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Control Barrier Functions for Linear Continuous-Time Input-Delay
Systems with Limited-Horizon Previewable Disturbances
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Abstract— Cyber-physical and autonomous systems are often
equipped with mechanisms that provide predictions/projections
of future disturbances, e.g., road curvatures, commonly referred
to as preview or lookahead, but this preview information is
typically not leveraged in the context of deriving control barrier
functions (CBFs) for safety. This paper proposes a novel limited
preview control barrier function (LPrev-CBF) that avoids both
ends of the spectrum, where on one end, the standard CBF
approach treats the (previewable) disturbances simply as worst-
case adversarial signals and on the other end, a recent Prev-
CBF approach assumes that the disturbances are previewable
and known for the entire future. Moreover, our approach
applies to input-delay systems and has recursive feasibility
guarantees since we explicitly take input constraints/bounds
into consideration. Thus, our approach provides strong safety
guarantees in a less conservative manner than standard CBF
approaches while considering a more realistic setting with
limited preview and input delays.

I. INTRODUCTION

Many cyber-physical and autonomous systems (e.g., self-
driving cars and robot exoskeletons) possess forecasting tools
such as forward-looking sensors (e.g., cameras and LIDAR,
topographical maps), and predictive models to anticipate
what lies ahead. This preview information for a window into
the future, if used correctly, can significantly improve system
performance and safety. However, many control strategies
often neglect to use this information and opt instead to
consider worst-case scenarios, especially in the context of
safety when computing robust controlled invariant sets, e.g.,
[1] or control barrier functions (CBFs), e.g., [2]-[4]. On
the other hand, optimal and model predictive control (MPC)
methods, e.g., [5], [6], do use certain preview information
but often lack recursive safety and feasibility properties.

Recent research underscores the advantages of using pre-
view information in safety controls for discrete-time systems,
including those with input delays [7], [8], leading to en-
hanced safety with increased preview time. For continuous-
time systems, the predictive CBF method [9] proposed an
approach that can leverage information about ‘controllable’
predicted trajectories, while our recent work in [10] intro-
duced a preview CBF approach that can utilize information
of previewable (but ‘uncontrollable’) disturbances such as
road gradients or curvatures or predicted future motion of
other agents. However, the latter assumes that the preview
horizon is as long as needed (unlimited), which is not always
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realistic, e.g., due to limited sensing range of cameras or
LIDARs. Further, to our best knowledge, such techniques for
continuous-time systems with input delay, e.g., due to net-
work latency or hardware constraints, are still lacking. CBF
tools have been explored for input-delay systems [11], [12],
but they do not or cannot make use of preview information.

Contributions. Building on our prior design of Prev-CBFs
with unlimited preview in [10], this paper presents limited
preview control barrier functions (LPrev-CBFs) for linear
continuous-time input-delay systems where the preview hori-
zon for the previewable disturbances is limited and fixed,
which better reflects real-world settings where sensing ranges
are limited. This research relaxes the restrictive setting in
[10] that assumes unlimited preview and also addresses
safety concerns stemming from input delays.

In contrast to standard CBFs with or without input de-
lays, e.g., [2], [3], [11], that (implicitly) enforce robust
safety by considering the worst-case future disturbances,
our approach leverages preview information about these
previewable disturbances to mitigate the conservatism. On
the other hand, in contrast to our prior Prev-CBF approach
[10] that assumes all future disturbances are previewable,
our LPrev-CBF only uses the preview information of the
disturbances for a limited and fixed horizon and considers the
worst-case unpreviewed disturbances beyond that horizon.
This is particularly beneficial in minimizing the need for
interventions while still ensuring safety and robustness from
disturbances, In other words, the LPrev-CBF is designed
for a more realistic scenario while taking advantage of
available preview information to be more permissive and
the associated safety controller is less likely to be activated
(i.e., less interventions when used as a safety filter) when
compared to standard CBFs.

Additionally, our closed-form LPrev-CBF explicitly incor-
porates input constraints into its design and consequently,
it is naturally guaranteed to be recursively feasible (and
safe) when incorporated into an optimization-based safety
controller to modify any nominal (input-delay) controller.
Further, the results in this paper are in themselves a novel
contribution even in the absence of input delay, as an
extension of our prior work in [10] to the setting when the
preview horizon is limited and fixed.

The efficacy of the proposed LPrev-CBFs is demonstrated
via practical examples—an assistive shoulder robot equipped
with interaction torque preview capabilities and a vehicle
lane-keeping system that utilizes road curvature preview.

This paper is structured as follows. The problem of
interest is outlined in Section II. Next, In Section III, we
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elaborate on the our proposed LPrev-CBFs to solve this
problem. Then, we illustrate the efficacy of our approach
in Section IV using examples of an assistive shoulder robot
and vehicle lane keeping, and also discuss the advantages
of preview for safety of a linear continuous-time input-delay
system. Finally, we conclude by presenting a summary of
our contributions and some future work in Section V.

II. PRELIMINARIES AND PROBLEM FORMULATION
A. Notations

R, and R”™ denote the sets of non-negative real numbers
and n-dimensional Euclidean space, respectively. An identity
matrix of size n is represented by I,, and an m X n matrix
of zeros is represented by 0,,x,. Additionally, all vector
inequalities represent element-wise inequalities, while | - |
and sgn(-) serve as element-wise absolute value and signum
operators, respectively, and diag(v) represents a diagonal
matrix whose diagonal elements are elements of a vector
v. Further, a class Ky function a : [0,00) — [0, 00)
is strictly increasing and continuous with «(0) = 0 and
lim, o a(r) = 0.

B. Problem Formulation

Consider the continuous-time linear control system that
includes a time-delayed control input, along with additive
previewable disturbances. This system is denoted as ¥ geiay
and is described as follows:

Vdelay : 4(t) = Ax(t)+Bu(t=T;)+Bad(t), (1)
where z(t) € X C R"™ represents the system states, u(t) €
U C R™ is the control input subject to a (fixed) time
delay T, d(t) € D C R! denotes bounded and previewable
disturbances (only for a fixed preview horizon T}, beyond
which they are not previewed/uncertain). Specifically, the
disturbance set is D = {d | |d| < d,,} and the control input
setis U = {u | |u| < u,,}, where d,, and u,, represent the
disturbance and actuation bounds', respectively.

The term “previewable disturbance” is used to refer to
any exogenous inputs, signals, or parameters for which
future values may be anticipated/known. Examples include a
reference signal in tracking tasks or the predicted trajectories
of other agents, as well as road conditions such as curvature,
gradient, or friction coefficients that could be measured
through limited-range sensing and perception modules.

Inspired by the literature on time-delay control systems,
we also represent X gejq, Using predicted states z(t) 2 2(t+
T;) with the following predictor system:

S 2(t)=Az(t)+ Bu(t)+Bad(t+T;),
T w=C (1),

where z(t) € Z = X C R™ serves as the new system states
with the initial predicted state z(0) as given in (4) with u(7)
for all 7 € [-T;,0], and y(¢) € R is the scalar output. The
scalar output y(t) € R represents the system variable of

2

IFor ease of exposition, we assumed symmetric bounds. Any asymmetric
bounds can be considered by taking their midpoints as known signals and
deviations from these midpoints as signals with symmetric bounds.

interest that relates to the safety of the system. Specifically,
we consider system safety as the satisfaction of a desired
output constraint! given as:

()] =1C2(t)] < ym, VE=0, 3)

with known output bounds y,,, € R. We further assume that
Y prea With control input w(t) and disturbance (input) d(t)
as well as output y(¢) has a relative degree of 2, meaning
that CB =0, CB; =0, CAB # 0 and CAB4 # 0.

In contrast to the assumption in our prior work [10,
Assumption 2] that the preview horizon is as long as needed
(unlimited), this paper considers the (more realistic) setting
where the preview horizon T, is limited and fixed, beyond
which the unpreviewed disturbance is unknown but bounded.

Assumption 1. The delay time T; and preview horizon T},
are known and fixed/constant and they are such that T}, > T;.

Assumption 2. For a given time t € R and known preview
horizon T, the previewed disturbance d,(t) = {d(T) €
Dt < 7<t+ Tp} is known. Furthermore, beyond the
preview horizon, the unpreviewed disturbance d,(t) =
{d(1) € D,t+T, <7 < oo} is unknown but bounded with

known bounds in D.

By assuming T, > T;, the predicted state z(t) in (2), i.e.,

2(t) = eATix(t) @
+ [ AT (Bu(t —Ti+7) + Bad(t+7))dr,

is exactly known; thus, we can equivalently consider ¥, .4

in lieu of Xge1qy and for simplicity, we shall also directly

define the safe sets based on z(¢) under the assumption that

the system is safe for all 0 < ¢ < T} such that z(0) is within
the controlled invariant set defined below.

Definition 1 (Safe Sets). Let S, C R”™ be a safe set of
Ypred that describes desirable/given safety constraints on
the states, and let S, , C R™ x DI%T») be the T,-augmented
safe set of Yy,peq, defined as

Sz#’ £ {(Z7dp) | S Sz,dp (= 'Z)[Oszo)}7

where DI%Tv) is the set of all trajectories of d(t) within the
time interval of [0,T,] £ {0 < 7 < T}, defined as,

plO.Tp) & {d(7),VT € [0,T,] | d(7) € D}.

Definition 2 (Controlled Invariant Set). A set C C S, is a
robust controlled invariant set of ¥,¢q in a safe set S, C R"
if for all z(0) € C, there exists some u(t) € R™ such
that z(t) € C C S,, VYt > 0, for all d(t) € D. Cpax Is
the maximal robust controlled invariant set in S, if Cnas
contains all robust controlled invariant sets in S,.

Further, a set C, € S, , is a limited preview controlled
invariant set of ¥,,cq in an augmented safe set S, ,, if for all
(2(0),d,(0)) € Cp, there exists some u(t) € R™ such that
(2(t),d,(t)) € Cp € S, ¥t >0, for all d,, € DT>,
Craz,p s the maximal limited preview controlled invariant
set in S, p if Crnaw,p contains all limited preview controlled
invariant sets of Xpred in Sy p.

Additionally, the definitions presented herein can be in-
terpreted as the continuous-time analogs of their discrete-
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time counterparts delineated in [8]. Of particular significance
is the proof provided in the aforementioned study that
the maximal controlled invariant sets for systems without
preview is a subset of the maximal controlled invariant sets
for systems with preview in a discrete-time framework, even
in the presence of input delays. Inspired by these findings,
we postulate that preview may also offer similar advantages
in continuous-time systems with input delays.

In contrast to the objective of identifying the maximal
limited preview controlled invariant set for 3,4, this study
shifts its focus towards the exploration of limited preview
control barrier functions with preview capabilities for 3,.cq.
Specifically, we aim to render some time-varying set C, ; C
S, controlled invariant. To achieve this, we introduce a novel
concept of a time-varying ‘limited preview safe set’, denoted
as C,pt C S, p, which is not only controlled invariant but
also serves to imply the existence of some C.; C S, that is
controlled invariant by contruction/design. It is worth noting
that the efficacy of control barrier functions for systems
without input delay, but with preview capabilities (for an
“infinite”/unlimited horizon), has been previously established
in our prior work [10].

Definition 3 (Limited Preview Safe Set). Given a predictor
system with preview Yy.cq (With known d, € DOT) and
unknown d,;, € DIT»>°)), a super-level set C, ,; defined on
a time-varying function h : X x D0Tr) x Ry —- R:

Copit 2 {(2,dp,t) | h(2,dp,t) > 0,}, (5)

based on another time-varying function h,, according to
h(z,dp,t) = mindnpeD[Tp,oc) hp(2,dp, dpp, t), is a limited
preview safe set for L,,cq if (2(t),dp(t),t) € C, p+ for all
t > 0 implies that z(t) € S, for all t > 0. Do) s the set
of all trajectories of d(t) starting from T, and the boundary
0C, ¢ and interior Int(C, p, 1) of C, 1 are similarly defined
with the > operator being replaced by = and >, respectively.

Note that, by design, the limited preview robust safe set
in the above definition needs to be defined or chosen such
that its controlled invariance implies the existence of some
C,+ € S, that is controlled invariant.

Then, the problem of interest can be formally written as:

Problem 1 (Safety with Limited Preview). Given an input-
delay system with preview Ygeiqy in (1) satisfying Assump-
tions 1-2, its corresponding equivalent predictor system
Ypred in (2) and a safe set S, (cf. Definition 1), construct
a limited preview control barrier function (LPrev-CBF) cor-
responding to C, p, in (5) that guarantees limited preview
controlled invariance of Ypreq in S, (and thus, safety of
Ydelay, Since it is equivalent to Yy,cq under Assumption 1).

III. MAIN RESULTS

We now describe our proposed method to address Problem
1, where we introduce a novel input-constrained limited
preview CBF in closed-form and describe how it can be
implemented computationally to guarantee safety.

A. Limited Preview Control Barrier Functions (LPrev-CBFs)

First, we present the definition of Limited Preview Control
Barrier Function (LPrev-CBF) as an extension of Preview
Control Barrier Function (Prev-CBF) in [10].

Definition 4 (Limited Preview CBF). Given an input-delay
system Ydelay, its corresponding predictor system Ypreq
with a fixed-horizon previewable disturbance that satisfies
Assumptions 1-2 and a safe set S, (cf. Definition 1), then a
continuously differentiable function h : X x DI%T») x R, —
R is a limited preview CBF corresponding to uncertainty
dependent safe set C, p, 1 in (5), if there exist a control input
u €U and a class K function « such that:

h(z,u, dp, t)=—a(h(z,dp, 1)), (6)

forall z€ X and t € Ry. Further, foranyt e Ry, z € X
and d,, € D) an associated safe input set is defined as:

Ke(z,dp, t)={u € U | (6) holds}. (7)

Theorem 1 (Safety with Limited Preview). Given a pre-
dictor system Y,.cq with a fixed-horizon previewable dis-
turbance that satisfies Assumptions 1-2 and a safe set S,
(cf- Definition 1), if h is a LPrev-CBF corresponding to the
limited preview safety set C ,, ; from (5), then for the predic-
tor system Y,req with z(0) € S, any Lipschitz continuous
controller u(z,dy,t) € Ke(z,dp,t) with z in (4) ensures
the controlled invariance of the limited preview safety set
C. pt. Consequently, there exists some set C, C S, for the
system Lpreq for which u(x, dp, t) also ensures its controlled
invariance. Thus, the predictor system Xp.cq With preview is
guaranteed to be safe, i.e., z(t) € S,,Vt > 0.

Proof. If h is a LPrev-CBF associated with the limited
preview safe set C,,,, then any controller u(z,d,,t) €
Kec(z,p,t) enforces (6) for all 2 € X, V& > 0; hence
C.p,+ as defined in (5) is forward control invariant, i.e.,
h(z,dp,t) >0, Vt > 0. Consequently, the predictor system
Ypred and in turn the input-delay system Xgeiq, are safe
with preview for all ¢ > 0 with respect to the set C,; C S,
where C, ; exists by construction. L]

B. Closed-Form Candidate Limited Preview CBF

We now introduce a framework to formulate a closed-
form candidate limited preview CBF (LPrev-CBF) to derive
a limited preview safe set (cf. Definition 3) for the predictor
system X,,..4, given desired output constraints in (3).

The proposed framework is inspired by our prior work
[10], where a predictor-based method [11], [13] is consid-
ered, with the predicted state z projected 1" seconds into the
future as:

2(t+T)= ¢(t.T) + €(t, T) + [5e T~ Bu(t+7)dr, ()

where ¢(t, T) £ eAT 2(t)+ fOTé eAT=T) Byd(t + T; + 7)dr,
Ts £ min(T, — T;,T) and €(t,T) 2 [ eAT=7) Byd(t +
T; 4+ 7)dr . Note that at any given ¢ and given preview of
the disturbance T, > T; seconds into the future, ¢(t,T") can
always be pre-computed, while €(¢, T') contains unpreviewed
disturbances that the LPrev-CBF must be robust with respect
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to their worst-case realizations. Then, to guarantee the sat-
isfaction of the output bounds in (3), Vi > 0, we enforce
that the (immediate) future minima or maxima of worst-case
output trajectories under maximum acceleration or decelera-
tion inputs, respectively, always satisfies the output bounds,
t > 0. Imposing these minima or maxima constraints also
ensures the constraint feasibility at all times from the current
time ¢ to the time associated with the minima or maxima,
which we call the worst-case (minimum) stopping time, as
defined below:

Definition 5 (Worst-Case Stopping Time). At any given time
t € Ry for the predictor system Xp.cq with fixed-horizon
preview in (2), we define the worst-case (minimum) stopping
time Ts(t) as the minimum T4(t) such that the worst-case
output velocity U, (t+T5(t)) = Czy,y(t+T5(t)) = C Az, (t+
Ts(t)) = 0 under maximum control input acceleration and
disturbance-induced deceleration when 4(t) = CZ(t) < 0
or maximum control input deceleration and disturbance-
induced acceleration when y(t) = C2(t) > 0.

From (2), under the relative degree 2 assumption,
§i(t) = CA?2(t) + CABu(t) + CABgd(t), ©)

from which we can observe that when g(t) < 0 2, the max-
imum obtainable acceleration is with diag(sgn(CAB))uy,
under worst-case disturbance —diag(sgn(C ABy))d,,, while
when gy(t) > 0, the maximum deceleration is obtained
with —diag(sgn(C AB))u,, under worst-case disturbance
diag(sgn(CABg))d,,. In other words, the worst-case output
velocity 9y, (t + Ts(t)) and worst-case output y,, (t + Ts(t)
can be found by applying u(7) = 4(t) with

a(t) = —sgn(y(t))diag(sgn(CAB))un, (10)
under worst-case disturbance d(7) = d(t) with
d(t) £ sgn(y(t))diag(sgn(CABa))dm (1)

for all 7 € [t, T, (t)], resulting in,

Gu (1) = CAzu (1) =sgn(y(t))|C ABlum+sgn(y(t))|C ABaldm,
which is obtained from (9) with w(¢) in (10) and d(¢) in
(11), and the worst-case stopping time is the T(t) that is
the solution to ¥, (t + Ts(t)) = C Az, (t + T5(t)) = 0.

It is worth noting that for a known/computed time-varying
worst-case stopping time T(t) at a given time ¢t € Ry,
Assumption 2 when applied to the predictor system X,;.cq,
under Assumption 1 with a fixed preview horizon 7}, and
fixed input delay T, translates to two distinct cases: (I) When
T, — T; > T,(t) (i.e., when the constant time horizon T},
exceeds the stopping time for z(t)), the disturbances d(¢t+75)
in (2) are previewed/known for the entire time interval up
to t + Ts(t) + T;, and (I) when T, — T; < T,(t), the
previewable disturbances d(t + 7;) within the time interval
t+T, < 7 < t+T,(t)+7; remain indeterminate/unpreviewed
but bounded by D.

Further, note that the idea of worst-case (minimum) stop-
ping time is akin to and an extension of the (minimum)
stopping time in [10], while the concept of utilizing the

2Note that per Assumption 1, §(t) = C2(t) = C Az(t) is exactly known.

immediate future minima or maxima of the output trajectory
is inspired by the idea of minimizers/maximizers in [9], [10]
for a “predicted” desired/reference trajectory. In particular,
by enforcing that the worst-case predicted outputs T(t)
seconds into the future, i.e.,

|Cz(t +T5(t))] < Ymy, V>0, (12)

with  Cz,(t + Ts(t)) corresponding to a mini-
mizer/maximizer, we are essentially ensuring the satisfaction
of the output constraints for a future moving time horizon
that includes the current time. Hence, ensuring the robust
controlled invariance of (12) corresponding to C, ,, ; implies
the robust controlled invariance of (3) corresponding to S..

Next, we present a closed-form candidate LPrev-CBF to
compute a controlled invariant limited preview safe set.
Note that for the remainder of this manuscript, the (explicit)
dependence of T and other terms on the current time ¢ is
omitted for the sake of better readability.

Lemma 1 (Closed-Form Candidate Limited Preview CBF).
Suppose Assumptions 1-2 hold. Then,
h(za dp’ t) =Ym — Sgn(y(t))yw(t + Ts)
= Ym — sgn(y(t))Czw(t + T)
Z 07
is a valid candidate LPrev-CBF that guarantee the sat-
isfaction of the safety bounds in (12) corresponding to
C..p and, consequently, the safety bounds in (3) associated
with S,. The worst-case predicted state z,(t + Ts) =
o, Ts) + (¢, Ts) + ( OTS eATs=)dr\Bi is derived from
(8), with ¢(t,Ts) as defined below (8) (when T = T) and
E(t,Ty) 2 ([r° eAT=)dr)Byd with d(r) defined in (11)
and Ts = minng —T;,Ts(t)), as well as G defined in (10).

13)

Proof. First, when ¢(t) < 0 under maximum acceleration
input 4, the desired worst-case safety constraint is y,, (¢t +
Ts(t)) > —Ym, where y,, (t+T5(t)) is the smallest possible y
when the system comes to a stop (before changing directions)
under the worst-case unpreviewed disturbance d. Similarly,
when ¢,,(t) > 0 under maximum deceleration input 4, the
desired worst-case safety constraint is (¢t + Ts) < Ym.
Combining these two constraints yields
Ym — Sgn(y(t))yw(t + Ts) Z 0. (14)
Further, y,, (t+7s) = Czy(t+T5), where as described above
(10), 2y (t+T5) = Cyy(t +T) is the worst-case predictive
output that can be derived from (8) by considering T' = T as
well as u(7) = a(t) and d(7) = d(1), Y7 € [t + T}, t + T}
with @ and d as defined in (10) and (11), respectively.
Thus, enforcing (14) in turn enforces (12). Hence, h is
a valid candidate limited preview control barrier function
(LPrev-CBF), i.e., there always exists a piece-wise constant
input u(7) = a(t) = —sgn(y(t))diag(sgn(C AB))u,y,, for all
T € [t,t + Ts] that enforces h(z,dp,t) > 0 for all ¢ > 0.
Consequently, due to the guaranteed feasibility of (12) at
maxima or minima (i.e., when g, (t +7T5) = C2,(t + Ts) =
0), the safety constraints is also feasible for the whole time
horizon from ¢ + T; to t + T; + Ty; hence, (3) holds. O
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C. Worst-Case Stopping Time

As seen from (13) in Lemma 1, the design of the candidate
LPrev-CBF depends on the worst-case stopping time 7 that
will be derived next.

Lemma 2 (Worst-Case Stopping Time). At any given time t
the worst-case stopping time is the smallest positive solution
T,(t) to the equality CAz,(t + Ts) = 0 with z,(t + Ty)
given below (13), i.e.,
CA¢(t,T,) + CerT: Ba(t) + CeA =T Byd(t) = 0,
5)

where 0(t), d(t) are defined in (10) and (11), respectively,
while Ts and ¢(t,Ts) are defined below (8) (with T = Ty).

Proof. At any given time ¢ as per the predictor state dynam-
ics in (2), the output velocity 75 seconds into the future is
given as §(t +Ts) = C2(t + T,) = CAz(t + T;) (since the
system has relative degree 2 with respect to both the input
u(+) and the disturbance d(-), CB = CBy = 0). Then, with
zw(t + T) below (13), the worst-case output velocity with
a(t) and d(t) for all T € [t,t + Ty(t)] is given by

Yo (t +Ts) = CAzy (t + Ts)

= CAY(t,T,) + C [)* AeA T~ drBa

+C f;é AeMTs=7) Byd(T)dr

= CA¢(t,T,) + C(e*Ts — I)Bii + C(eAT==T5) — [\Byd

= CA(t,Ty) + CeAT: B+ CeAT==T5) Byd,
where the final equality holds since CB =0 and CB; =0
by the relative degree 2 assumption. O

D. Closed-Form Limited Preview Control Barrier Function

Now that we have a candidate LPrev-CBF from Lemma 1
and an expression for the worst-case stopping time in Lemma
2, we can prove that the candidate LPrev-CBF satisfies the
definition of limited preview CBF in Definition 4.

Proposition 1 (Closed-Form LPrev-CBF). Given a input-
delay system with preview Ygelay and a corresponding
predictor system Yp,cq that satisfies Assumptions 1-2 with
worst-case stopping time Ts(t) computed based on Lemma
2, the continuously mapping h : R™ x DIOTr) x Ry =+ R
in Lemma 1 is a limited preview control barrier function
(LPrev-CBF) for ¥,,cq, if there exist a control input v € U
and a class Koo function « that satisfy (6) with
Iz, u,dy, t) = —sgn(y(t))[CeATs (Az(t) + Bu(t)
+Bad(t +T3)) + ¢ (¢, T5)),
with )(t, Ts) = fOT5 CeAT=7) Byd(t+T; 4 7)dr, where Ts
is defined below (8) (with T = Ts). Further, (12) holds and
consequently, the output constraint in (3) holds.

(16)

Proof. We begin the proof by considering the closed-form
candidate LPrev-CBF h from (13) in Lemma 1. Next, by
applying Theorem 1 to h, a closed form expression for h
in (6) is obtained by computing the derivative of i with
respective to current time ¢. Consequently, /(z,u, d,,t) =
—sgn(y(t)) Ly (t + Ts), where Ly, (t + Ty) is the time
derivative of yy,(t + Ts) = Cz,(t + Ts) with z,(t + Ty)
defined below (13), which can be derived by employing

Leibnitz integral rule and leveraging the fact that CB = 0
and CB; = 0 (relative degree 2 assumption) to obtain

Ly (t + Ty) = CeATo5(8) + 9 (t, Ty)
FOA(G(t, Ty) + é(t, Ts) + (fy* AT~ dr) Ba)T,
+CeAMT=T) By(d(t + Ty + Ts) + d)T
= CeAT3(t) + 4(t, Ts) + C Az (t + T:)T,
+CeAT=TIBy(d(t + Ti + Ts) + d)T5,
where we defined ¢ (t,Ts) below (16), with ¢(¢,Ts) and
€(t, Ts) defined below (8) and (13), respectively, and applied
the definition of z,,(t+T%) below (13) in the second equality.
Next, by Lemma 2, CAz,(t + Ts) = 0, i.e., the third
term in the above becomes 0. Additionally, since T5 =
min(T, — T;,T,), we have that when T; = T, — T},
T5 = 0 (T, and T; are fixed constants) and when Ts =
T,, CeAT:-T5)B, = CB; = 0 (by relative degree 2
assumption); consequently, the final term in the above that
multiplies Ty is also equal to 0. Thus, the expression for
h simplifies to h(z,u,d,,t) = —sgn(y(t)) Lyu(t + Ty) =
—sgn(y(t))(CeATs 2(t) + (t, Ty)). Finally, we obtain (16)
by substituting the expression for Z(¢) from the predictor
state dynamics in (2).

a7

E. Optimization-Based Safety Control

Next, we show how the proposed LPrev-CBF can be
coupled with any nominal or legacy controller to minimally
modify it to guarantee recursive safety.

Proposition 2 (Optimization-Based Safety Control). For the
input-delay system Ygeiqy in (1), any (stabilizing) nominal
(input-delay) controller w = k(x,z,t) at time t with z(t)
in (4) can be minimally modified to guarantee safety by
computing a new safe control input u(x,d,,t) that is a
solution to the following quadratic program (QP):

u(x,d,, t) = argmin §|ju — k(z, 2, 1)
eu

s.t.uP(t)u < q(t),
with z, ¥(t,Ts), h(z,dp,t) and Ts from (4), Proposition 1
(as defined below (16)), Lemma 1 and Lemma 2, respectively,
and a class Ko, function o, where we defined
P(t) £sgn(y(t))Ce* B,
q(t) £ a(h(z,dp, ) — sgn(y(1) (W (t, T)
+CeATs ) (Az(t) + Bad(t + Ty))).
Further, the optimization problem (18) is recursively feasible.

Proof. The LPrev-CBF constraint in Theorem 1 and Defi-
nition 4, h(z,u,dy,t) > —a(h(z,dp,t)), with h(z,d,,t)
from Lemma 1 and h(z,u,d,,t) from Proposition 1 can be
written as:
—a(h(z,dy, 1)) < —sgn(§(6)) (CeAT (A=(t) + Bult)
Bad(t + T;)) + (¢, T5)),

which can be rearranged as P(t)u < ¢(t) with the above
P(t) and q¢(t). Finally, recursive feasibility is guaranteed
since our design explicitly considers input constraints. [

(18)

In the above, solving (15) analytically to find Ts(¢) for
the application of Proposition 2 is non-trivial, but it can be
found numerically, e.g., using MATLAB functions fsolve,
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fzero or vpasolve. Further, note that in the absence of
input delay (i.e., when 7; = 0), the results in this paper
are in themselves a novel contribution for when the preview
horizon is limited and fixed, in contrast to our prior work in
[10] that assumed unlimited preview.

IV. ILLUSTRATIVE EXAMPLES
A. Assistive Shoulder Exoskeleton Robot

Consider the dynamics of an industrial shoulder exoskele-

ton robot system [14] with a fixed input delay given by:

LEt) + Byé(t) + Kye(t) = mo() +ult = T0),  (19)
where e(t) = 0(t) — 04(t) is the angular displacement error,
with ¢ and € as its velocity and acceleration. The terms [; =
I, +1., B = B, + B,, and K; = K}, + K, represent
the combined inertia, damping, and stiffness of the human-
exoskeleton system. Here, subscripts h and r denote human
and robot components, respectively.

Assuming the robot-human shoulder joint is aligned and
the interaction torque 7. is previewable, satisfying Assump-
tion 2, the control input w functions as either a spring or
damping force to keep system states within safety bound-
aries, specifically ensuring |e(¢)| < §. When the human-robot
system (19) is transformed into the state space form of the
predictor system® as described in (2), its state is represented
by 2(t) = [T(t+T) éT(t+T,)] . The previewable
disturbance for this system is given by d(t+7T;) = 7.(t+T3)
and the matrices for this system are:

0 1 0 0
A= _ _ B=|,21|,Bs=|,-
[Ij 'K 131‘] ’ Lj 1} ! [Ij 1} ’
B, = [1]91] ,C=[1 0].

The output y(t) = e(t + T;) must satisfy |e(t + T3)| < 4,
and the control input is bounded as |u(t)| < .

In this study, the simulation parameters are: I; =
1 Nms?/rad, Bj = 2 Nms/rad, K; = 2 Nm/rad, 7.(t) =
0.43sin(0.27t) Nm, and § = 0.2rad. The constant or fixed
preview horizon and input delay times are set at 7}, = 10 ms
and T; = 8 ms, respectively. Input delays in robotic systems
are typically in the order of milliseconds [15], but since
our shoulder robot system in [16] is not commercial and
operates at a sample rate of 4ms, for this simulation, we
have chosen a fixed time delay of 8 ms, which is double the
sample rate of our system. The control input bound ., is
varied between 1.119 to 2.0 to analyze its effect on proposed
LPrev-CBF approach in Section III, in comparison to the
standard CBF approach in [2], and our prior Prev-CBF [10],
which does not impose limitations on the preview horizon.
For simplicity, the nominal controller is zero, meaning that
u(t) also indicates the safety controller’s intervention. The
rationale behind selecting u,,, from 1.119 is to illustrate an
instance in which the standard CBF fails to be safe.

3Note that we directly use the predictor system since z(t) is exactly
known under Assumption 2 and also such that we can compare with
other related approaches in the literature that do not consider input delays.

Moreover, using this system for both examples allows us to illustrate the
benefits of preview even in the absence of input delays.

1) LPrev-CBFs: The LPrev-CBF, described in Section III,
ensures safety and controlled invariance for the shoulder
robot, requiring |y(t)| = |Cz(t)] < ym, = J. The control
input u(t) adheres to the constraint |u(t)] < w,. We
specifically employ the optimization-based safety controller
from Proposition 2, with the nominal control input set to
zero, denoted as k(z,t) = 0. The closed-form LPrev-CBF is
further elaborated in Lemmas 1 and 2, and Proposition 1.

2) Standard CBFs: We then compare our approach with
the standard CBF from [2], specifically from the lane keeping
example in [2, Section V-B]. Besides the output constraint:

(&) = le(t + T3)| = |C2()] < ym,
it assumes a bounded output acceleration:
|y(t) = ‘e(t'i_j—’z)‘ = |CZ(f)| < Amax,

which, given input constraints |u| < w,,, is inherently
bounded by the dynamics in (19):

u =146+ Bgé+ Kge — 7.
Then, using worst-case bounds on €, é, e, and 7. given

by t.Qx.max = Qmax> éma)u €max — Ym> and Te,max (fI'OIIl
Assumption 2), respectively, the triangle inequality gives:

. A
|u‘ < Idamax + Bdemax + Kdemax + Te,max — Um-
The output constant acceleration bound ay, . is then:
1 .
Amax = Id (um - Bdemax - Kdemax - Te,max)- (20)

To meet this bound, the standard CBF method’s control input
must be:

u(t) S [_Idamax + Fo(t), Idamax + FO(t)L
with Fy(t) £ Baé(t) + Kae(t) — 7e(t).
The standard lane keeping CBF approach from [2, Section
V-B] proposes the following CBF:

h(z) = (ym — sgn(y(t))y(t)) —

In our simulation, parameters are set as: épax = 0.1326,
emax = 0.2, and d,,, = 0.43. By adjusting the input bounds
Uy, between 1.119 and 2.0, we proportionally modify a.,q.
within the range of 0.0238 to 0.9048 to meet the conditions
of (20).

3) Prev-CBFs [10]: We further compared between the
proposed LPrev-CBF with T}, = 10 ms and our prior Prev-
CBF in [10], where the preview horizon Tj, is unconstrained
and unlimited, implying full knowledge of previewable dis-
turbances throughout the entire future horizon.

Figure 1 shows the simulated output and input trajectories
under various conditions: without a safety controller, with
the standard CBF in [2], with Prev-CBF in [10], and with
LPrev-CBF, for u,, = 1.119 and u,, = 1.8. Without
safety measures, the safety constraint (depicted by black
dashed lines) is violated. By contrast, the standard CBF,
Prev-CBF, and LPrev-CBF ensure safety. Notably, with a
smaller u,,, the standard CBF deviates significantly from
the trajectory without safety, while Prev-CBF and LPrev-
CBF remain closer. This distinction is also evident in the
(intervention) input trajectories. The standard CBF intervenes
earlier and more aggressively, while Prev-CBF and LPrev-

2n
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2 max
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Without CBFs --CBF 2] (up, = 1.119)
LPrev-CBF (u,, = 1.119) ---CBF [2] (u,, = 1.8)
<-LPrev-CBF (u,, = 1.8)

Prev-CBF (10| (u,, = 1.119)
-= Prev-CBF (10] (u,, = 1.8)

A
P
u(t) [Nm]

003 ,
/
0.1 \ 002 !
/
\ ,‘- 0.01 //
\ § .
02“’7””’;””""*;** - 771() 07 % 26 N
Time ¢[s] 0 3 Time t[s] 7 10

Fig. 1: Angular error (left) and input (right) trajectories: (i) Without
CBFs (exceeds black dashed bounds), (ii) standard CBF [2] with
Uy = 1.119, (iii) Prev-CBF [10] with u,, = 1.119, (iv) LPrev
CBF with u,, = 1.119, (v) standard CBF [2] with u,, = 1.8,
(vi) Prev-CBF [10] with u,, = 1.8, and (vii) LPrev CBF with
Uy, = 1.8. Furthermore, an enlarged segment in the (right) plot
elucidates the initial intervention disparities for all three conditions
when u,, = 1.8.

:"is Hy
R
O T RS | EEICBF 2]
E 2 E3 -0~ CBF [2]: Tyug
D21 o Et [_|Prev-CBF [10]
5 ” 29 ——Prev-CBF [10]: T} ayg
35 P % LPrev-CBF
2111 -o- CBF [2] 211 || 4 LPrev-CBF: Ty
g | — Prev-CBF [10] VL
g .
= 0 " LPrev-CBF *% ol 4 'é- B b b e Aoz o
A 12 14 16 18 2 2 1.2 14 16 18 2
Uy = U

Fig. 2: Intervention times (left) and stopping times (right, shown
as box plots) vary with different values of u,, between 1.119 and 2.
The standard CBF [2] typically acts sooner and has longer stopping
times compared to LPrev-CBF. Conversely, Prev-CBF [10] shows
late intervention and exhibits shorter stopping times than LPrev-
CBF. However, these differences become less pronounced as u, is
increased.

CBF operates primarily near the safety limits. For u,, = 1.8,
interventions from all methods are minimal, although the
standard CBF still intervenes sooner than Prev-CBF and
LPrev-CBF.

We also assessed the effect of varying w,, on the initial
intervention time 77, i.e., the first time instance with non-
zero input. A T} closer to 3.1643 s (the violation time with-
out CBFs) indicates later safety intervention, implying a less
conservative safety controller. Additionally, we examined the
influence of u,, on the (worst-case) stopping time T,. As
seen in Figure 2, LPrev-CBFs intervene later and have lower
(worst-case) stopping times than standard CBFs, suggesting
their superior utilization of preview information, resulting
in less conservatism. However, when compared with Prev-
CBFs, the LPrev-CBFs intervene earlier and have a little
larger (worst-case) stopping times than Prev-CBFs, which is
as expected since the preview information is more limited
with LPrev-CBFs. In summary, the results affirm that even
with a limited preview horizon, our proposed LPrev-CBF
ensures system safety with reduced conservatism.

B. Lane Keeping with Road Curvature Preview

Next, we consider the lane-keeping example of lateral
positioning of a vehicle when limited preview of the road
curvature is available. Specifically, we are inspired by the

6~ Prov-CBF[10](uy, = 0.1) = CBF[6] (w, = 0.2)

LPrev-CBF(u,, = 0.15) - LPrev-CBF (u,, = 0.2)
Prev-CBF([10)(u,, = 0.15) & Prev-CBF[10](u,, = 0.2)
0. o N
= =
= Without CBFs =
= —6~Prev-CBF [10] (4, =0.1) | 5
0.55 p LProv-CBF (u,, — 0.15) | <1
4 Prev-CBF [10] (u,, = 0.15)
/ - CBF [6] (un = 0.2) 01
7 v LPrev-CBF (1, = 0.2)
/ Prev-CBF [10] (1, = 0.2)
/ = = Yomas
0.5 -0.15
0.05 0.1 0.15 0.2 0 0.05 . 0.1 0.15 0.2
Time, t[s] Time, t[s]

Fig. 3: Lateral displacement trajectories y(t) (left) and trajectories
of CBF intervention of u(t) (right) given by Au(t) £ u(t) —
k(xz(t),t), where k(xz(t),t) is the legacy controller.

lane-keeping problem in [2, Section V-B], and the relevant

predictor state dynamics® can be written as in (2) with
0 1 Vo 0 0
_C+Cy bCr—aCy o
A= 0 Mwvg 0 Muvg Yo B = M
0 0 0 1 ’ 0|
bC,—aCy a’Cy+b°Cy Oy
0 IZ’U(] 0 - Izv() a Iz

Ba=1[0 0 -1 0]',c=[1 0 0 0],

with states = [y, v,, 7], representing lateral velocity v,
lateral displacement y, yaw rate r and error yaw angle . In
this specific setup, the steering angle of the front tire serves
as the input u to our system, whereas the desired yaw rate,
rg = ”EU, is the disturbance with constant longitudinal veloc-
ity vg and (unknown but previewable) road curvature R. In
this example, we considered a sinusoidal r; as disturbance,
and the known signals and system parameters are: Vehicle
mass M = 1650 kg, distances of rear and front wheels from
center of mass b = 1.59m and a = 1.11 m, respectively, rear
and front tire stiffness parameters C, = 133000 N/rad and
Cy = 98800 N, /rad, respectively, and the vehicle moment of
inertial with respective its center of mass I, = 2315.3 kgm?,
taken from [2, Section V-B]. Further, the system has a
constant input delay of T; = 10ms and a preview of road
curvature for a constant preview time 7, = 20 ms along with
the initial predicted state z(0) = [0.5,1.2,0,0] .

Next, for stabilizing the vehicle in the center of the lane,
we employ a nominal controller k(z,t) = K (zyy — z), with
zpp = [000 ry)" and K = [0.091 0.022 1.419 0.078].
Safety here constitutes adhering to the lane boundary con-
straint |y| < ym,, where y,, is chosen as 0.6 m in this
example. Further, the input constraint is |u| < wu,,, where
we consider three distinct values of w,, for comparison.

1) Limited Preview CBFs: We apply the proposed LPrev-
CBF in (13) in Lemma 1 within an optimization-based
framework in Proposition 2 to this problem and also compare
its performance with our prior design, Prev-CBF [10], with
unlimited preview and with the standard CBF [2] that does
not consider preview.

2) Preview CBFs: For comparison, we consider Prev-
CBF that we previously proposed in [10], where a sufficiently
large or “infinite” preview horizon 7}, is assumed and the rest
of the simulation parameters for Prev-CBF are kept the same
as for the proposed LPrev-CBF.

3) Standard CBF: Lastly, we also consider the Standard
Lane-Keeping CBF proposed in [2, Section V-B] given in
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(22), where y,, represents half the lane width and ¢ the
lateral velocity, calculated from §(t) = v+1vg derived from
vehicle dynamics. Using the relationship between §(t) and
u derived from the lane-keeping dynamics,

. Cru—Fy
===
where F £ Cf%;”" + C, ”;01”“ + Mugrg such that |Fpy| <

Fy,max With a known Fj .y, we can formulate the acceler-
ation limits ap,.x as

Amax = ﬁ(cfum - FO,max)
and with the control input that satisfies:
u(t) € [g; (~Mamax+Fo(t)), &; (Mamax+Fo(t))]. (23)

As evident from Figure 3 (left), in the absence of any
CBFs, the vehicle with just the nominal controller violates
the lateral safety condition, whereas the proposed LPrev-
CBF under input constraints u,, € {0.2,0.15}, Prev-CBF
[10] under input constraints u,, € {0.2,0.15,0.1} and the
Standard CBF [2] under input constraints wu,, = 0.2 ensure
that the vehicle stays within its lane. Moreover, from our
simulations, we observe that the approach with the longest
preview, i.e., Prev-CBF that has unlimited preview, can
remain safe with the least control limit, u,, > 0.09, while
the standard CBF that does not utilize preview requires
the highest control authority, u,, > 0.18, to remain safe;
thus, preview is clearly advantageous. On the other hand,
the proposed LPrev-CBF provides a middle ground where
preview is available but limited, and can maintain safety with
a smaller input bound, u,, > 0.14, than the standard CBF.
In other words, there is some form of partial ordering of the
3 approaches: Prev-CBF > LPrev-CBF > Standard CBF in
terms of minimum control authority needed for safety.

Further, from Figure 3 (right), it can be observed that for a
given controller (e.g., Prev-CBF with u,, € {0.2,0.15,0.1}),
the greater the actuation/control authority is, the lesser the
safety controller needs to intervene against the nominal
controller, i.e., the intervention time is reduced. Similarly, for
a fixed actuation limit (e.g., u,, = 0.2), Prev-CBF interferes
less than the proposed LPrev-CBF that in turn interferes less
than the standard CBF.

Discussion of Results. To summarize, the examples presented
along with the proposed approaches emphasize the value of
preview information even if only limited preview is available
and also when there is input delay. This provides broader
actuation authority range for other control goals, e.g., for
maximizing performance, and causes less overall interference
against the nominal controller for safety when compared
to the cases where preview information is not utilized.
Further, with the increase in actuation limit w,,, the value
or advantages of the preview information decreases since
the input range becomes large enough to counter effects of
relatively smaller worst-case disturbances. The finding of this
work confirms findings of [7] about the value of preview for
discrete-time systems and also the findings of [10] about the
value of preview for continuous-time linear systems.

V. CONCLUSION

In this paper, we introduced a limited preview control bar-
rier function (LPrev-CBF) for linear continuous-time input-
delay systems where the preview horizon for the previewable
disturbances is limited and fixed, e.g., due to limited sens-
ing ranges. In contrast to the standard CBF approach that
simply considers worst-case disturbances, our approach can
leverage preview information to reduce conservatism, while
avoiding the assumption in the Prev-CBF approach that the
disturbances are previewable for an infinite horizon. Further,
our LPrev-CBF explicitly takes input constraints/bounds into
consideration and thus, it naturally has recursive feasibil-
ity/safety guarantees. Future directions include the extensions
of limited preview CBFs to consider preview horizons that
may be state- or time-dependent as well as the presence of
non-previewable uncertainties/disturbances.
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