturbance dynamic G, (e/“*) is
minimized, if and only if the coherence C,,, (¢/“* ) is minimized.
Thus, by minimizing the coherence C,,, (e/“*) at every sampled
frequency wy,, the optimal estimated acoustic noise filter g [k]
converges to the exact acoustic noise filter g% [£]. This completes
the proof. O

The optimal af(e“’*) that minimizes the cost function .J,, in
(9) can be obtained through a gradient-based iterative descend
method [20] by

0C,.. (jwr, O‘i 1 )

Trs i :
o; (jwr) = a;_ (jwk) + A —— :
l aGi,ifl(]wk)
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0C,,. (jwg, affl) 1
dal_,(jwr)  GL(jwr)

= ag—l(]’wk) +2

(53)
where
9Cn; (jwkv af) ~ Cnf (jwkv Ozf + 6041) - Cnf(jwk’ af)
Aot (juwy) dat ’

(54)
Readers are referred to [20] for more details.

C. [0-2] Optimal Acoustic-Image Filter Design

The optimal acoustic-image filter § [k] to minimize the error
between the true image and the filtered image (objective O-
2) can also be designed through the above Wiener-filter-based
modulator optimization approach. Specifically, a Wiener Filter
gn[k] is designed to optimize the estimated true image z¢[k]
by minimizing the power of correlation between the estimated
acoustic noise 7[k] and the measured image signal 2y [k]—It can
be shown similarly that minimizing the cost function .J, in (9)
is equivalent to minimizing the following correlation J.:

minJ, = E{ak — j]z;[1]}*. (55)

Thus, the same minimization process above [in (37)—(40)] can
be applied to obtain the optimal acoustic filter g}, [k] as a Wiener
Filter

g:l = R;llpnz (56)
where R, is the auto-correlation matrix of the estimated acoustic
noise obtained from Section-II B, i,

R, = E{AnT}
R,[0] R,[1 R, [Ny — 1]
| Rall] R,[0 R,[N; — 2]
R, [M —1] R, [NI —2] Rn. [0]
(57)

and ppn, = E{nzX } is the cross-correlation between the esti-
mated noise 7" [k] and the measured sample image signal z,, [k],
respectively. The filtered image is then obtained as

zp[k] = 2[k] — (&, * 0")[K]

with 2*[k] given in (41).

Similarly, the steepest descend method is used to obtain the
acoustic image filter by replacing the f4[i] and 2y, ; with 2, [1] —
zr[i] and nf, respectively, where

(58)

n} = [n*[i]n*[i +1] --- n*[i + Np]|©
., N — Np. (59)

fori =0,1,..
We denote the optimal estimated filter obtained via (41)—(44)
as gl (-). Then, gl (-) is further enhanced by a frequency-
dependent modulator 3; via

Gh (%) = By(e“") G, (e747) (60)

where the optimal modulator 3; is to minimize the filter error
0gn (k]

8gulk] = gn[k] — 5 [k]
and obtained by minimizing the following coherence between
n*[k] and the filtered image zr[k]:

E[N*(e7*) Zp(e/*)]?
Py (e78) Py, (e7F)

(61)

min C,, (/%) = (62)

Lemma 3: Let Assumptions 1-3 hold, then the error of the
image filter g, [k] is minimized in two-norm sense if and only
if at any given wy,, the coherence between the estimated acoustic
noise 7*[k] and the filtered image signal z¢[k], C,,z(e7“*), is
minimized.

The proof is similar to that of Lemma 2 and is omitted.

The gradient-based iterative descend method is also employed
to obtain the optimal 3*(e7“* ) to minimize the cost function (62).

[lI. EXPERIMENT EXAMPLE

The proposed approach was demonstrated through an AFM
imaging experiment. The objective was to show that by using
the proposed approach, the acoustic-caused image distortion
from an arbitrary and unknown acoustic source can be substan-
tially reduced. The AFM imaging experiment was performed
on a commercial AFM system (Dimension FastScan, Bruker
Nano Inc.), where the acoustic noise was induced by a speaker
(Logitech S150, Logitech, Inc.) placed near the AFM scanner
head and measured via a precision array microphone (BK 4958,
Bruel Kjaer Inc.) as shown in Fig. 1. The ground vibration
induced by the speaker (when it was broadcasting sound to
the environment) was damped by the optical table (on which
the AFM system was placed, see Fig. 1), and its effect on the
cantilever vibration became part of the PAD of the AFM system,
thereby, was accounted for through the proposed approach. The
noise sensor signal was first pre-filtered and amplified using
a homemade Op-Amp circuit, and then measured via a data
acquisition system (NI RIO, USB-7856R, National Instrument
Inc.). All the filtering algorithms were designed in MATLAB
(Mathworks Inc.) and then implemented using NI-USB-7856R
FPGA board.

Experimental Implementation: First, the acoustic-noise-
effected AFM images were acquired with the noise source placed
at three different “unknown” locations and the sensor (micro-
phone) placed at a fixed location, respectively, as shown in Fig. 3.
A silicon sample and a calibration sample (STR-1800R) were
imaged at a scan rate of 5 Hz under the TM when a band-limited
(20~1 kHz) white noise of zero-mean and constant variance of
100 dB was broadcasted to the room through the speaker. To
mimic the scenario of low SNR acoustic noise measurement,
a different band-limited zero-mean white noise (20-1 kHz)
acoustic signal was introduced as the measurement disturbance
through an earphone sticked tightly to the microphone. The
amplitude of this disturbance noise was adjusted such that it
can be clearly captured by the microphone but didn’t induce
measurable AFM probe vibration. Both the noise signals and
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Fig. 3. Location of the acoustic noise source (speaker) at three “un-

known” locations, A, B, and C, with respect to that of the sensor (micro-
phone), D, and the AFM probe, E, respectively.

the z-axis piezo displacements were acquired simultaneously
during the imaging processes. This imaging and measurement
process was repeated for the other two unknown noise locations
“B” and “C”, respectively.

To filter the acoustic noise acquired, the optimal acoustic-
noise filter, g, and the optimal acoustic-image filter, g}, were
constructed using the PAD from the measured noise signal n, [k]
and total image signal z,, [k]. First, the filter coefficients of the
Wiener filter were obtained using (42)—(45), where the Wiener
filter was truncated at the order of 4096 and step size p was
chosen at 0.1, called the Wiener-FIR acoustic-noise and Wiener-
FIR acoustic-image filter below, respectively. Next, both filters
were further optimized by using the modulator-based coherence
minimization method (described in Section 2). Specifically,
the optimal modulator «;(e/“*) and S;(e/“*) were obtained
iteratively described in [20], where the step size was chosen at
0.05. Finally, the filtered images were obtained by using, first,
the optimized acoustic-noise filter g to “clean up” the measured
acoustic noise n,,, [k], and secondly the optimized acoustic-noise
filter g} along with the filtered acoustic signal 2*[k] to filter the
measured raw image 2., [k].

The same procedure was repeated for filtering the images
captured at the other two unknown locations “B” and “C”, re-
spectively. For comparison, the images were also filtered directly
by using the Wiener-FIR acoustic-noise filter followed by the
Wiener-FIR acoustic-image filter, and were filtered by using a
bandstop filter with the cutoff frequency in the range between
250 and 400 Hz (where the PAD was the largest in magnitude)
was chosen, respectively [see Fig. 4(a)]. Finally, as a benchmark
filtering result—to evaluate the proposed approach in improving
the SNR (O-1) and accounting for the unknown sensor-noise
un-collocation effect (0-2), the images were also processed
by using the acoustic noise measured under the sensor-noise
collocation and the filter constructed by using the PAD obtained
under this collocation condition and further improved via the
modulator-optimization method for the silicon and the calibra-
tion sample, respectively.

Experimental Results and Discussion: The experimental re-
sults are shown in Figs. 4-11. To evaluate the efficacy of the
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Fig. 4. (a) Comparison of the frequency response (magnitude part) of
the measured PAD G,, (e/“*) and those estimated by using the Wiener-
FIR acoustic-image filter (WAIF) and the optimal acoustic-image filter
(OAIF) method, and (b) the comparison of the error (magnitude part) of
the estimated dynamics using the WAIF, and that using the OAIF with
respect to the “true” measured PAD, respectively.

proposed Wiener-FIR acoustic-noise filter (WANF) and the op-
timal acoustic-noise filter (OANF) in improving the SNR of the
measured acoustic signals from an unknown location, the PAD
obtained by using the filtered acoustic signal via the proposed
WANF and proposed OANF technique, are compared to that
quantified by using the measured signal directly (without filter-
ing) in Fig. 4(a). The difference of these two PADs with respect
to the experimentally measured “true” PAD (obtained by mea-
suring the acoustic noise under the sensor-speaker collocation
and without induced acoustic measurement noise), i.e., the error
of these two PADs, are compared in Fig. 4(b). Also, the measured
raw noise signal is compared to the filtered noise signal by using
the WANF and the OANF in Fig. 5 for location “A” (as an
example), respectively. The corresponding raw acoustic-effected
images of the silicon sample and the calibration sample are com-
pared to those filtered by using the bandstop filter, Wiener-FIR
acoustic-image filter (WAIF) and the optimal acoustic-image
filter (OAIF) in Figs. 6 and 7, respectively. Then, the filtering
results of the proposed OANF and the OAIF for the images
captured at the three unknown speaker locations are shown
Figs. 6 and 9, with comparison to those obtained in location “D”
setup (under the sensor-noise collocation condition). Finally, the
image quality was evaluated by relative 2-norm error £, (%) for
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Fig. 5. (a) Comparison of the measured acoustic noise signal of low
SNR compared to the filtered noise by using the Wiener-FIR acoustic-
noise filter (WANF) and the optimal acoustic-noise filter (OANF), and (b)
comparison of the coherence between the z-axis displacement to the
measured noise, to the noise filtered by Wiener-FIR acoustic-noise filter
(WANF) and the optimal acoustic-noise filter (OANF), respectively.

the raw image, WANF followed by the WAIF, and the OANF
followed by the OAIF in Fig. 10, respectively, and the image
error by using the proposed OANF and OAIF techniques for
the results obtained in the three unknown location set-ups (“A”,
“B,” and “C”) are also compared to the benchmark reference
(i.e., obtained in the collocation set-up, location “D” set-up)
in Fig. 11, respectively. The relative 2-norm error E,(%) was
computed by using the image obtained in the quiet condition,
and across all scanned lines of the entire image.

The experimental results showed that by using the proposed
approach, the SNR of the acoustic signal measured in AFM
imaging was substantially improved. First, the WANF captured
the measured PAD well, with its dynamics (represented by its
poles and zeros) overlapped with those of the measured PAD
closely [see Fig. 4(a)]. However, significant deviation from the
measured PAD existed in the low frequency range between 100
and 200 Hz. Such an error on the PAD was significantly reduced
by using the proposed OANF as shown in Fig. 4(b). Next,
as shown in Fig. 5, the SNR of the measured acoustic noise
signal was significantly improved by using the proposed WANF
as more than 50% of the irrelevant noise was removed from
the signal. This substantial improvement in SNR was further
enhanced by using the proposed OANF with another 10% SNR

improvement. Moreover, the coherence between the noise and
image was improved by more than 20% by the proposed WANF
and 40% by the proposed OANF. Such an improvement of the
SNR of the acoustic measurement directly contributed to the
filtering improvement of image distortions obtained later.

The experimental results also demonstrated that by using the
proposed technique, the image distortion caused by acoustic
disturbance from an unknown location was significantly re-
duced. As shown in Figs. 6(c) and 7(c), by using the WAIF, the
acoustic-caused image distortion was largely removed, whereas
when using the bandstop filter, although the acoustic-caused
ripple artifacts across the topography image was also largely
removed and the image quality had improved considerably on
silicon sample, the edge of the pitches were severely smeared
in the filtered image of the calibration sample [see Fig. 7(b)].
However, by using the proposed OAIF, the image quality was
further improved, with the image quality visually improved
further [see Figs. 6(d) and 7(d)]. This improvement can be seen
more clearly from the relative image error comparison—the
relative 2-norm error was reduced by 78% on the silicon sample
and 68% on the calibration sample by using the WAIF, and
then further reduced by another 10-12% by using the proposed
OAIF (see Fig. 10). Finally, the experimental results also demon-
strated the proposed OAIF is robust against the variation of
the noise source location. As shown in Fig. 11, the 2-norm
image error at three different locations are consistent between
11% and 19% and compared well to the 12% to 13% image
error under the condition that the noise source and microphone
collocated on both samples. Overall, the improvement attained
was similar to that reported recently [20], without constructing
dictionaries of acoustic dynamics via a pirori measurement and
characterization—as needed previously [20]—to account for
unknown acoustic source location. Instead, such an adverse
effect was effectively accounted for through the proposed DDRF
technique. Such an enhancement substantially reduced the cost
and efforts needed in practical implementations, making the
technique potentially an effective tool for practical AFM imag-
ing applications. The proposed technique can be easily extended
to other areas that are sensitive to acoustic and vibration effects
(e.g., precision robotics, Scanning Tunnel Electron Microscope
and E-beam Lithography, etc.). This will be explored in our
future work soon.

Although the proposed technique is for offline postimaging
process, it can be readily expanded to more general AFM imag-
ing applications. For real-time applications, the technique can
be implemented by inserting a short “pause” period without
interfering the imaging process. For example, the proposed
algorithm can be used to process the data at the end of the
scanning of each line (right before the start of the scanning on the
next line). Additional sampling periods can be added if needed
to process the algorithm and the algorithm can be transformed
to the frequency domain and computed across multiple sam-
pling periods via the time-distributive FFT algorithm [26]. Also,
although the proposed technique is for arbitrary and unknown
but fixed acoustic noise source, it can be easily extended to
address the change of noise source location being known a
priori (e.g., preprogrammed) and slow, or in a discrete manner
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Fig. 6.

Comparison of the original raw image of a silicon sample obtained at scan rate of 5 Hz (a) under the induced acoustic noise for location

“A” set up in Fig. 3, to those filtered by (b) the bandstop filter, (c) the Wiener-FIR acoustic-noise combined with Wiener-FIR acoustic-image filters
and (d) the optimal acoustic-noise combined with optimal acoustic-image filters, respectively.
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Comparison of the original raw image of a calibration sample obtained at scan rate of 5 Hz (a) under the induced acoustic noise for location

“A” set up in Fig. 3, to those filtered by (b) the bandstop filter, (c) the Wiener-FIR acoustic-noise combined with Wiener-FIR acoustic-image filters
and (d) the optimal acoustic-noise combined with optimal acoustic-image filters, respectively.
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Fig. 8. Comparison of (first row) the raw image of the silicon sample obtained at scan rate of 5 Hz, under the induced acoustic noise (a1 to a4) in

the location “A” to “D” setup in Fig. 3, respectively, to (second row, b1-b4) the correspond ones filtered by using the DDRF technique, respectively,
where (a4) and (b4) (location “D” set-up) are the results for the sensor-noise collocated case.

(i.e., the noise source transits to different locations swiftly and
stays at those locations for a known period of time). In these
scenarios, the proposed technique can be applied to construct and
apply the filters in a section-by-section manner. More generally,
the proposed technique can be extended to the case where the IV. CONCLUSION
change of the acoustic noise source arbitrarily and unknown
(not common in AFM applications). This will be pursued as

future work. Moreover, the proposed technique is not AFM
manufacturer dependent and can be equally applied to other
types of AFM systems under other operation conditions.

A data-driven robust-optimal filtering technique was devel-
oped to eliminate AFM image distortion caused by acoustic
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Comparison of (first row) the raw image of the calibration sample obtained at scan rate of 5 Hz, under the induced acoustic noise (a1 to a4)

in the location “A” to “D” setup in Fig. 3, respectively, to (second row, b1-b4) the correspond ones filtered by using the DRF technique, respectively,
where (a4) and (b4) (location “D” set-up) are the results for the sensor-noise collocated case.
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Fig. 10. Comparison of the normalized image error of the calibration
sample for the Wiener-FIR filters and DDRF technique in the relative
2-norm, for location “A” set-up.
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Fig. 11.  Comparison of the normalized image error (with respect to

the raw image error) for the calibration sample in 2-norm at four different
locations, respectively.

noise. The Wiener filter in the FIR representation is explored to
construct the filter and improve the SNR of the measured acous-
tic signal. It is shown that by introducing a modulator into the
filters, the error in the estimated acoustic dynamics and the low
SNR of the measured acoustic noise—both due to the acoustic
noise location being arbitrary and unknown—can be eliminated
by optimizing the modulator via a gradient-based coherence
minimization approach. The efficacy of the proposed approach
was demonstrated by filtering experimentally measured AFM

images of a calibration sample. The filtering results showed
that by using the proposed technique, the image distortion was
substantially reduced. The future work includes the extension
of the proposed technique to other acoustic noise and vibration
cancellation areas including medical imaging.
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