

Insect conservation, technological traps, and the fading arts of natural history and field ecology

4 Lee A. Dyer¹, Angela M. Smilanich¹, Zachariah Gompert², Matthew L. Forister¹

5

6 ¹Program in Ecology, Evolution and Conservation Biology, Biology Department, University of
7 Nevada, Reno, NV 89557

8

⁹ ²Department of Biology, Utah State University, 5305 Old Main Hill, Logan, UT 84322

10

11 Introduction

12 The union of modern technology and computational intelligence with conservation could be a
13 Promethean gift to help humans avert impending catastrophes due to climate change, loss of
14 biodiversity, and reductions in the density of key functional groups, including insect pollinators.
15 As insect ecologists continue their struggle to document and protect global biodiversity (Slade
16 and Ong 2023, Diamond et al. 2023, Leandro 2023), we seem to have a cornucopia of powerful
17 methods, including artificial intelligence (AI) species identifications, access to big data, rapid
18 advances in genomics, satellite data, and steadily improving drone technology, yet perhaps we
19 are throwing out valuable tradition while rushing to embrace these tools. Wherefore and wither
20 the naturalist (Futuyma 1998)? Indeed, what is the role of the naturalist or field ecologist in
21 insect science today? As teachers and mentors, are we doing enough to maintain a focus on
22 complex ecological interactions and natural history, especially in the tropics where there is so
23 much work to do (Powers 2024)? Many ecologists are embracing large, synthetic databases and

24 automated identification methods (van Klink et al. 2022), or even contests to remotely identify as
25 many rainforest species as possible in 24 hours (<https://www.xprize.org/prizes/rainforest>) in
26 areas where most insect species have not been described. At the same time, we may be forgetting
27 the insight garnered by the slow contemplation of an entangled bank (Darwin 1859) or the awe-
28 inspiring observations on a long Malay Archipelago voyage (Wallace 1869). The original
29 methods of natural history and the joys of observing the natural world, collecting insects by
30 hand, and using suites of morphological characters to assign a morphospecies categorization to
31 an observed arthropod are central to taxonomic discovery and ecology. It is our contention that
32 these practices need to remain at the center of any serious conservation effort to document and
33 preserve biological diversity. What use is a list of species obtained by instruments on drones and
34 identified to some taxonomic level with molecular barcodes or machine learning algorithms? Do
35 we actually want a future in which a majority of diversity data are collected and curated with
36 minimal human oversight? Now is the time to consider what would be gained and what would be
37 lost in such a world. These concerns are especially relevant to understanding interaction
38 diversity, which has been the focus of more attention as network science has been better
39 integrated into ecology (Dyer et al. 2010). Here, we present current opinions on how to
40 efficiently quantify biodiversity without abandoning careful natural history and ecology studies
41 on the ground.

42 Recent reviews and editorials have summarized advances in technology that have
43 putatively advanced or are on the verge of revolutionizing the study of insect biodiversity (e.g.,
44 van Klink et al. 2022, Powers 2024), highlighting new methods to collect, analyze, and interpret
45 ecological data. A review by van Klink et al. (2022) focuses on computer vision, acoustic
46 sensors, radar, and molecular methods, and these modern and not-so-modern methods are often

47 touted as answers to the biodiversity crisis. With these new methods, subdisciplines such as
48 barcoding taxonomy, conservation-omics, and even aeroecology are gaining traction as the focus
49 for diversity research and funding (e.g., Gostel et al. 2022, De León et al. 2023). Combined with
50 recent developments of more powerful drones, new methods do indeed have the potential to
51 advance diversity surveys and inventories by improving speed and capacity (Madden et al.
52 2022). In fact, drones are an increasingly employed method in ecology used to capture high-
53 resolution images and collect samples from hard-to-reach areas, potentially providing terabytes
54 of data for insects in all terrestrial ecosystems. There is no doubt that these images have provided
55 insights not possible without them. Furthermore, many of the newest tools are seen as almost a
56 requirement for biodiversity research, including AI, environmental DNA (eDNA), DNA
57 barcoding, and big data platforms. Statistical approaches that fall under the umbrella of machine
58 learning are now widely used for analyzing images, identifying species, and automating the
59 initial stages of biodiversity research. Although not novel for insect science, molecular methods,
60 including the use of eDNA and DNA barcoding, are still rapidly evolving and have enhanced
61 species detection and identification efforts considerably. Finally, big data facilitates inferences
62 related to ecological interactions by integrating diverse sources of data, while AI-powered
63 systems are used for classification and species identifications.

64

65 **A defense of natural history and critique of selected modern methods**

66 *Traditional natural history*

67 The observational methods employed by Pliny the Elder (*Naturalis Historia*, 79 CE) two
68 thousand years ago, particularly for Hymenoptera and Lepidoptera, might appear inconsequential
69 or naive when compared to the scientific tools available today. However, despite the promise of

70 current approaches, traditional methods of studying biodiversity via focused observation,
71 physical collection, and morphological descriptions remain foundational, providing important
72 insights that continue to complement modern techniques. These pillars of insect science are part
73 of basic natural history, and although they are time-intensive, they yield rich data about insect
74 behavior, systematic relationships, and ecological roles. Direct observations of insects and their
75 interactions within ecosystems offer nuanced understandings that technology alone cannot
76 currently capture. In most cases, manually trapping or directly collecting insects should be the
77 primary methods for biodiversity surveys and inventories that are needed for both research and
78 conservation efforts. Morphological analysis remains important for species identification and the
79 description of new species, despite being time-consuming and requiring specialized expertise.
80 Although the issue is of course not unique to insect science, researchers face challenges with
81 complex analyses and the task of understanding and synthesizing the scientific literature that
82 continues to grow at an unmanageable rate. AI, which includes increasingly popular machine
83 learning methods, has promised solutions to these challenges. While the benefits might be
84 obvious, for example for rapid insect identification and the speed with which code can be written
85 in popular statistical languages, the costs are not yet apparent and might be accruing, where
86 depth of consideration is sacrificed for speed of publication (e.g., London, and Kimmelman
87 2020, Ioannidis 2005, Smaldino and McElreath 2016).

88

89 *Barcoding*

90 A transformative addition to the insect natural historian's toolbox is the increasing use of
91 molecular methods that have rapidly advanced over the past 50 years, including DNA
92 "barcoding." For insects, barcoding typically involves sequencing a short stretch of the

93 mitochondrial gene for the enzyme Cytochrome Oxidase I (COI), which is then compared to
94 available databases for the purpose of generating species lists for a sample or region, and for
95 contributing to taxonomic revisions and species descriptions (Wilson 2012). However, the
96 reliance on such barcodes has in many areas of study eclipsed traditional methods and
97 surprisingly has also made it difficult to embrace more advanced genetic tools. For example,
98 projects focused on rearing immature insects to get estimates of trophic interaction diversity
99 employ inexpensive methods for estimating this dimension of biodiversity and yield museum
100 specimens that can be used for phylogenomics or conservation research (e.g., reviewed by
101 Salcido et al. 2022). Yet, some have argued forcefully that barcoding is needed for these projects
102 for immediate identification of immature insects or their parasitoids and have even argued that
103 barcoding makes the public more bio-literate (Janzen and Hallwachs 2021). Given the worsening
104 taxonomic impediment (Meier et al. 2024) and the alarming rates of insect species losses,
105 especially in the tropics (Wagner et al. 2021), it is not productive to insist that all studies in insect
106 biodiversity and taxonomy should rely on this or any other one approach that is tied to a
107 particular technology (e.g., Meier et al. 2024). Incomplete taxon sampling is also a serious
108 problem with the barcoding approach to characterizing both communities and building
109 phylogenies (Meyer & Paulay 2005; also see Virgilio et al. 2010), and this is especially relevant
110 to the hyper-diverse insect taxa found in the tropics. It has not been difficult to find examples
111 where the barcode fails to separate recognized taxa of Lepidoptera (Gompert et al. 2006, Forister
112 et al. 2008, Wilson et al. 2012), and issues with barcoding have been widely discussed in the
113 literature (e.g. Rubinoff et al. 2006, Taylor and Harris 2012, Mallo and Posada 2016). Finally, in
114 the areas of the world where biodiversity research is needed the most – tropical rainforests –
115 there is a dearth of sequence data in the BOLD database for most taxa of insects – in fact, BOLD

116 covers about 4% of the conservative estimate of 5.5 million existing species of insects (van Klink
117 et al. 2022). In these areas that are rich in undocumented biodiversity it makes more sense to
118 prioritize collecting natural history data, getting collections into museums, and pairing molecular
119 with morphological approaches for estimating species and interaction diversities.

120 Modern population genetics and phylogenetic analyses utilize high-throughput next-
121 generation sequencing (NGS) often paired with reduced representation approaches such as
122 double digest restriction-site (ddRADseq) or genotype-by-sequencing (GBS) to quickly generate
123 information on thousands or tens of thousands of loci. Sequencing approaches are advancing
124 rapidly, and whole genome sequences are now being generated in highly replicated population or
125 systematic studies (Ribeiro and Espíndola 2023, Webster et al. 2023). GBS, for example, offers
126 far greater resolution and scalability compared to traditional barcoding, making it a superior tool
127 for fine-scale population studies and similar applications (Andrews et al. 2016). Seen in that
128 light, the insistence on traditional barcoding does not necessarily offer much above and beyond
129 traditional morphological approaches to species identifications and descriptions (e.g., Chapple &
130 Ritchie 2013), and may in fact be a hindrance to biodiversity research in the extent to which a
131 field becomes anchored to a single, ossified technology. We recognize of course that the picture
132 might be different if an important fraction of insects had actually been "barcoded," but see the
133 estimate of 4% above. Nevertheless, one often hears the informal argument that having
134 molecular data is still better than morphology since it is at least possible to generate a
135 phylogenetic hypothesis using COI data. Among other issues, this argument ignores the problem
136 that the utility of one small fragment of DNA is expected to drop in proportion to the speed and
137 breadth of adaptive radiations, which of course characterize much of insect diversity. This is
138 because ancestral polymorphism is retained across species boundaries in rapidly radiating

139 groups, which interacts with the problem of mitochondrial introgression through hybridization.
140 In either case, for species lists and rapid interaction diversity assessments, a morphological focus
141 still generates specimens that can be preserved in museums and later used in population
142 genomic, phylogenomics, or genetic diversity studies. There is an appealing irony here that the
143 older, museum-based approach is more flexible and facilitates evolving approaches and
144 methodologies which we of course support, as long as the foundations of our field are not
145 abandoned.

146 *Satellite imagery and modern drone technology*
147 Remote sensing technology includes satellite and airborne sensors, spanning a gradient in
148 methodologies, including diverse types of satellite data, airborne drones, tractor drones, and
149 ground lidar. These approaches offer powerful tools for estimating insect diversity or associated
150 ecological variables, with satellite data providing the highest spatial and temporal resolutions.
151 Enhancements in these technologies have yielded observations of insect habitats and behavior,
152 detailed data on habitat structure, estimates of insect herbivory, measures of light pollution, long-
153 term climate data, microhabitat weather parameters, and detection of insects (Rhodes et al.
154 2022). Guided by causal hypotheses about how these observed variables are related, these
155 technologies will help us understand how global change parameters are affecting insect
156 populations and diversity and could help with management or conservation decisions.

157 Similarly, drones are already enhancing insect diversity surveys by enabling the
158 collection of more data from previously inaccessible or challenging environments, especially
159 canopies and other upper layers of forests, which are often rich in insect diversity (de Souza
160 Amorim et al. 2022) but difficult to reach. Drones can also be used to collect foliar canopy
161 samples, spectral data (e.g., Raman spectroscopy, Sharma et al. 2023), and insects via drone-

162 delivered insect traps (lost Filho et al. 2020). Specialized drone sensors provide a method to
163 collect audio and video data, high resolution images, and eDNA from canopies, phytotelmata,
164 and other hard to reach communities, allowing for indirect detection of diverse insect
165 communities that are otherwise difficult to census. When combined with technological advances
166 summarized here, drones have the potential to significantly enhance biodiversity surveys and
167 inventories.

168 Clearly, advanced remote sensing technologies delivered via drones and satellite data
169 offer significant advantages for insect diversity surveys and assessments, but traditional trapping
170 and observational methods offer rich information that these technologies alone cannot provide
171 (e.g., de Souza Amorim et al. 2022). Malaise, light, pitfall, and other trapping methods combined
172 with physical collecting and searching allow for the direct observation of seasonal changes and
173 species behaviors, vertical canopy stratification, life history traits, and interactions with other
174 species, all of which are components of functional and interaction diversities – which likely
175 provide more insight into stability and ecosystem function (Dyer et al. 2018). And, in an
176 increasingly urbanized world, the urban bioark is best sampled using these traditional methods
177 (Diamond et al. 2023). Furthermore, questions about insect persistence in the face of global
178 change need to utilize traditional approaches like systematics, assessments of species abundance,
179 and insect disease ecology (Mason and Shikano 2023), all of which require physical sampling for
180 morphological and genetic analyses that remote sensing alone cannot achieve.

181

182 *Big data*

183 Large, aggregated databases from noninteractive citizen science projects (e.g., Prudic et al. 2023,
184 Plummer et al. 2024), data repositories like the Encyclopedia of Life (EOL), and pooled data

185 from labs worldwide (Forister et al. 2015) represent a unique feature of modern ecology, in
186 which anyone with a smart phone and no training can contribute potentially valuable data
187 through free platforms like iNaturalist. However, there are shortcomings and challenges, even if
188 the methods are relatively standardized (Robinson et al. 2023). The main issues with these
189 approaches are: 1) the lack of direct observations for many aggregated databases; 2)
190 unstandardized methodologies including, in many cases, a lack of absence-data or negative
191 observations; 3) poor or variable quality control; and 4) less time in nature for individual
192 investigators. Direct observations by researchers working with organisms in the field remain the
193 gold standard for understanding ecological interactions (Powers 2024, Dyer et al. 2010),
194 including insect-plant, insect-predator, and insect-soil interactions, and without such natural
195 history, we are more likely to get inaccurate assessments of insect roles and interactions within a
196 focal ecosystem (Dickinson et al. 2010). Lack of standardization for data collected by different
197 citizen scientists or research groups used to create big data can reduce data reliability for
198 meaningful inferences (Bird et al. 2014). Lack of quality control is perhaps less important for
199 combined citizen science datasets that follow a specific method, but many big datasets combined
200 from diverse sources may not include sufficient validations or verification processes,
201 undermining their utility (Kosmala et al., 2016, but see Dyer et al. 2016).

202 Another manifestation of big data involves the aggregation of -omics databases. In
203 contrast to databases generated from dispersed or publicly-sourced observations, the -omics
204 perspective involves the combination of many different types of data, often sourced from
205 different labs with different technologies. For example, this could involve the combination of
206 genomics with metabolomics, proteomics, and even phenomics as the compilation of phenotypic
207 (including morphological) data (Houle et al. 2010). On the one hand, it is impossible to dispute

208 the value to organismal biology that potentially derives from datasets that link such disparate
209 types of information. On the other hand, the value of such aggregation can only be as good as the
210 information that binds different datasets together, which of course brings us back to the need for
211 the most rigorous taxonomic information, which should not be based solely on COI barcoding.
212 Moreover, -omics approaches in ecology and evolutionary biology will often happen at the scale
213 of species, which presents a number of challenges in light of all the issues discussed above. For
214 example, automated AI-based identification will often produce identifications above the species
215 level (e.g., to taxonomic order), which limits the extent to which they can be merged with -omics
216 datasets. Even when species-level identifications are possible, we should be cautious of the
217 extent to which relevant mechanisms can be understood at that level. A contemporary example is
218 the goal of assembling global or regional trait databases for insects which can, in theory, be
219 merged with monitoring databases to investigate relationships between population trajectories (or
220 responses to climate) and ecological traits. We have ourselves contributed to such analyses, but
221 we also acknowledge that variation below the species level is almost certainly required to
222 achieve a meaningful understanding of population biology and adaptation.

223 But the most important argument that should temper our enthusiasm for science based
224 only on big, aggregated or -omics datasets is that they yield less time in nature for the authors of
225 papers using these data. Direct engagement with the natural environment is essential for
226 developing a deep understanding of insect ecology (Powers 2024, Bonney et al., 2014) and for
227 advancing theory, and it is not hard to find examples in which conceptual advances stagnate
228 without fresh insights from the field. For example, the match-mismatch hypothesis was an early
229 expectation from the area of global change biology that warming temperatures would lead to a
230 mismatch in the phenology of consumers and resources. While this might be true for extremely

231 specialized and obligate interactions, many field biologists would expect spatial dynamics to
232 dilute mismatch effects since most consumers already deal with temporal heterogeneity in the
233 availability of resources across the landscape. And, indeed, based on meta-analysis of careful
234 studies, evidence for the match-mismatch hypothesis is weak (Kharouba and Wolkovich 2023).

235 In other cases, predictions based on theory might be borne out by work with large, aggregated
236 datasets, but explanations cannot be generated without work in the field. For example, another
237 early expectation from global change biology is the idea that geographic ranges will shift with
238 warming temperatures as organisms move to track climatic niches along latitudinal and
239 elevational gradients. Those patterns can indeed be detected based on large-scale datasets, but
240 there is also consensus that direct observations and experiments with wild organisms are
241 essential to understanding mechanisms (see Hsiung et al. 2018 for a discussion in the context of
242 elevational movement). All of this reinforces the value of field experiences and observations,
243 which are not simply complementary to other approaches, but will remain the fount of both the
244 highest quality data and insights leading to new theory.

245

246 **Conclusion**

247 AI, drones, DNA barcoding, -omics, remotely collected big citizen science databases, and
248 development of rapid diversity assessments are certainly helping efforts to characterize the insect
249 communities found in the most diverse ecosystems such as lowland tropical wet forests.
250 However, technology and methods evolve rapidly, so there should be flexibility that prevents a
251 single methodological approach, such as barcoding, from becoming entrenched. In contrast, the
252 relatively unmodified observational methods of traditional naturalists and field ecologists are still
253 the most important part of modern biodiversity studies. Even when they are overshadowed by the

254 glitter of new approaches, it is our contention that insect biology and biodiversity studies still
255 rely fundamentally on field- and organismal-based knowledge. When combined with less
256 technologically alluring methods or ways of knowing that are centered on traditional natural
257 history, insect ecologists will make substantial progress towards characterizing diversity, setting
258 conservation priorities, and protecting insects (Leandro 2023). These methods can be improved,
259 but not replaced, by modern technologies. Declines in insect diversity will continue despite our
260 best efforts, and they are yet another emerging feature of global change. Battling these declines,
261 mitigating their impacts, and attempting to document multiple dimensions of insect diversity as
262 these dimensions are rapidly degrading will all require multiple concerted approaches (Forister et
263 al. 2024). Certainly, the methods we critique here will be a key part of these battles, but not at the
264 expense of basic natural history.

265 Finally, we ask that we, as a field, seriously consider our long-term goals and always ask
266 if particular technological advances impede or enable progress. As a thought experiment,
267 imagine a world in which remaining natural areas are outfitted with a high density of remotely-
268 operated visual, chemosensory and auditory detectors that report on the identity and presence of
269 all insects that pass near the sensors. This kind of monitoring will by definition focus on adults,
270 which are not always the life history stage with the greatest ecological impact, but we can ignore
271 that for the moment. There is also a massive issue of electronic waste that should be considered,
272 especially when the recycling of such waste is a burden that wealthy countries typically put on
273 the most vulnerable individuals in less developed nations. But, let us assume for the moment that
274 the waste issue can be meaningfully addressed; and let us also assume that the sensors can
275 themselves be made inconspicuous. Then one could argue that the impact on natural ecosystems
276 would only be positive, as it would provide researchers and the public with real-time feedback

277 on, for example, climate change impacts on wild populations. Or, one can ask if anyone in that
278 future would still care about insects. Human beings have a well-recognized issue with
279 entomophobia that can get worse as people reduce their exposure to the natural world (Gardiner
280 and Roy 2022; Soga and Gaston 2022). Thus an army of drones might inventory a rainforest, or
281 at least generate some kind of tentative catalog (albeit without data on ecological interactions),
282 but does that inventory increase our political or societal motivation to protect the forest? If the
283 answer is no, then we should not fool ourselves that technological advances will solve the human
284 problem that is of course at the root of the biodiversity crisis. In any and all cases, we know that
285 vast hosts of species will be gone before they are known to modern science. It is our contention
286 that knowing fewer of them, by direct observations and with well-curated specimens, will be
287 preferable to knowing more of them with less comprehensive information about each.

288 In summary, we of course know that insect biology and ecology must take advantage of
289 novel technologies and approaches, some of which are summarized in the other articles collected
290 in this issue. It has not been our goal to belittle the potential value of the newest approaches,
291 rather we want to encourage researchers to critically evaluate all technologies and not assume
292 that new is better especially when so much is at stake.

293

294 **Literature Cited**

295 Anderson, K., & Gaston, K. J. 2013. Lightweight unmanned aerial vehicles will revolutionize
296 spatial ecology. *Frontiers in Ecology and the Environment* 11:138-146.
297 <https://doi.org/10.1890/120150>.

298 Andrews, K.R., Good, J.M., Miller, M.R., Luikart, G. and Hohenlohe, P.A., 2016. Harnessing the
299 power of RADseq for ecological and evolutionary genomics. *Nature Reviews Genetics*,
300 17(2), pp.81-92.

301 Aucone, E., Kirchgeorg, E., Valentini, A., Pellissier, L., Deiner, K., & Mintchev, S. 2023. Drone-
302 assisted collection of environmental DNA from tree branches for biodiversity monitoring.
303 *Science Robotics*. <https://doi.org/10.1126/scirobotics.add5762>

304 Bird, T. J., Moffett, A., & Fiedler, P. L. (2014). Making data count: integrating citizen
305 contributions. *Nature* 515: 320-321.

306 Bonney, R., Shirk, J. L., Phillips, T. B., Wiggins, A., Ballard, H. L., Miller-Rushing, A. J., &
307 Parrish, J. K. (2014). Next steps for citizen science. *Science* 343:1436-1437.

308 Cunha, D. G. F., De Moraes, J. S., da Costa, G. M., & Duarte, M. E. R. 2019. Unmanned Aerial
309 Vehicles (UAVs) in ecological monitoring: A review and recommendations. *Remote
310 Sensing in Ecology and Conservation* 5:205-213. <https://doi.org/10.1002/rse2.100>.

311 De León, L.F., Silva, B., Avilés-Rodríguez, K.J. and Buitrago-Rosas, D., 2023. Harnessing the
312 omics revolution to address the global biodiversity crisis. *Current Opinion in
313 Biotechnology*, 80, p.102901.

314 de Souza Amorim, D., Brown, B.V., Boscolo, D., Ale-Rocha, R., Alvarez-Garcia, D.M., Balbi,
315 M.I.P., de Marco Barbosa, A., Capellari, R.S., de Carvalho, C.J.B., Couri, M.S. and de
316 Vilhena Perez Dios, R., 2022. Vertical stratification of insect abundance and species
317 richness in an Amazonian tropical forest. *Scientific Reports*, 12:1734.

318 Diamond, S.E., Bellino, G. and Deme, G.G., 2023. Urban insect bioarks of the 21st century.

319 Current Opinion in Insect Science, 57, p.101028.

320 Dickinson, J. L., Zuckerberg, B., & Bonter, D. N. (2010). Citizen science as an ecological

321 research tool: challenges and benefits. *Annual Review of Ecology, Evolution, and*

322 *Systematics*, 41 149-172.

323 Forister, M.L., Dyer, L.A., Gompert, Z. and Smilanich, A.M., 2024. Editorial overview: Global

324 change biology (2023)-Novel perspectives on futures, mechanisms, and the human

325 element of insect conservation in the Anthropocene. *Current Opinion in Insect Science*,

326 62, p.101175.

327 Forister, M.L., Novotny, V., Panorska, A.K., Baje, L., Basset, Y., Butterill, P.T., Cizek, L., Coley,

328 P.D., Dem, F., Diniz, I.R. and Drozd, P., 2015. The global distribution of diet breadth in

329 insect herbivores. *Proceedings of the National Academy of Sciences*, 112(2), pp.442-447.

330 Futuyma, D.J. 1998. Wherefore and whither the naturalist? *The American Naturalist*, 151:1-6.

331 Gardiner, M.M. and Roy, H.E., 2022. The role of community science in entomology. *Annual*

332 *review of entomology*, 67(1), pp.437-456.

333 Gompert, Z., Nice, C.C., Fordyce, J.A., Forister, M.L. and Shapiro, A.M., 2006. Identifying units

334 for conservation using molecular systematics: the cautionary tale of the Karner blue

335 butterfly. *Molecular ecology*, 15(7), pp.1759-1768.

336 Gostel, M.R. and Kress, W.J., 2022. The expanding role of DNA barcodes: Indispensable tools

337 for ecology, evolution, and conservation. *Diversity*, 14(3), p.213.

338 Houle, D., Govindaraju, D.R. and Omholt, S., 2010. Phenomics: the next challenge. *Nature*
339 reviews genetics, 11(12), pp.855-866.

340 Hsiung, A.C., Boyle, W.A., Cooper, R.J. and Chandler, R.B., 2018. Altitudinal migration:
341 ecological drivers, knowledge gaps, and conservation implications. *Biological*
342 *Reviews*, 93(4), pp.2049-2070.

343 Ioannidis, J. P. A. 2005. Why Most Published Research Findings Are False. *PLOS Medicine*,
344 2(8), e124. DOI: 10.1371/journal.pmed.0020124

345 Janzen, D.H. and Hallwachs, W., 2021. To us insectometers, it is clear that insect decline in our
346 Costa Rican tropics is real, so let's be kind to the survivors. *Proceedings of the National*
347 *Academy of Sciences*, 118(2), p.e2002546117.

348 Kharouba, H.M. and Wolkovich, E.M., 2023. Lack of evidence for the match-mismatch
349 hypothesis across terrestrial trophic interactions. *Ecology Letters*, 26(6), pp.955-964.

350 Koh, L. P., & Wich, S. A. 2012. Dawn of drone ecology: low-cost autonomous aerial vehicles for
351 conservation. *Tropical Conservation Science* 5: 121-132.
352 <https://doi.org/10.1177/194008291200500202>.

353 Kosmala, M., Wiggins, A., Swanson, A., & Simmons, B. 2016. Assessing data quality in citizen
354 science. *Frontiers in Ecology and the Environment*, 14:551-560.

355 Leandro, C., 2023. Insect and arthropod conservation policies: the need for a paradigm shift.
356 *Current Opinion in Insect Science*, 58, p.101075.

357 London, A. J., & Kimmelman, J. 2020. Against pandemic research exceptionalism. *Science*,
358 368(6490), 476-477. DOI: 10.1126/science.abc1731

359 lost Filho, F.H., Heldens, W.B., Kong, Z. and de Lange, E.S., 2020. Drones: innovative
360 technology for use in precision pest management. *Journal of economic entomology*,
361 113(1), pp.1-25.

362 Madden, J.C., Brisson-Curadeau, É., Gillung, J.P., Bird, D.M. and Elliott, K.H., 2022. Optimal
363 settings and advantages of drones as a tool for canopy arthropod collection. *Scientific
364 Reports*, 12(1), p.18008.

365 Mason, C.J. and Shikano, I., 2023. Hotter days, stronger immunity? Exploring the impact of
366 rising temperatures on insect gut health and microbial relationships. *Current opinion in
367 insect science*, 59, p.101096.

368 Meier, R., Hartop, E., Pylatiuk, C. and Srivathsan, A., 2024. Towards holistic insect monitoring:
369 species discovery, description, identification and traits for all insects. *Philosophical
370 Transactions of the Royal Society B*, 379(1904), p.20230120.

371 Prudic, K.L., Zylstra, E.R., Melkonoff, N.A., Laura, R.E. and Hutchinson, R.A., 2023.
372 Community scientists produce open data for understanding insects and climate change.
373 *Current Opinion in Insect Science*, p.101081.Rhodes, M.W., Bennie, J.J., Spalding, A.,
374 ffrench-Constant, R.H. and Maclean, I.M., 2022. Recent advances in the remote sensing
375 of insects. *Biological Reviews*, 97(1), pp.343-360.

376 Ribeiro, T.M. and Espíndola, A., 2023. Integrated phylogenomic approaches in insect
377 systematics. *Current Opinion in Insect Science*, p.101150.

378 Robinson, M.L., Hahn, P.G., Inouye, B.D., Underwood, N., Whitehead, S.R., Abbott, K.C.,
379 Bruna, E.M., Cacho, N.I., Dyer, L.A. Abdala-Roberts, L., and Herbivory Variability

380 Network. 2023. Plant size, latitude, and phylogeny explain within-population variability
381 in herbivory. *Science*, 382(6671), pp.679-683.

382 Salcido, D.M., Sudta, C. and Dyer, L.A., 2022. Plant-caterpillar-parasitoid natural history studies
383 over decades and across large geographic gradients provide insight into specialization,
384 interaction diversity, and global change. In *Caterpillars in the middle: Tritrophic*
385 interactions in a changing world (pp. 583-606). Cham: Springer International Publishing.

386 Sharma, M., Sharma, B., Gupta, A.K. and Pandey, D., 2023. Recent developments of image
387 processing to improve explosive detection methodologies and spectroscopic imaging
388 techniques for explosive and drug detection. *Multimedia Tools and Applications*, 82(5),
389 pp.6849-6865.

390 Slade, E.M. and Ong, X.R., 2023. The future of tropical insect diversity: strategies to fill data
391 and knowledge gaps. *Current Opinion in Insect Science*, 58, p.101063.

392 Smaldino, P. E., & McElreath, R. (2016). The Natural Selection of Bad Science. *Royal Society*
393 *Open Science*, 3(9), 160384. DOI: 10.1098/rsos.160384

394 Soga, M. and Gaston, K.J., 2022. Towards a unified understanding of human–nature
395 interactions. *Nature Sustainability*, 5(5), pp.374-383.

396 Truelove, N. K., Patin, N. V., Min, M., Pitz, K. J., Preston, C. M., Yamahara, K. M., & Chavez, F.
397 P. 2022. Expanding the temporal and spatial scales of environmental DNA research with
398 autonomous sampling. *Environmental DNA*, 4:972-984.
399 <https://doi.org/10.1002/edn3.299>.

400 van Klink, R., August, T., Bas, Y., Bodesheim, P., Bonn, A., Fossøy, F., Høye, T.T., Jongejans, E.,

401 Menz, M.H., Miraldo, A. and Roslin, T., 2022. Emerging technologies revolutionise

402 insect ecology and monitoring. *Trends in ecology & evolution*, 37(10), pp.872-885.

403 Wagner, D.L., Grames, E.M., Forister, M.L., Berenbaum, M.R. and Stopak, D., 2021. Insect

404 decline in the Anthropocene: Death by a thousand cuts. *Proceedings of the National*

405 *Academy of Sciences*, 118(2), p.e2023989118.

406 Webster, M.T., Beaurepaire, A., Neumann, P. and Stolle, E., 2023. Population genomics for

407 insect conservation. *Annual Review of Animal Biosciences*, 11(1), pp.115-140.

408 Wilson, J.J., 2012. DNA barcodes for insects. *DNA barcodes: Methods and protocols*, pp.17-46.

409

410