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Abstract—An efficient and inherently broadband numerical
solver based on discrete exterior calculus (DEC) for the A-Φ
formulation in electromagnetics is proposed. The A-Φ formula-
tion with generalized Lorenz gauge is immune to low-frequency
breakdown, which makes the proposed solver ideal for broadband
and multi-scale analysis. DEC is utilized as the numerical solver
to the A-Φ formulation, where Stokes’ theorem and charge
conservation are naturally preserved. In addition, DEC can be
viewed as a generalized version of finite difference method with
unstructured mesh, such as tetrahedral mesh. Thus, complicated
multi-scale structures can be discretized easily and efficiently
by DEC. Numerical results are presented which indicate the
broadband stable nature of the proposed A-Φ DEC solver over
an extremely wide bandwidth (from DC to optics).

I. INTRODUCTION

The E-H formulation in computational electromagnetics
(CEM) suffers from low-frequency breakdown due to the
null space of the double curl operator. When the frequency
is low, or equivalently, when the size of objects is much
smaller compared to wavelength, the null space of the double
curl operator makes the discretized matrix equation singular.
This makes it difficult to use the E-H formulation as a
broadband or multi-scale solver in CEM. In contrast, the
potential based A-Φ formulation is free from low-frequency
breakdown, thanks to the additional gauge term which cancels
the null space of the double curl operator [1], [2]. Thus, the A-
Φ formulation is ideal for broadband and multi-scale analysis.
In addition, the vector potential A and scalar potential Φ
are natural bridges connecting classical electromagnetics and
quantum electromagnetics. With the rapid development of
quantum technology, the incorporation of quantum effects in
computational electromagnetics is increasingly important [3].

In this paper, a numerical solver based on discrete exterior
calculus (DEC) is proposed to solve the A-Φ formulation
with generalized Lorenz gauge [4]. DEC is the discretized
version of exterior calculus, which is a mathematical topic
from differential geometry. From computational perspective,
DEC shares the same spirit with the finite integration technique
(FIT) [5]. DEC can be viewed as a generalized version of finite
difference method (FDM), where vector calculus identities
∇ · ∇ = 0, ∇ × ∇ = 0 and Stokes’ theorem are naturally
preserved. The preservation of these identities helps to remove
spurious charge and maintain structural integrity of Maxwell’s
equations in the numerical solver. Unstructured mesh, such as
triangular mesh in 2D and tetrahedral mesh in 3D, can be

utilized in DEC, which makes capturing complicated multi-
scale structures easy and efficient.

This paper is organized as follows: In Section II, intro-
duction to the A-Φ formulation is provided. In Section III,
implementation details of the DEC A-Φ solver are presented.
In Section IV, numerical examples are provided to validate
the proposed solver and demostrate its broadband stability. In
Section V, conclusion of this paper is drawn. In this paper, the
time convention e−iωt is adopted.

II. A-Φ FORMULATION

The A-Φ formulation with generalized Lorenz gauge in
frequency domain is [4], [6]:

∇× 1

µ
∇× A − ω2ϵ̃A − ϵ̃∇[χ−1∇ · (ϵ̃A)] = J, (1)

∇ · (ϵ̃∇Φ) + ω2χΦ = −ϱ, (2)

where A and Φ are the vector potential and scalar potential
of the electromagnetic field, respectively; ϵ̃ = ϵ + iσ

ω is
the complex permittivity; ϵ, µ and σ are the permittivity,
permeability and conductivity, respectively; ω is the angular
frequency; J is the impressed current density and ϱ is the
impressed charge density; χ = αµϵ̃2, where α is an arbitrary
constant. The following generalized Lorenz gauge from [4] is
used in deriving the above equations:

∇ · (ϵ̃A) = iωχΦ. (3)

Note that in (1), the third term on the left is introduced by the
generalized Lorenz gauge, which cancels the null space of the
double curl operator [2]. This is the fundamental reason for
the inherent broadband stability of the A-Φ formulation.

In non-static cases (ω ̸= 0), (2) can be derived from (1)
by taking divergence on both sides of (1), and using the
generalized Lorenz gauge (3) along with the charge continuity
equation:

∇ · J = iωϱ. (4)

Thus, when ω ̸= 0, Eqs. (1) and (2) are not independent from
each other. Once the A equation (1) is solved, one can either
solve (2) in tandem with (1) to obtain the Φ result, or simply
using (3) to get Φ by

Φ =
∇ · (ϵ̃A)

iωχ
. (5)
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III. DISCRETE EXTERIOR CALCULUS A-Φ SOLVER

A. A-Φ Equations in DEC

As introduced in Section I, DEC is the discretized version of
exterior calculus, and can be viewed as a generalized version
of finite difference method (FDM). In DEC, physical quantities
are represented by primal/dual cochains, which are the discrete
counterparts of primal/dual forms in exterior calculus [6]–
[8]. Suppose a simplicial mesh, such as a tetrahedral mesh
in 3D cases, is generated in the computational domain, which
is referred to as the primal mesh. By using the primal mesh,
a dual mesh can be automatically constructed. For example,
the barycenters of the primal tetrahedrons and triangles can be
used as the dual nodes in the dual mesh. By connecting the
dual nodes, dual edges, surfaces and volumes can be further
defined. Thus, the dual mesh can be thought as complementary
to the primal mesh [6], [7].

In DEC, Φ and A are represented by primal 0-cochians
and primal 1-cochains, respectively. The unknown vectors
associated with Φ and A are

Φ = [Φ1,Φ2, · · · ,ΦN0
]T , (6)

A = [A1, A2, · · · , AN1 ]
T , (7)

where N0 and N1 are the total number of primal nodes
and primal edges in the mesh, respectively; Φi is the scalar
potential on the i-th primal node pi; Ai is the integration of
A along the i-th primal edge li, namely,

Ai =

∫
li

A · dl. (8)

Note that Φi is the integration of Φ on 0-dimensional objects
(nodes) and Ai is the integration of A on 1-dimensional
objects (edges). This explains why Φi and Ai are called primal
0-cochain and primal 1-cochian, respectively.

J and ϱ are represented by dual 2-cochains and dual 3-
cochains in DEC, respectively. The unknown vectors associ-
ated with J and ϱ are

J = [J1, J2, · · · , JN1
]T , (9)

ϱ = [ϱ1, ϱ2, · · · , ϱN0
]T , (10)

where N1 is the total number of dual surfaces, which is equal
to the total number of primal edges; N0 is the total number
of dual volumes, which is equal to the total number of primal
nodes. This is due to the complementary nature between the
primal mesh and dual mesh. The definitions of dual 2-cochain
Ji and dual 3-cochian ϱi are

Ji =

∫
Sdual
i

J · dS, (11)

ϱi =

∫
V dual
i

ϱ · dV, (12)

where Sdual
i is the i-th dual surface (which is associated with

the i-th primal edge li), and V dual
i is the i-th dual volume

(which is associated with the i-th primal node pi).

The discrete matrix equations of the A-Φ formulation (1)
and (2) using DEC are(

d
(1)

)T

⋆
(2)
µ−1d

(1)
A− ω2⋆(1)ϵ A+

⋆(1)ϵ d
(0)

⋆
(3)
χ−1

(
d
(0)

)T

⋆(1)ϵ A = J , (13)

−
(
d
(0)

)T

⋆(1)ϵ d
(0)

Φ+ ω2⋆(0)χ Φ = −ϱ. (14)

where d
(i)
, i = 0, 1 are called incidence matrices; ⋆

(0)
χ , ⋆

(1)
ϵ

and ⋆
(2)
µ−1 are the Hodge star operators, which correspond to

χ, ϵ̃ and µ−1 in (1) and (2).
The dimensions of the incidence matrices d

(0)
and d

(1)

are N1 × N0 and N2 × N1, respectively, where N2 is the
total number of primal surfaces; the superscript (i) indicates
d
(i)

operates on primal i-cochains, and returns primal (i+1)-
cochains. The (i, j) elements of d

(0)
and d

(1)
are[

d
(0)

]
i,j

= d
(0)
i,j =

{
±1, if pj is a vertex of li
0, otherwise

, (15)

[
d
(1)

]
i,j

= d
(1)
i,j =

{
±1, if lj is an edge of Si

0, otherwise
, (16)

where pi, li and Si denote the i-th primal node, edge and
surface, respectively. The sign of the ±1 entries in (15)-(16)
is determined by orientation. In DEC, edges, surfaces and
volumes are with positive orientations [7]. If a node pj is
the start/end point of edge li, then d

(0)
i,j = 1/ − 1; if edge lj

and surface Si have the consistent/opposite orientations (see
[6], [7]), d(1)i,j = 1/− 1. d

(0)
and d

(1)
correspond to discrete

gradient and curl operations in DEC [6], [7].
There are multiple ways to construct the Hodge star oper-

ators ⋆
(0)
χ , ⋆

(1)
ϵ and ⋆

(2)
µ−1 [7]–[9]. In this paper, the following

Galerkin Hodge star operators are used [6], [10]:[
⋆(0)χ

]
i,j

=
〈
W 0

i , χ ·W 0
j

〉
, (17)[

⋆(1)ϵ

]
i,j

=
〈
W1

i , ϵ̃ · W1
j

〉
, (18)[

⋆
(2)
µ−1

]
i,j

=
〈
W2

i , µ
−1 · W2

j

〉
, (19)

where W 0
i is the Whitney 0-form associated with primal node

pi; W1
i is the Whitney 1-form associated with primal edge

li; W2
i is the Whitney 2-form associated with primal surface

Si. χ, ϵ̃ and µ are piecewise constant parameters within each
tetrahedron in the primal mesh; angle brackets denote inner
product. Introductions to the Whitney forms can be found in
[6] and [11].

Note that the Galerkin Hodge star operators in (17)-(19)
are non-diagonal, highly sparse matrices. In (13), ⋆

(3)
χ−1 is

the inverse of ⋆
(0)
χ , which is dense in general. To maintain

the sparsity of (13), the sparse approximate inverse (SPAI)
technique [12], [13] can be used to find the sparse approximate
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of ⋆(3)χ−1 . Alternatively, ⋆(0)χ can be constructed as follows based
on its geometric interpretation:[

⋆(0)χ

]
i,j

=

{
χV dual

i , if i = j

0, otherwise
, (20)

where V dual
i is the volume of the i-th dual mesh. ⋆(0)χ in (20)

is a diagonal matrix, whose inverse is also diagonal. In this
manner, both (13) and (14) are sparse matrix equations, which
can be solved by using direct or iterative solvers.

B. Boundary Conditions

The boundary of the computational domain truncates the
dual mesh, and proper boundary condition must be imple-
mented in the DEC A-Φ solver. Due to the page limit, one can
refer to [6], [8] for further details on implementing different
boundary conditions.

IV. NUMERICAL EXAMPLES

In this section, numerical examples are provided to validate
the DEC A-Φ solver for both quasi-static physics and wave
physics. The broadband stability of the proposed solver is
demonstrated. Note that the capability of the DEC A-Φ solver
in solving multi-scale problems is implied by its broadband
stability, since one can solve for quasi-static physics and
wave physics with equally good accuracy the multi-scale
simulations.

A. Rectangular Wire Loop

The dimension of the copper rectangular loop along with the
tetrahedral mesh are shown in Fig. 1. The size of the square
cross section of the wire loop is 10 nm by 10 nm. The copper
wire loop is excited by the impressed current J in the 2 nm
thick excitation gap. Extracted resistance and inductance of the
wire loop with PEC boundary condition are listed in Table
I. Also listed are the reference results by using Ohm’s law
and approximate formula from [14]. It should be noticed that
the approximate formulae are for engineering purposes, which
could only provide a ballpark number to verify that the DEC
A-Φ results are within a reasonable range. As can be seen,
the results obtained by using the DEC A-Φ solver are stable
over a wide frequency spectrum.

Fig. 1. (a) Dimension and (b) tetrahedral mesh of the rectangular wire loop
example.

TABLE I
CALCULATED INPUT IMPEDANCE Z , RESISTANCE R, AND INDUCTANCE L

OF THE WIRE LOOP

Frequency (Hz) Z (Ω) R (Ω) L (H)
1k 23.88− i2.51× 10−10 23.88 4.00× 10−14

1M 23.88− i2.53× 10−7 23.88 4.03× 10−14

100M 23.88− i2.59× 10−5 23.88 4.12× 10−14

1G 23.88− i2.59× 10−4 23.88 4.12× 10−14

10G 23.88− i2.60× 10−3 23.88 4.13× 10−14

The approximate reference resistance is R = 27.84 Ω and inductance L =
3.611× 10−14 H.

B. Rod Antenna

The rod antenna case from [15] is studied in this section, as
shown in Fig. 2. The rod antenna is composed of two pieces
of copper with the excitation gap between them. The length of
each copper segment is 7.238 mm, with square cross section
0.517 mm by 0.517 mm. The thickness of the excitation
gap is 0.517 mm, making the total length of the antenna
L = 14.993 mm. The rod antenna is in a cubic vacuum box
with length 40 mm, and the impedance boundary condition
(IBC) is applied as the absorbing boundary condition. Figs.
3 and 4 show the real and imaginary parts of the input
impedance Z of the antenna from the DEC solver and [15]
under different frequencies. Two sets of tetrahedral meshes
have been used to obtain the DEC results to demonstrate that
convergence has been achieved in terms of mesh size. Overall
agreement between the DEC results and the reference result
can be observed with some deviations. The deviations can be
attributed to two reasons: first, the reference result from [15]
is computed by using finite difference time domain (FDTD)
method with Gaussian pulse excitations, followed by Fourier
transform, while the DEC results are obtained in frequency do-
main directly. Second, the absorbing boundary condition used
in [15] is perfect matched layers (PML), whereas IBC is used
in the present DEC simulations. These two differences in the
simulations can potentially introduce numerical discrepencies
to the results. Nevertheless, the proposed DEC A-Φ solver
can be validated in this rod antenna case with radiating wave
physics.

Fig. 2. Illustration of the rod antenna case from [15].

C. Broadband Stability

To further demonstrate the broadband stability of the DEC
A-Φ solver, the size of the rod antenna is reduced to nano-
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Fig. 3. Real part of the input impedance Z from [15] and DEC.

Fig. 4. Imaginary part of the input impedance Z from [15] and DEC.

scale, with total length L = 500 nm. The cross section is 10
nm by 10 nm, and the thickness of the excitation gap is 10 nm.
The cubic vacuum box has length 1000 nm with PEC boundary
condition. The input impedance Z, resistance (real part of Z)
and capacitance of the rod antenna within an extremely wide
spectrum, from 10 Hz (DC) to 10 THz (infrared), are extracted
by using the proposed solver, as shown in Fig. 5. Clearly, the
DEC results are very stable over the entire spectrum. Note that
when f = 1 THz, it is close to the resonance frequency of the
rod antenna; thus the imaginary part of Z starts to oscillate. To
the authors’ best knowledge, there is no other work that can
simulate over such a wide spectrum, and thus no reference
results can be presented. This example clearly demonstrates
the broadband stability of the DEC solver.

V. CONCLUSION

In this paper, an inherently broadband DEC A-Φ solver is
proposed. Introduction to the A-Φ formulation as well as the
implementation details of the proposed solver are provided.
Numerical examples are presented to validate the proposed
solver and demonstrate its stability over an extremely broad
spectrum (from DC to optics). The proposed solver preserves
Stokes’ theorem and charge conservation with unstructured
mesh schemes. Thus, the DEC A-Φ solver is ideal for

Fig. 5. The extracted input impedance Z, resistance and capacitance of the
nano-scale rod antenna from 10 Hz to 10 THz.

broadband and multi-scale analysis with high accuracy and
efficiency.

REFERENCES

[1] Y. Zhao and W. N. Fu, “A new stable full-wave Maxwell solver for all
frequencies,” IEEE Transactions on Magnetics, vol. 53, no. 6, pp. 1–4,
2016.

[2] Y. Li, Advanced finite element methodology for low-frequency and
static electromagnetic modeling, Ph.D. dissertation, The University of
Hongkong, 2015.

[3] W. C. Chew, D.-Y. Na, P. Bermel, T. Roth, C. J. Ryu, and E. Kudeki,
“Quantum Maxwell’s equations made simple: Employing scalar and
vector potential formulation,” IEEE Antennas and Propagation Magazine,
vol. 63, no. 1, pp. 14–26, 2020.

[4] W. C. Chew, ”Vector potential electromagnetics with generalized gauge
for inhomogeneous media: formulation,” Progress In Electromagnetics
Research, vol. 149, pp. 69-84, 2014.

[5] C. Markus, and T. Weiland. ”Discrete electromagnetism with the finite
integration technique.” Progress In Electromagnetics Research, vol. 32,
pp. 65-87, 2001.

[6] B. Y. Zhang, D.-Y. Na, D. Jiao and W. C. Chew, ”An A-Φ formulation
solver in electromagnetics based on discrete exterior calculus”, IEEE
Journal on Multiscale and Multiphysics Computational Techniques, ac-
cepted.

[7] S. C. Chen and W. C. Chew, “Numerical electromagnetic frequency do-
main analysis with discrete exterior calculus,” Journal of Computational
Physics, vol. 350, pp. 668–689, 2017.
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