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Abstract

Artificial Intelligence (AI) model inference has emerged as a cru-
cial component across numerous applications. Serverless comput-
ing, known for its scalability, flexibility, and cost-efficiency, is an
ideal paradigm for executing Al model inference tasks. This survey
provides a comprehensive review of recent research on AI model
inference systems in serverless environments, focusing on studies
published since 2019. We investigate system-level advancements
aimed at optimizing performance and cost-efficiency through a
range of innovative techniques. By analyzing high-impact papers
from leading venues in AI model inference and serverless comput-
ing, we highlight key breakthroughs and solutions. This survey
serves as a valuable resource for both practitioners and academic re-
searchers, offering critical insights into the current state and future
trends in integrating Al model inference with serverless architec-
tures. To the best of our knowledge, this is the first survey that
includes Large Language Models (LLMs) inference in the context
of serverless computing.

CCS Concepts

+ General and reference — Surveys and overviews; « Com-
puting methodologies — Artificial intelligence; - Computer
systems organization — Cloud computing.

Keywords
Serverless Computing, LLMs Inference, DL Inference, ML Inference

ACM Reference Format:

Li Wang, Yankai Jiang, and Ningfang Mi. 2024. Advancing Serverless Com-
puting for Scalable AI Model Inference: Challenges and Opportunities. In
10th International Workshop on Serverless Computing (WoSC10 "24), Decem-
ber 2—-6, 2024, Hong Kong, Hong Kong. ACM, New York, NY, USA, 6 pages.
https://doi.org/10.1145/3702634.3702950

1 Introduction

Artificial Intelligence (AI) model inference has become a crucial
element in the deployment of Al applications, driving real-time
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analytics, recommendations, and decision-making systems across a
wide range of industries. As Al models continue to grow in com-
plexity and size, the need for efficient and scalable inference ar-
chitectures has risen significantly. Serverless computing, a cloud-
native paradigm that offers pay-per-use scalability while abstract-
ing infrastructure management from developers, has emerged as a
promising alternative for AI model inference. However, significant
challenges persist in deploying Al models on serverless architec-
tures, particularly when handling large-scale models such as large
language models (LLMs), optimizing resource usage, and ensuring
low-latency responses under dynamic inference requests.

Motivation. The rapid advancement in this field has made it
challenging for both academic researchers and industry practition-
ers to keep pace with the latest innovations and identify the most
promising solutions for real-world deployment. Previous research
has attempted to analyze the challenges in deploying AI model
inference serving systems on serverless platforms. For instance, [4]
explores how serverless computing can support various stages of
the machine learning pipeline, but primarily focuses on traditional
ML models. It lacks in-depth coverage of the growing importance
of Generative Artificial Intelligence models (e.g., LLMs) and only
offers limited exploration of Al inference systems for real-time,
large-scale applications. Similarly, [18] examines the challenges
and optimization opportunities in deploying large-scale deep learn-
ing (DL) models and meeting strict Service Level Objectives (SLOs)
for real-time inference. While it provides valuable insights into the
role of GPU access in serverless architectures, the survey does not
explore other essential aspects of serverless computing, such as
memory management, checkpointing, or auto-scaling, all of which
are particularly relevant for Al model inference tasks.

The limitations of existing surveys underscore the need for a
comprehensive study that tackles the challenges of Al model infer-
ence on serverless platforms, particularly in the context of resource
management, scalability, and optimization techniques. This new
survey aims to bridge critical gaps in current research by providing
an in-depth analysis of emerging LLMs, auto-scaling and sched-
uling strategies, resource utilization, and real-time performance
optimization within serverless environments.

Contributions. In this survey, we methodically select and nar-
row down to 31 high-quality research papers exclusively focused on
Al model inference serving systems, published between 2019 and
2024. Our selection criteria emphasize publications from prestigious
machine learning, deep learning, and systems venues (e.g., ASPLOS,
ATC, CCGrid, OSD], SC), alongside influential arXiv submissions
from prominent industry and academic research groups.
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Table 1: Statistics of top ten topics in selected papers.

Al Models ML-based DL-based LLMs-based
Resource management | [1,3, 6,7, 10, 12, 13, 15, 19, 22, 23, 25, 28, 31] [5, 8, 11, 16, 20, 24, 27, 30] [2,9, 14, 17, 21, 26]
Cost-effectiveness [1,6,7, 10,12, 13, 15, 19, 22, 23, 25, 28, 31] [5, 8, 11, 20, 24, 27, 30] [2,9, 14, 21, 26]
Distributed inference [15, 19, 22, 25, 27, 28, 31] [5, 10, 11, 16, 27] [9, 14, 17, 26]
Cold start latency [1,7,12, 13, 25, 28] [7, 8, 16, 20, 23, 30] [9, 26]

GPU utilization [1,6,7, 12, 13, 19, 31] [11, 16, 20] [9, 14]

Bursty workloads [1,6, 12, 13, 25, 31] [5, 16, 24] [9, 26]
Scheduling [1, 6, 12, 13, 28, 31] [5, 20, 24] [9, 26]
Batching (1,6, 12, 28, 31] [5] [26]
Auto-scaling [22,31] [5, 20] [14]

Model partitioning [10] [8, 30] N/A

Table 1 summarizes the key characteristics of selected papers,
excluding three surveys ([4, 18, 29]). The analysis is categorized by
Al model types—ML-, DL-, and LLM-based inference-and focuses
on the top ten performance and optimization metrics as follows.
Resource management and cost-effectiveness are prominent focuses
across all Al models, with distributed inference and cold start latency
following closely. The primary challenges lie in GPU utilization and
bursty workloads. To mitigate these issues and enhance resource
utilization, strategies such as scheduling, batching, auto-scaling,
and model partitioning are employed, aiming to optimize perfor-
mance and cost-effectiveness, especially under heterogeneous and
dynamic inference requests. These topics are explored in detail in
the following sections.

2 Background and Challenges

Serverless platforms provide high scalability, making them ideal for
dynamic environments such as Al model inference. The pay-per-use
billing model charges users only for the actual inference time, elim-
inating costs associated with idle server resources and minimizing
operational overhead. While serverless inference offers significant
benefits, it also presents several challenges, such as unpredictable
workload arrival patterns, cold start latency, limited control over the
underlying infrastructure, and resource constraints for deploying
large models or handling high-performance requirements.

2.1 Serverless AI Models Inference Workflow

The serverless platform automatically scales resources in response
to fluctuating workloads, making it ideal for dynamic environments.
Users are relieved of the burden of provisioning or maintaining
servers, thereby reducing operational overhead. With a "pay-as-
you-go" model, users are billed only for actual inference time, which
can be more cost-effective than traditional inference systems, as it
eliminates the expense associated with idle server time. These fea-
tures make serverless computing an excellent choice for deploying
Al inference tasks in a scalable and cost-efficient manner.

In Al inference tasks, the serverless paradigm enables users to
upload and execute Al models on a serverless infrastructure without
managing underlying servers. An overview of this serverless infer-
ence workflow is depicted in Fig. 1. Users send inference requests
with input data as stateless functions, which load pre-trained mod-
els and perform the inference. The serverless function is executed
in a Docker container, and the inference results are returned to the
user. This approach to Al model inference using serverless infras-
tructure offers numerous benefits, including scalability, flexibility,
and reduced operational complexity.

2.2 Challenges in Serverless Inference Systems

Bursty Workloads. The challenge of bursty workloads in server-
less inference systems arises when there are sudden and unpre-
dictable spikes in the volume of requests. These systems are de-
signed to scale automatically based on demand, but handling abrupt
surges in traffic can lead to latency issues or degraded performance.
The infrastructure must rapidly allocate resources to meet these de-
mand spikes, which however can result in cold start delays as new
instances take time to initialize. Additionally, over-provisioning
resources to prepare for these bursts can lead to inefficiencies and
higher costs, making it challenging to strike the right balance be-
tween responsiveness and cost-effectiveness 1,5, 6,9, 12, 13, 16, 24—
26, 31].

Cold Start Latency. Cold start latency is a common issue in
serverless computing, referring to the delay incurred when initial-
izing a serverless function for the first time, or after it has been
idle. The issue becomes particularly pronounced in DL and LLMs
inference tasks, where large models need to be loaded into mem-
ory. These cold starts occur when a function must be initialized
from scratch, resulting in delays that can degrade performance for
real-time applications [1, 7, 7-9, 12, 13, 16, 20, 23, 25, 26, 28, 30].

Resource Under/Over-provisioning. Achieving an opti-
mal balance between performance (latency, throughput) and
cost is a persistent challenge. Al inference requires significant
computational power, and improper scaling can lead to either
under-provisioning (causing performance bottlenecks) or over-
provisioning (leading to unnecessary costs). While serverless com-
puting offers dynamic scaling, many platforms fail to efficiently
utilize underlying resources such as GPUs and memory, par-
ticularly for computation-heavy DL and LLM workloads. This
inefficiency can lead to increased costs and suboptimal perfor-
mance [1, 6, 7, 9, 11-14, 16, 19, 20, 31].

Stateful Workflows. Serverless platforms are inherently state-
less, which poses a challenge for models that require stateful pro-
cessing or complex inter-model communication. This is particularly
relevant for distributed AI models, where coordination across mul-
tiple instances is necessary [7, 10, 23].

3 Optimal Strategies

Serverless Al inference systems focus on maximizing performance
while minimizing costs by employing various advanced techniques.
Batching and scheduling are critical for optimizing performance,
particularly during bursty workloads. Model partitioning addresses
the resource demands of large Al models by dividing them into
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Figure 1: Workflow of serverless inference process.

smaller, manageable components that fit within the resource con-
straints of serverless platforms. Resource sharing strategies enhance
the utilization of GPUs, memory, and containers across serverless
functions, improving efficiency. Additionally, resource management
systems optimize the allocation of resources in heterogeneous en-
vironments. Miscellaneous approaches further improve resource al-
location and inter-process communication, enabling more efficient
handling of large-scale Al inference tasks in serverless settings.

3.1 Batching and Scheduling

Efforts to mitigate cold start impacts and enhance throughput fo-
cus on dynamically batching requests and optimizing scheduling
based on workload patterns, particularly for bursty workloads.
BARISTA [5] tackles online resource configurations through a dis-
tributed, scalable dynamic resource allocation system that is com-
posed of four main components: workload prediction, optimization
formalization, suitable resource configuration, and resource alloca-
tion management. Similarly, AYCI [24] offers various open-source
serverless DL inference environments, automating the evaluation of
performance and assisting developers in estimating optimal server-
less model serving configurations.

MArk [31] is a cloud-based system, which dynamically batches
requests to improve resource utilization and reduce costs, using
predictive auto-scaling to adjust resources based on traffic. MArk
combines serverless (FaaS) for unpredictable workloads with IaaS
for more stable tasks, recommending small IaaS instances with
GPUs for low-latency inference. Building on MArk, BATCH [1]
proposes a serverless framework with adaptive batching for efficient
ML serving. This system’s profiler monitors inference times and
memory usage, while its performance optimizer calculates optimal
batch sizes to ensure efficient utilization of resources and minimize
data points required for model training. INFless [28] introduces
batch processing with heterogeneous hardware support and the
Long-Short Term Histogram (LSTH) strategy to reduce cold start
times and resource wastage, significantly improving performance
compared to BATCH and MArk. JointBatching [6] introduces a
serverless ML inference system that employs batching and multi-
processing techniques, using a change-point detection algorithm
to manage bursty workloads and Bayesian optimization to ensure
latency SLOs.

3.2 Model Partitioning

To address the diverse resource demands of different layers in DL
models, MOPAR [8] optimizes resource usage and reduces latency
by vertically partitioning the model into slices of analogous layers.
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It exploits data compression and shared memory to accommodate
varying resource configurations and cost requirements in different
parts of the DL model. Similarly, Gillis [30] partitions large DL mod-
els across multiple serverless functions using latency-optimal and
SLO-aware partitioning algorithms. MLModelDecomposition [10]
introduces an efficient approach for decomposing ML models into
slices, allowing the execution of large inference tasks as serverless
functions. The process begins by verifying that the required soft-
ware libraries and model payload fit within the serverless platform’s
constraints. The model is then decomposed into layers based on
payload size, with an evaluation of storage and runtime memory
requirements, allowing it to be executed as separate functions on
the serverless platform.

3.3 Resource Sharing

Efficient GPU management techniques are essential for maximizing
resource utilization while minimizing costs in high-performance
Al inference tasks. FaST-GShare [11] comprises three key compo-
nents: the FaST-manager, FaST-profiler, and FaST-scheduler, which
work together to limit and isolate spatio-temporal resources for
GPU multiplexing, monitor function performance, and allocate ex-
ecutions across GPU nodes to ensure maximum utilization while
meeting SLOs. SMSS [7] tackles the limitations of serverless plat-
forms in supporting stateful ML inference by employing a log-based
workflow runtime and a two-layer GPU sharing mechanism. This
design reduces cold start latency by facilitating both inter-model
and intra-model GPU sharing.

Tetris [19] enhances resource usage through memory-efficient
tensor sharing, which allows multiple ML models to reuse com-
mon tensors across different function instances. Tetris dynami-
cally manages tensor sharing to balance performance and resource
utilization, improving cost efficiency and scalability, especially in
high-throughput, large-scale serverless deployments. GPUCold-
Starts [16] optimizes underutilized memory and network resources
in serverless environments by leveraging remote memory pooling
and hierarchical sourcing with a locality-aware autoscaler. This
strategy cycles through GPU nodes in host machines before ex-
panding to other hosts for cold start instantiations, minimizing
redundant DL model transformations through download sharing.

Fifer [12] addresses microservice-agnostic scheduling and exces-
sive container over-provisioning by optimizing resource manage-
ment through efficient bin packing, function-aware container scal-
ing, and LSTM-based request batching. Additionally, it proactively
spawns containers to minimize cold start latency while ensuring
SLO compliance. To further mitigate latency caused by model load-
ing, Optimus [13] introduces an innovative inter-function model
transformation mechanism within container operations. This mech-
anism enables rapid transitions between models in the same con-
tainer using meta-operators specifically designed for Al models.
Optimus also integrates advanced scheduling algorithms to manage
model transformations efficiently, reducing delays and improving
overall system performance.

3.4 Resource Management Systems

Pioneers have focused on developing efficient, high-performance
resource management frameworks to recommend optimal resource
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configurations for serverless Al inference workflows. These frame-
works aim to address challenges in serverless ML inference, in-
cluding diverse application requirements related to latency, cost,
accuracy, and privacy, as well as the complexities of heterogeneous
execution environments involving various hardware resources and
accelerators at scale.

INFaa$ [27] generates model variants and creates performance-
cost profiles across different hardware platforms. It dynamically
tracks the status of overloaded or interfered model variants using
a state machine, enabling the efficient selection of the appropri-
ate variant to meet specific application requirements. Similarly,
AMPS-Inf [15] enables automatic customization of optimal exe-
cution and resource provisioning for large-scale distributed ML
inference workloads. At its core, AMPS-Inf formulates and solves a
Mixed-Integer Quadratic Programming (MIQP) problem to partition
models and provision resources, minimizing costs while meeting
SLO requirements.

3.5 Miscellaneous Areas

Several approaches have been developed to balance cost and per-
formance for large-scale ML inference tasks. By leveraging cloud-
based services such as publish-subscribe/queueing and object stor-
age, FSD-Inference [22] enables efficient inter-process communica-
tion (IPC) for distributed ML inference workloads. This approach
eliminates the need for traditional server-based solutions and of-
fers significant cost savings and scalability, comparable to high-
performance computing (HPC) setups while achieving high paral-
lelism through Function-as-a-Service (FaaS).

In contrast, AsyFunc [25] optimizes resource allocation by sepa-
rating resource-intensive tasks (e.g., model execution) from lighter
ones (e.g., request handling) using asymmetric functions. It further
enhances performance by implementing function fusion, which
combines related tasks into a single flow, and predictive scaling
to anticipate workload demands. These features reduce startup
latency, making AsyFunc particularly effective for handling large-
scale, unpredictable workloads that require both cost-efficiency and
high-performance inference.

MLFaaS [23] generalizes ML inference pipelines by exposing the
complete set of data path functions required by data scientists. It
introduces an Al-based framework that recommends the optimal
function compositions for serverless pipelines, aiming to improve
Quality of Service (QoS) by minimizing the response time of ML
inference tasks.

4 Emerging Research Fields

Recent advancements in serverless computing and Al inference
have led to the emergence of several key research fields, including
large language models (LLMs) inference, Al-driven scaling, and the
exploration of security and privacy solutions in edge computing.

4.1 Serverless LLMs Inference

LLMs have gained widespread popularity for their powerful text-
generation capabilities but face significant latency challenges dur-
ing inference on serverless platforms due to the large size of model
checkpoints and the complexity of loading them onto GPUs. Public
cloud providers, open-source frameworks, and academic research
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are addressing these issues from various perspectives to optimize
serverless LLM inference.

AWS Bedrock [2] offers a suite of high-performing foundation
models to simplify the complexities of training LLMs and manag-
ing cloud infrastructure. Microsoft’s Azure Al Studio [21] enables
serverless LLM inference through a pay-per-use, token-based billing
system, allowing users to deploy LLM models as serverless APIs
without the need to host models within their subscriptions.

LoRA eXchange (LoRAX) [26] is a prominent open-source frame-
work specifically designed to manage large-scale fine-tuned LLM
inference tasks using shared GPU resources. This framework sig-
nificantly enhances the overall performance of serverless LLM de-
ployments by improving both throughput and latency in a scalable
and resource-efficient manner.

ServerlessLLM [9] tackles the problem of long inference laten-
cies in cloud-based LLM serving by introducing a novel checkpoint
format and a multi-tiered loading system to speed up model loading.
Additionally, it implements a locality-aware server allocation strat-
egy to reduce cold start latency, ensuring faster model deployment
in serverless environments. On the other hand, ENOVA [14] focuses
on addressing the scalability and stability challenges of serverless
LLM serving on multi-GPU clusters. ENOVA’s service configura-
tion and performance detection modules ensure optimal resource
allocation and real-time monitoring of service quality, which are
critical for accommodating diverse LLM inference tasks.

4.2 Al-based Scaling

Serverless platforms often employ reactive scaling mechanisms,
which adjust resources based on current traffic patterns. Predictive
scaling models, powered by Al-based workload forecasting, can
improve performance by preemptively allocating resources based
on expected demand. However, achieving accurate workload predic-
tions remains challenging due to the dynamic nature of serverless
environments.

To tackle the challenges of resource allocation and cold start
latency in distributed AI inference tasks, ServingDI [20] intro-
duces a hybrid scheduler that combines a greedy strategy with
deep reinforcement learning (DRL) for optimal container allocation.
Fifer [12] uses function-aware container scaling and LSTM-based
request batching to proactively spawn containers to reduce cold
start latency. Similarly, Gillis [30] encodes partitioning policies into
a neural network, which is trained to iteratively optimize inference
cost and latency.

4.3 Security and Privacy in Edge Computing

As serverless computing increasingly integrates into machine learn-
ing workflows, concerns surrounding security and data privacy
have become paramount, particularly in edge computing. These
paradigms aim to protect sensitive information while maintaining
scalability and performance. Several key frameworks have emerged
to address these concerns effectively.

TrustedLLMInference [17] proposes an innovative framework
for securing distributed Al model inference using blockchain tech-
nology in edge computing environments. The use of blockchain
also guarantees trust and verifiability in Al model inference, making
TrustedLLMInference highly suitable for privacy-sensitive tasks



Advancing Serverless Computing for Scalable Al Model Inference: Challenges and Opportunities

in distributed environments. MLEdge [3] allows for the efficient
deployment of ML models closer to users, ensuring that sensitive
data is processed locally. This approach thus minimizes the risks
associated with data transmission to central servers, making it par-
ticularly beneficial for applications that require real-time, privacy-
preserving inference.

5 Discussion

The rise of serverless computing has introduced a new paradigm for
handling Al inference tasks, offering scalability, cost-effectiveness,
and ease of deployment. While serverless architectures provide sig-
nificant advantages, they also present unique challenges in serving
LLMs inference, optimizing infrastructure usage, managing energy
consumption, and fine-tuning Al inference pipelines. Nonetheless,
several opportunities exist for improving AI model inference in
serverless computing environments.

Serverless LLMs Inference. Current serverless inference frame-
works face several limitations that make them less suitable for LLMs
inference. A primary challenge is the latency caused by cold starts
when loading large model checkpoints onto GPUs [9]. Additionally,
resource allocation in serverless environments often falls short of
meeting the resource-intensive demands of LLMs, especially for
multi-GPU setups or large models that require substantial memory
and compute power [9, 27]. Another critical issue is the lack of
fine-grained control over GPU and memory resources, limiting the
ability to optimize both throughput and cost efficiency [10, 16].
While public cloud providers such as AWS and Azure offer server-
less LLM inference solutions [2, 21], these options come with lim-
itations, including resource constraints, vendor lock-in, and high
costs associated with scaling LLM workloads. The pay-as-you-go
billing model can quickly become expensive due to the significant
computational costs of loading and running LLMs, and the lack
of tailored optimization for these models often results in subopti-
mal performance. To enhance the suitability of serverless inference
frameworks for LLMs, improvements are required in cold start
mitigation, efficient multi-GPU management, and dynamic scaling
mechanisms that can predict and allocate resources preemptively,
based on the dynamic LLM-specific workloads.

Infrastructure Advancement. Al inference workloads, espe-
cially for large models such as DL and transformer-based LLMs,
require considerable computational resources for real-time process-
ing. Traditional serverless environments, characterized by their
ephemeral nature and resource-limited function instances, often
struggle to meet these demands [14]. The stateless nature of server-
less functions limits the ability to perform large-scale inference,
particularly when models require continuous access to memory
or GPUs for acceleration [9, 14, 26]. The delays in provisioning
resources during function invocations can significantly impact
latency-sensitive Al inference, such as real-time recommendations
or autonomous systems. While some cloud providers offer GPU-
enabled serverless platforms, these options are not always available
in conventional Faa$S offerings [2, 21]. This creates a gap in perfor-
mance optimization for Al inference workloads. Advancements in
hardware acceleration, particularly the integration of GPUs and spe-
cialized Al inference chips in serverless environments, present op-
portunities for significant performance improvements. By enabling
fine-grained control over hardware resources, cloud providers can
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offer tailored serverless environments for Al inference, improving
both resource utilization and cost-efficiency.

Energy Efficiency. The energy consumption of Al inference
tasks is a growing concern, particularly as models become larger
and more complex. Al models, such as transformers used in nat-
ural language processing (NLP), can have billions of parameters,
leading to considerable power consumption during inference. Al
inference tasks often rely on GPUs to accelerate computations,
but GPUs are also energy-intensive. Serverless platforms typically
lack fine-grained control over GPU resources, leading to poten-
tial inefficiencies in energy use [11, 12, 28]. Serverless functions
scale horizontally based on demand, which may lead to redundant
resource allocation and energy waste, particularly during bursty
workloads or idle periods. The increased demand for real-time Al in-
ference further drives up data center energy usage, requiring more
efficient cooling systems and energy-efficient hardware configura-
tions [2, 21]. Consequently, energy-efficient Al model inference is
becoming a priority, driven by the environmental impact of large-
scale AI workloads. Innovations such as energy-aware scheduling,
efficient model partitioning, and intelligent resource allocation can
help reduce the carbon footprint of Al inference tasks. Techniques
such as model quantization and pruning [26] can also lower the
energy requirements when deploying large Al models in serverless
environments.

AI Model Inference Pipelines. Serverless Al inference
pipelines introduce several unique challenges due to their modular,
stateless, and event-driven nature. Efficiently deploying, scaling,
and managing Al inference workloads requires careful consider-
ation of various pipeline stages [4, 15, 23]. Inference tasks often
involve multiple stages, from data preprocessing to model loading
and prediction generation. Serverless platforms must effectively
orchestrate these stages while minimizing the latency between
function invocations. Furthermore, large AI models cannot easily
be loaded and executed in a single serverless function due to re-
source constraints. Therefore, efficiently partitioning models across
functions and managing inter-function communication remains an
ongoing challenge. Furthermore, Al inference tasks, such as those
involving LLMs or ensemble models, may require complex orches-
tration across multiple serverless functions, which increases the risk
of latency spikes or bottlenecks. Al-based optimization techniques
can help enhance serverless inference pipelines [23], particularly
in workload prediction and resource management. For example,
ML models can be used to predict traffic patterns and proactively
scale resources, thus reducing both latency and costs. Additionally,
reinforcement learning can dynamically adjust function configura-
tions to improve the overall efficiency of the serverless Al inference
pipeline.

Al-based Optimization Strategies. Al-based optimization
strategies present opportunities to enhance performance and cost-
efficiency in serverless Al inference workflows. However, imple-
menting these strategies introduces several challenges, including
resource unpredictability and the need for real-time adaptability.
The rise of edge computing presents an opportunity to offload
Al inference tasks from centralized cloud servers to edge devices,
reducing both latency and energy consumption. By integrating
serverless architectures with edge computing, Al inference tasks
can be processed closer to the data source, improving performance
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and reducing the load on central cloud infrastructure. Federated
learning and distributed Al models also offer avenues for privacy-
preserving inference at the edge [3, 17].

6 Conclusion

This paper has surveyed the key challenges and solutions in server-
less computing for AI model inference. By addressing issues such
as cold start latency, resource utilization, cost optimization, and
scalability, recent research has paved the way for more efficient
and scalable serverless inference systems. Innovative frameworks
and techniques, including adaptive batching, hybrid scheduling,
model partitioning, and GPU sharing, are driving significant im-
provements in the performance and cost-effectiveness of serverless
platforms. As the demand for large-scale Al inference continues to
grow, advancements in serverless computing will be essential to
meet the requirements of real-time, high-performance applications.
The intersection of infrastructure management, energy consump-
tion, Al inference pipelines, and Al-driven optimization strategies
offers rich opportunities for innovation in improving serverless Al
inference workflows. By addressing these challenges, the serverless
paradigm can evolve into a viable solution for real-time Al inference
at scale, enabling a new generation of Al applications.
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