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Abstract—Federated learning (FL) is a distributed paradigm
that enables multiple clients or edge devices to collaboratively
train a model without sharing their local data. The FL system
has to tackle a significant challenge due to the non-IID nature of
client data. Traditional methods of client selection usually suffer
from the problem of variable test accuracies as well as slow
convergence because of their incapability in effectively handle
data heterogeneity across clients. In this paper, we propose an
Adaptive Homogeneity-Based Client Selection Policy (ASTraFL)
to address this challenge. ASTraFL dynamically selects clients
whose data distributions optimally complement the current state
of the global model, focusing on increased homogeneity of the
selected client data in each training round. Our experiments
demonstrate that ASTraFL can accelerate convergence speed and
ensure the learning process’s robustness.

Index Terms—federated learning, client selection, homogeneity,
robustness, non-I1ID

I. INTRODUCTION

In recent years, federated learning (FL) has emerged as a
prominent decentralized machine learning paradigm, enabling
multiple parties to collaboratively train models without sharing
their local data [1]-[3]. This approach not only preserves data
privacy and security but also utilizes distributed computational
resources efficiently. Recent advancements in FL research
have focused on enhancing model accuracy, communication
efficiency, and data security. Techniques such as model ag-
gregation algorithms, optimized communication protocols, and
differential privacy have propelled federated learning to the
forefront of applicable solutions in areas requiring stringent
data confidentiality and efficiency, including healthcare, fi-
nance [4] and telecommunications [5], heralding a new era
of privacy-preserving, decentralized artificial intelligence.

One of the fundamental challenges in FL is the non-
Independent and Identically Distributed (non-IID) nature of
data across different clients [6], [7]. In practical scenarios,
the data collected by each client can vary significantly in
terms of distribution, quantity, and quality, leading to skewed
datasets. This heterogeneity poses significant challenges in
model training, as algorithms designed for IID data often
perform poorly on non-IID data [8], resulting in biased models
that favor certain data distributions over others. Addressing the
non-IID data challenge in FL has spurred the development
of innovative strategies, as highlighted in recent research.
Client selection mechanisms, such as those proposed by [9]-
[11], aim to enhance model training by optimizing client
participation based on data distribution and computational
capabilities. Techniques to combat data skewness include data
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augmentation methods [12], which diversify training datasets
across clients using cropping, rotation, and flipping to improve
model robustness. Specialized model aggregation methods,
like FedShare [13] and SkewScout [14], focus on adjusting
model updates to better accommodate the variance in data
distributions. Additionally, efforts [15], [16] to ensure fairness
and reduce bias in federated models emphasize equitable re-
source allocation and model performance across diverse client
data. These strategies collectively address the complexities of
training accurate and fair models in the inherently heteroge-
neous environments characteristic of federated learning.

Traditional client selection methods in FL have primarily re-
lied on either random selection [2], [17] or strategies that target
specific metrics such as data volume or loss magnitudes [18],
[19]. Some studies have explored the importance of sampling
to improve the learning process by prioritizing updates from
more influential clients. For instance, [20] utilizes metrics like
larger gradient norms and defines an upper bound for selected
samples, aiming to accelerate convergence by optimally bal-
ancing communication resources and data selection. However,
these methods often neglect the underlying data distribution
patterns across clients, leading to inconsistent test accuracies
and inefficient learning processes.

To address this issue, this paper introduces an Adap-
tive Homogeneity-Based Client Selection Policy (ASTraFL),
which significantly diverges from conventional strategies by
dynamically learning and adapting to the selection pattern that
best aligns with the global model’s needs. Our new method
considers not only the quantity of data at each client but also
the representativeness of the overall dataset, thus addressing
the challenge of non-IID data more effectively.

Our contributions are summarized as follows:

« We propose a novel client selection approach that adapts
to the inherent data distribution characteristics of each
client, promoting faster convergence and more robust
model training.

o Our approach, ASTraFL, builds upon traditional selection
patterns and further incorporates real-time data homo-
geneity analysis, enabling a more informed and strategic
selection process.

e« We conduct extensive experiments to show that our
approach outperforms existing methods, achieving higher
accuracy and more stable convergence across a variety of
non-IID settings.
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e Our study provides insights into the effectiveness of
adaptive selection strategies in federated learning, offer-
ing a solution for more efficient selection methods in
heterogeneous data environments.

In the remainder of this paper, we introduce the background
and motivation in Sec. II. We present the detailed selection
policy and the algorithms of ASTraFL in Sec. III. Sec. IV
evaluates ASTraFL across different non-IID data settings and
Sec. V presents the conclusion and future work.

II. MOTIVATION

Federated learning inherently presents a unique set of chal-
lenges when it comes to selecting clients to participate in
model training, particularly in scenarios with non-IID data
distributions. Traditional methods such as random selection or
focusing on high-loss clients often yield inconsistent results.
Our study, conducted with a simple CNN model using the
CIFAR-10 dataset across 12 clients under various conditions,
provides insights into the selection behaviors of these methods.

Specifically, we use the CIFAR-10 dataset distributed under
different Dirichlet distributions (i.e., non-IID datasets) and a
uniform distribution (i.e., IID datasets) to evaluate different
client selection strategies. For example, Figure 1 depicts the
label distributions of the datasets with (a) a uniform distribu-
tion (denoted as If), (b) a Dirichlet distribution with 5 = 0.5 !;
and (c) a mixed Dirichlet distribution with different values of
B3, (denoted as 8*). In the mixed case, we set one third of
the clients with S equal to 0.1, 0.4, and 0.9. We can observe
that different data distributions can influence the availability
of labels per client, thus affecting client selection strategies.

We then conduct the following three traditional client selec-
tion strategies on the datasets with different data distributions:
(1) Random - Clients are chosen at random for each round
of the learning process; (2) High Loss - Clients with the
highest training loss are prioritized; and (3) Cluster - Clients
are grouped based on the similarity of their data distributions
and then representatives from each cluster are selected. The
selection ratio is 50%. These traditional strategies will also be
used as the baselines for the comparisons in our evaluation.
Table I shows the testing accuracies (including min, max,
and average) and the corresponding standard deviations under
various client selection policies. Figure 2 illustrates the con-
vergence of testing accuracies across different communication
rounds and Figure 3 shows the selected client distributions
when we have the mixed Dirichlet distribution 5*.

As shown in Table I and Figure 2, the High Loss method
performs better than Random under a uniform distribution,
as the equal distribution of labels allows this method to
effectively enhance learning in each training round. However,
under non-uniform distributions such as 5 = 0.5 and g%,
where label distribution is skewed, the efficacy of High Loss
diminishes because prioritizing high-loss clients under skewed

IThe 8 value in a Dirichlet distribution controls the concentration of data
across different categories. A 8 value (close to 1) typically indicates uniform
distribution and more balanced data, while a 3 closer to 0 leads to extreme
values, making the data more sparse and skewed.

distributions may not optimally contribute to model learning
due to the uneven representation of labels. In contrast, the
Cluster method outperforms High Loss and achieves similar
results to Ramdom but with less variance, indicating better
stability and robustness. Particularly in the mixed and chal-
lenging case of 3%, Cluster selects representative clients from
each cluster to ensure a balanced contribution from various
data distributions, see Figure 3c. These observations highlight
the challenges associated with mixed Dirichlet distributions,
which can exacerbate training difficulties and increase test
accuracy variance. Our research thus focuses on this challenge
case to identify optimal solution under various data distribu-

tions.
TABLE I: Performance metrics across different distributions
and policies.

Distribution Policy Min Acc Max Ace Avg Ace Std (x1073)
Random  63.25 64.63  64.12 3.02
u High Loss  64.66 65.83 6529 1 3.69 1
Cluster 64.65 65.40  65.12 | 2.03 )
Random  57.72 6226  60.19 11.67
B =0.5 HighLoss 55.83 60.54 5836 | 13.231
Cluster 58.93 61.27  60.65 T 759 )
Random  51.54 61.15 5791 22.19
B* High Loss  50.35 58.61 5358 ) 22.47 1
Cluster 53.46 61.36 58511 2497

III. DESIGN OF ASTRAFL

In this section, we present the design of our new client
selection policy, named ASTraFL. The goal of ASTraFL
is to effectively address the challenge of non-IID datasets,
particularly with mixed Dirichlet distributions across different

clients.
TABLE II: Summary of Notations

Symbol | Description

K; Cluster j, where j is the cluster number.

Hy Average homogeneity of cluster K.
¢; | Client .

D; Client ¢;’s dataset.

he; Homogeneity measure for client ¢; by H(D;).
é Homogeneity threshold.

Fr Ratio of the total homogeneity within the cluster

K to the total homogeneity across all clients.

N Total number of available clients.

Ng Total number of clients selected for training.
P Selection percentage.

Ngj Number of clients selected from cluster K.

A. Problem Formulation

Consider a federated learning system consisting of a central
server and a set of N clients, each possessing its own local
dataset D;. The objective is to construct a global model M
with parameters 6, using locally computed updates to minimize
a global loss function £(6). The challenge lies in selecting
client updates that can improve the overall performance of
the model, especially in the presence of data heterogeneity.
Table II summarizes the key notations used in this paper.
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Fig. 2: Test accuracy under different data distributions.
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Fig. 3: Patterns of different selection methods under 3*.

B. Client Selection Policy - ASTraFL

In ASTraFL, each client is assessed based on three key
metrics: Negative Log-Likelihood (NLL) homogeneity, loss
rate, and content diversity of the dataset. NLL. Homogeneity:
This metric indicates the degree to which the local model
aligns with the data from a client. Loss Rate: This metric
reveals the rate at which the local model’s loss is decreasing,
providing insights into the client’s learning efficiency. Content
Diversity: This metric [21] evaluates the diversity within a
client’s dataset. A higher content diversity indicates that the
model learns more generalizable features applicable across
various domains. These three metrics are computed for each
client in every communication round.

C. Loss Function

The loss function for each client aims to capture both the
model’s fit to the client’s data and the homogeneity of this data
in relation to the global dataset. It is expressed as follows:

L(6) = NLL(6; D;) + A - H(D;), )]

where NLL(6; D;) represents the Negative Log-Likelihood of
the model parameters 6 given the client’s dataset D;, reflecting
how well the model fits. (D;) quantifies the homogeneity of
the client’s dataset in relation to the global data distribution,
and ) is a regularization parameter used to balance these two
terms.

D. NLL Computation
The NLL for a client ¢; is defined to evaluate the model’s
fit to the client’s specific data distribution, given by:

NLL,, (0) = — > logpy(yl),
xz€D;

@)

where D; represents the dataset of client ¢;, x are the data
points, y are the corresponding labels, and py is the model’s
probability output parameterized by 6.
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E. Adaptive Selection Based on Homogeneity

Within a cluster K;, we define the average homogeneity as:

HKj = Ki| Z hcm

| J cieKj

3)

1
where h., measures the homogeneity of client ¢;’s data 2
characteristics. We also introduce a metric F, to evaluate 3
the significance of each cluster K; to the network’s overall 4
homogeneity. It is defined as the ratio of the total homogeneity s
within the cluster to the total homogeneity across all clients
in each communication round:

Zci eK; h’Ci 6

Fg, = “4)

! Zci EN hCi

Fk, plays as a critical role in determining the selection priority
of clusters for update aggregation into the global model. 7
Specifically, clusters with higher F, values, indicating a g
larger share of the network’s total homogeneity, are prioritized o
in the selection process, e.g., more clients can be selected from1o
such clusters. 11

Additionally, the selection criterion S(K;) for each clusteri2
K is updated based on its individual homogeneity metric H,
as follows:

high loss selection if Hx, >0,
S(K;) = { '

o : : ®)
content diversity selection otherwise.

Here, § is defined as the homogeneity threshold. This strategy
ensures that updates from clusters that exceed ¢ and also1s
represent a significant portion of the network’s homogeneity14
are prioritized by selecting clients with higher loss rates.1s
Conversely, clients with higher content diversity will be chosenie
from the clusters with less homogeneity, aiming to improve
training accuracy.

F. Algorithm Overview 17

The overview of ASTraFL is presented in Algorithm 1.
This algorithm iterates through communication rounds, where
each round involves computing three key metrics (i.e., NLL
homogeneity, loss rate, and content diversity) for each client,
applying adaptive selection schemes to each cluster, selecting
client updates, and aggregating them into the global model.
This process ensures efficient and effective training of the
global model, utilizing the inherent heterogeneity of data
across clients to enhance overall performance.

1V. EVALUATION
A. Experimental Setup

Our evaluation framework is implemented on IBM’s Fed-
erated Learning IBMFL) [22] platform, leveraging a power-
ful computational environment equipped with four NVIDIA
GeForce GTX 1080 Ti GPUs. To benchmark the performance
of federated learning models, particularly their effectiveness
against non-IID data distribution, we use CIFAR-10 as the
dataset to generate various non-IID data distribution scenarios.

Algorithm 1 ASTraFL- Adaptive Homogeneity-Based Client
Selection Policy Overview
Input: Initialize federated learning system with clients N with
datasets D = {D;, Ds,...,Dn}
Output: Selected clients S = {S7,5,,..
foreach communication round do
foreach client ¢; € N do
‘ Compute h.,, loss rate, and content diversity
end
Group clients into clusters {K;, Ko, .
cosine similarity
foreach cluster K; do
Compute average homogeneity metric H,

., Sng}

.., K;} based on

Compute selected numbers N é( 7 as described in
Algorithm 2
if Hx, > ¢ then
| Apply high loss selection policy to K
else
‘ Apply content diversity selection policy to K
end

end

end

Algorithm 2 Compute Cluster Client Selection Numbers

Input: Set of clusters {K4, K>, ..., K;}, homogeneity mea-
sures {h., } for all clients ¢;, Selection Percentage P,
N
Output: Number of clients selected from each cluster N é( g
foreach cluster K; do
Calculate average homogeneity Hy, across all clients
Compute fraction Fg; for cluster K
Calculate number of clients to select:

Ng? = [Fg, x N x P]

end

Two neural networks are chosen in the evaluation: (1) Conv-
3 model that consists of three convolutional layers with 32,
64, and 128 filters, each of size 3x3 followed by a 2x2
max-pooling layer, and concludes with a flattening layer, two
dense layers with 256 and 128 neurons, respectively, and an
output layer with softmax activation to classify the classes;
and (2) ResNet-20 model that is based on the ResNet architec-
ture, known for its effectiveness in image classification tasks.
Specifically, ResNet-20 variant comprises residual blocks with
20 layers.

B. Workload Design

To thoroughly test the models’ capabilities and simulate
real-world scenarios, we design four distinct workloads in-
volving 12 clients each, where every client exclusively draws
2000 samples from the CIFAR-10 dataset:

e WI1: This workload involves clients with data distribu-
tions represented by S* = [0.1,0.4,0.5,0.8], distributed
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evenly with a ratio of 3:3:3:3. It serves as a baseline to
assess model performance under balanced data distribu-
tions.

o W2: In this workload, the data distributions remain the
same as in W1 (8* = [0.1,0.4,0.5,0.8]), but with a
skewed ratio of 1:5:5:1. This workload tests the robust-
ness of models under scenarios where certain classes
dominate the dataset.

e W3: The data distributions are adjusted to [* =
[0.5,0.6,0.7,0.8], maintaining an even ratio of 3:3:3:3.
The focus is on introducing higher diversity within similar
distributions.

o W4: This workload has the data distribution with lower
B* =10.1,0.2,0.3,0.4] with a balanced ratio of 3:3:3:3.
It aims to explore the impact of lesser variability among
lower 8 values on model performance.

These workloads are designed to cover a wide range of
potential uncertainties in data distribution encountered by local
clients. By incorporating variations in skewness, diversity, and
variability, these workloads enable a comprehensive evaluation
of the adaptability and performance of the models in the
diversified federated environment.

C. Results

Tables III and IV provide a summary of the test accuracy
results obtained from different workload scenarios for Conv-3
and ResNet-20, respectively. Figure 4 shows the runtime test
accuracies under four selection policies for Conv-3. Notably, in
scenario W1, our method obtains the highest average accuracy
compared to other methods. This outcome can be attributed to
our strategic approach, which prioritizes the selection of more
homogeneous clients (8-11), moderately selects clients (4-7),
and minimizes selection from highly biased clients (0-3). The
corresponding client selections of ASTraFL can be observed
in Figure 5a.

When a workload, such as W2, contains certain classes
dominating the dataset, our selection pattern prioritizes clients
with data distribution of 5 = 0.4 and S = 0.5, see Figure 5b.
This methodological preference assures that the data from the
major distributions are embraced in training our model. By
focusing on these dominant distributions, ASTraFL improves
the model’s ability to effectively capture and learn from the
most prevalent classes in the dataset.

In W3, where an even ratio with high 3 indicates less bias in
the data distributions, we observe a balanced selection across
all 3 values, see Figure 5c. This balanced selection ensures
that contributions are made across the entire range of data
distributions, enhancing the overall robustness and accuracy of
the model. As shown in Table III, higher accuracy and lower
variance are obtained under all policies compared to W1 and
W2 and ASTraFL again achieves the best test accuracy under
this workload.

W4, on the other hand, has the most biased data distri-
butions. In Table III, we observe the lowest accuracies and
the highest standard deviations of accuracy under all three
baselines (i.e., Random, High Loss and Cluster). However, our

approach remains competitive despite this fact, as illustrated in
Figure 4d. Meanwhile, our selection method optimizes toward
content diversity, effectively seeking informative clients and
further improving learning from a broader representation of
the class, even in scenarios with biased data distributions.
Finally, in Figure 6 we plot the heatmap of optimal cluster
numbers by ASTraFL under W1, where the left y-axis shows
communication rounds and the heat value indicates different
numbers of clusters. For example, we have five clusters at
round 2, but only two clusters at round 48. Compared to
traditional clustering approaches, Figure 6 illustrates how
the dynamic adaptation of ASTraFL enables continuous fine-
tuning of the model. This adaptability ensures its ability to
adapt to evolving data insights, thus confirming the effective-
ness of our approach in addressing increasingly diverse and
challenging environments in federated learning.
TABLE III: Performance metrics across different distributions
and policies for Conv-3.

Workload Policy Min Acc Max Acc Avg Acc Std (X 1073)

Random 5097  58.63  54.59 20.66
W High Loss 4938  54.57 52770 16.19)
1 Cluster ~ 47.68  57.09  52.87) 21521
ASTraFL  52.85  59.67  57.32% 18.09),
Random  52.68 5785 5554 14.32
W High Loss  53.15 5679  54.65) 10.104,
2 Cluster ~ 52.89 5874  56.141 174 1
ASTraFL 5480  59.70  57.991 12.68
Random 5686  60.69  59.32 9.79
W High Loss 57.64  59.61  58.58 549
3 Cluster 5935  61.69  60.531 6.80)
ASTraFL  60.99  63.84  62.6171 8.67)
Random 4162 5507  50.08 33.55
W High Loss 4123 53.00  49.03) 26.96]
4 Cluster ~ 4387 5533 51411 27770
ASTraFL 4647 5851 54207 33.12)

TABLE IV: Performance metrics across different distributions
and policies for ResNet-20.
Workload Policy Min Acc Max Acc Avg Ace Std (x1073)

Random 25.38 50.47 40.84 70.45
W High Loss 30.94 53.73 43.8271 60.03]
1 Cluster 19.74 50.44 39.120 67.117
ASTraFL  41.54 59.16 48.071 47.02)

V. CONCLUSION

This paper introduces ASTraFL, a novel client selection
approach designed to address the challenges associated with
both IID and non-IID data distributions. By intelligently
selecting clients based on data homogeneity, ASTraFL is able
to enhance coherence and relevance in updates aggregation
during model training and thus achieves higher test accuracies
than traditional strategies under various data distributions.In
the future, we will explore scaling up the number of clients
to assess the robustness and efficiency of our policy across an
even broader and more diverse data landscape.
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