
Performance Analysis of Data Processing in
Distributed File Systems with Near Data Processing

Shiyue Hou∗, Nathan R. Tallent†, Li Wang∗, Ningfang Mi∗
∗Department of Electrical and Computer Engineering, Northeastern University, MA USA

†Advanced Computations and Maths Division, Pacific Northwest National Laboratory, Richland, WA, USA

Abstract—In the era of big data, the escalating volume and
velocity of data generation pose significant challenges in data
processing. Traditional systems like Spark [1] and Hadoop
[2] manage the increasing amount and velocity of data by
improving data placement and processing speeds. However, they
face inherent limitations due to the essential data movement
required for processing. In this paper, we explore the Skyhook
framework, a novel extension of the Ceph distributed system,
which significantly reduces the need for data movement. We
present an extensive case study using the Skyhook framework,
applying it with the TPC-H and K-means clustering algorithms.
More specifically, we leverage the TPC-H benchmark to dis-
tinguish between CPU-intensive and I/O-intensive tasks. We
explore the integration of K-means clustering into SQL, coupled
with a near-data processing system to offload the computational
burden of the K-means clustering algorithm to storage nodes. We
conduct a comprehensive performance evaluation of distributed
data processing applications across three processing approaches:
traditional layout (baseline), optimized layout, and near-data
processing. Additionally, we introduce the use of the FIO tool to
simulate real-world system workloads, enabling the measurement
of performance metrics such as average latency and CPU
utilization. Our research is a significant advance in understanding
how to optimize data processing systems to meet the demands of
the modern data landscape.

Index Terms—Near data processing, system performance anal-
ysis, distributed system, optimized layout

I. INTRODUCTION

In the contemporary information era, the exponential surge
in data across various domains presents both opportunities and
challenges. While efforts have been made to bring computation
closer to data, exemplified by platforms like Spark [1] and
Hadoop [2], each system approaches this task differently.
Spark’s in-memory computing paradigm ensures that data is
cached in memory whenever possible, reducing the need for
disk I/O and enabling near-data processing. This capabil-
ity allows Spark to execute iterative algorithms and queries
efficiently with low latency. On the other hand, Hadoop’s
MapReduce framework employs optimization techniques such
as data compression, combiners, and custom partitioning to
minimize data movement during the map and reduce phases,
enhancing data locality and processing efficiency.

However, despite these optimizations, both Spark and
Hadoop still involve data movement. Spark primarily processes

979-8-3503-6491-0/24/$31.00 ©2024 IEEE

Fig. 1: Architecture overview for traditional layout (left),
optimized layout (middle), and near data processing (right).

data in memory, necessitating the loading of data from disk
into the memory of worker nodes for computation. Similarly,
while MapReduce tasks are scheduled on nodes where data
blocks are stored, the actual processing occurs away from the
data location. Recognizing the ongoing challenge of reducing
data movement and exploring new avenues for improvement,
researchers are investigating various techniques. These include
moving processing closer to data, proposing new data layouts,
and enhancing the parallelism of data processing. A promising
direction involves pairing near-data processing with innovative
data layouts.

One such advancement is exemplified by Skyhook [3], a
programmable object storage system built upon the Ceph
[4] distributed system, shown as the right plot (Near Data
Processing) in Fig. 1. Skyhook allows computation to be
offloaded directly to the storage layer, eliminating the need
for extensive data transfers between storage and processing
nodes. By executing computations closer to the data, Sky-
hook minimizes data movement over the network. Moreover,
Skyhook utilizes a columnar representation of data akin to
formats like Apache Parquet [7] and Apache Arrow. This
approach enhances compression ratios and enables selective
data retrieval, further reducing the volume of data transferred
across the network for processing.

We also create an optimized layout system and a traditional
layout system (as the baseline), utilizing Apache Arrow and
without it, respectively, depicted in Fig. 1. The optimized
layout system significantly improves performance by mini-
mizing the need for data serialization and deserialization. By
leveraging a columnar memory format specifically optimized
for analytic operations, this system minimizes serialization re-

20
24

 In
te

rn
at

io
na

l S
ym

po
siu

m
 o

n
N

et
w

or
ks

, C
om

pu
te

rs
 a

nd
 C

om
m

un
ic

at
io

ns
 (I

SN
CC

) |
 9

79
-8

-3
50

3-
64

91
-0

/2
4/

$3
1.

00
 ©

20
24

 IE
EE

 |
 D

O
I:

10
.1

10
9/

IS
N

CC
62

54
7.

20
24

.1
07

58
99

4

Authorized licensed use limited to: Northeastern University. Downloaded on May 11,2025 at 00:45:31 UTC from IEEE Xplore. Restrictions apply.

quirements on the client node and reduces memory consump-
tion compared to traditional row-based formats. In contrast,
the baseline system involves copying all data from the storage
node into client memory and necessitates serialization and
deserialization processes on the client node. This approach
incurs maximal data copying overhead and diminishes overall
system resource utilization.

In this paper, we present a case study of applying the
Skyhook framework to a new use case involving TPC-H
[5] and K-means [6] cluster algorithms. Additionally, we
introduce the utilization of the FIO tool to simulate real-
world system workloads, enabling the measurement of near-
data processing, optimized layout system, and baseline system
metrics such as average latency and CPU utilization. Through
this study, we aim to shed light on the efficacy of near-data
processing techniques in modern data processing workflows.
The contributions of our work are summarized as follows:

• Analyzing workload characteristics of the near-data pro-
cessing system, we leverage the TPC-H benchmark to dis-
tinguish between CPU-intensive and I/O-intensive tasks.

• This paper explores the integration of K-means clustering
into SQL, coupled with a near-data processing system
to offload the computational burden of the K-means
clustering algorithm to storage nodes.

• This study conducts a comprehensive performance eval-
uation of distributed data processing applications (e.g.,
TPC-H and K-means clustering) on three alternative
processing approaches: traditional local processing (base-
line), optimized layout, and near-data processing, and
understands system behaviors and performance benefits
under various workloads and node conditions.

In the remainder of the paper, we present the background
of our performance analysis in Section II. Sections III and IV
elaborate on our experimental setup and evaluation, employing
TPC-H, the K-means clustering algorithm, and FIO. Finally,
our findings are summarized in Section V.

II. BACKGROUND

A. Ceph

Ceph [4] is an advanced open-source storage platform that
offers high scalability and reliability in a distributed network.
It uses Object Storage Daemons (OSD) for managing data
storage, replication, and recovery. With no single point of
failure, Ceph ensures robustness via Monitors that track the
cluster’s state. It supports block, object, and file storage in
one system. The CRUSH algorithm boosts performance by
efficiently distributing data, making Ceph suitable for high-
availability storage in cloud services and large data centers.

B. Apache Parquet

Apache Parquet [7] is a columnar storage file format
optimized for big data frameworks like Hadoop and Spark,
enhancing data compression and encoding. By organizing data
by columns instead of rows, Parquet improves compression
and read speeds, especially for column-specific analytics. It
utilizes compression codecs such as Snappy and GZIP and

encoding methods like dictionary and run-length encoding
to boost storage efficiency and query performance. Ideal for
handling complex nested data and schema evolution, Parquet
also supports predicate pushdown to improve query efficiency
by omitting irrelevant data blocks, making it well-suited for
high-performance data applications.

C. Skyhook

Skyhook [3] is a programmable storage system that en-
hances Ceph by offloading query executions from the client
to the storage layer. It supports scanning datasets in various
formats including Parquet, Feather, CSV, and JSON, among
others, provided they are compatible with Apache Arrow.
Implemented as a storage-side plugin within Ceph, Skyhook
operates through shared libraries embedded in Ceph OSDs,
enabling query execution directly on the storage nodes. The
system interfaces with clients via an Arrow FileFormat API
extension known as the SkyhookFileFormat API. This API, in
conjunction with the Arrow Dataset API, facilitates immediate
offloading of dataset scans.

Internally, the SkyhookFileFormat uses Ceph [14] filesys-
tem metadata, which includes file striping information, to
map files in CephFS to RADOS objects and directly process
these objects, circumventing the POSIX layer. The plugin
reuses Arrow’s ParquetFileFormat to scan RADOS objects
that contain Parquet binary data—a function not typically
supported by Arrow APIs. To overcome this, Skyhook in-
troduces a RandomAccessObject API—a filesystem shim that
provides a file-like view over RADOS objects, maintains the
file pointer, and integrates seamlessly with Arrow APIs to
allow for scanning objects as if they were files.

A specific requirement of Skyhook is that for effective scan-
ning of Parquet files, each file must be self-contained within
a single RADOS object. This one-to-one mapping simplifies
the translation from filenames to object IDs, enabling Arrow
APIs to interpret a RADOS object as a complete Parquet file.
To ensure that each file is stored as a single object, the stripe
unit of CephFS is adjusted to align with the size of the Parquet
files being written.

D. Data Processing Applications

In this paper, we consider the following two representative
data processing applications for performance evaluation.

TPC-H [5] is a benchmark suite for measuring the perfor-
mance of database management systems (DBMS) using a deci-
sion support system (DSS) workload. It is designed to evaluate
both query processing capabilities and data management effi-
ciency of relational databases in handling complex queries,
typically associated with large volumes of data. The bench-
mark consists of a set of business-oriented ad-hoc queries and
concurrent data modifications designed to emulate real-world
decision support systems. TPC-H includes a database schema
with eight tables representing typical business data, such as
customer, order, and part information, and it supports queries
involving various SQL features like joins, group by and nested
subqueries.

Authorized licensed use limited to: Northeastern University. Downloaded on May 11,2025 at 00:45:31 UTC from IEEE Xplore. Restrictions apply.

K-means clustering [6] is an unsupervised machine learn-
ing technique used to partition a set of data points into
K distinct non-overlapping clusters, where each data point
belongs to the cluster with the nearest mean. The process
begins by initializing K centroids randomly, which are used
as the starting points for each cluster, and then iteratively
performs two steps: assignment and update. In the assignment
step, each data point is assigned to the nearest centroid based
on a distance metric, typically Euclidean distance. In the
update step, the centroids are recalculated as the mean of the
data points assigned to each cluster. These steps are repeated
until the centroids no longer move significantly, indicating
convergence, or until a specified number of iterations is
reached. K-means is favored for its simplicity and efficiency
in processing large data sets, but it requires the number of
clusters to be specified beforehand and can be sensitive to
initial centroid placement, affecting outcomes.

III. THE PROPOSED METHODS

This section introduces our three design paradigms and pro-
vides an in-depth description of the platform implementation.
In addition, we integrate the TPC-H benchmark and K-means
clustering algorithm to evaluate system performance.

A. Near Data Processing

We incorporate Skyhook [3] to enable the near-data pro-
cessing capability, which is a query-based in-storage data
processing system developed on top of the Ceph distributed
system. Skyhook introduces an API named ‘SkyhookFileFor-
mat,’ designed to extend the FileFormat of the Apache Arrow
Dataset API. It supports Parquet file formats, significantly
reducing read I/O requests to the data store. Moreover, all
data is stored at the Ceph storage nodes in Parquet files. Refer
to Fig. 1 for the architecture.

Moreover, Skyhook facilitates the offloading of queries to
the storage nodes. This allows client nodes to bypass compute
operations by delegating them to the storage nodes, where
the storage nodes retrieve Parquet data, load it into memory
for processing, and subsequently return the computed results
to the client nodes. This approach minimizes data movement
and enhances storage memory locality, although it involves
serialization to the client node. We have further expanded
Skyhook’s capabilities by integrating the K-means clustering
algorithm within SQL, using both Skyhook and DuckDB to
foster near-data processing. Consequently, the K-means algo-
rithm can be executed directly on Skyhook with computational
tasks offloaded to the storage node.

B. Optimized Layout

We have developed an optimized storage layout tailored for
the Ceph distributed system. This solution involves converting
data into the Parquet format prior to storage within Ceph
nodes. Adopting Parquet not only reduces the requisite phys-
ical storage space but also enhances the speed of read/write
operations due to the smaller data footprint. By leveraging
Apache Arrow’s capabilities, we efficiently transfer Parquet

data from the storage nodes directly into client memory,
as depicted in Fig. 1. Apache Arrow’s zero-copy columnar
in-memory format eliminates the need for serialization and
deserialization, thereby alleviating the associated performance
drawbacks.

Expanding on this infrastructure, we have integrated
DuckDB [13] to leverage Arrow so that queries have efficient
access to the optimized columnar data format. This integration
not only improves performance by enhancing memory locality
at the client node but also minimizes the need for data
serialization, resulting in more efficient query processing and
reduced latency.

C. Baseline

In our baseline scenario, we utilize a traditional data format
layout. The baseline approach involves reading data from the
storage node and subsequently transferring it to the client
node. Following this, we execute the TPC-H and K-means
algorithms directly on the client node. This method suffers
from poor memory locality on the client and necessitates
the introduction of serialization and deserialization processes,
which can impact performance adversely, as shown in Fig. 1.

IV. EXPERIMENTS

In this section, we present our experiments designed to
compare average application latency and CPU utilizations
across client and storage nodes for the TPC-H [5] and K-means
clustering algorithms [6]. These experiments are conducted
on a private computing cluster equipped with 16 Intel Xeon
W-2245 CPUs, 62GB of RAM, and running Ubuntu 20.04.
We build three storage nodes, each with a single Ceph OSD
attached to an NVMe drive, and one client node equipped with
a Ceph Monitor (MON) and a Ceph OSD to oversee the Ceph
storage cluster. We mount a CephFS interface in user mode
via the cephfuse utility on a 3-way replicated pool.

For the TPC-H benchmark, we work with 1GB of data con-
verted to uncompressed Parquet format. Direct reading from
RADOS allows us to avoid any cache-related performance
discrepancies by replicating the same file under consistent con-
ditions. Additionally, we generate 1GB of synthetic data con-
sisting of 50,000,000 samples organized into distinct clusters,
using the sklearn.datasets API [9]. Our experimental datasets
are configured to compare near-data processing, optimized
layout, and baseline conditions. We utilize the Python version
of the Arrow Dataset API for these tests and employ Python’s
ThreadPoolExecutor to launch parallel scans, adhering to an
asynchronous I/O model. The experiments measure both end-
to-end latency and CPU utilization under near-data processing,
optimized layout, and baseline design paradigms.

A. Average Latency

1) TPC-H workload: In our study of TPC-H queries and
their resource usage, we draw upon insights from previous re-
search [10] to categorize these queries based on their resource
intensity, as detailed in Table I. Specifically, we distinguish

Authorized licensed use limited to: Northeastern University. Downloaded on May 11,2025 at 00:45:31 UTC from IEEE Xplore. Restrictions apply.

Fig. 2: TPC-H query latency for near data processing, opti-
mized layout, and baseline with relative improvement.

Fig. 3: TPC-H query latency for near data processing, opti-
mized layout, and baseline start from 50%, 75%, and 100%
available CPU capacity at the client node.

between CPU-intensive queries, which typically involve sort-
ing and filtering operations, and I/O-intensive queries, which
primarily require the loading of large datasets into memory
or the execution of operations across multiple datasets, such
as joins. Notably, certain queries, like Q14, and Q20, exhibit
dual characteristics, showing both CPU and I/O intensity.

To assess the enhancement in the performance of near data
processing and optimized layout system over the baseline, we
also introduce a metric termed relative improvement, defined
by Formula 1. Relative improvement denoted as IRelative,
quantifies the disparity between the average latency of the
baseline Lbaseline and the average latency of each platform,
Lplatform. It is computed as the difference between the baseline
average latency and the average latency of each platform,
divided by the baseline average latency.

IRelative =
Lbaseline − Lplatform

Lbaseline
(1)

Our comparative analysis of selected queries under the near-
data processing, optimized layout system, and baseline ap-
proaches reveals varying performance outcomes. As illustrated

TABLE I: TPC-H query classfication
I/O Intensive CPU intensive

Query Number Q10, Q19, Q20, Q14 Q6, Q22, Q20, Q14
Workload Size (MB) 581MB, 518MB, 518MB, 449MB 115MB, 141MB, 518MB, 449MB

in Fig. 2, the latency of the mixed-intensity queries (e.g., Q14
and Q20 in Table I) is lower with near-data processing com-
pared to both the optimized layout system and the baseline.
This suggests that near-data processing is particularly advan-
tageous for CPU and I/O-intensive workloads. By offloading
computation to storage nodes, near-data processing reduces
unnecessary data movement and alleviates CPU bottlenecks
on client nodes.

Furthermore, for I/O-intensive workloads (e.g., Q10 and
Q19), near-data processing shows better relative improvement
compared to the optimized layout system, shown in Fig. 2.
Even though these are I/O-intensive, they still consume some
CPU resources. Near data processing offloads computation to
the storage node, benefiting the client node. In the case of
CPU-intensive workloads (e.g., Q6 and Q22), the advantages
of near-data processing should be even more pronounced.
However, the optimized layout system achieves better im-
provements for specific queries like Q6 and Q22 than near-data
processing. The reason is that the total workload for these
queries is relatively small, and near-data processing incurs
overheads from serialization/deserialization [3], which reduces
its effectiveness.

To closely simulate the behavior of client nodes in real-
world systems, which often manage multiple workloads con-
currently, we utilize FIO [11], a versatile I/O testing tool,
to generate additional I/O workloads tailored to our needs.
Specifically, we configure FIO to intensify I/O operations
while keeping available CPU capacity at predefined levels. Our
targets are 75% and 50% available CPU capacity, achieved
through FIO’s random write workload. Preliminary tests indi-
cate that executing a 1GB random write operation with FIO
allows the client node to reach 75% available CPU capacity,
while a 5GB operation results in approximately 50% available
CPU capacity.

Fig. 3 depicts the average latency of two CPU-intensive
queries (i.e., Q6 and Q22) at these CPU capacity levels for a
client node engaged in near-data processing, optimized layout
system, and baseline scenarios. These figures show that near-
data processing performance improves with increased client
node workload. For example, as shown in Fig. 3, in scenarios
with 50% available CPU capacity, near-data processing ex-
hibits a superior improvement of the optimized layout system.
This advantage is because, at 50% available CPU capacity,
the client node processes a heavier workload, whereas the
optimized layout system still relies on the local CPU for
computations. In contrast, near-data processing offloads tasks
to the storage node, thereby alleviating the local node’s CPU
load and enhancing overall system performance. However,
at 75% available CPU capacity, the optimized layout system
shows better improvement than near-data processing for query
Q22. Our analysis reveals that although Q22 involves joining
two tables, each table’s size is manageable. Thus, even at

Authorized licensed use limited to: Northeastern University. Downloaded on May 11,2025 at 00:45:31 UTC from IEEE Xplore. Restrictions apply.

Fig. 4: Latency of K-Means across various sample sizes for near-data processing, optimized layout, and baseline scenarios,
initiated at 100%, 75%, and 50% available CPU capacity at the client node. The number of clusters is set as 10.

Fig. 5: Latency of K-Means across different cluster sizes for near-data processing, optimized layout, and baseline scenarios,
start from 100%, 75%, and 50% available CPU capacity at the client node. The sample size is 100K.

75% available CPU capacity, the optimized layout system
outperforms near-data processing.

2) K-means workload: We further conduct experiments to
explore the sensitivity of input data size and the number of
clusters for the K-means algorithm. We compare the perfor-
mance of K-means clustering across different available CPU
capacity start levels (e.g., 100%, 75%, and 50%) at the client
node for near data processing, optimized layout system, and
the baseline. In this set of experiments, we set the number
of clusters as 10 and change the number of data samples
ranging from 10K to 1000K. Fig. 4 illustrates the average
latency of K-means under near data processing, optimized
layout system and the baseline. We obverse that when the
client node starts with 100% available CPU capacity, the
optimized layout system outperforms near-data processing and
the baseline. This is because the optimized layout system
provides efficient memory allocation and management for
hardware architectures, thereby minimizing memory fragmen-
tation and overhead. However, as we employ FIO to increase
workload thereby decreasing the CPU capacity of the client
node and increasing workload size, the advantages of near-data
processing become increasingly apparent.

In another series of experiments, we set the sample size
to 100K and vary the cluster size from 10 to 100. Fig.
5 shows the average latency of K-means under near-data
processing, optimized layout system, and the baseline. We
observe that when the cluster size is set to 50 and 100, the per-

formance of near-data processing outperforms the optimized
layout system and the baseline. This phenomenon arises from
the fact that an increase in cluster size results in a greater
number of cluster centers that must be initialized, updated, and
optimized throughout the iterative process of the algorithm.
Consequently, the computational complexity of the K-means
algorithm escalates with the number of clusters. Additionally, a
larger cluster value entails the calculation of distances between
data points and cluster centers for a larger number of clusters,
further augmenting the computational load.

Referring to Formula 1, we determine the improvement for
near-data processing and optimized layout system based on
K-means, as shown in Table II. It is evident that when the
cluster size equals 10, there is less computational demand for
K-means, resulting in better improvement for the optimized
layout system compared to near-data processing. However,
as the cluster size increases, the computational intensity of
the system escalates. At this juncture, near-data processing
exhibits a superior relative improvement over the optimized
layout system. Thus, near-data processing emerges as the
preferred approach for large-scale data computation. By of-
floading computational operations to the storage node, near-
data processing alleviates workload and CPU bottlenecks on
the client node, and reduces data movement.

B. CPU Utilization

Fig. 6 depicts the CPU utilization over time at both the
client and the storage nodes during the execution of TPC-H

Authorized licensed use limited to: Northeastern University. Downloaded on May 11,2025 at 00:45:31 UTC from IEEE Xplore. Restrictions apply.

Fig. 6: CPU utilization under near-data processing, optimized layout system, and the baseline. The red line shows the CPU
utilization of the storage node, and the blue line shows the CPU utilization of the client node.

TABLE II: The improvement of near data processing and
optimized layout system compared with baseline for k means

Method
Near data processing improvement Optimized layout improvement

100% 75% 50% 100% 75% 50%

k-means

Cluster = 10

Sample = 10k 60% 54.5% 45% 70% 64% 25%
Sample = 50k 50% 45% 50% 58% 55% 42%
Sample = 100k 50% 67% 42% 57% 47% 30%

Sample = 1000k 12.5% 26% 17% 14.5% 17% 9%

Sample=100k

Cluster = 10 40% 41% 47% 60% 46% 41%
Cluster = 50 20% 21% 21% 21% 19% 9%
Cluster = 100 16% 13% 17% 10% 9% 11%

queries on a cluster with 4 nodes. We utilize Dstat [12] to
monitor and record the CPU utilization.

We observe that the TPC-H [5] queries nearly exhaust
the client node’s CPU resources. Even in the case of an
optimized layout system platform, the TPC-H [5] queries strain
up to 80% of the available resources. This scenario implies
that the client node would be incapable of undertaking any
additional processing work, resulting in a bottleneck in query
performance due to the client node’s CPU limitations.

Conversely, in the near-data processing platform, ample
CPU resources remain available at the client node. This
disparity arises because near-data processing offloads tasks
to the storage node for processing, thereby minimizing data
movement. Consequently, with an abundance of CPU re-
sources on the client side, it becomes feasible to launch more
asynchronous threads to enhance parallelism or to allocate the
client node to other processing tasks.

V. CONCLUSION

In this paper, we present an extensive case study on the
performance of near-data processing using Skyhook [3]. By
integrating the TPC-H and K-means clustering algorithms,
we explored CPU-intensive and I/O-intensive tasks and in-
vestigated how K-means clustering can be integrated into
SQL environments to offload computational burdens to storage
nodes through a near-data processing system. Furthermore,
we introduced the use of the FIO tool to simulate real-world
system workloads, enabling the measurement of key perfor-
mance metrics such as average latency and relative improve-
ment across various processing approaches: traditional local
processing, the optimized layout system, and near-data pro-
cessing. Our comprehensive performance evaluation revealed
distinct advantages of near data processing and optimized

layout over traditional processing methods, particularly in han-
dling large-scale data sets by minimizing data movement. Our
research advances the understanding of optimizing distributed
data systems in the era of big data and suggests potential
avenues for further enhancing data processing efficiency in
future studies.

ACKNOWLEDGMENTS

This work was partially supported by National Science
Foundation Award CNS-2008072.

This research is partly supported by the U.S. Department of
Energy (DOE) through the Office of Advanced Scientific Com-
puting Research’s “Advanced Memory to Support Artificial
Intelligence for Science” and “Orchestration for Distributed
& Data-Intensive Scientific Exploration”.

REFERENCES

[1] Zaharia, Matei, et al. ”Spark: Cluster computing with working sets.” 2nd
USENIX Workshop on Hot Topics in Cloud Computing (HotCloud 10).
2010.

[2] White, Tom. Hadoop: The definitive guide.” O’Reilly Media, Inc.”,2012.
[3] https://arrow.apache.org/blog/2022/01/31/skyhook-bringing-

computation-to-storage-with-apache-arrow/
[4] https://docs.ceph.com/en/reef/
[5] Dreseler, Markus, et al. ”Quantifying TPC-H choke points and their

optimizations.” Proceedings of the VLDB Endowment 13.8 (2020):
1206-1220.

[6] Kodinariya, Trupti M., and Prashant R. Makwana. ”Review on determin-
ing number of Cluster in K-Means Clustering.” International Journal 1.6
(2013): 90-95.

[7] Vohra, Deepak, and Deepak Vohra. ”Apache parquet.” Practical Hadoop
Ecosystem: A Definitive Guide to Hadoop-Related Frameworks and
Tools (2016): 325-335.

[8] Raasveldt, Mark, and Hannes Mühleisen. ”Duckdb: an embeddable
analytical database.” Proceedings of the 2019 International Conference
on Management of Data. 2019.

[9] https://scikit-learn.org/stable/modules/generated/
sklearn.datasets.make blobs.html

[10] Hou, S., & Kong, Z. (2024). FedLDCS: Adaptive Divergence-Based
Client Selection for Federated Learning. In FedKDD: International Joint
Workshop on Federated Learning for Data Mining and Graph Analytics.

[11] https://github.com/axboe/fio
[12] https://linux.die.net/man/1/dstat
[13] Raasveldt, Mark, and Hannes Mühleisen. ”Duckdb: an embeddable

analytical database.” Proceedings of the 2019 International Conference
on Management of Data. 2019.

[14] Weil, Sage, et al. ”Ceph: A scalable, high-performance distributed file
system.” Proceedings of the 7th Conference on Operating Systems
Design and Implementation (OSDI’06). 2006.

Authorized licensed use limited to: Northeastern University. Downloaded on May 11,2025 at 00:45:31 UTC from IEEE Xplore. Restrictions apply.

