2024 International Symposium on Networks, Computers and Communications (ISNCC) | 979-8-3503-6491-0/24/$31.00 ©2024 |EEE | DOI: 10.1109/ISNCC62547.2024.10759023

Uncovering The Impact of Bursty Workloads on
System Performance in Serverless Computing

Li Wang, Shiyue Hou, Yiming Xie, Ningfang Mi
Department of Electrical and Computer Engineering, Northeastern University, Boston, USA

Abstract—Serverless computing has emerged as a rapidly
evolving paradigm within cloud services. Understanding the
diverse arrival patterns of bursty serverless workload and their
impact on performance and cost within serverless platforms is
paramount. To the best of our knowledge, our study represents
the first comprehensive analysis of observed bursty serverless
workload characteristics, uncovering both anticipated and unex-
pected findings that illuminate the intricate interactions among
workload characteristics, serverless platforms, and the associated
performance-cost trade-offs. Through this analysis, we aim to
furnish data-driven insights to serverless cloud providers, system
administrators, and application developers, offering guidance on
navigating the performance-cost trade-offs and potential pitfalls
with various bursty workload arrival patterns in the realm of
serverless computing.

I. INTRODUCTION

Motivation. Understanding bursty serverless workload char-
acteristics and arrival patterns and developing a robust per-
formance evaluation methodology are both crucial and time-
sensitive to effectively address the challenges present in het-
erogeneous serverless environments. Serverless applications
are known for their short-lived and stateless nature. Appli-
cation developers prioritize cost-efficiency and liberation from
complex system configurations, resource management, and the
intricacies of developing models for efficient scheduling and
load-balancing algorithms. Cloud providers face significant
challenges in aiming to offer compatible serverless computing
services: determining the timing window and approach for
keeping containers warm to mitigate the famous cold-start
issues, while aligning with the applications workload charac-
teristics, as it can be costly to maintain containers continuously
active; identifying the key metrics essential for evaluating
performance in serverless computing environments; striking
a balance between resource provisioning and optimizing per-
formance to achieve desired operational efficiency.

Numerous endeavors [1], [2], [3], [4] [5], [6], [7], [8] are un-
derway to uncover the characteristics of serverless workloads
and to establish effective performance evaluation methodolo-
gies to tackle the aforementioned challenges. However, these
existing works encounter several limitations. Firstly, there lack
of comprehensive insights into bursty serverless workload
arrival patterns. The intricacies of bursty serverless workload
arrival patterns remain largely elusive, as much of the available
data is tailored for specific purposes, such as testing proposed
scheduling algorithms [1], [2], [3]. Secondly, there is a notable
absence of dedicated bursty workload generators designed to

Copyright: 979-8-3503-6491-0/24/$31.00 ©2024 1IEEE

produce tailored serverless workloads emulating real-world
distributions, hindering the ability to accurately replicate real-
world scenarios. Thirdly, existing evaluations primarily focus
on simplistic performance metrics such as latency for cold-
start, overlooking comprehensive analyses of resource utiliza-
tion, platform configurations, and end-to-end latency [4] [5].
Fourthly, existing serverless benchmark suites [5], [6], [7], [8]
often feature simple serverless applications, failing to capture
the complexity and diversity of bursty workload arrival pat-
terns and characteristics and conduct limited emulations to
simulate various levels of burstiness in serverless computing.

Contributions. To the best of our knowledge, this is the
first experimental study that characterizes various customized
bursty serverless workload arrival patterns and offers a com-
prehensive evaluation of system configurations, performance,
resource utilization, and aligning with various bursty server-
less workload distributions. In particular, we build a tailored
architecture that addresses the challenges of creating specific
serverless workloads with burstiness and evaluating perfor-
mance using various metrics. We conduct an experimental
study on the open-source OpenWhisk [9] serverless platform
to quantify and characterize various bursty serverless workload
arrival patterns with different resource configurations. All
the experiments are carried out using OpenWhisk which is
installed on Ubuntu 18.04.2 LTS server, equipped with 24 CPU
cores.

Our study reveals that bursty serverless workloads with
varying arrival patterns show significant differences in per-
formance and resource utilization on the serverless platform.
These variations depend on system resource configurations,
including CPU and memory usage, end-to-end latency, and
container-related settings. Specifically, these settings encom-
pass the maximum number of containers per invoker worker
node, the query limit for a collection of list operations against
OpenWhisk, and aspects of the container life cycle, such as
idle duration, pause grace period, and keep-alive duration for
individual containers. One of the surprising revelations of
our study is that if there are no resource constraints, bursty
workloads lead to fewer cold starts, shorter average function
execution times, and reduced CPU and memory allocations in
serverless computing environments.

II. BACKGROUND
A. Serverless Workloads Arrival Patterns

Serverless workloads are renowned for their transient nature
and stateless characteristics. Serverless applications can be

Authorized licensed use limited to: Northeastern University. Downloaded on May 11,2025 at 00:47:38 UTC from IEEE Xplore. Restrictions apply.

invoked either on-demand or be scheduled following specific
inter-arrival time (IAT) distributions. The main statistics to
represent a specific arrival pattern (i.e., IAT) include the
mean (1), standard deviation (STD, o), cumulative distributed
function (CDF), and auto-correlation function (ACF).

Burstiness. A bursty workload pattern is characterized by
alternating periods of intense activity followed by relative
calm. These patterns exhibit abrupt spikes in workload arrival,
followed by intervals of reduced activity. Burstiness can be
quantified using ACF [10], a widely used tool in time series
analysis for identifying bursty workload arrival patterns. (1)
ACF=1 represents a perfect positive correlation between the
time series and its lagged counterpart. (2) ACF=-1 denotes a
perfect negative correlation. (3) ACF=0 indicates there is no
correlation between the time series.

B. Cold Start

In serverless computing, a cold start [1] refers to the initial
delay that occurs when a cloud provider must initialize a new
instance of a serverless function in response to an incoming
request. When a serverless function is invoked, the cloud
provider needs to allocate resources, such as a container
or virtual machine, to run the function. If no instance of
the function is currently running, the provider must allocate
resources and initialize the environment.

A cold start can occur during the first invocation of an
application, when existing function instances are insufficient
to handle incoming requests, or after a predefined period
of container inactivity. Cold starts are an inherent aspect of
serverless computing, affecting the performance of serverless
applications, especially those with stringent latency require-
ments. Various strategies can help mitigate the frequency and
impact of cold starts. Some cloud providers offer options to
keep a specified number of function instances always warm
by adjusting the keep-alive window, idle duration, and pause
grace period of containers.

C. OpenWhisk

OpenWhisk is built up on Nginx, Kafka, CouchDB, and
Docker containers [9]. The process flow of an action invoca-
tion in OpenWhisk is shown in Fig. 1. Commands issued via
the wsk command-line interface (CLI) [11] are translated into
HTTP requests directed towards the system. (1) These requests
are first intercepted by Nginx, a server responsible for forward-
ing HTTP requests to the controller. The controller, developed
in Scala [12], hosts a REST API interface, facilitating user in-
teractions. Upon receipt of a request, the controller initiates an
HTTP POST request to invoke the desired action. (2) Authen-
tication and authorization processes are then completed with
the assistance of CouchDB, following which the controller
retrieves the eligible action from the CouchDB repository.
Within the controller, a load balancer assesses the availability
and health status of all invokers within the OpenWhisk system.
(3) Communication between the controller and invokers is
exclusively orchestrated through the Kafka message queuing
system. (4) Upon receiving a message from the controller

that contains the action to invoke and associated parameters,
Kafka assigns an Activationld to the action and dispatches the
message to an available invoker. (5) The invoker, one of the
core components of OpenWhisk, executes actions within self-
encapsulated and secure environments, facilitated by Docker
containers. Each action is executed within its designated
container, which is subsequently dismantled upon completion.
The results of the invocation of an action are then saved
into the activations database in CouchDB. Users can use the
Activationld to retrieve invocation records stored within the

CouchDB repository.
83

oo .8

—

Client Mobile client Mobile client Client

“ OpenWhisk

- | O
=)
CouchDB
LY

(5]

Controller

z > §€ kf:fka
(5]

Invoker Pool ;ﬁ a'% aﬁ

docker docker docker

docker docker docker docker docker docker

Fig. 1. The process flow of action invocation in OpenWhisk

III. EXPERIMENTAL METHODOLOGY
A. Architecture Overview

In this work, we build a tailored architecture to generate
bursty serverless workloads, handle serverless invocations, and
evaluate performance. Specifically, our architecture consists of
a workload generator, a request initiator, and a performance
analyzer.

The workload generator is developed to tailor serverless
workload arrival patterns by manipulating the key workload
statistics. To generate workloads with burstiness, the process
involves the following steps. (1) Input parameters to the KPC-
ToolBox' include IAT statistics (e.g., u, o, ACF) and the
number of invocations. (2) KPC-ToolBox then generates a
Modulated Markovian Arrival Process (MMAP) that closely
matches the desired trace characteristics. (3) Using the gener-
ated MAP and additional inputs such as a random seed and
the required number of data points, the BMAP-Trace module
finally generates the corresponding arrival trace.

The request initiator is designed to efficiently distribute
requests to a serverless computing platform, OpenWhisk,
accommodating diverse distributions and execution criteria
across various scenarios. The inputs to the request initiator
include the generated IAT trace, the set of OpenWhisk actions,
and the specified emulation duration. Subsequently, the request
initiator initiates the invocations of uploaded actions. Clients

I'KPC-Toolbox [13] is a tool to accurately fit trace data into Markovian
Arrival Processes (MAPs), which are used to fit real-world workloads with
time-dynamic characteristics.

Authorized licensed use limited to: Northeastern University. Downloaded on May 11,2025 at 00:47:38 UTC from IEEE Xplore. Restrictions apply.

2. Transform

1.Extractimage | |
Metadata

Metadata

5. Return

» 3.Handler “_Metadata

> 4. Thumbnail
3 Request
=

G

logs
CouchDB

Fig. 2. The serverless application - image processing sequence

can retrieve activation details using the associated activation
ID.

The performance analyzer is engineered to evaluate sys-
tem performance and behavior by leveraging an array of
performance metrics. The performance metrics of evaluation
include average end-to-end latency (L), average CPU uti-
lization (Uyp,,), average memory utilization (U,erm,), average
memory allocation (M), and cold start ratio (R¢). Here, the
cold start ratio is defined as the ratio of the number of cold
start invocations N¢ to the total number of invocations at the
function level Np.

B. Serverless Platform

In this work, we adopt OpenWhisk to conduct the perfor-
mance analysis for serverless computing under bursty work-
loads. Specifically, our experiments involve executing different
numbers of concurrent invocations (up to 500) and serverless
arrival patterns with different IAT distributions (e.g., Gaussian,
MMPP), and varying mean arrival rates and degrees of bursti-
ness. Our experiments are also performed under both resource-
constrained and non-resource-constrained OpenWhisk system
configurations by changing the number of containers, container
idle duration, pause grace period, keep-alive duration, etc. The
serverless application used in our experiments is an image-
processing sequence (see Fig. 2) from Serverlessbench [5].
We use an input image with a size of 2MB.

IV. RESULT ANALYSIS

In this section, we analyze the performance results at both
the host and the OpenWhisk levels in terms of different
concurrency, bursty serverless workload arrival patterns, and
OpenWhisk container configurations.

A. Sensitivity Analysis on Concurrency

We first conduct sensitivity analysis on different levels of
concurrency by varying the number of concurrently running
invocations (e.g., from 50 to 500). In this set of experiments,
we use the default configurations in OpenWhisk and set the
average IAT as 10 seconds. Fig. 3 shows (a) the resource uti-
lization and (b) the average end-to-end latency under different
concurrency levels.

Our observations indicate that as the number of concurrent
invocations (/N4) increases, there is a corresponding increase
in both resource utilization (i.e., Uy, and M), and latency
L. This trend highlights a degradation in system performance
and an increase in resource utilization with high concurrency
levels. We also observe that memory usage increases linearly
while CPU utilization and latency reach an inflection point at
a concurrency level of 300, indicating resource saturation. At
the concurrency level of 500, the average latency (L) shows

a significant increase. This happens because the system’s re-
sources become more saturated, resulting in longer processing
times for each request.

100 1000
9 -@- Average CPU usage (%) = A Average latency (s)
< | - Average memory usage (MB) 1 — @ s
2 g 2
g’ © >
© v =
0 =1 =4 60
5 e © > 3B
) o o
& £ L w0
40 w0 g o
o £ o
2 7]
Sy 0 Z
9] g <
> ol
< o
2 o
100 200 300 400 so0 <C 100 200 300 400 500

Number of invocations Number of invocations

(@) Uepy and M (b) L

Fig. 3. Average resource utilization and latency: concurrency, IAT=10s

Summary and Implications. The performance degrada-
tion observed with increasing concurrency is primarily due
to resource contention and saturation. Increased concurrency
can lead to frequent context switching between processes or
threads, adding overhead and further contributing to increased
latency and reduced overall efficiency.

B. Sensitivity Analysis on IATs

We conduct experiments with various mean IATs (e.g.,
20s, 10s, 8s, 5s, and 2s) but fix the concurrent invocation
number (IN4) as 300. The arrival process is drawn from
a Gaussian distribution. From Fig. 4, we observe that the
workload intensifies when IAT decreases from 20s to 2s.
Consequently, there are corresponding increases in resource
utilization and end-to-end latency. More frequent requests lead
to higher CPU and memory usage as the system needs to
handle multiple invocations simultaneously. This can quickly
exhaust available resources, especially in a serverless environ-
ment where resources are allocated dynamically. Furthermore,
when IAT is decreased from 10s to 2s, there is a significant
increasing trend in resource utilization, see in Fig. 4 (a). This
indicates that the resource saturation point is reached. As a
result, we can also an increase in end-to-end latency as shown
in Fig. 4 (b). Each request now takes longer to process due to
the high demand for computational resources and the overhead
associated with managing multiple concurrent invocations.

200 2000
3 -@- Average CPU usage (%) = A~ Average latency (s)
S 51 g Average memory usage (MB) Y B
@ 150 1503 =
2 & 0
8 s w3 £
3 > &
2 10 o 100 g o
I
O - 75 @ o 4
g = g
=]
® 50 0wg O
g & Zw
@
> 5 O
< o
z o
00 25 50 75 100 15 130 175 200 & < 00 25 50 75 100 15 150 175 200
IAT
(@) Ucpy and M (b) L

Fig. 4. Performance with various IATSs, concurrency=300.

Fig. 5 further depicts the variance of latency for two
different IATs (i.e., 2s and 10s) to investigate the impact of
workload intensity on latency distributions. In this figure, we
also present the results for three groups of invocations, i.e.,
the first, middle, and last ten invocations. The variance in
latency distribution shows notable changes across different
IAT values. More frequent requests (i.e., smaller IATs) lead

Authorized licensed use limited to: Northeastern University. Downloaded on May 11,2025 at 00:47:38 UTC from IEEE Xplore. Restrictions apply.

to higher variance and larger median latency. In addition, the
first ten invocations show slightly higher latency compared to
the middle and last ten invocations, particularly at lower IATs.
This could be due to the initial load on the system. The middle
and last ten groups tend to have similar latency distributions.

21
Ses
LU .

First ten invocations Middle ten invocations Last ten invocations

(b) IAT=10s

First ten invocations Middle ten invocations Last ten invocations

(a) IAT=2s

Fig. 5. Variance of latency with different IATs, concurrency=300.
Summary and Implications. As workload intensifies, dy-
namic resource allocation must be optimized to handle in-
creased load and prevent resource saturation. To maintain
optimal performance, IATs should be monitored to adjust
configurations.

C. Sensitivity Analysis on Burstiness (ACF)

We conduct experiments with various degrees of burstiness
by changing ACF at lag 1 of (0.0, 0.2, 0.4) under both
light workloads (e.g., IAT=50s) and heavy workloads (e.g.,
IAT=2s). We note that to thoroughly understand the impact of
burstiness on performance, we set a non-constraint resources
environment in OpenWhisk by increasing the number of
containers in an invoker pool by 5X and the size of user
memory in a container by 1024X.

Fig. 6 shows the the CPU and memory utilization and Fig. 7
shows the latency and the cold start ratio under different ACFs.
These results indicate that for the workload with IAT=2s,
Ucpy decreases slightly as the ACF increases from 0.0 to
0.4, starting around 50% and dropping to about 35%; while
Upnem decreases linearly as ACF increases. A similar trend is
observed in the latency, where L decreases significantly from
23s to 4s when ACF increases from 0.0 to 0.4. We interpret
this by observing that the cold start ratio Rc decreases
significantly as ACF increases to 0.4. This means that high
ACF leads to a high locality of invocations and thus increases
the hit rate of the invoke instances, reducing the cold start.
However, when the workload is very light, e.g., IAT=50s, this
effect of ACFs becomes negligible.

High ACF values often correlate with bursty traffic patterns,
which results in periods of intense resource usage. Fig. 8
shows (a) the CPU utilization across time on two CPU cores
used in our experiments and (b) the corresponding arrival rates
(i.e., the number of invocations) across time. We can observe
that the patterns of resource usage and arrival rates align very
well. This is because the system must handle large volumes of
requests within short time frames, leading to higher CPU and
memory consumption. With more bursts of activities, resources
can become saturated quickly, causing contention as multiple
functions compete for the same resources.

However, as discussed above, with abundant resources, both
heavy (IAT=2s) and light (IAT=50s) traffic can benefit from
burstiness due to locality and container proxy mechanisms,

such as keep-alive windows and idle duration settings. These
mechanisms allow frequently accessed resources to remain
available through warm containers, which helps improve sys-
tem performance and resource utilization. By keeping contain-
ers warm, the system can respond more quickly to incoming
requests, reducing the latency typically associated with cold
starts and enhancing overall efficiency during periods of high
demand.

100

8

= ~@- Average CPU usage (%) s ~@- Average CPU usage (%) s
> o | - Average memory usage (%) w0 8 > s | T Average memory usage (%) w8
[[
o & o &
© =] © =]
3 e 0> 3e 0 >
> B S o S
& B £ & £
uw.——"i_'mm S wip—— @0 ©
o £ 4] £
g @ g v
o 2 203 g 20 J
> s> c
o Qo
< g < o———© >
< <
0.00 0.05 010 015 020 025 030 035 0.40 0.00 005 010 015 020 025 030 035 0.40
ACF ACF

(@) Ucpu and Umem: IAT=2s (b) Ucpu and Umem: IAT=50s

Fig. 6. Average resource usage with various ACFs.

]

30

]

—A— Average latency (s)
Cold start ratio (%)

—A— Average latency (s)
Cold start ratio (%)

Average cold start ratig (%

3
Average cold start ratio (%

15

Average latency (s)

Average latency (s)

4 & 4
& 4 A

0
000 005 010 015 020 025 030 035 040 000 005 010 0I5 020 025 030 035 040

ACF ACF

(a) L and Rc: IAT=2s (b) L and R¢: IAT=50s

Fig. 7. Average latency and cold start ratio with various ACFs.

O Busy duration

CPU 0 Usage Across Time

: :Idleduration

CPU 0 Usage Across Time

cPUO
01 - Average All CPUs ” s0ll—

i w T

\ N
CcPU il Usage Ac[oss Time
— c

CPU 1 Usage Across Time
m f l “ ‘

= mipeli ‘ /‘ f
www \ul M *1 ‘H’W
il “ 2 *\‘ [

‘ } B \ nl
b‘; | \ \V]
A o] @ AdePU] 47,80 ‘ W

cPUO
Average All CPUs

%user

%user

wbw

Avg A\CPU .98

%user
%user

vg AILCP Avg All CPUs: 5.98

Number of |lvocauons very 5 Seconds Number of Invocations Every 5 Seconds

s (" }\\ " .
ill M
“‘ ‘\“‘ J|\ ‘J\N \‘“‘\I‘\ I

5

[
®

s o
S

~

Number of Invocations
Number of Invocations

\”’u\

o~
°
C
(

> & N
£ S §
Time (seconds)

S I S
Time (seconds)

IAT=2s, ACF=0.2, cv=2.911 IAT=2s, ACF=0.4, cv=2.911

Fig. 8. CPU usage and workload arrival patterns with ACF=0.2 and IAT=2s.

Summary and Implications. The findings suggest that (1)
the R¢ decreases for both heavy and light workloads because
of non-constraint resources; (2) more bursty workloads (higher
ACF values) may lead to marginally better resource efficiency,
improve latency performance under heavy loads, and reduce
the frequency of cold starts to improve performance.

Authorized licensed use limited to: Northeastern University. Downloaded on May 11,2025 at 00:47:38 UTC from IEEE Xplore. Restrictions apply.

D. Sensitivity Analysis on CV

The coefficient of variation (CV) allows for the comparison
of variance across different workloads or periods. Here, we
conduct sensitivity analysis of CVs(1.3, 2.0, and 3.2) but fix
IAT (2s) and ACF (0.2). Fig. 9 illustrates that both U, and
U,em increase with the increase of CV but Rs does not
change significantly due to low ACFs.

Both CPU and memory usage increase with higher CVs,
indicating that higher variability in the arrivals of requests
leads to higher resource demand. This trend suggests that
the system needs to allocate more resources to handle the
increased load variability effectively. Moreover, higher CVs
lead to more unpredictable workloads, causing delays in
processing and longer wait times for resources. As a result, we
can observe the dramatic increase in L with higher CV values
in Fig. 9 (b), which indicates severe degradation in system
performance.

100 100 —~ 30
-@- Average CPU usage (%)
Average memory usage (%)

y

—A— Average latency (s)
Cold start ratio (%)

8
8

3

2
3
Average cold start ratio (%

Average memory usage (%.

A“./.———.

Average latency (s)

Average CPU usage (%)

0 0
125 150 175 200 225 250 275 3.00 3.25 125 150 175 200 225 250 275 300 3.25

(@) Ucpu and Upmem (b) L and R
Fig. 9. Performance of various CVs; IAT=2s, ACF=0.2.
Summary and Implications. If the system is not ade-

quately provisioned for peak demands due to high variability, it
can lead to resource contention and significantly degrade per-
formance. High CV necessitates more sophisticated dynamic
scaling strategies to adjust resources in real-time based on
fluctuating demand, adding complexity to system management
and incurring additional overhead.

E. Sensitivity Analysis on Container Configurations

To better understand different configurations on containers
in OpenWhisk, we first conduct experiments on various guery-
limit settings ([100, 15], [200, 30], [600, 90], and [3000,
500]), which represent the maximum and the default numbers
of entities that can be requested from a collection on a
list operation in OpenWhisk [9]. In this set of experiments,
we consider a heavy workload with IAT=2s and ACF=0.2.
Our observations from Fig. 10 indicate that the best system
performance is achieved at configuration [3000, 500] with the
lowest resource usage, latency, and cold start ratio.

100 100~ 30
~@- Average CPU usage (%)
Average memory usage (%)

]

—A— Average latency (s)
Cold start ratio (%)

‘\‘\‘\A

0
(100, 15]

2
2

g
g
3

Average memory usage (%

400\./.\.

5
Average cold start ratio (%

Average latency (s)

Average CPU usage (%)

(100, 15) (200, 30] (600, 90]

query-limit

(3000, 500] (200, 30] (600, 90]

query-limit

(3000, 500)

(a) Ucpu and Umem (b) L and R¢

Fig. 10. Performance of various query-limit configurations.

We then continue to conduct experiments under the query-
limit setting of [3000, 500] but with different container proxies
to better understand how idle container duration and keep-alive
duration affect system performance and resource utilization.
Here, idle container duration refers to the time a container
remains inactive until the system terminates it, while keep-
alive duration is the time the system maintains a container
in an active state. Specifically, we set four different container
proxies by varying idle container duration (1, 3, 5, 10 mins)
and keep-alive duration (5, 15, 60 mins). In addition, we also
set different pause grace periods (i.e., the period the system
maintains a container after deciding to terminate it) to 5, 10,
and 60 minutes. So, the container configuration shown in the
following figures is formatted as [idle-duration, pause-grace,
keeping-duration].

Figs. 11 and 12 show the performance results under the four
different container proxies. We find that when the idle duration
is 5 minutes and the keep-alive duration is set to 5, 10, or 60
minutes, R¢, Ucpy, and L outperform other configurations.
Setting the idle duration to 5 minutes means that containers
are kept ready for a moderate amount of time before being
terminated. This strikes a balance between keeping containers
warm to reduce cold starts and not holding onto resources
for too long. Optimal utilization of CPU resources is thus
achieved as the system efficiently manages active containers,
avoiding the overhead of frequent cold starts. Reduced cold
starts and efficient resource management contribute to lower
average latency, improving overall user experience.

Meanwhile, keep-alive duration allows containers to remain
available for subsequent requests, reducing the likelihood of
cold starts. We then further conduct experiments to investigate
keep-alive window settings (i.e., keeping-duration=3, 5, 15, 30
min) with fixed idle duration (1 min) and pause grace period
(5 mins). We show the performance results of these settings
and the default configuration [10, 10, 10] in Fig. 13. Our
observations from Fig. 13 indicate that the configuration [I1,
5, 5] obtains lower U,,..,, and L than other configurations,
while the default configuration [10, 10, 10] performs best
in terms of the cold start ratio (R¢). The configuration [1,
5, 5] optimizes memory usage by balancing container readi-
ness and resource allocation, preventing excessive memory
consumption. With shorter idle and keep-alive duration, this
configuration minimizes latency by ensuring that containers
are frequently available, thus reducing the time needed to
handle incoming requests. While, the longer idle and keep-
alive duration in the default configuration [10, 10, 10] reduces
the frequency of cold starts, as containers are kept warm
for extended periods, ensuring they are ready to handle new
requests promptly.

Summary and Implications. (1) With fewer cold starts
due to the optimal idle and keep-alive duration, the cold start
ratio is minimized, leading to improved system responsiveness.
(2) By carefully configuring idle and keep-alive duration, the
system maintains a balance between resource availability and
utilization, resulting in superior performance metrics compared
to other configurations. (3) By experimenting with different

Authorized licensed use limited to: Northeastern University. Downloaded on May 11,2025 at 00:47:38 UTC from IEEE Xplore. Restrictions apply.

8

~@- Average CPU usage (%) ~@- Average CPU usage (%)

= . S
= g 5 £
< . - Average memory usage (%) wd 4 - Average memory usage (%) w L
L Q
3 =3 ﬁ =1
35 60 60 > 5 60 e
S W5 3 w97 §
= |m E & (W £
O a0 00 O g w0 ©
o “e—9 4 L4 " E o ileg o —o0— 9 ¢
g v 8 o
fe o = j=
g g g
[[
< > < >
< <

0 0 0
[1,10,5] [3,10,5] [5,10,5] [10,10,5] [10,10,10] 115,51

Container proxy

[3.5,5] 15,5, 5]
Container proxy

[10, 10, 10]

(@) Ucpu and Upem: proxy 1 (b) Ucpu and Uppem: proxy 2

100 100~ 00
~@- Average CPU usage (%)

- Average memory usage (%)

~@- Average CPU usage (%)

- Average memory usage (%) w

2
g
8

_y— ——a—

g
8

Average memory usage (%

- —n mie

® ® o ® SR

- M
-

N —e_, o o0

3

Average CPU usage (%)

Average CPU usage (%)

Average memory usage (%

(1,10, 15] [3,10,15] [5, 10, 15] [10, 10, 15] [10, 10, 10]
Container proxy

1,60, 601 (3, 60, 60] [5, 60, 60] [10, 60, 60][60, 60, 60][10, 10, 10]

Container proxy
(¢) Ucpu and Upem: proxy 3 (d) Ucpu and Umpem: proxy 4

Fig. 11. Average resource usage with various container proxies.

30

—A— Average latency (s)
Cold start ratio (%)

N

3.5.5] [5,5,5]
Container proxy

—A— Average latency (s)
Cold start ratio (%)

Average latency (s)
Average cold ‘start ratio (%)

Average latency (s)
Average ccold wstar‘t ratio (%)

——

0 0
[1,10,5] [3,10,5] [5,10,5] [10,10,5] [10,10,10]
Container proxy

0 0
15,5 [10, 10, 10]

(a) L and R proxy 1 (b) L and R¢: proxy 2

)

—A— Average latency (s)
Cold start ratio (%)

—A~ Average latency (s)
Cold start ratio (%)

Average latency (s)
Average cold start ratio (%)

Average cold start ratio (%)

Average latency (s)

T

[1,10,15] [3,10,15] [5,10,15] [10,10,15] [10, 10, 10]
Container proxy

0
11,60, 60] 3,60, 60] [, 60, 60] [10, 60, 60] [50, 60, 60] [10, 10, 10]

Container proxy

(¢c) L and R proxy 3 (d) L and R¢: proxy 4

Fig. 12. Average latency and cold start ratio with various container proxies.

configurations, we can tailor the system’s performance to
specific metrics, optimizing for CPU/memory utilization, end-
to-end latency, or cold start ratio. Each configuration offers
unique advantages, allowing us to choose the best setup based
on the desired performance criteria.

V. CONCLUSION AND FUTURE WORK

Our comprehensive study delves into the intricacies of
serverless computing, particularly focusing on understanding
bursty serverless workload arrival patterns and their impact
on system performance and resource utilization with various
configurations on the OpenWhisk platform. This work offers
practical guidance for improving serverless platform design
and application development practices and advancing the
understanding and optimization of serverless environments.
Future research should focus on investigating the long-term
impacts of various configurations on cost-efficiency and scala-
bility or bursty workload arrival patterns, artificial intelligence-
based workload prediction, as well as resource management

Average CPU usage (%)

y

100 100 —~
~@- Average CPU usage (%)
- Average memory usage (%)

—A— Average latency (s)
Cold start ratio (%)

P
—

“© ./'0/.\0/. “©

Average latency (s)

A——A/H\A

0
11,53]

Average memory usage (%
Average cold start ratio (%

0
[L53] [155 [1,515 [1,530] [10,10,10]

Container proxy

1,5, 5] [1,5,15] [1,5,30] [10,10,10]
Container proxy

(@) Ucpu and Umem (b) L and R

Fig. 13. Performance of various keep-alive windows.

strategies, which will be crucial for advancing serverless
computing technologies.

ACKNOWLEDGMENTS

This work was partially supported by National Science
Foundation Award CNS-2008072.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]
[10]
[11]

[12]
[13]

REFERENCES

M. Shahrad, R. Fonseca, I. Goiri, G. Chaudhry, P. Batum,

J. Cooke, E. Laureano, C. Tresness, M. Russinovich, and

R. Bianchini, “Serverless in the wild: Characterizing and
optimizing the serverless workload at a large cloud provider,”
in 2020 USENIX Annual Technical Conference (USENIX ATC 20).
USENIX Association, Jul. 2020, pp. 205-218. [Online]. Available:
https://www.usenix.org/conference/atc20/presentation/shahrad

A. Sahraei, S. Demetriou, A. Sobhgol, H. Zhang, A. Nagaraja,

N. Pathak, G. Joshi, C. Souza, B. Huang, W. Cook, A. Golovei,

P. Venkat, A. Mcfague, D. Skarlatos, V. Patel, R. Thind, E. Gonzalez,
Y. Jin, and C. Tang, “Xfaas: Hyperscale and low cost serverless
functions at meta,” 10 2023, pp. 231-246.

A. Wang, S. Chang, H. Tian, H. Wang, H. Yang, H. Li, R. Du,
and Y. Cheng, “FaaSNet: Scalable and fast provisioning of custom
serverless container runtimes at alibaba cloud function compute,”
in 2021 USENIX Annual Technical Conference (USENIX ATC 21).
USENIX Association, Jul. 2021, pp. 443-457. [Online]. Available:
https://www.usenix.org/conference/atc21/presentation/wang-ao

S. Eismann, J. Scheuner, E. van Eyk, M. Schwinger, J. Grohmann,
N. Herbst, C. L. Abad, and A. Iosup, “A review of serverless use cases
and their characteristics,” 2021.

T. Yu, Q. Liu, D. Du, Y. Xia, B. Zang, Z. Lu, P. Yang, C. Qin, and
H. Chen, “Characterizing serverless platforms with serverlessbench,” in
Proceedings of the ACM Symposium on Cloud Computing, ser. SOCC
’20. Association for Computing Machinery, 2020. [Online]. Available:
https://doi.org/10.1145/3419111.3421280

J. Scheuner, S. Eismann, S. Talluri, E. van Eyk, C. Abad, P. Leitner,
and A. Iosup, “Let’s trace it: Fine-grained serverless benchmarking
using synchronous and asynchronous orchestrated applications,” 2022.
A. Katangur and L. Zhang, Eds., Services Computing - SCC
2021 - 18th International Conference, Held as Part of the Services
Conference Federation, SCF 2021, Virtual Event, December 10-14,
2021, Proceedings, ser. Lecture Notes in Computer Science, vol.
12995. Springer, 2022. [Online]. Available: https://doi.org/10.1007/978-
3-030-96566-2

M. Copik, G. Kwasniewski, M. Besta, M. Podstawski, and T. Hoefler,
“Sebs: A serverless benchmark suite for function-as-a-service
computing,” 2021.

Apache OpenWhisk, https://https://openwhisk.apache.org/.

NIST, https://www.itl.nist.gov/div898/handbook/eda/section3/eda3Sc.htm.
Apache OpenWhisk Command-line Interface wsk,
https://github.com/apache/openwhisk-cli.

Docker, https://www.scala-lang.org/.

G. Casale, E. Z. Zhang, and E. Smirni, “Kpc-toolbox: Simple
yet effective trace fitting using markovian arrival processes,”

in Fifth International Conference on the Quantitative Evaluaiton of
Systems (QEST 2008), 14-17 September 2008, Saint-Malo, France.
IEEE Computer Society, 2008, pp. 83-92. [Online]. Available:
https://doi.org/10.1109/QEST.2008.33

Authorized licensed use limited to: Northeastern University. Downloaded on May 11,2025 at 00:47:38 UTC from IEEE Xplore. Restrictions apply.

