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Data-Driven Robust Acoustic Noise Filtering for
Atomic Force Microscope Image

Jiarong Chen and Qingze Zou

Abstract—This article proposes a data-driven acoustic
vibration filtering technique to eliminate acoustic-caused
distortions in atomic force microscope (AFM) images. AFM
measurement is sensitive to external disturbances includ-
ing acoustic noises, as disturbance to the probe–sample
interaction directly results in distortions in the sample im-
ages obtained. Although conventional passive noise can-
cellation has been employed, limitation exists and resid-
ual noise still persists. The acoustic dynamics involved is
complicated, broadband, and not decaying with frequency
increase. More challenge arises in practice as the location
of the acoustic noise source tends to be unknown and
arbitrary, resulting in low signal to noise ratio (SNR) in
the acoustic signal measurement, and large error in the
acoustic dynamics quantified. In this work, we propose
a Wiener-filter-based robust filtering technique to improve
both the SNR of the acoustic signal measured and reduce
the error in the acoustic dynamics obtained. Then, a coher-
ence minimization approach is proposed to further enhance
the accuracy of the filter without modeling. Experimental
implementation is presented and discussed to illustrate the
proposed technique.

Index Terms—Acoustic noise filtering, atomic force mi-
croscope (AFM) imaging, coherence minimization, data-
driven, Wiener filter.

I. INTRODUCTION

I
N THIS article, a data-driven dynamics-based postfiltering

technique is proposed to eliminate acoustic vibration-caused

distortions in atomic force microscope (AFM) images. As one

of the most important tools/instruments for nanoscience and

nanotechnology [1], AFM depends on the measurement and

manipulation of the interaction between a nano-size cantilever

probe and the sample—-based on the mechanical “touch to see”

principle [2]. Thus, external disturbances including acoustic

vibration can disturb the probe–sample interaction and distort
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the AFM measurement results [3]. Although passive noise ap-

paratuses have been employed to combat acoustic noise, such

a method—the de facto industry standard—faces limitations in

performance, usability, and cost. Whereas active acoustic can-

cellation, however, is challenging, particularly when the acoustic

noise is from an unknown and arbitrary location. Thus, this work

is motivated to tackle these challenges by developing a robust

filtering technique.

The effect of acoustic noise on AFM operation arises as

maintaining the probe–sample interaction closely around the set

point value is crucial in all AFM applications, ranging from

imaging [4], nanomechanical measurement [5], to probe-based

nanofabrication [6]. Extraneous probe vibration can be induced

both externally by disturbances including acoustic noise and

seismic vibrations and internally due to the excitement of the

dynamics and hysteresis adverse effects of the nanopositioning

system (from the piezo actuator to the cantilever probe) [7].

Although the internal adverse effects have been compensated for

through both hardware improvements (by increasing the band-

width of the piezo actuator and/or cantilever [8], [9]) and soft-

ware (algorithmic) enhancement (by developing more advanced

control techniques to better account for the dynamics and hys-

teresis effects [7], [10], [11]), compensation for the external ad-

verse effects has been largely limited to hardware means through

passive vibration/noise isolation apparatus [12], [13], [14], [15].

Although vibration and acoustic noise effects can be mitigated,

these passive apparatus are costly, bulky, and not compatible in

applications such as biomedical-related research, where AFM

needs to be integrated with other instruments such as optical

microscope [16]. Moreover, residual image distortion still per-

sists, and the image quality obtained cannot meet stringent re-

quirements in applications such as cleanroom nanometrology in

semi-conductor industry [1]. These acoustic-related issues have

limited the application and impact of AFM in these and other sci-

ence and engineering fields. However, unlike the development of

algorithms—control techniques—to account for the internal dis-

turbances in high-speed AFM operations [7], [17], few work has

been reported on active control of acoustic noise for AFM. Re-

cently, an inversion-based feedforward controller has been pro-

posed for online active noise control during AFM imaging [18].

Its performance, however, can be hindered by the hardware

constraints (e.g., online computation power and data acquisition

speed), the bandwidth limitation, and the unknown and arbitrary

location of the noise source. Thus, advanced algorithms need to

be developed to combat acoustic noise effect on AFM image.
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Challenges exist in eliminating acoustic-caused distortions in

AFM images. As the noise-caused distortion is coupled with the

sample topography in the images obtained, conventional filter-

ing techniques based on frequency-separation (e.g., low-pass,

band-pass, or notch filter) are ineffective. The acoustic-noise

dynamics, i.e., the dynamics from the acoustic noise to the

vibration response of the cantilever probe, is highly oscillatory

(i.e., contains multiple poles and zeros) and broadband, and

does not decay as frequency increases, making it difficult to em-

ploy model-based approaches along the framework of Kalman-

filtering [19]. This difficulty becomes even more so when the

location of the acoustic source is arbitrary and unknown—as

usually the case in practice. The unknown and arbitrary acoustic

source location can result in low signal to noise ratio (SNR)

in the acoustic signal measured, particularly when the sensor

(microphone) is distant away from the acoustic source, it is

practically unfeasible to relocate the sensor with respect to the

acoustic source. Moreover, the unknown acoustic source also

results in errors in the acoustic dynamics obtained as the acoustic

dynamics depends on the path of the noise propagation and varies

significantly as the distance and direction of the noise source

changes. Thus, for the filter to be effective, the complexity of

the acoustic dynamics and the unknown acoustic source location

effect must be addressed.

These challenges have been tackled recently through the de-

velopment of data-driven finite-impulse-response (FIR)-based

filtering techniques [20], [21]. The basic idea is to build the

filter based on the acoustic dynamics involved. To robustly cap-

ture the complicated acoustic dynamics, the FIR-representation

instead of a parameterized-model of the acoustic dynamics is

utilized [21]. By combining the FIR-based filter with an ad-

ditional nano-vibration sensor [21], the acoustic-caused AFM

image distortion can be reduced. The method, however, requires

special hardware modification (to install the specially designed

sensor), and does not account for the adverse effect of the

acoustic source location being arbitrary and unknown. This

issue might be mitigated by measuring the acoustic dynamics

responses for acoustic source at different locations and using

the responses to construct a dictionary (of acoustic dynamics)

to cover the entire operation area of interests [20]. Then, the

acoustic dynamics for a noise source at an unknown location can

be estimated via interpolation [20]. The filter is further enhanced

through a frequency-dependent modulator based on coherence

minimization. The efficacy of the technique has been demon-

strated and validated through AFM imaging experiments [20].

The performance of this method [20], however, depends on the

density and accuracy of the acoustic-dynamics (dictionary), and

constructing the dictionary can be time consuming and prone to

measurement uncertainties and acoustic dynamics variation—

not favored in practice, particularly when the acoustic source

location is unknown and arbitrary, and the SNR of the acoustic

noise is low. Therefore, efforts are needed to further enhance

the efficiency and robustness of the data-driven, dynamics-based

filtering of AFM images.

The main contribution of this article is the development of

a data-driven robust filtering technique to eliminate acoustic-

vibration caused distortions in AFM images. It is shown that

Fig. 1. Experimental setup for studying acoustic noise effect on AFM
operation, where it is assumed that the location of the noise source
(speakers) is unknown while the sensor (microphone) is placed at fixed
and known location.

by only using the data measured during the imaging process

itself–without any a priori acoustic dynamics characterization,

an optimal filter can be constructed to minimize the the error

in estimating the acoustic signal, and an optimal filter can be

designed to minimize the image filtering error, respectively.

We show that these two optimal filters are readily given by

the Wiener filter [22] of the acoustic noise involved. Moreover,

the proposed filters are further optimized through a coherence

minimization based frequency modulator technique [20], such

that the uncertainties in the Wiener filter parameters caused

by limited measurements and other disturbances in practice

are accounted for. Compared to the previous work [20], the

proposed approach eliminates the need for constructing an

acoustic dynamics dictionary while preserving the performance

regardless the location of acoustic source. The proposed filtering

scheme is implemented in an AFM imaging experiment, and

the experimental results show that the image distortion can be

significantly reduced [23].

II. DATA-DRIVEN ACOUSTIC FILTERING OF AFM IMAGE

A. Acoustic-Caused AFM Image Distortions: Problem
Formulation

It is important in AFM applications to eliminate external

disturbances such as acoustic noise. The basic principle of

AFM measurement is to manipulate the interaction between a

nanometer-size cantilever-tip and the sample surface and reg-

ulate the probe–sample interaction with nanoscale force and

displacement precision [4]. External disturbances like acoustic

noise can induce extraneous perturbation to the probe–sample

interaction, and thereby, loss of precision and quality in the

AFM measurements (see Fig. 1). More specifically, during the

tapping-mode (TM) imaging of AFM [2], the cantilever tip is

excited around the resonant frequency of the cantilever and

taps on the sample surface while scanning across the sampling

surface. During the scanning process, the tapping amplitude

is maintained around a prechosen constant level via feedback

control [24] (see Fig. 2). When the tip–sample interaction (i.e.,

the tip tapping) is well maintained, the sample topography

image can be obtained from the (vertical) displacement of the

cantilever. However, the mechanical structure of the AFM can
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Fig. 2. Schematic block diagram of the AFM imaging process with
acoustic noise.

be excited by the environmental disturbance like acoustic noise,

resulting in unwanted cantilever vibration and thereby, image

distortion (see Fig. 2).

In this work, we aim to develop a postimaging filtering tech-

nique to eliminate the acoustic noise effect without localizing

the acoustic source. Without loss of generality, we assume that

Assumption 1: The noise source is at a fixed but arbitrary and

unknown location.

Assumption 2: The acoustic noise n[k] is a zero-mean, band-

limited wide-sense stationary (WSS) random process [22], and

the variation of the primary acoustic noise dynamics (PAD) is

quasi static.

The PAD in Assumption 2 is the dynamics from the noise

signal (as the input) to the AFM image signal (as the output

response) [GN (z) in Fig. 2]. Assumption 2 is reasonable as

the variation of the PAD is mainly caused by the change of

the noise source location, i.e., the noise propagation route and

the AFM configuration (e.g., mounting of the cantilever), both

remain unchanged during an imaging process but otherwise can

vary significantly in day-to-day operations.

The unknown acoustic source location (Assumption 1) results

in source-sensor noncollocation, which, in turn, imposes two

challenges to postimaging filtering of the acoustic noise: One,

large uncertainty/variation in both the PAD and the acoustic

noise measured (as both the PAD and the acoustic noise mea-

surement depend on the media path of the acoustic propaga-

tion), and second, low SNR when the sensor is distant away

from the acoustic source. In contract to our previous work that

tackled this noncollocation problem through a dictionary-based

approach [20], we propose to address these two challenges

without constructing the dictionary, and without even acquiring

additional acoustic signals a priori—We aim to only use the

signals measured during the imaging process itself.

Considering that there exists measurement disturbances in

the measured acoustic signal, e.g., other environmental and

electrical thermal noise, the total measured acoustic signalnm[k]
can be represented as

nm[k] = n∗[k] + nd[k] (1)

where, respectively, n∗[k] is the “true” acoustic noise respon-

sible for the image distortion, and nd[k] is the measurement

disturbance of the acoustic signal.

Thus, in the presence of acoustic noise, the measured AFM

image signal, zm[k], becomes

zm[k] = zs[k] + zn[k] + zd[k], for k = 0, . . . , NI − 1, (2)

where zs[k] and zn[k] are the z-axis piezo displacement corre-

sponding to the sample topography and that due to the acoustic

noise, zd[k] is the measurement disturbance of the image signal,

and NI is the total number of sampling data acquired in the

given imaging process, respectively. As zm[k] is used to plot

the sample topography image, in the following, zm[k], zs[k],
and zn[k] are called the measured image signal, the true sample

image signal, and the image disturbance signal, respectively.

Assumption 3: The acoustic measurement disturbance nd[k]
is a zero-mean WSS random process, mutually uncorrelated to

the acoustic noise n∗[k], the true image signal zs[k], and the

measurement disturbance zd[k], respectively, i.e.,

E{nd[k]zs[k − j]} = 0 (3)

E{n∗[k]zs[k − j]} = 0, and (4)

E{n∗[k]zd[k − j]} = 0 (5)

for any given j (j = 0, 1, 2, . . . , Ni − 1). Thus, the filtered image

signal, zf [·], can be obtained by estimating the image noise

signal, ẑn[k], and removing it accordingly, i.e.,

zf [k] = zm[k]− ẑn[k], for k = 0, . . . , NI − 1 (6)

and by Assumption 3, the filtering quality can be quantified by

the residual image error er[k]

er[k] = zn[k]− ẑn[k] = zf [k]− zs[k]− zd[k]. (7)

Next, we formally state the acoustic-vibration filtering problem.

Data-driven Robust Filtering (DDRF) of Acoustic-caused

AFM Image Distortion: Let Assumptions 1–3 hold, the DDRF

problem is to design an optimal acoustic-noise filter and an

optimal acoustic-image filter directly from the data measured

during the imaging process, i.e., without an a priori acoustic

characterization process nor finding a parameterized model,

such that

O-1 By using the optimal acoustic-noise filter, the estimation of

the acoustic noise is unbiased

E(n̂[k]) = E(n∗[k]) = 0 (8)

and the variance of the estimation is minimized, i.e., for any

given k (k = 1, 2, . . . , Ni)

min
n̂[k]

Jn = E{en[k]}
2 = E{n∗[k]− n̂[k]}2. (9)

O-2 By using the optimal acoustic-image filter, the filtering of

the image signal is unbiased

E(e[k]) = E{zs[k]− zf [k]} = 0. (10)

and the variance of the filtering is minimized, i.e., for any

given k (k = 1, 2, . . . , Ni)

min Jz = E{er[k]}
2. (11)

We proceed by achieving these two objectives in order.
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B. [O-1] Optimal Acoustic-Noise Filter Design: A Wiener
Filter Approach

We propose to optimize the estimation of the acoustic noise

signal n̂[·] in (9) based on the Wiener filtering theory [22].

The key idea is to exploit the high sensitivity of the AFM

measurement: the acoustic-caused disturbances in the AFM

image signals (i.e., the z-axis displacement and the cantilever

deflection signal as the responses to the acoustic signal)—can be

utilized to enhance the SNR of the acoustic noise measurement,

provided that the corresponding PAD can be accurately captured.

This is based on that the “true” noise signal n∗[k] is related to

the image noise signal, zn[k], by

n∗[k] = (gt ∗ zn)[k] (12)

where “*” denotes the discrete convolution operation, gt is the

impulse response of the inverse dynamics of the “exact” PAD

from the acoustic signal n∗[k] to the image noise signal zn ∈
�NI (for j= 0, 1, . . . , NI − 1), respectively,

gt = [gz[0] gz[1] · · · gz[NI − 1]}]T (13)

zn = [zn[0] zn[1] · · · zn[NI − 1]]T (14)

However, as the image noise signal zn[k] is buried in the mea-

sured total image signal zm[k], thereby, unknown in general, we

propose to estimate the acoustic noise signal n̂[k] by using the

measured z-axis displacement, i.e., the measured image signal

zm[k], via

n̂[k] = [ĝz ∗ (zm − z̄m)][k] � [ĝz ∗ z̆m][k] (15)

where ĝz ∈ �NF is the acoustic filter designed based on an

estimation of the impulse response of the inverse dynamics

gz, from the acoustic signal n∗[k] to the measured total image

signal zm[k], zm ∈ �NF (for k= 0, 1, . . . , NI − 1) is the vector

form of the measured image signal, z̄m is the corresponding

expectation value and z̆m][k] is called the unbiased measured

image signal, respectively,

ĝz = [ĝz[0] ĝz[1] · · · ĝz[NI − 1]}]T (16)

zm = [zm[0] zm[1] · · · zm[NI − 1]]T (17)

z̄m = E(zm) = E(zn + zs + zd) (by (2))

= [zs[0] zs[1] · · · zs[NI − 1]]T = zs (18)

where the last equation follows by the expectation of zn and zn
are zero by Assumptions 2 and 3. We seek the optimal filter ĝ∗

z

to minimize the power of the correlation between the estimated

acoustic measurement disturbance n̂d[k]

n̂d[k] = nm[k]− n̂[k] (19)

and the total measured image signal zm[k]

min
ĝz

Ĵn[j] � r2
nz[j] = [E{n̂d[k]zm[k − j]}]2 . (20)

We show below that such a filter also minimizes the cost

function Jn in (9) as well. As all the signals in the above cost

function Ĵn are available, this leads to a computational scheme

to obtain the optimal acoustic noise filter ĝz .

Lemma 1: Let Assumptions 1–3 be hold, and the optimal

noise filter ĝz[k] be given by (15) to (20), then

1) The estimation of the acoustic noise is unbiased, i.e., (8)

holds, and

2) The variance of the noise estimation errorJn in (9) is min-

imized if and only if the square of the cross-correlation

rnz[j] in (20) reaches its minimal value at zero, i.e., if and

only if Ĵn[j] = 0 for any given j = 1, 2, . . . , NI − 1.

Proof: The unbiased estimation (21) comes directly from

Assumption 2, as by (15)–(16)

E{n̂[k]} = E{[ĝz ∗ z̆] [k]}

= [ĝz ∗ {E(z̆)}][k]

= [ĝz ∗ [E(zn) +E(zd)][k]

= [ĝz ∗ (0+ 0)][k] = 0 (21)

Next, we proceed by substituting (1), (2), (12), (15) into (9) to

rewrite the cost function Jn as

Jn = E{n∗[k]− n̂[k]}2

= E{(gt ∗ zn)[k]− [ĝz ∗ (z̆)][k]}2

= E{(gt ∗ zn)[k]− [ĝz ∗ (zn + zd)][k]}
2

= E{(gt − ĝz) ∗ zn]
2[k]− 2[(gt − ĝz) ∗ zn[k]]

[ĝz ∗ zd][k] + [ĝz ∗ zd]
2[k]}. (22)

As the image noise signal zn[k] is driven by the acoustic noise

n∗[k] whereas the image measurement disturbance zd[k] is not,

by Assumption 3

E(zd[k]zn[k − j]) = 0, for j = 1, 2, . . . , NI − 1 (23)

Hence in (22)

E{[(gt − ĝz) ∗ zn][k][ĝz ∗ zd][k]}

= E

{[

Ni
∑

i=0

{gt[i]−ĝz[i]} zn[k−j]

][

Ni
∑

i=0

ĝz[i]zd[k − i]

]}

= 0

(24)

Substituting (24) into (22) yields

Jn = E{(gt − ĝz) ∗ zn]
2[k]}+E{[ĝz ∗ zd]

2[k]} (25)

And thus

∂Jn

∂ĝz[j]
= 2E

{

NI
∑

i=0

{{ĝz[i]− gt[i]}zn[k − i]}zn[k − j]

}

+ 2E

{

NI
∑

i=0

{ĝz[i]zd[k − i]}zd[k − j]

}

= 2

NI
∑

i=0

{ĝz[i]− gt[i]}Rnn[i− j]}
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+ 2

NI
∑

i=0

{ĝz[i]Rdd[i− j]} (26)

where Rnn[j] and Rdd[j] are the auto-correlation of zn[k] and

zd[k], respectively. As zn[k] and zd[k] are both real signals, their

auto-correlations are symmetric, i.e., Rnn[i− j] = Rnn[j − i]
and Rdd[i− j] = Rdd[j − i] [2]. Therefore,

∂Jn

∂ĝz[j]
= 2

NI
∑

i=0

{ĝz[i]− gt[i]}Rnn[j − i]

+ 2

NI
∑

i=0

ĝz[i]Rdd[j − i]}

= 2[(ĝz − gt) ∗Rnn][j] + 2[ĝz ∗Rdd][j]. (27)

Next we show that the above partial derivative (27) equals to

the cost function in (20). Thus, the minimal of the cost function

Jn is attained if and only if the cost function Ĵn reaches its

minimal at zero. By (1) and (12), the cross-correlation in (20),

rnz[j], can be represented as

Ĵn = [E{(nm[k]− n̂[k])(z̆m[k − j])}]2

= [E{nm[k]z̆m[k − j]− n̂[k](z̆m[k − j])}]2

= [E{nm[k]z̆m[k − j]} −E{n̂[k]zn[k − j]}

−E{n̂[k]zd[k − j]}]2 (28)

By (15) and the definition of convolution

E{n̂[k]zn[k − j]} = E{(ĝz ∗ z̆m)[k]zn[k − j]}

= E

[(

Ni
∑

i=0

ĝz[i]z̆m[k − i]

)

zn[k − j]

]

= E

{

Ni
∑

i=0

(ĝz[i]zn[k − i]zn[k − j])

}

+E

{

Ni
∑

i=0

(ĝz[i]zd[k − i]zn[k − j])

}

(29)

By Assumption 3

E

{

Ni
∑

i=0

ĝz[i]zd[k − i]zn[k − j]

}

=

Ni
∑

i=0

gz[i]E(zd[k − i]zn[k − j]) = 0.

(30)

Substituting (30) back into (29) yields

E{n̂[k]zn[k − j]} =

[

Ni
∑

i=0

E (ĝz[i]zn[k − i]zn[k − j])

]

=

[

Ni
∑

i=0

ĝz[i]E(zn[k − i]zn[k − j])

]

�

[

NI
∑

i=0

ĝz[i]Rnn[i− j]

]

. (31)

Similarly,

E{n̂[k]zd[k − j]} =

[

Ni
∑

i=0

ĝz[i]E(zd[k − i]zd[k − j])

]

�

[

Ni
∑

i=0

ĝz[i]Rdd[i− j]

]

. (32)

And

E{nm[k]z̆m[k − j]}

= E{n∗[k]zn[k − j]}+E{nd[k]zn[k − j]}

+E{n∗[k]zd[k − j]}+E{nd[k]zd[k − j]}. (33)

By Assumption 3,

E{nd[k]zn[k − j]} = E{n∗[k]zd[k − j]} = 0. (34)

Substituting (34) into (33) yields

E{nm[k]z̆m[k − j]} = E{n∗[k]zn[k − j]}

=

NI
∑

i=0

gt[i]Rnn[i− j]. (35)

Hence, submitting (31), (32) and (35) back into (28) yields

Ĵn =

{

Ni
∑

i=0

(gt[i]− ĝz[i])Rnn[i− j]−

Ni
∑

i=0

ĝz[i]Rdd[i− j]

}2

= {[(gt − ĝz) ∗Rnn][j]− [ĝz ∗Rdd][j]}
2. (36)

Thus, the proof is completed by combining (27) with (36). �

Next, we obtain the optimal filter gz[k] by minimizing the

cost function Ĵn to zero. We rewrite Ĵn in the matrix form

as

Ĵn = E{n̂d[k − j]zm[j]}2

= E{(nm[k − j]− (gz ∗ zm[k − j])zm[j]}2

= {E{nmzTm} −E{zmzTm}gz}
2

= pn −Rzgz (37)

where Rz is the auto-correlation matrix of measured image

signal zm[k]

Rz = E{zmzTm}

�

£

¤

¤

¤

¤

¥

Rz[0] Rz[1] . . . Rz[NI − 1]

Rz[1] Rz[0] . . . Rz[NI − 2]
...

...
. . .

...

Rz[NI − 1] Rz[NI − 2] . . . Rz[0]

¦

§

§

§

§

¨

(38)
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and the vector pn is the cross-correlation between the measured

acoustic noise nm[k] and the measured image signal zm[k]

pn = {E{nmzTm} � [pn(0) pn(−1) · · · pn(−NI + 1)]T .
(39)

Thus, by setting Ĵn = 0 in (37), the optimal filter g∗z[k] can

be readily obtained from (37) as a Wiener filter [22]

g∗
z = R−1

z pn. (40)

As both the acoustic measurement disturbance nd[k] and

the total measured noise nm[k] are WSS, the auto-correlation

matrix Rz above is nonsingular for any nonzero measurement

disturbance nd[k] [22]. Therefore, the estimated acoustic noise

is obtained as

n̂∗[k] = [g∗
z ∗ (zm − z̄m)][k] � [g∗

z ∗ ẑm][k]. (41)

Steepest Descent Method to Compute the Wiener Filter: Find-

ing the Wiener filter can be computationally costly when the

related acoustic dynamics is complicated and a high-order FIR

truncation of the Wiener filter (i.e., the order numberNF is large)

is needed. Thus, we utilize the steepest descent method [22] to

seek the optimal g∗z[k] via the following recursive iteration:

gz,i+1 = gz,i + µn̂d[i]E{zm,i} (42)

where

zm,i = [zm[i] zm[i+ 1] · · · zm[i+NF ]]
T

for i = 0, 1, . . . , NI −NF . (43)

µ ∈ (0, 1] is the step size, chosen to ensure the convergence

of the recursive iteration in (42), and initially gz,0 = 0. As the

expectation of E{zi} is, in general, unknown, the following

unbiased estimation is used [2]:

E{zi} = lim
Na→∞

1

Na

Na−1
∑

i=0

zk−i (44)

whereNa is the number of samples used in the estimation. Thus,

the following estimation is employed by using the values of the

two signals at current sampling instant

E{zm,i} ≈ zm,i. (45)

In the following, the optimal estimated filter obtained via (41)–

(45) is denoted as g 
z .

Modulator-Based Filter Optimization: As approximation

[see (45)] is inevitable in seeking the optimal acoustic-noise

filter ĝ∗z[k] above, and extraneous error can also be introduced

due to the truncation involved in the Wiener filter, we propose the

following modulator-based method to minimize the approxima-

tion error and further enhance the optimal estimated disturbance

noise filter ĝ z[·] in (40) in the frequency domain via

Ĝ!
z(e

jωk) = α!(e
jωk)Ĝ 

z(e
jωk) (46)

where Ĝ 
z(e

jωk) denotes the z-transform of the acoustic-noise

filter ĝ z[·], ωk = kωs

NI

for k = 0, 1, . . . , NI − 1 with ωs = 2πfs

are the discrete sampled frequencies, and α!(e
jωk) is the opti-

mal modulator to be determined, respectively. Specifically, the

optimal modulatorα!(e
jωk) is to minimize the filter error δgz[k]

δgz[k] = g∗z[k]− ĝ!z[k] (47)

where ĝ∗z[k] is the exact optimal acoustic-noise filter given

by (40).

It is shown in Lemma 2 below that minimization of the error of

the acoustic-noise filter δgz[k] can be converted to minimizing

the coherence between the estimated measurement disturbance

n̂∗
d[k] and the unbiased measured image signal z̆m[k], i.e., find

α!(e
jωk) to minimize the coherence between n̂∗

d[k] and z̆m[k]

Cnz(e
jωk) =

E[N̂ ∗
d(e

jωk)Z̆m(ejωk)]2

P̂Nd
(ejωk)P

Z̆m
(ejωk)

where (48)

N̂d(e
jωk) = Nm(ejωk)− α!(e

jωk)G∗
z(e

jωk)Z̆m(ejωk)
(49)

and P̂Nd
(ejωk) and P

Z̆m
(ejωk) are the power spectral densities

of N̂d(e
jωk) and Z̆m(ejωk), respectively.

P̂Nd
(ejωk) = ‖N̂d(e

jωk)‖2 P
Z̆m

(ejωk) = ‖Z̆m(ejωk)‖2.

(50)

Lemma 2: Let Assumptions 1–3 hold, then the error of the

noise filter δgz[k] is minimized in two-norm sense if and only if

at any given ωk the coherence between the estimated measure-

ment disturbance n̂∗
d[k] and the measured image signal z̆m[k],

Cnz(e
jωk), is minimized.

Proof: By the Convolution theorem [25], the cost function in

(20) can be represented in frequency domain as

minJn = {E[N̂ ∗
d(e

jωk)Z̆m(ejωk)]}2 (51)

and the coherence between n̂e[k] and zm[k] at any given sampled

frequency ωk is given as

Cnz(e
jωk) =

{E[N̂ ∗
d(e

jωk)Z̆m(ejωk)]}2

P̂Nd
(ejωk)P

Z̆m
(ejωk)

=
1

PNd
(ejωk)PZ(ejωk)

{[Gt(e
jωk)−Gz(e

jωk)+δGz(e
jωk)]Rzn(e

jωk)

− [Gz(e
jωk)− δGz(e

jωk)]Rdd(e
jωk)}2 (52)

where PNd
(ejωk) is the power spectral density of the estimated

measurement disturbance n̂d[k] [see (1)]. The above (52) and

(36) implies that the error in the estimated acoustic noise filter

ĝ!z[k] compared with the true disturbance dynamic Gz(e
jωk) is

minimized, if and only if the coherenceCnz(e
jωk) is minimized.

Thus, by minimizing the coherenceCnz(e
jωk) at every sampled

frequency ωk, the optimal estimated acoustic noise filter ĝ!z[k]
converges to the exact acoustic noise filter g∗z[k]. This completes

the proof. �

The optimal α!(ejωk) that minimizes the cost function Jn in

(9) can be obtained through a gradient-based iterative descend

method [20] by

α
!
i(jωk) = α

!
i−1(jωk) + λ

∂Cnz(jωk, α
!
i−1)

∂Ĝ
!
z,i−1(jωk)
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= α
!
i−1(jωk) + λ

∂Cnz(jωk, α
!
i−1)

∂α
!
i−1(jωk)

1

Ĝ
 
z(jωk)

(53)

where

∂Cnz(jωk, α
!
i)

∂α!(jωk)
≈

Cnf (jωk, α
!
i + δα!)−Cnf (jωk, α

!
i)

δα!
.

(54)

Readers are referred to [20] for more details.

C. [O-2] Optimal Acoustic-Image Filter Design

The optimal acoustic-image filter ĝN [k] to minimize the error

between the true image and the filtered image (objective O-

2) can also be designed through the above Wiener-filter-based

modulator optimization approach. Specifically, a Wiener Filter

ĝn[k] is designed to optimize the estimated true image zf [k]
by minimizing the power of correlation between the estimated

acoustic noise n̂[k] and the measured image signal zf [k]—It can

be shown similarly that minimizing the cost function Jz in (9)

is equivalent to minimizing the following correlation Ĵz:

min Ĵz = E{n̂[k − j]zf [j]}
2. (55)

Thus, the same minimization process above [in (37)–(40)] can

be applied to obtain the optimal acoustic filter g∗n[k] as a Wiener

Filter

ĝ∗
n = R−1

n pnz (56)

whereRn is the auto-correlation matrix of the estimated acoustic

noise obtained from Section-II B, n̂,

Rn = E{n̂n̂T }

=

£

¤

¤

¤

¤

¥

Rn[0] Rn[1] . . . Rn[NI − 1]

Rn[1] Rn[0] . . . Rn[NI − 2]
...

...
. . .

...

Rn[NI − 1] Rn[NI − 2] . . . Rn[0]

¦

§

§

§

§

¨

(57)

and pnz = E{n̂zTm} is the cross-correlation between the esti-

mated noise n̂∗[k] and the measured sample image signal zm[k],
respectively. The filtered image is then obtained as

zf [k] = z[k]− (ĝ∗
n ∗ n̂∗)[k] (58)

with n̂∗[k] given in (41).

Similarly, the steepest descend method is used to obtain the

acoustic image filter by replacing the n̂d[i] andzm,i with zm[i]−
zf [i] and n∗

i , respectively, where

n∗
i = [n∗[i]n∗[i+ 1] · · · n∗[i+NF ]]

T

for i = 0, 1, . . . , NI −NF . (59)

We denote the optimal estimated filter obtained via (41)–(44)

as ĝ 
n(·). Then, ĝ 

n(·) is further enhanced by a frequency-

dependent modulator β! via

Ĝ!
n(e

jωk) = β!(e
jωk)G 

n(e
jωk) (60)

where the optimal modulator β! is to minimize the filter error

δgn[k]

δgn[k] = g∗n[k]− ĝ!n[k] (61)

and obtained by minimizing the following coherence between

n∗[k] and the filtered image zF [k]:

minCnf (e
jωk) =

E[N ∗(ejωk)ZF (e
jωk)]2

PN (ejωk)PZF
(ejωk)

. (62)

Lemma 3: Let Assumptions 1–3 hold, then the error of the

image filter δgn[k] is minimized in two-norm sense if and only

if at any given ωk, the coherence between the estimated acoustic

noise n̂∗[k] and the filtered image signal zf [k], Cnf (e
jωk), is

minimized.

The proof is similar to that of Lemma 2 and is omitted.

The gradient-based iterative descend method is also employed

to obtain the optimalβ!(ejωk) to minimize the cost function (62).

III. EXPERIMENT EXAMPLE

The proposed approach was demonstrated through an AFM

imaging experiment. The objective was to show that by using

the proposed approach, the acoustic-caused image distortion

from an arbitrary and unknown acoustic source can be substan-

tially reduced. The AFM imaging experiment was performed

on a commercial AFM system (Dimension FastScan, Bruker

Nano Inc.), where the acoustic noise was induced by a speaker

(Logitech S150, Logitech, Inc.) placed near the AFM scanner

head and measured via a precision array microphone (BK 4958,

Bruel Kjaer Inc.) as shown in Fig. 1. The ground vibration

induced by the speaker (when it was broadcasting sound to

the environment) was damped by the optical table (on which

the AFM system was placed, see Fig. 1), and its effect on the

cantilever vibration became part of the PAD of the AFM system,

thereby, was accounted for through the proposed approach. The

noise sensor signal was first pre-filtered and amplified using

a homemade Op-Amp circuit, and then measured via a data

acquisition system (NI RIO, USB-7856R, National Instrument

Inc.). All the filtering algorithms were designed in MATLAB

(Mathworks Inc.) and then implemented using NI-USB-7856R

FPGA board.

Experimental Implementation: First, the acoustic-noise-

effected AFM images were acquired with the noise source placed

at three different “unknown” locations and the sensor (micro-

phone) placed at a fixed location, respectively, as shown in Fig. 3.

A silicon sample and a calibration sample (STR-1800R) were

imaged at a scan rate of 5 Hz under the TM when a band-limited

(20–1 kHz) white noise of zero-mean and constant variance of

100 dB was broadcasted to the room through the speaker. To

mimic the scenario of low SNR acoustic noise measurement,

a different band-limited zero-mean white noise (20–1 kHz)

acoustic signal was introduced as the measurement disturbance

through an earphone sticked tightly to the microphone. The

amplitude of this disturbance noise was adjusted such that it

can be clearly captured by the microphone but didn’t induce

measurable AFM probe vibration. Both the noise signals and
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Fig. 3. Location of the acoustic noise source (speaker) at three “un-
known” locations, A, B, and C, with respect to that of the sensor (micro-
phone), D, and the AFM probe, E, respectively.

the z-axis piezo displacements were acquired simultaneously

during the imaging processes. This imaging and measurement

process was repeated for the other two unknown noise locations

“B” and “C”, respectively.

To filter the acoustic noise acquired, the optimal acoustic-

noise filter, g∗
z, and the optimal acoustic-image filter, g∗

n, were

constructed using the PAD from the measured noise signalnm[k]
and total image signal zm[k]. First, the filter coefficients of the

Wiener filter were obtained using (42)–(45), where the Wiener

filter was truncated at the order of 4096 and step size µ was

chosen at 0.1, called the Wiener-FIR acoustic-noise and Wiener-

FIR acoustic-image filter below, respectively. Next, both filters

were further optimized by using the modulator-based coherence

minimization method (described in Section 2). Specifically,

the optimal modulator α (e
jωk) and β (e

jωk) were obtained

iteratively described in [20], where the step size was chosen at

0.05. Finally, the filtered images were obtained by using, first,

the optimized acoustic-noise filterg∗
z to “clean up” the measured

acoustic noisenm[k], and secondly the optimized acoustic-noise

filter g∗
z along with the filtered acoustic signal n̂∗[k] to filter the

measured raw image zm[k].
The same procedure was repeated for filtering the images

captured at the other two unknown locations “B” and “C”, re-

spectively. For comparison, the images were also filtered directly

by using the Wiener-FIR acoustic-noise filter followed by the

Wiener-FIR acoustic-image filter, and were filtered by using a

bandstop filter with the cutoff frequency in the range between

250 and 400 Hz (where the PAD was the largest in magnitude)

was chosen, respectively [see Fig. 4(a)]. Finally, as a benchmark

filtering result—to evaluate the proposed approach in improving

the SNR (O-1) and accounting for the unknown sensor-noise

un-collocation effect (O-2), the images were also processed

by using the acoustic noise measured under the sensor-noise

collocation and the filter constructed by using the PAD obtained

under this collocation condition and further improved via the

modulator-optimization method for the silicon and the calibra-

tion sample, respectively.

Experimental Results and Discussion: The experimental re-

sults are shown in Figs. 4–11. To evaluate the efficacy of the

(a)

(b)

Fig. 4. (a) Comparison of the frequency response (magnitude part) of
the measured PAD Gn(e

jωk ) and those estimated by using the Wiener-
FIR acoustic-image filter (WAIF) and the optimal acoustic-image filter
(OAIF) method, and (b) the comparison of the error (magnitude part) of
the estimated dynamics using the WAIF, and that using the OAIF with
respect to the “true” measured PAD, respectively.

proposed Wiener-FIR acoustic-noise filter (WANF) and the op-

timal acoustic-noise filter (OANF) in improving the SNR of the

measured acoustic signals from an unknown location, the PAD

obtained by using the filtered acoustic signal via the proposed

WANF and proposed OANF technique, are compared to that

quantified by using the measured signal directly (without filter-

ing) in Fig. 4(a). The difference of these two PADs with respect

to the experimentally measured “true” PAD (obtained by mea-

suring the acoustic noise under the sensor-speaker collocation

and without induced acoustic measurement noise), i.e., the error

of these two PADs, are compared in Fig. 4(b). Also, the measured

raw noise signal is compared to the filtered noise signal by using

the WANF and the OANF in Fig. 5 for location “A” (as an

example), respectively. The corresponding raw acoustic-effected

images of the silicon sample and the calibration sample are com-

pared to those filtered by using the bandstop filter, Wiener-FIR

acoustic-image filter (WAIF) and the optimal acoustic-image

filter (OAIF) in Figs. 6 and 7, respectively. Then, the filtering

results of the proposed OANF and the OAIF for the images

captured at the three unknown speaker locations are shown

Figs. 6 and 9, with comparison to those obtained in location “D”

setup (under the sensor-noise collocation condition). Finally, the

image quality was evaluated by relative 2-norm error E2(%) for
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Fig. 5. (a) Comparison of the measured acoustic noise signal of low
SNR compared to the filtered noise by using the Wiener-FIR acoustic-
noise filter (WANF) and the optimal acoustic-noise filter (OANF), and (b)
comparison of the coherence between the z-axis displacement to the
measured noise, to the noise filtered by Wiener-FIR acoustic-noise filter
(WANF) and the optimal acoustic-noise filter (OANF), respectively.

the raw image, WANF followed by the WAIF, and the OANF

followed by the OAIF in Fig. 10, respectively, and the image

error by using the proposed OANF and OAIF techniques for

the results obtained in the three unknown location set-ups (“A”,

“B,” and “C”) are also compared to the benchmark reference

(i.e., obtained in the collocation set-up, location “D” set-up)

in Fig. 11, respectively. The relative 2-norm error E2(%) was

computed by using the image obtained in the quiet condition,

and across all scanned lines of the entire image.

The experimental results showed that by using the proposed

approach, the SNR of the acoustic signal measured in AFM

imaging was substantially improved. First, the WANF captured

the measured PAD well, with its dynamics (represented by its

poles and zeros) overlapped with those of the measured PAD

closely [see Fig. 4(a)]. However, significant deviation from the

measured PAD existed in the low frequency range between 100

and 200 Hz. Such an error on the PAD was significantly reduced

by using the proposed OANF as shown in Fig. 4(b). Next,

as shown in Fig. 5, the SNR of the measured acoustic noise

signal was significantly improved by using the proposed WANF

as more than 50% of the irrelevant noise was removed from

the signal. This substantial improvement in SNR was further

enhanced by using the proposed OANF with another 10% SNR

improvement. Moreover, the coherence between the noise and

image was improved by more than 20% by the proposed WANF

and 40% by the proposed OANF. Such an improvement of the

SNR of the acoustic measurement directly contributed to the

filtering improvement of image distortions obtained later.

The experimental results also demonstrated that by using the

proposed technique, the image distortion caused by acoustic

disturbance from an unknown location was significantly re-

duced. As shown in Figs. 6(c) and 7(c), by using the WAIF, the

acoustic-caused image distortion was largely removed, whereas

when using the bandstop filter, although the acoustic-caused

ripple artifacts across the topography image was also largely

removed and the image quality had improved considerably on

silicon sample, the edge of the pitches were severely smeared

in the filtered image of the calibration sample [see Fig. 7(b)].

However, by using the proposed OAIF, the image quality was

further improved, with the image quality visually improved

further [see Figs. 6(d) and 7(d)]. This improvement can be seen

more clearly from the relative image error comparison—the

relative 2-norm error was reduced by 78% on the silicon sample

and 68% on the calibration sample by using the WAIF, and

then further reduced by another 10–12% by using the proposed

OAIF (see Fig. 10). Finally, the experimental results also demon-

strated the proposed OAIF is robust against the variation of

the noise source location. As shown in Fig. 11, the 2-norm

image error at three different locations are consistent between

11% and 19% and compared well to the 12% to 13% image

error under the condition that the noise source and microphone

collocated on both samples. Overall, the improvement attained

was similar to that reported recently [20], without constructing

dictionaries of acoustic dynamics via a pirori measurement and

characterization—as needed previously [20]—to account for

unknown acoustic source location. Instead, such an adverse

effect was effectively accounted for through the proposed DDRF

technique. Such an enhancement substantially reduced the cost

and efforts needed in practical implementations, making the

technique potentially an effective tool for practical AFM imag-

ing applications. The proposed technique can be easily extended

to other areas that are sensitive to acoustic and vibration effects

(e.g., precision robotics, Scanning Tunnel Electron Microscope

and E-beam Lithography, etc.). This will be explored in our

future work soon.

Although the proposed technique is for offline postimaging

process, it can be readily expanded to more general AFM imag-

ing applications. For real-time applications, the technique can

be implemented by inserting a short “pause” period without

interfering the imaging process. For example, the proposed

algorithm can be used to process the data at the end of the

scanning of each line (right before the start of the scanning on the

next line). Additional sampling periods can be added if needed

to process the algorithm and the algorithm can be transformed

to the frequency domain and computed across multiple sam-

pling periods via the time-distributive FFT algorithm [26]. Also,

although the proposed technique is for arbitrary and unknown

but fixed acoustic noise source, it can be easily extended to

address the change of noise source location being known a

priori (e.g., preprogrammed) and slow, or in a discrete manner
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(a) (b) (c) (d)

Fig. 6. Comparison of the original raw image of a silicon sample obtained at scan rate of 5 Hz (a) under the induced acoustic noise for location
“A” set up in Fig. 3, to those filtered by (b) the bandstop filter, (c) the Wiener-FIR acoustic-noise combined with Wiener-FIR acoustic-image filters
and (d) the optimal acoustic-noise combined with optimal acoustic-image filters, respectively.

(a) (b) (c) (d)

Fig. 7. Comparison of the original raw image of a calibration sample obtained at scan rate of 5 Hz (a) under the induced acoustic noise for location
“A” set up in Fig. 3, to those filtered by (b) the bandstop filter, (c) the Wiener-FIR acoustic-noise combined with Wiener-FIR acoustic-image filters
and (d) the optimal acoustic-noise combined with optimal acoustic-image filters, respectively.

(a1) (a2) (a3) (a4)

(b1) (b2) (b3) (b4)

Fig. 8. Comparison of (first row) the raw image of the silicon sample obtained at scan rate of 5 Hz, under the induced acoustic noise (a1 to a4) in
the location “A” to “D” setup in Fig. 3, respectively, to (second row, b1–b4) the correspond ones filtered by using the DDRF technique, respectively,
where (a4) and (b4) (location “D” set-up) are the results for the sensor-noise collocated case.

(i.e., the noise source transits to different locations swiftly and

stays at those locations for a known period of time). In these

scenarios, the proposed technique can be applied to construct and

apply the filters in a section-by-section manner. More generally,

the proposed technique can be extended to the case where the

change of the acoustic noise source arbitrarily and unknown

(not common in AFM applications). This will be pursued as

future work. Moreover, the proposed technique is not AFM

manufacturer dependent and can be equally applied to other

types of AFM systems under other operation conditions.

IV. CONCLUSION

A data-driven robust-optimal filtering technique was devel-

oped to eliminate AFM image distortion caused by acoustic
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(a1) (a2) (a3) (a4)

(b1) (b2) (b3) (b4)

Fig. 9. Comparison of (first row) the raw image of the calibration sample obtained at scan rate of 5 Hz, under the induced acoustic noise (a1 to a4)
in the location “A” to “D” setup in Fig. 3, respectively, to (second row, b1–b4) the correspond ones filtered by using the DRF technique, respectively,
where (a4) and (b4) (location “D” set-up) are the results for the sensor-noise collocated case.

(a) (b)

Fig. 10. Comparison of the normalized image error of the calibration
sample for the Wiener-FIR filters and DDRF technique in the relative
2-norm, for location “A” set-up.

(a) (b)

Fig. 11. Comparison of the normalized image error (with respect to
the raw image error) for the calibration sample in 2-norm at four different
locations, respectively.

noise. The Wiener filter in the FIR representation is explored to

construct the filter and improve the SNR of the measured acous-

tic signal. It is shown that by introducing a modulator into the

filters, the error in the estimated acoustic dynamics and the low

SNR of the measured acoustic noise—both due to the acoustic

noise location being arbitrary and unknown—can be eliminated

by optimizing the modulator via a gradient-based coherence

minimization approach. The efficacy of the proposed approach

was demonstrated by filtering experimentally measured AFM

images of a calibration sample. The filtering results showed

that by using the proposed technique, the image distortion was

substantially reduced. The future work includes the extension

of the proposed technique to other acoustic noise and vibration

cancellation areas including medical imaging.
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