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Figure 1

he planetary model of the atom in Figure 1 is alive and well in middle school science class [5]—and in popular

iconography—despite most educated adults’ awareness of its shortcomings. The model persists because
it is easily visualized, intuitively understandable, and expresses important truths.! Models don’t have to get
everything right to be useful. Middle schoolers would be overwhelmed by a more correct description of electron
orbitals as probability densities satisfying the Schréodinger equation. Better to just show orbitals as ellipses.

In the current era, when immensely powerful Al technologies built on neural networks are rapidly disrupting
the world, K-12 students need age-appropriate models of neural networks just as they need age-appropriate
models of atoms. We suggest the linear threshold unit as the best model for introducing middle school students
to neural computation, and we present an interactive tool, Neuron Sandbox, that facilitates their learning.

" Also known as the Bohr model. See [9] for multiple discussions about the continued use of the Bohr model in schools.
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WHAT CAN MIDDLE SCHOOL STUDENTS
LEARN ABOUT NEURAL NETS?

Present approaches to teaching children about neural networks
are often superficial and ineffective (complicated diagrams with
little explanation) or seriously misleading (claims that neural
networks somehow “work like the brain”). Unplugged activi-
ties can avoid those pitfalls. One strategy used in McOwan and
Curzon’s “Brain in a Bag” [7] has a group of students physically
simulate a small neural circuit, with each student playing the
role of a neuron and transmitting a “spike” to a downstream
neuron by sliding a tube along a segment of rope represent-
ing the connection between them. Together the students com-
pute an XNOR function. This gives them some feel for network
computation, but it does not develop any problem-solving skills
or general insight into how weights and thresholds determine
neuron behavior.

Another approach is to provide a high level, abstract de-
scription of what the layers of a neural network are doing and
ask students to simulate that abstraction. Lindner and See-
gerer [6] attempt to explain object recognition in a neural net-
work by having students simulate multiple layers of feature
detectors. In the first layer a student converts a photo to a pair
of line drawings, in the next another student looks for specif-
ic shapes in the drawings (triangular, rectangular, and round
shapes), and in the final layer a third student determines the
object label based on which shapes were detected. This activ-
ity gives a qualitative feel for the hierarchical nature of object
recognition. But because these operations are far more com-
plex than what individual neurons compute, and converting a
photo to drawings is not actually part of the object recogni-
tion process in neural networks, it’s unclear what real under-
standing participants can develop beyond a vague notion of
“feature detection”

While there is some value in giving middle school students
a qualitative feel for neural networks, they are capable of more
rigorous understanding when given the necessary scaffold-
ing. We suggest that an appropriate entry to neural networks
in middle school is to explore in depth the reasoning capa-
bilities of a single simulated neuron. Although most middle
school students have not yet been exposed to algebra, we have
found they can master the behavior of a single
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of it instead [4]. We stick with LT Us because they allow mid-
dle schoolers to explore an easier to understand set of exam-
ples based on Boolean logic. Like the planetary model of the
atom, historically important but no longer preferred by prac-
titioners, teaching LTUs in middle school to explain neural
networks is a forgivable oversimplification. Heavy scaffolding
will nonetheless be required.

Will LTUs be welcomed into middle school curriculum
standards? There are already calls to integrate Al topics into
K-12 computing courses [13]. LTUs might be an attractive
choice due to the strong overlap with established middle school
math topics, including (1) algebraic expressions using multipli-
cation and addition, (2) inequalities, (3) working with negative
numbers, (4) logical reasoning, (5) truth tables, and (6) digital
logic. What LT Us add to the mix is a version of decision making
through numerical computation.

NEURON SANDBOX

Neuron Sandbox [3] is our interactive tool for exploring the
linear threshold unit’s decision-making abilities. For middle
school students we focus on implementing Boolean functions
by specifying weights and a threshold.> As shown in Figure 2,
the process is highly scaffolded: the entire truth table is visible
all the time, and there is a direct comparison of the neuron’s
actual output with the desired output for each row of the table.
Thus, it is easy to see when a problem has been solved correct-
ly, or where the sticking points lie if the correct weights and/
or threshold value have not yet been found. Icons illustrate the
meaning of the binary inputs and output, e.g., if “Have Peanut
Butter” is true we see a peanut butter jar, while if it is false
the jar is crossed out. Additional scaffolding helps students
see exactly how the neuron’s activation value is computed for
a given input pattern. In the figure, the mouse hovering over
the last row of the truth table triggered blue highlighting and
leader lines that unpack the computation for that row. Also
visible in the figure is another slight simplification: rather than
introducing X as the sequence summation operator, we use it
as a symbol designating the sum, i.e., £ denotes the neuron’s
activation value.

neuron when applied to binary decision problems
such as “Can I make a peanut butter and jelly
sandwich?” The type of neuron to use for these
problems is a linear threshold unit (LTU). LTUs
compute an activation value as a linear combina-
tion (weighted sum) of their inputs and output a
0 or 1 based on whether the activation exceeds a
threshold. LTUs were the building blocks of the
earliest neural networks such as the perceptron
[8,10]. But since modern neural network learning
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algorithms require differentiable activation func-
tions, today’s neural network architectures such

Figure 2

as transformers and convolutional networks use

2 For more advanced students there are other options available, such as real-valued inputs, use of biases

the ReLU (Rectified Linear Unit) or some variant

instead of thresholds, and visualization of decision boundaries.
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Mastering LTUs requires a series of skills. Undergradu-
ates approaching this topic would not have to be taught these
skills explicitly because their prior mathematical training has
familiarized them with similar types of problem solving. But
middle schoolers, having not yet taken algebra, may be en-
countering these ideas for the first time. Table 1 lists the skills
we have identified.

Table 1: Skills required to master linear threshold units.

(1) Mapping an English statement to a logical function

(2) Constructing a truth table

(3) Calculating the activation value of a neuron given its
weights and input

(4) Calculating the output value of a neuron given its
activation and threshold

(5) Reasoning about how changing a weight or threshold
would affect a neuron’s behavior

(6) Finding weight and threshold values that allow a
neuron to produce the desired output for each possible
input

To facilitate learning to map English statements to logical
functions, Neuron Sandbox includes a “solve for outputs” mode
where students are given a textual description of the function
and fill in the truth table themselves by clicking on radio but-
tons. We scaffold this by generating the rows of the table auto-
matically and providing a “Press to Check” button for students
to check their answers. If they get an entry wrong, a “hint” ap-
pears to prompt them to rethink their answer. Figure 3 shows
how a student could fill in the truth table for AND given the
prompt “Can I make a peanut butter and jelly sandwich? I need
both peanut butter and jelly, and what they see when they pre-
dict the wrong output value for one of the cases.
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Stage 1: Boolean functions, truth tables, how a linear
threshold unit works, and implementation of the AND and
OR functions. The weights are 1 and the thresholds are posi-
tive: 0.5 for OR, 1.5 for AND. Although we could use integer
threshold values (0 for OR, 1 for AND), that solution critically
depends on the threshold comparison being a strict inequal-
ity, i.e., “greater than” rather than “greater than or equal to”
Students who are not mindful of the difference will likely be-
come confused. We have even experienced this ourselves. We
therefore believe it is preferable to select thresholds strictly
smaller than the minimum required activation value, to fore-
stall this type of misunderstanding.

If the least interested students successfully memorize the
weight and threshold values for AND and OR, we might be sat-
isfied. But for more engaged students, it is helpful to explore
variants of the standard parameter values. For example, if we
doubled the weights, how would the threshold have to change
to implement AND and OR correctly? Or if we wanted to use a
threshold of 7, what weight values should we use?

If time is limited, completing just stage 1 is a reasonable goal
for middle school. While not enough to claim mastery of LT Us,
stage 1 is sufficient to give students a feeling for how artificial
neurons compute.

Stage 2: Logical negation (the NOT function), a one-input
function that demonstrates that weights and thresholds may
need to be negative.

Stage 3: Combining negation with AND and OR, yield-
ing NAND (NOT-AND) and NOR (NOT-OR). Students will
see that AND and NAND use the same weight and threshold
values but with opposite signs (all positive for AND, all neg-
ative for NAND). The same symmetry holds for
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Stage 4: Three-input versions of AND, OR,
NAND, and NOR demonstrate that the same lin-
ear equation for the activation value applies but
extended with one more input and one more
weight. One more input means the truth table
doubles in size, going from 4 rows to 8. With three
inputs we can also consider a new function: “at
least two,” which is true if at least two of its three
inputs are true. This would require a complex cir-
cuit if implemented using digital logic gates, e.g.,
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Figure 3

LEARNING PROGRESSION

The easiest functions for students to learn are AND and
OR, since they align with common English terms and can
be expressed using identical weights of 1. The solution for
AND is shown in Figure 2. We define a six-stage learning
progression to describe how students can learn to solve AND
and OR and then extend their understanding beyond those
two functions.
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threshold unit. The “at least two” example points
at an important truth about neural computation: it is funda-
mentally numerical, not digital.

Stage 5: Returning to two-input functions, we now consid-
er asymmetric functions AND-NOT (“x and not y”) and OR-
NOT (“x or not y”). This introduces non-uniform weights; in
previous stages all the inputs had the same weight. Asymmetry
means “x and not y” and “y and not x” are distinct functions.
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Al technology is changing not only how we teach, but what we
teach. Neural networks, machine learning, and
generative Al are all finding their way into the middle school
curriculum. Neuron Sandbox was created to support
this movement. Its design affords learning a simple model
of neural computation without even having mastered algebra.

We use the phrasing “y and not x” in place of “not x and y” to
avoid the ambiguity between “(not x) and y” and “not (x and y)’,
something which middle schoolers are likely to trip up on.

Stage 6: Now we consider the limitations of LTUs. The
two-input EQUAL and XOR (exclusive-OR) functions cannot
be realized using a single LTU. In high school this would be
demonstrated geometrically by drawing linear decision bound-
aries, and for undergraduates we would give a proof by contra-
diction that no set of weight and threshold values exists that
satisfies all four cases. But for middle school we simply tell
students that these functions aren’t realizable and invite them
to try finding weights and a threshold to disprove this. The
three-input “exactly two” function (as opposed to “at least two”)
is also unrealizable, for the same reasons. Students now see that
LTUs are not all-powerful and can appreciate why typical neu-
ral networks require many neurons. Advanced students might
be shown the three-neuron solutions to EQUAL and XOR.

HEURISTICS FOR MASTERY

Expert-level knowledge of a problem domain includes heuris-
tics that speed the search for a solution. In the narrow domain
of two-input Boolean functions implemented using an LTU,
students can easily be taught these heuristics or discover them
for themselves. There are 16 cases, shown in Table 2.

Numerical values: although an LTU’s weights and thresholds
can be arbitrary numbers, the two-input Boolean functions
(except EQUAL and XOR) can all be realized with just a few
values:

o Weights are 1, or 0 if the input is to be ignored.

o Thresholds are either +0.5 or +1.5.

Note that this small set of weight and threshold values won’t
suffice for functions of more than two inputs. For example:
“John can have dessert if either he has eaten all his vegetables,
finished his milk, and cleared the table, or if the dessert is some-

thing healthy” This is an asymmetric four-input Boolean func-
tion that can be realized with weights of 1, 1, 1, and 3, and a
threshold of 2.5.

Threshold sign: a heuristic for choosing the threshold is:
o If the desired output is 0 when all inputs are 0, the threshold
must be positive (or zero). Otherwise, the threshold must
be negative.

Constraints on weights:

o If the function is symmetric, the weights should be
identical.

o Comparing rows in the truth table, if flipping a single input
from O to 1 makes the output go from 0 to 1, the weight on
that input must be positive. If flipping an input from 0 to 1
makes the output go from 1 to 0, the weight on that input
must be negative.

We believe teaching these heuristics explicitly can foster de-
velopment of the reasoning skills enumerated in Table 1.

WHAT ELSE SHOULD MIDDLE SCHOOL
STUDENTS KNOW?

There are three other topics middle school students should
learn about when studying neural networks. First, they should
understand that more complex computations than the ones
they have studied in Neuron Sandbox require collections of
neurons wired together to form a network. They should be-
come familiar with the concept of feedforward networks with
input, hidden, and output layers.

Second, they should understand that in these large net-
works, rather than setting the weights by hand, they are set by
a learning algorithm. Although the backpropagation learning
algorithm is too advanced for middle school, the perceptron
learning algorithm for training a linear threshold unit is simple
enough that it can be hand-simulated in class. In the AI4GA
("Al for Georgia”) project’s Al curriculum for middle school

Table 2: All 16 two-input Boolean functions. Shaded functions cannot be implemented by a single LTU.

Zero a b AND OR aANDNOTb | aORNOTb EQUALS
One NOT a NOT b NAND NOR b ORNOTa | b AND NOT a XOR
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students, Touretzky and colleagues modeled this in an exercise
called “Can I pet this?” [1]. Students see how an LTU can learn
to classify animals as pettable or not based on weighted inputs
from a collection of feature detectors.

Finally, students should understand the distinction between
training and application phases in machine learning. Training
a neural network requires a learning algorithm and a collection
of labeled examples. Once trained, learning ceases and the net-
work is applied to novel inputs to predict their labels. A good
way to illustrate this is with Teachable Machine [2], a brows-
er-based machine learning tool for training visual or audio clas-
sifiers. Students define a set of classes and collect training data
for each class using their computer’s camera or microphone.
After training, they can test their classifier’s accuracy on new
images or sounds. Teachable Machine is widely used in K-12 Al
education, at many grade levels. Sanusi et al. describe a success-
ful use of the tool with eighth graders in Nigeria [11].

Although the neural network inside Teachable Machine
is not visible to users, students can understand that it is
a feedforward network with many hidden layers (hence a
“deep” network) that were trained by a learning algorithm.
The neurons in this network are not precisely LTUs, and the
learning algorithm is not exactly the perceptron learning
algorithm, but like the elliptical orbitals of middle school
atoms, these age-appropriate simplifications will facilitate
deeper understanding in later years. High school juniors
and seniors taking an Al elective can experiment with true
backpropagation learning using an interactive tool such as
TensorFlow Playground [12].

CONCLUSION

Al technology is changing not only how we teach, but what
we teach. Neural networks, machine learning, and generative
Al are all finding their way into the middle school curriculum.
Neuron Sandbox was created to support this movement. Its
design affords learning a simple model of neural computation
without even having mastered algebra. Preliminary exper-
iments with middle school students using Neuron Sandbox
suggest this approach can be effective if students are shown
step-by-step how to calculate the neuron’s activation and how
to reason about changes to the weights or threshold affecting
the output. We are presently collecting data that will allow us
to further refine the design of Neuron Sandbox and determine
what additional types of support the software and teachers

°,

might provide to students. <
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