2024 IEEE 15th International Green and Sustainable Computing Conference (IGSC) | 979-8-3315-0786-2/24/$31.00 ©2024 IEEE | DOI: 10.1109/IGSC64514.2024.00026

2024 IEEE 15th International Green and Sustainable Computing Conference (IGSC)

SRC: Sustainable Reactive Computing for Battery-free
Edge Intelligence

Sepehr Tabrizchi* , Nedasadat Taheri®, Justin Feng?, Nader Sehatbakhsh?, David Z. Panf, and Arman Roohi*?
*Department of Electrical and Computer Engineering, University of Illinois Chicago, Chicago, IL, USA
§School of Computing, University of Nebraska-Lincoln, Lincoln, NE, USA
iDepartment of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, NJ, USA
TDepartment of Electrical and Computer Engineering, University of Texas Austin, Austin
aroohi@uic.edu

Abstract—This paper proposes SRC, a novel framework for
efficient and reliable inference on battery-free smart Internet
of Things (IoT) devices. SRC supports various configurations
that follow reactive configuration while using the innovative
state machine and a safe_threshold mechanism to proactively
halt operations, reducing store/load operations by up to 75%.
It strategically stores essential convolutional neural network
(CNN) data (layer, kernel, etc.) to optimize input/output fea-
ture map management. This reactive design allows seamless
task resumption across power cycles, ensuring continuity in
unpredictable energy environments. Experiments show significant
gains, with SRC achieving on average ~ 81.85% reduction in
read/write operations and approximately 57.18% improvement
in sensing compared to conventional reactive methods based on
the intermittent Energy Trace 1.

I. INTRODUCTION

The IoT represents a paradigm shift from a cloud-centric
approach to a thing-/data-centric perspective, offering the
potential to significantly alleviate various challenges, including
high latency, limited scalability, quality of service, privacy,
and security concerns. Given its immense potential, the IoT
market is projected to reach a staggering $4.5 trillion by 2035,
with an interconnected network of over one trillion devices
spanning across diverse domains such as smart homes, cities,
industries, healthcare wearables/implants, and agriculture [1].
Ericsson’s research suggests that intelligent IoT systems can
reduce carbon emissions by an impressive 3%, equivalent to
63.5 gigatons, by the year 2030 [2]. However, the current
reliance on batteries to power IoT devices presents significant
challenges, including limited lifespan, cost, maintenance, and
environmental sustainability concerns. EnABLES projects that
without proactive measures, global battery disposal could
reach an alarming 78 million units per day by 2025 [3], high-
lighting the urgent need for sustainable solutions in the rapidly
expanding IoT ecosystem. In contrast, energy harvesting sys-
tems represent a critical advancement in the development
of sustainable, autonomous computing devices, particularly
within the IoT. These systems derive power from environ-
mental sources like solar radiation, thermal gradients, and
ambient RF energy. The principle behind energy harvesting is
to capture these omnipresent energies and convert them into
electrical energy to power electronic devices. This approach
enables devices to operate independently of conventional
power grids, facilitating deployments in remote or inaccessible
areas without regular maintenance. The energy harvesting
system needs an intermittent execution approach, where the
system must adapt to periods of activity interrupted by power

979-8-3315-0786-2/24/$31.00 ©2024 IEEE
DOI 10.1109/1GSC64514.2024.00026

93

failures. Unlike stable sources, intermittent energy sources can
disrupt program execution, causing data loss and unpredictable
outcomes. Intermittent computing offers near-zero idle power
consumption, instant wake-up, and robustness against power
failures [4]. Non-volatile memory (NVM) components prevent
the need for a boot-up sequence post-sleep [5]. The advent of
CNNs has led to a shift in inference tasks from the cloud
to the edge of the IoT, enabling responsive applications with
reduced bandwidth and storage requirements. However, IoT
edge devices often rely on energy harvesting solutions and
are prone to frequent power failures, resulting in intermit-
tent execution. Consequently, intermittent CNN inference has
emerged as a critical challenge for modern, self-powered edge
devices. Existing intermittent solutions, such as checkpoint-
ing and task-based programming models, are not well-suited
for hardware-accelerated CNN inference due to performance
issues, hardware supportability, energy estimation challenges,
and increased programmer burden. Although hardware accel-
eration makes local CNN inference feasible on lightweight
devices, the power consumption of CNN accelerators is still
several orders of magnitude higher than what ambient energy
harvesters can provide. Traditional checkpoint-based strategies
are vulnerable to inconsistencies during power failures, lead-
ing to partial execution context retention or inconsistencies
between checkpoints. Checkpointing and task-based methods
address intermittent program execution but do not directly sup-
port intermittent peripheral operation. Recent efforts to dynam-
ically scale atomic peripheral operations based on estimated
energy budgets are hindered by the difficulty of accurately
predicting available energy at runtime. While preserving the
state of simple peripherals is possible, it remains challenging
for complex hardware accelerators with inaccessible internal
states. Despite extensive research using conventional methods
and complex programming paradigms, these techniques often
face performance bottlenecks and scalability limitations [6].
This paper proposes a sustainable reactive intermittent exe-
cution paradigm, namely SRC, which combines the principles
of intermittent computing with a novel reactive execution
model to adapt to the dynamic energy conditions inherent
in energy harvesting systems. The proposed solutions target
off-the-shelf single-core ultra-low-power microcontroller units
(MCUs) with limited flexibility and capability. The SRC
source codes are publicly available on the Github!' repository.

Thttps://github.com/iDEALabAcademy/BRIE-IC

Authorized licensed use limited to: University of lllinois at Chicago Library. Downloaded on May 11,2025 at 18:33:34 UTC from IEEE Xplore. Restrictions apply.

Intermittent Computing
Working Cycle 1 Working Cycle 2

Continuous Computing
' Working Cycle 3

] by) (WC,) b (wC;) ilRﬁm

e, 00 e B

g E ! E i i DBackup
' | |

o i]

a | '

— \\ Time

Tid!e fopemtirm

Fig. 1. Two computing paradigms, and key different.

II. BACKGROUND AND MOTIVATION
A. Energy Harvesting System

Energy harvesting systems function intermittently, activating
only when there is sufficient environmental energy and enter-
ing a state of power failure when the energy is insufficient.
Therefore, the operation of energy harvesting systems typically
alternates between active periods and power-saving states.
Devices are engineered to collect energy slowly, store it in
elements like capacitors, and then consume this stored energy
rapidly during active phases. This cycle presents unique chal-
lenges, especially the fast depletion of energy compared to its
collection rate, which can lead to the loss of volatile memory
states, e.g., registers, during power outages, although NVM
remains unaffected. Figure 1 illustrates the contrasting power
management strategies between intermittent and continuous
computing in an energy harvesting system. In the intermit-
tent computing regime, the device experiences fluctuating
power availability, which results in multiple operational cycles
marked by bursts of activity (Operating Cycles OCy, OCs,
OC3) followed by inactivity. During each Working Cycle
(W1 ,W(C3,WC35), the system alternates between periods of
computational operation (T,p) and idle time (Tjqie). with cru-
cial moments allocated for saving and restoring the system’s
state to ensure data integrity despite power losses. In contrast,
continuous computing is characterized by a stable power input
that sustains ongoing device operation, as indicated by a
single, extended operating cycle (OC}). This consistent power
ensures that computational tasks can be carried out without
interruption. The clear delineation between these modes em-
phasizes the need for robust power and task management
strategies in energy harvesting systems to accommodate the
inherent variability of power sources [7].

B. Intermittent Computing

Intermittent computing is characterized by execution that
is not steady and unbroken but rather sporadic, resuming
operations as energy permits. This approach is crucial in
applications where the energy source cannot be controlled or
predicted accurately, such as in devices powered by environ-
mental energy. The core challenge is designing systems that
can survive frequent power disruptions and operate effectively
within these constraints. Several strategies to handle intermit-
tent computing in energy-limited settings have been explored:

1) Static: Checkpointing is a widely used technique in in-
termittent computing to ensure progress across power failures.

94

When a power failure is imminent, the system state (registers,
memory contents) is saved to NVM. Upon power restoration,
the system resumes from the last checkpoint [8], [9]. However,
they suffer from high overhead due to frequent checkpoints of
large system states, which may lead to inconsistencies if a
power failure occurs during checkpointing and may result in
wasted energy if checkpoints are taken too frequently.

2) Task-based: Task-based approaches divide the appli-
cation into atomic tasks that can be executed within the
available energy budget. Checkpoint is performed only at task
boundaries, reducing the overhead compared to checkpointing-
based approaches. Nevertheless, they require programmer in-
tervention to define tasks and specify what data to save, which
may lead to wasted energy if a power failure occurs in the
middle of a task [10], [11].

3) Reactive: Reactive intermittent computing avoids the
drawbacks of static and task-based approaches by reacting to
changes in energy availability [12]. It typically uses voltage
detection circuits to monitor the supply voltage and triggers
a checkpoint only when power failure is imminent. Reactive
approaches minimize unnecessary checkpoints, improve en-
ergy efficiency, avoid code re-execution and memory incon-
sistencies, are compatible with existing software with minimal
modifications, and are portable across hardware platforms.
However, saving and restoring the entire system state can be
expensive, handling failure-atomic sections (FASEs) is more
challenging, and they require a minimum amount of energy
buffering to guarantee successful checkpointing.

C. Energy Harvesting CNN Accelerator

By harnessing environmental energy, energy harvesting
CNN accelerators revolutionize edge intelligence, realizing
complex on-device inference and reducing latency, bandwidth,
and cloud dependence.

1) Hardware Approaches: Hardware accelerators, such as
Processing in-Memory (PIM) architectures, can significantly
improve CNN inference’s performance and energy efficiency
on resource-constrained devices [13], [14]. They offer high
performance and energy efficiency, reducing data movement
overhead, and are suitable for computation-intensive work-
loads like deep learning inference. However, they require
specialized hardware support, may incur high write energy
and latency for reconfiguring NVM cells, and volatile state
elements in hardware accelerators lose computational state
upon power failures.

2) Software Approaches: Software approaches complement
the hardware strategies by optimizing the neural network
models to fit the energy harvesting paradigm. Optimization
techniques, such as model compression, quantization, and
pruning, can reduce the computational requirements and mem-
ory footprint of deep learning models, making them more
suitable for intermittent execution [15]-[17]. However, they
may lead to some accuracy degradation, require retraining
of the compressed/quantized models, and not all models are
amenable to aggressive compression or quantization.

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on May 11,2025 at 18:33:34 UTC from IEEE Xplore. Restrictions apply.

3) Adaptive Inference: Adaptive inference techniques, such
as ePerceptive [18], dynamically adjust the computational
complexity of CNNs based on available energy, trading off ac-
curacy versus energy efficiency. This can be achieved through
techniques such as early exit, resource scaling, or approximate
computing. Adaptive inference allows for graceful degradation
of accuracy under low-energy conditions and enables the
system to progress even with limited energy availability, e.g.,
SONIC [19] and HAWAII [20]. However, training adaptive
models may lead to variable inference latency and accuracy,
demanding runtime monitoring of energy availability.

III. PROPOSED SRC APPROACH

Motivated by the abovementioned challenges, we propose a
lightweight and generic intermittent paradigm, namely SRC, to
optimize CNN inference and maximize forward progress with
minimal checkpointing and programming overheads. SRC
combines the principles of intermittent computing with a
reactive execution model to adapt to the dynamic energy con-
ditions inherent in energy harvesting systems. Our approach is
inspired by the HAWAII approach, leveraging the footprinting
concept to save the inference footprints (i.e., layer (L), kernel
(K), and input feature map’s (ifmap) (H x W) indices) and
the intermediate output feature map (ofmap) results. The key
distinction from HAWAII lies in storing only the remaining
portion of ifmaps based on the last completed ofmap’s index.
In contrast, HAWAII necessitates copying the entire ifmap
to NVM, leading to more NVM checkpoints. Furthermore,
HAWAII must ensure that the capacitor’s energy budget is
adequate for the accelerator’s most demanding suboperation.
However, SRC processes each layer independently, consid-
ering its unique parameters and features. Herein, we ensure
atomic execution at the suboperation level, which is designed
to be completed within a few clock cycles and, if disrupted
by a power failure, will be re-executed. This approach allows
us to relax the atomicity constraints significantly, eliminating
the need for task partitioning based on application-level ei
ergy estimations. Unlike checkpointing methods, SRC save
the outputs of suboperations to preserve forward progre:
without suspending the application, substantially reducing tt
overhead associated with state persistence. Inaccurate energ
cost or availability estimation can cause task-partitioning aj
proaches to fail, requiring repeated execution in subseque:
power cycles. Conversely, our reactive approach captures ar
utilizes processor footprints to resume interrupted operation
enabling completion over multiple power cycles. Notably, t
recovery cost decreases with each power cycle, as only tt
necessary input data for remaining suboperations is fetche
during inference state recovery.

A. Architectural States and Transitions

Figures 2(a)-(b) show finite state machine (FSM) of inte
mittent computing, conventional reactive, and SRC schems, 1
spectively. The architectural state of SRC includes eight state
Off, Stop (Sp), Sense (Se), Compute (Cp), Transmi
(Tr), store (Str), Load (Ld), and Standby (Stb). Herei

95

the core operations of an IoT node are categorized into three
essential functions: sense, computation, and transmission, col-
lectively referred to as Application (App) state. A 2-bit
register stores the next state of the system, which should be
one of the App states, and a single bit indicates whether
the NVM has been validated, referred to as next_state
and NVM__f1lag, respectively. When the system has sufficient
energy to activate, it begins from the Stb state. Based on
NVM_flag, the system either proceeds to Ld if necessary
or moves directly to Sp. In the Sp state, depending on
next_state, the state may change to Se, Cp, or Tr. The
system remains in these states unless the system energy falls
out of the safe_zone or the entire operation is completed,
necessitating a state change. As depicted in Fig. 2(b), there
are no direct connections between states within App; state
changes are only mediated through the Sp state. If the energy
falls below the store_threshold (as explained later), all
required values and registers are stored in NVM. If the store
operation completes successfully, the system returns to Sp;
otherwise, it transitions to Stb. The system remains in this
state until the power is completely lost or restored to the
operational threshold. It should be noted in the Stb state that
the values in SRAM and registers will be lost. In the event of
a power failure after transmission has been done, there is no
need to store anything. The proposed SRC has an additional
threshold voltage, termed safe_threshold, which deter-
mines when the MCU is Stopped. When the system energy
decreases to this level, it halts current tasks and transitions to
Sp, where the power consumption of MCU is much less than
in operational mode. In the conventional reactive approach,
the system continues its tasks until the system reaches the
backup threshold. At this point, the application will suspend
and perform Str, and thereafter, the system enters Stb state.
The concept of a safe_zone reduces the system’s store and
load operations.

After the CNN architectire hac heen enecified the nro-

Fig. 2. State machine representations of (a) reactive, and (b) SRC schemes.

Authorized licensed use limited to: University of lllinois at Chicago Library. Downloaded on May 11,2025 at 18:33:34 UTC from IEEE Xplore. Restrictions apply.

are loaded instantly, and the corresponding MCU operation is
initiated. Once the end-to-end inference process is complete,
SRC signals the user program to indicate its completion. The
following sections describe each component of SRC:

Stop (Sp): Herein, the aim is to maximize power savings
by primarily using the Stop mode, bypassing Sleep due to
higher power consumption. In Stop, all SRAM and register
values remain valid, and the Real-Time Clock (RTC) stays
functional, allowing the microprocessor to periodically wake
up, check status and power, and transition to App states.
Standby (Stb): Whenever the system’s energy falls below
Vsw, the microprocessor transitions to the Stb state. In this
mode, all data in the SRAM and registers will be lost. It
should be noted that an external power management unit is
responsible for handling the standby and wake-up operations
of the MCU.

Sense (Se): In SRC architecture, the sense operation is
performed atomically. After initiating this state, the system
will return to the Sp state, following a predetermined delay
time and power consumption. Users have the flexibility to
implement more complex sensing functions by modifying the
SRC code.

Compute (Cp): SRC supports CNNs with up to 256 layers
and 1024 kernels. It assumes a minimum energy for 1,000
computations to ensure at least one ofmap generation. The
optimal configuration is the input stationary approach, where
all kernels are initially applied to the input, computing ofmaps.
Thus, after applying all kernels, the input need not be stored
in case of power failure.

Transmit (Tr): In the Tr state, the MCU operates, and
the transceiver chip is reactivated. After computation, all
state_register values reset to zero. Each transmitted
element increments the corresponding indices. In SRC, the
last network layer represents the final result, so the first 8
bits of the state_register are unused, with the rest used
similarly to the Cp state.

Store (Str): In Str, all results and system states must
be stored in NVMs. A 48-bit state_register tracks the
progress of multiply-accumulate (MAC) operations in CNN
layers, allocated as: 8 bits for layers (/), 10 bits for kernels
(k), and 15 bits each for width (w) and height (h) of the
input. If a power failure occurs during computation, calculated
ofmaps and unused ifmap are saved in the NVM. Backup
points are based on [—t——1 and [—t——] for w
and h, respectively. For data transmission failures, only the
intended data is recorded in the NVM. SRC stores data from
the most to least significant bits, maintaining functionality with
approximate data during power failures.

Load (Ld): When transitioning from Stb, the system may
load data from NVM. If in Sp awaiting a new sample, no
NVM data retrieval is needed, setting NVM_flag to false. If
NVM_flag is true, next_state and required input values
are loaded into shared memory based on state_register.
SRC retrieves output from NVM only after Cp completion. In
Ld, only the remaining ifmap is loaded, significantly reducing
NVM read/write operations in Str and Ld states.

IV. RESULTS ANALYSIS

A. Experimental Setup
We developed a system-level framework to validate our

approach, integrating it with the proposed FSM and evaluating
performance using our cross-layer framework. We simulated
an intermittent power source, cycling through a predefined
sequence of voltage levels to mimic battery behavior, which
accumulates energy during availability and depletes it during
outages. We monitored critical parameters such as power lev-
els, availability, and the status of the virtual energy store. The
system’s design includes a capacitance of 2mF and operates
at 5V, capable of storing up to 25mJ of energy. A series of
experiments on STM32F107vc and BlueNRGI1 for Bluetooth
Low Energy (BLE) communication (hereafter PLATFORM).
Detailed specifications for the configuration are presented in
Table I. We considered that various microcontrollers employ
different power management strategies, primarily through low-
power states. For instance, based on STM32F107vc datasheets,
the connectivity line features three low-power modes designed
to achieve an optimal balance between low power consump-
tion, fast startup times, and a range of available wake-up
sources. In Sleep mode, only the CPU is halted. All peripherals
remain operational and can awaken the CPU upon interrupt or
event occurrence. Conversely, in Stop mode, all clocks cease,
yet the contents of SRAM and registers within the 1.8 V are
preserved. In Standby mode, the entire 1.8 V domain powers
down, resulting in the loss of all register values. For this
analysis, registers and RAM values are assumed to persist in
Stop mode but are lost in Standby mode.

Figure 3 shows an example of SRC implementation, where
(a) depicts the energy (Ep,y) stored in the capacitor, including
all the considered thresholds. The yellow circles in Fig. 3(a)
highlight instances where the safe_threshold prevents
unnecessary backups, even in cases where energy returns after
a backup, eliminating the need to load data from NVM.
Figure 3(b) and (c) show the system’s charging rate and a
small portion of the system’s state changes, respectively. Note
that Fig. 3(c) represents the state transitions themselves, not
the duration of each state. The system begins in the Sp state,
progressing through Se and Cp. In the Cp state, a power
drop below the store_threshold triggers a backup of all
required values to NVM, followed by a transition to Stb. Con-
sequently, data must be loaded from NVM (Ld) when energy
is restored. The system frequently alternates between the Sp
and Cp states during the remaining transient phases. The SRC

TABLE 1
SPECIFICATION OF THE EXPERIMENTAL PLATFORM.
Hardware
Model EXAMINED PLATFORM
CLK 72 MHz
M. 64 to 256 Kbytes of Flash,
emory 64 Kbytes of SRAM
Sleep 49 mA
RICT Stop 33 pA
Standby 3.8 uA
(Gt Compute 68 mA
Sleep 3.500 nA
Transmitter Receive 7.7 mA
Send 15.1 mA
Data Rate 2 Mbps

Authorized licensed use limited to: University of lllinois at Chicago Library. Downloaded on May 11,2025 at 18:33:34 UTC from IEEE Xplore. Restrictions apply.

0.025

0.02
(mJ)
0.015
0.01
Transmit
(Tr) J A‘L ense (Se)
Safe Y L T vﬂg
Store (Str). I Standby (Stb)

Fig. 3. (a) The system energy behavior and (b) the charging rate. (c) A small
portion of the system’s states.

mechanism demonstrates how these transitions temporarily
halt computations before a critical energy drop, reducing the
overall number of stores and loads. The system transitions to
Tr upon computation completion, followed by a return to Se
to capture another sample. The fluctuation period between Cp
or Tr and Sp depends on the system’s available energy.

B. Performance Evaluation

To evaluate the effectiveness of the proposed SRC approach,
we tested it under two different intermittent energy traces
(ET1 and ET2), using two CNNs (AlexNet and VGGI11).
The ET1 models a mild condition with minimal power loss,
whereas ET2 represents a harsh condition. All the battery
energy patterns and the systems’ states of PLATFORM are
depicted in Figs. 4 (a-b) and subfigures (c-d), respectively.
Two captured energy traces from the environment are shown
in Figs. 4(e-f). Therefore, the results shown in subfigures (a)
and (c) are based on ET1 (e). As previously elaborated, in Fig.
4(c), 0, the system initially transitions to a Sp, Str, then to
Stb, and finally moves to Ld to retrieve data. If the system’s
energy repeatedly falls below the store_threshold and
quickly recovers, data is stored but not reloaded, as it is not
lost in this step. The influence of ET2 (Fig. 4(f).), which has a
lower charging rate, is directly illustrated by e in Fig. 4(d).
Thus, the lack of energy disrupts the uniformity of the sensing

distances. Moreover, as shown in o and @9, within the same
time window, the number of senses in exceeds that in
o, indicating greater computational energy availability for
the platform. Furthermore, as depicted in o, energy scarcity
disrupts computation, causing frequent system state transitions
to Stb, Str, and Ld.

A further testbench used to evaluate SRC involves changing
the network architecture. Running VGGI11 and AlexNet re-
quires 9.2 billion and 1.5 billion MAC operations, respectively.
Given a selected microprocessor with 90 MIPS, performing
the inference for a single input (i.e., 224 x 224) takes at
least 172 seconds. SRC is tailored for processors with limited
capabilities and IoT devices, typically resulting in longer pro-
cessing times. The results are listed in Table II, showcasing the
performance and efficiency across different networks, along
with the normalized number of frames for each system. The
results indicate that larger networks consume more energy to
store outcomes compared to smaller ones, which is a logical
outcome considering their computational demands. The frame
rate further evidences the SRC’s efficacy; larger networks,
requiring more energy for both computation and transmission,
yield a lower frame rate.

TABLE II
ENERGY CONSUMPTION (J) FOR TWO CNNS UNDER ET1.
Network Stb Sp Se Cp Tr Ld Str Frame
VGGI11 0.088 042 0.0116 1.962 0.008 5.24e-06 5.24e-05 11.8
AlexNet 0.117 078 0.0149 2.172 0003 5.24e-06 5.24e-05 16.6

As discussed earlier, SRC minimizes unnecessary standby,
store, and load operations. To demonstrate the significance
of our approach, we evaluated it with the conventional re-
active intermittent computing scheme. The simulation results
are presented in Table III. Additionally, the energy savings
achieved enhance the frame processing capability, as shown
by the increased number of Se operations. This effectiveness
of thresholding technique can be attributed to the energy con-
sumption pattern in PLATFORM, where most of the energy is
utilized in computation that can be efficiently segmented. The
results demonstrate that this technique significantly reduces the
average number of read and write operations by 88.1% and
79.1%, respectively. Moreover, by comparing the Ld and Str

0.02 [[|™m

Stb + - o o - TN B PR

%10

(O ey

Fig. 4. Subfigures (a) and (b) show energy profiles for PLATFORM across two energy traces (e) and (f), respectively. Their operational states are detailed in

(c) and (d), respectively.

Authorized licensed use limited to: University of lllinois at Chicago Library. Downloaded on May 11,2025 at 18:33:34 UTC from IEEE Xplore. Restrictions apply.

TABLE III
COMPARISON BETWEEN THE REACTIVE SCHEME AND SRC.

Design Power Number of Occurrences Improvement(%)*
Trace Stb Sp Se Cp Ld Str | St Se Str

Reactive ET1 898 4407 27 2041 26 898 898 - 57.8

Reactive ET2 1530 6422 28 2380 33 1530 1530 - 22.2 -

SRC ETI 108 1715 64 1155 63 106 220 87.9 88.2 75.5

SRC ET2 90 1073 36 686 45 83 143 94.1 94.6 90.65

*The higher (lower) the Se (Stb, Ld, Str), the better performance.

counts, the efficacy of our method is evident. For instance, in
ET1, the number of Str is improved by approximately 75%.

C. Consideration & Limitations

The proposed SRC implementation requires extra code to
adjust the MCU’s states based on the system energy. This
can be combined with hardware acceleration and software
optimization for further improvements. We did not consider
any machine learning compression methods, such as pruning,
quantization, etc., which are beyond the scope of this paper.
Compute: In computing, the user needs to take care of the
indices. As mentioned, SRC is input stationary friendly, but
the values of state_register should be updated after
calculating each output feature map.

Transmit: To support the approximation data in case of
power loss, users need to modify transmission algorithms to
send the most significant bits first. This operation requires
more computation steps than conventional methods, but its
overhead is negligible due to the high power consumption of
transmitting (about 1000 times more than computation). In
this state, the user also needs to keep the state_register
updated. While in transmission, users do not need to update
the number of layers.

Store: storing data in both computation and transmitting starts
from the most significant bits. Users need to add the store and
load functions in their code.

Interrupts: Two external interrupts are triggered by intelligent
power management scheme. The first one changes the system’s
state to Store to hold data in NVM. The second one is
related to stopping the process. Since all the applications have
different threshold voltages, handling them using one common
external power management is complicated. For this reason,
only the stop points, which are the same among all of them
(safe _threshold), are implemented using smart power
management. By happening this interrupts, the application will
be stopped, and the system’s state changes to Sp.

RTC: The intermittent system is most of the time in a Sp or
Standby states. As a result, users need to define an RTC to
wake up the system regularly. The period of this timer can
vary based on the application. In the case of a smaller value,
the system consumes more power and runs faster. Depending
on the system’s energy, the system may or may not change
the state to an application state after waking up.

V. CONCLUSION

SRC is a lightweight, adaptive framework that optimizes
CNN inference on battery-free devices. Its reactive com-
puting is combined with a dynamic energy-aware model to

98

enhance efficiency in energy harvesting systems. SRC uses
a safe_threshold voltage and suboperation-level atomic
execution to reduce memory operations and relax atomicity
constraints. We evaluated SRC via the STM32F107 platform,
on different CNN models, and under various intermittent en-
ergy traces. SRC achieves on average ~ 81.85% reduction in
read/write operations and ~ 57.18% improvement in sensing
compared to conventional reactive methods. The simplicity,
efficiency, and software compatibility make SRC a promising
approach, enabling robust and sustainable edge intelligence.

ACKNOWLEDGMENT

This work is supported in part by the National Science
Foundation (NSF) under grant numbers 2447566, 2303115,
2303116, and 2339193.

REFERENCES
[1]

S. Liu et al., “Energy-aware mac protocol for data differentiated services
in sensor-cloud computing,” Journal of cloud computing, vol. 9, pp. 1-
33, 2020.

Ericsson, “Climate action - ericsson,” https://tinyurl.com/47zhzhpz,
2024, accessed: 2024-05-01.

European Commission. (2024) Up to 78 million batteries will be
discarded daily by 2025, researchers warn. Accessed: 2024-05-01.
[Online]. Available: https://tinyurl.com/yh38etk9

N. Taheri et al., “Intermittent-aware design exploration of systolic array
using various non-volatile memory: A comparative study,” Microma-
chines, vol. 15, no. 3, p. 343, 2024.

A. Roohi and R. F. DeMara, “Nv-clustering: Normally-off computing
using non-volatile datapaths,” IEEE Transactions on Computers, vol. 67,
no. 7, pp. 949-959, 2018.

S. Tabrizchi et al., “Diac: Design exploration of intermittent-aware
computing realizing batteryless systems,” in DATE. IEEE, 2024, pp.

[2]
[3]

[4]
[5]

[6]

M. M. Sandhu et al., “Task scheduling for energy-harvesting-based iot:
A survey and critical analysis,” IEEE Internet of Things Journal, vol. 8,
no. 18, pp. 13825-13 848, 2021.

B. Ransford et al., “Mementos: System support for long-running com-
putation on rfid-scale devices,” in ASPLOS, 2011, pp. 159-170.

D. Balsamo et al., “Hibernus: Sustaining computation during intermittent
supply for energy-harvesting systems,” IEEE Embedded Systems Letters,
vol. 7, no. 1, pp. 15-18, 2014.

[7]

[8]
[9]

[10] A. Colin and B. Lucia, “Chain: tasks and channels for reliable intermit-
tent programs,” in PACMPL, 2016, pp. 514-530.

[11] K. Maeng et al., “Alpaca: Intermittent execution without checkpoints,”
Proceedings of the ACM on Programming Languages, vol. 1, no.
OOPSLA, pp. 1-30, 2017.

[12] S. T. Sliper et al., “Efficient state retention through paged memory
management for reactive transient computing,” in DAC, 2019, pp. 1-
6.

[13] L. Song et al., “Pipelayer: A pipelined reram-based accelerator for deep
learning,” in HPCA. IEEE, 2017, pp. 541-552.

[14] X. Qiao et al., “Atomlayer: A universal reram-based cnn accelerator
with atomic layer computation,” in DAC, 2018, pp. 1-6.

[15] S. Lee and S. Nirjon, “Neuro zero: a zero-energy neural network
accelerator for embedded sensing and inference systems,” in SenSys,
2019, pp. 138-152.

[16] M. Rastegari et al., “Xnor-net: Imagenet classification using binary
convolutional neural networks,” in ECCV. Springer, 2016, pp. 525-
542.

[17] C.-C. Lin et al., “Intermittent-aware neural network pruning,” in 60th
ACM/IEEE DAC. IEEE, 2023, pp. 1-6.

[18] A. Montanari et al., “eperceptive: energy reactive embedded intelligence
for batteryless sensors,” in SenSys, 2020, pp. 382-394.

[19] G. Gobieski et al., “Intermittent deep neural network inference,” in
SysML Conference, 2018, pp. 1-3.

[20] C.-K. Kang et al., “Everything leaves footprints: Hardware accelerated
intermittent deep inference,” IEEE TCAD, vol. 39, no. 11, pp. 3479-
3491, 2020.

Authorized licensed use limited to: University of lllinois at Chicago Library. Downloaded on May 11,2025 at 18:33:34 UTC from IEEE Xplore. Restrictions apply.

