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PINSim: A Processing In- and Near-Sensor Simulator to Model Intelligent
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Abstract—This letter introduces PINSim, a user-friendly and flexible
framework for simulating emerging smart vision sensors in the early design
stages. PINSim enables the realization of integrated sensing and processing
near and in the sensor, effectively addressing challenges such as data
movement and power-hungry analog-to-digital converters. The framework
offers a flexible interface and a wide range of design options for customizing
the efficiency and accuracy of processing-near/in-sensor-based accelerators
using a hierarchical structure. Its organization spans from the device level
upward to the algorithm level. PINSim realizes instruction-accurate evalu-
ation of circuit-level performance metrics. PINSim achieves over 25, 000 X
speed-up compared to SPICE simulation with less than a 4.1% error rate on
average. Furthermore, it supports both multilayer perceptron (MLP) and
convolutional neural network (CNN) models, with limitations determined
by IoT budget constraints. By facilitating the exploration and optimization
of various design parameters, PINSim empowers researchers and engineers
to develop energy-efficient and high-performance smart vision sensors for
a wide range of applications.

Index Terms—Processing-in-sensor, processing-near-sensor, numerical
simulation, neural network.

1. INTRODUCTION

DGE Artificial Intelligence (AI) has rapidly evolved into
E an integral part of modern technological ecosystems, fun-
damentally reshaping how we process data and interact with
our digital environment. The significance of this technology
cannot be overstated, as it pushes the boundaries of traditional
cloud-based AI, moving towards more localized, low-latency,
and power-efficient solutions. This transformation is primarily
driven by the surge in Internet of Things (IoT) devices, which
generate vast amounts of data. However, nearly 90% of this data
remains unanalyzed due to the limited computing capabilities
of current IoT devices and the compute-intensive nature of the
convolutional neural network (CNN) algorithms [1].

To address these challenges, computing architectures must
transition from a cloud-centric to a thing-centric (data-centric)
approach, where 10T nodes process the sensed data locally.
Processing-Near-Sensor (PNS) architectures have been exten-
sively studied as a potential solution, where an on-chip processor
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accelerates digital pixel outputs near the sensor. Inspired by
Processing-in-Memory (PIM) architectures, these paradigms
aim to overcome the bottlenecks of von Neumann computing
models, such as lengthy memory access latency and energy-
intensive data transfers. Smart image sensors with preprocessing
capabilities [2], [3] represent a significant step forward in this
direction. Building on PNS and PIM techniques, Processing-
in-Sensor (PIS) units operate on pre-analog-to-digital converter
(pre-ADC) data, enhancing vision sensor functionality and elim-
inating redundant data output [4], [5]. Hybrid PIS-PNS plat-
forms [6] combine the strengths of both approaches, further im-
proving data processing speed and reducing power consumption.
In [7], all computations are performed in the analog domain.
The authors in [8] replaced ADC with a novel component to
implement the spike neural network (SNN) within the sensor.
The Processing-in-Pixel (PIP) paradigm has recently emerged
as another promising approach within the rapidly developing
fields of near-/in-sensor and in-memory computing platforms.
This paradigm processes data pre-ADC before converting and
transmitting it to the on/off-chip processor [9], [10]. By process-
ing data locally, PIP significantly reduces power consumption,
accelerates data processing, and alleviates the memory bottle-
neck problem [6]. Due to PIP’s limited resources, deploying
all neural network layers within the pixel array is inefficient.
Consequently, most studies have accelerated the first layers in an
analog domain, submitting the remaining layers to digital neural
network accelerators. For example, RedEye [11] implements
convolution operations using charge-sharing tunable capacitors,
sacrificing accuracy for energy savings. Similarly, MACSen [2]
processes the first convolutional layer of binary-weight neu-
ral networks using the correlated double sampling method at
1000fps. However, it suffers from significant area overhead
and high power consumption due to its SRAM-based design.
Another PIP-based architecture [9] operates convolution in an
analog domain to reduce power consumption but requires four
photodiodes and four capacitors per pixel, resulting in area
and power overheads. Given the distinct workload sizes and
memory access patterns, the PIP paradigm is poised to benefit
various image processing applications at the edge. However,
selecting the appropriate design for a specific application is vital
and challenging. Furthermore, establishing uniform evaluation
conditions is imperative for making impartial choices between
available design options.

Despite significant progress, there remains a lack of behavior-
/system-level performance and energy evaluation frameworks
for PNS/PIS architectures. Researchers have developed vari-
ous in-house memory evaluation tools, such as Cacti [12] and
NVSIM [13] to facilitate design space exploration and optimiza-
tion of memory systems. Analog and digital PIM accelerator
simulators like NeuroSim [14] and PIMSim [15], respectively,
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have also been developed to predict performance and energy
consumption reliably. This paper introduces a Processing In-and
Near-Sensor simulator (PINSim) to model intelligent vision
sensors, providing a flexible framework for designing emerging
PNS, PIS, and PIP architectures and evaluating their perfor-
mance. The PINSim source codes are publicly available on the
Github.!

II. PINSIM FRAMEWORK

The PINSim system takes user requirements and inputs, such
as target energy and hardware limits. It produces a close estimate
of performance metrics and accuracy, as shown in Fig. 1. PINSim
utilizes device/circuit features extracted offline using Cacti,
NVSIM, and NVMain. It first uses the workloads and system set-
tings to create a PNS/PIS/PIP structure. A separate Python script
external to PINSim simultaneously quantizes the first layer’s
neural network weights. The neural network is modified based
on the quantized weights, and its accuracy is examined. Since
the visionary IoT has limited resources and full implementation
of neural networks is computationally intensive, we only focus
on the first layer, and analog/digital deep-learning accelerators
will calculate other layers. The given settings determine the
buffer sizes and the number of compute add-ons (CAs). If any
input is missing, the default value is used. After getting all
the needed parts, e.g., pixel array size etc., the proper control
unit, including row and column decoders, is considered, and all
the parts are assembled. To lower the chance of errors or/and
design problems, the functionality of the designed architecture
is checked through several if/else conditions. Since this is a
recurring process, it continues until the desired error-free design
is achieved. If all the design criteria are met, high-level settings
are assessed to provide the system’s performance, including
delay, area, power, and frame rate.

A. Modular Approach

PINSim encapsulates device-upwards system modeling by
integrating different memory technologies, pixel designs, and
various in-sensor and near-sensor processing paradigms. Its
modular architecture allows users to easily add/remove and/or
enable/disable components and various event detection or object
classification algorithms. The flexibility of PINSim facilitates
the exploration and evaluation of intelligent vision sensor sys-
tems across a wide range of configurations and use cases. It
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TABLE I
VALIDATION RESULTS FOR PINSIM OPERATIONS AT 45NM

Tool

SPICE
PINSim
Error Rate
SPICE
PINSim
Error Rate

Desi Sense Power Sense Latency Compute Power
esign W)

(W) (s)
1.833e-03 2.850e-05
1.902e-03 2.800e-05

-3.6% +1.8%
4.614e-06 2.847e-05
4.752e-06 2.800e-05

-2.9% +1.7%

Compute Latency
()

1.328e+01
1.375e+01
-3.4%
9.655e-02
1.010e-01
-4.4%

1.563e-03
1.467e-03
+6.6%
1.804e-02
1.681e-02
+7.4%

MLP

CNN

is important to note that the resulting design is not the best-
optimized design, and users could consider more optimization
steps, including: a) Considering the use of more advanced in-
terconnect techniques or 3D stacking; b) Exploring the addition
of extra components, such as a microlens array on top of the
pixel array; c¢) Exploring the use of more efficient pixel design;
d) Considering the adoption of a pipelined ADC architecture;
e) Investigating the potential of using a time-interleaved ADC
architecture or replacing the current ADC design with a more
efficient one like Successive Approximation Register (SAR)
ADC; f) Fine-tuning the RC network; g) Implementing an
adaptive clock rate. One of PINSim’s key advantages is its
user-friendly plug-and-play capability, which allows users to
add or modify the specified building blocks easily. Please note
that PINSim is a system-level simulation engine and does not
offer built-in, fine-grained optimization techniques for every
individual component.

B. Supported Operation Modes

1) Sensing: In the sensing mode, PINSim functions akin to
a conventional image sensor. Initially, pixels are turned into
inverse polarization in sensing mode, allowing capacitors to
charge fully. Then, concerning the external light intensity, a
photo-current is produced, and the voltage values before and
after the image light exposure are sampled. The difference
between the two voltages is sensed with an amplifier. It is worth
pointing out that each ADC sample subtracts the pixel reset
voltage when the voltage drops and converts the output signal.
Accordingly, the ADC can skip to the next row of the array.

2) Processing. Event Detection: Primarily operating in object-
detection mode, the system employs a novel approach by group-
ing pixels into x x x boxes, wherein only the central pixel
remains active. The accuracy of ADCs is deliberately reduced
by deactivating the fine circuit, a strategy aimed at optimiz-
ing processing efficiency. A significant feature of this mode is
comparing central pixels against their preceding states to detect
variations; upon detecting a change, the entire box is activated.
PINSim supports three background-subtraction approaches to
detect an event, including static frame difference, consecu-
tive frame difference, and the hybrid frame difference scheme
positioned in between the first conventional two methods. In
object-detection mode, PINSim is adept at performing the initial
layer of the network internally within the sensor. The image
sensor incorporates one of the modified pixel architectures with
CAs repositioned closer to the pixel array. The count of these
add-ons is optimized to m x n, correlating with the dimensions
of the pixel array.

Object Classification: The final mode is object classification,
where a reconfigurable processing framework within the sensor
is utilized. This design signifies PINSim’s capability for all three
processing near/in-sensor and in-pixel, marking a significant
advancement in sensor technology. The architecture is capable of
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processing the initial layer of either multilayer perceptron (MLP)
or convolutional neural network (CNN). A notable feature is
the reconfig urable ADC, which facilitates the near or in-sensor
implementation of activation functions such as ReL.U and sign
functions.

C. Performance Modeling

Established simulators often rely on published current values
measured on physical devices, posing a challenge when such
data is unavailable for emerging architectures and prototype
designs. To overcome this limitation, PINSim incorporates a
device-level energy model that provides independent power
calculations for various modules within the system. This allows
for the utilization of values readily obtained from circuit-level
simulators like NVSIM or CACTI, with each operation in-
crementally updating the system’s energy usage. Standby and
power-down energies are calculated using simulated leakage
results, enabling a comprehensive energy consumption analysis
even without published device data.

D. Neural Network Flexibility

To the best of our knowledge, no comprehensive simulator
currently effectively models PNS, PIS, and PIP architectures.
Our previous simulator [16] was limited to modeling PIP ar-
chitectures and only supported CNNs. In contrast, PINSim is
designed to model all three types of discussed architectures
and supports both CNNs and MLP networks. It is important
to note that the attributes of the first layer, including the spatial
dimensions of the input feature map (ifmap) and filter, as well as
the number of channels, are constrained due to IoT limitations.
However, users have the flexibility to adjust these input matrices
beyond the default limits by modifying the code.

E. Behavior-Level Accuracy Model

To validate the correctness of modified neural networks and
ensure acceptable accuracy, we developed a Python script that
runs above the PyTorch library and allows users to apply their
modifications. This script can be run parallel with the perfor-
mance models. The script takes several inputs, such as a pre-
trained model, a target dataset, and user-specified parameters.
The key parameters affecting accuracy are the quantization level,
filter size, channel pruning, pixel array size, and stride. Since
the PINSim framework focuses on the first layer, this script can
operate in parallel. The first layer should only be adjusted using
the defined inputs, while the rest remain unchanged. Regarding
filters of the first layer, the quantization level variable forces the
script to quantize the weights properly.

III. CASE STUDIES

A. Verification Results

To ensure the accuracy of PINSim in reporting power and
latency parameters, we implement the complete architecture,
including the peripherals, using the Synopsys HSPICE simula-
tor. The simulations were executed on a system equipped with
128 GB of RAM and an AMD EPYC 7302P 16-core processor
running SUSE Linux. State-of-the-art designs for PNS, PIS, and
PIP architectures were not suitable for validation due to the lack
of necessary detailed simulation parameters and configurations.

TABLE II
SIMULATION TIME AND MEMORY UTILIZATION OF PINS1M Vs. SPICE

PINSim
(second)
0.025
0.026
0.031
0.03
0.031
0.031
0.033
0.034

SPICE
(second)
53.71
124.21
171.86
3191.74
667.31
3761.58
2621.69
8452.23

PINSim

(MB)

15.026
15.025
15.035
15.035
15.038
15.034
15.041
15.038

SPICE
(MB)
578.88
1201.68
851.17
2015.69
1868.12
668445
6201.32
16245.52

Networks l\gen_\ory
aving
CNN
MLP
CNN
MLP
CNN
MLP
CNN
MLP

Size Speed Up

2148
4777
5543
106391
21526
121341
79445
248595

32x32

64x64

128x128

256x256

Therefore, we implemented the MLP and CNN designs with a
3 % 3 box size in both PINSim and SPICE at the 45nm PTM
technology node, with a nominal Vpp of 1V. The results, clas-
sified into sensing and computation components, are presented
in Table I. We found that the error rates for latency and power
consumption were within 7.4% and 4.4%, respectively. Addi-
tionally, the table highlights a difference in power consumption
during sensing between MLP and CNN. This disparity stems
from the larger memory size in MLP, which results in higher
static memory power consumption and significantly influences
the system’s total power consumption.

While SPICE circuit simulators provide exceptional accuracy
and flexibility, the main limitation of PINSim is specifically
designed for PNS, PIS, and PIP-based architectures. Moreover,
PINSim offers a user-friendly interface with significantly higher
simulation speeds. To evaluate this, we implemented the com-
plete architectures for MLP and CNN in SPICE and compared
the simulation time and memory utilization of PINSim against
SPICE, as presented in Table II. To further assess the effect of the
pixel array size in PINSim (i.e., 32 x 32, 64 x 64, 128 x 128,
and 256 x 256) on the overall simulation time, we conducted
several simulations using a box size of 3 x 3. The results,
including peak memory usage and total CPU time, are reported.
In contrast, PINSim quickly estimates performance metrics by
leveraging analytical models and/or predefined values provided
by the user, while HSPICE solves multiple equations. Instead
of solving these equations, PINSim utilizes pre-calculated com-
ponent characteristics to compute performance metrics such as
power consumption. We observed that in CNN architecture,
PINSim achieves, on average, a 25, 000x speed-up compared to
SPICE. Additionally, larger pixel array sizes result in even more
significant speed-ups with PINSim. In terms of memory usage,
PINSim requires, on average, 158 less memory to store and
generate the results compared to SPICE.

B. Validation Results

Herein, we utilize the PINSim simulator to validate its ca-
pability to accurately represent emerging smart vision sensor
architectures across five different designs, which are labeled
as Designl (D1) through Design4 (D4). Another design, D5,
closely resembles D3, with the key difference that the CAs are
positioned closer to the pixels. Table III provides a detailed
comparison of all these designs. To ensure a consistent com-
parison, most parameters are kept constant across all examples,
highlighting the impact of varying parameters on the results.
Each design is simulated under 45 nm technology with an array
size of 32 x 32 and a box size of 3 x 3. The weight precision is
set to 8-bit, and the models for pixels, CAs, ADCs, memories,
and controllers are identical across all scenarios. D1 and D2
explore architectures for MLP, while Examples D3, D4, and
D5 focus on CNN architectures. In D2 and D4, the level of
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25,000x speed-up compared to SPICE simulations with error
rates below 7.4% for latency and 4.4% for power consumption.
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from the global memory (GM) consumes the most energy in the
system. Additionally, fewer CAs make this architecture more
compact and efficient. These factors highlight two key advan-
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their lower resource requirements.

IV. CONCLUSION
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significant speed-ups over SPICE simulations while supporting
both MLP and CNN architectures. The simulator’s modular
approach enables easy customization and exploration of design
parameters. Case studies demonstrate that PINSim achieves over
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