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Abstract— Control systems can often forecast/predict future
disturbances, such as road curvatures, yet this lookahead or
preview data is seldom utilized for safety critical control when
designing control barrier functions (CBFs). This paper extends
the recent limited preview control barrier function for linear
systems with input delays to a class of nonlinear input-delay
systems, which similarly leverage preview information for a
limited preview time horizon to provide less conservative safety
guarantees than traditional CBF methods. To achieve this
extension, we propose two algorithmic linearization methods,
namely affine abstractions and approximate linear immersions,
with rigorous approximation error characterization and then,
we take this error into consideration in the proposed limited
preview nonlinear CBF. Further, our approach explicitly in-
corporate input bounds; thus, recursive feasibility of its cor-
responding optimization-based safety controller is guaranteed.

I. INTRODUCTION

Many control systems such as self-driving cars have for-
ward looking sensors, e.g., cameras and Lidar, that can be
used for providing information about upcoming conditions
for improving performance and safety. While optimal and
model predictive control approaches have leveraged such pre-
view information for improved performance [1], [2], safety
control methods have only recently begun to consider the
problems associated with recursive assurances of safety and
feasibility. Prior to this, most traditional safety control ap-
proaches, including using the control barrier function (CBF)
framework (e.g., [3], [4]), consider worst-case robustness to
guarantee recursive safety and are often overly conservative.

Recent studies have demonstrated that incorporating pre-
view information into safety control of certain classes of
discrete-time systems, including those with input delays, can
yield significant advantages [5], [6]. For continuous-time
systems, a predictive CBF has been proposed in [7] when
the preview comes from changeable reference trajectories,
while our recent work developed a preview CBF approach
that utilizes information on previewable but uncontrollable
disturbances, such as road gradients, curvatures, or the
predicted future motion of other agents [8], [9]. Further,
this work is extended to linear continuous-time input-delay
systems, where the preview horizon for the previewable
disturbances is limited and fixed, which better reflects real-
world settings where sensing ranges are limited [9]. However,
these techniques are only applicable to uncertain linear
systems.
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Our approach for handling this challenge is to over-
approximate nonlinear systems as uncertain linear systems
with bounded approximation errors. Thus, a relevant body of
literature pertains to that of abstraction of nonlinear systems
as (piecewise) affine systems, also known as hybridization
[10] or affine abstractions [11], [12]. Yet another related
approach is that of approximate state immersions [13], [14]
that lift the nonlinear dynamics (without control inputs) to
a higher dimensional approximate linear model, which we
will build upon to allow control inputs.

Contributions. In this paper, we present a control bar-
rier function for a class of nonlinear continuous-time sys-
tems with input delays and limited-horizon preview (LPrev-
nCBF), as an extension of previous designs for linear systems
in [8], [9]. One key challenge for this extension is our
requirement of a closed-form LPrev-nCBF solution that in
turn requires a closed-form expression for state solutions.
Thus, we first propose two algorithmic linearization methods
for over-approximating the nonlinear system dynamics with
uncertain linear dynamics with a careful characterization
of the approximation errors. Specifically, we propose to
leverage affine abstraction methods in [11], [12] for this
linearization process, as well as introduce an approximate
linear immersion approach that extends the approach in [14]
to lift the nonlinear dynamics with control based on its
relative degree. By design, these approaches simultaneously
compute and minimize the linearization error bounds.

Then, using this linearized system (with potentially higher
dimension) and the linearization error bounds, we present
a closed-form input-constrained LPrev-nCBF that is robust
to the linearization errors. Since the proposed LPrev-nCBF
incorporates the knowledge of input bounds, recursive feasi-
bility and safety of the associated optimization-based safety
controller can be guaranteed. The efficacy of the proposed
LPrev-nCBF is demonstrated using a vehicle lane-keeping
scenario with road curvature as the previewable disturbance.

II. PRELIMINARIES AND PROBLEM FORMULATION

Notations. Rn and R+ refer to the n-dimensional Euclidean
space and the set of non-negative real numbers. All vector in-
equalities represent element-wise inequalities. Further, sgn(·)
and |·| are signum and element-wise absolute value operators,
and a diagonal matrix diag(v) has v as its diagonal elements.
Additionally, a function ω : [0,→) ↑ [0,→) belongs to the
class K→ if it is continuous and strictly increasing, with
limr↑→ ω(r) = → and ω(0) = 0.
System Model. Consider a class of continuous-time nonlinear
control system with a time-delayed and linear control input,
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along with previewable disturbances:
!delay : ẋ(t)= f(x(t), d(t))+Bu(t↓Ti), (1)

with state x(t) ↔ X ↗ Rn, input u(t) ↔ U ↗ Rm subject to
constant time delay Ti, bounded and previewable (only for a
constant and limited preview horizon Tp) disturbances d(t) ↔
D ↗ Rl. D ↭ {d | |d| ↘ dm} and U ↭ {u | |u| ↘ um} are
bounded sets1 for the disturbance and input, respectively.

The term ”previewable disturbance” refers to external
inputs, signals, or parameters whose future values can be
predicted or measured by sensors or perception modules with
limited range. This encompasses, for instance, a target signal
for tracking, anticipated paths of other entities, and road
characteristics like curvature, slope, or friction coefficients.

The system variable of interest is represented by a scalar
output y(t) = Cx(t) ↔ R and its corresponding constraint
Sx = {x ↔ X | |Cx| ↘ ym} represents desired safety
constraint. Further, without loss of generality, we assume
that the system !delay with this output has a relative degree
of 2 with respective to the input, i.e., CB = 0. Additionally,
we assume that the relative degree r of f(x, d) with respect
to u is constant. Further, as in [9], we consider the setting
where the preview horizon Tp is limited and fixed, beyond
which the unpreviewed disturbance is unknown but bounded.
Assumption 1. The constant preview horizon Tp satisfies
Tp > Ti, where Ti represents a constant input-delay time.
Assumption 2. For a known and fixed preview horizon
Tp and given time t ↔ R+, the previewed disturbance
dp(t) ↭ {d(ε) ↔ D, t ↘ ε < t + Tp} is known and
beyond this preview horizon, the unpreviewed disturbance
dnp(t) ↭ {d(ε) ↔ D, t + Tp ↘ ε < →}, is unknown but
bounded (with known bounds).

Inspired by the literature on time-delay systems and our
prior work on preview based safety critical control, we
consider the problem in terms of a predictor system based
on the predicted state z(t) = x(t+ Ti):

!pred : ż(t)= f(z(t), d(t+ Ti))+Bu(t). (2)
Note that under Assumption 1 that Tp > Ti, the predicted
state z(t) at any time t can be computed from x(t) by using
ODE/DDE solvers (for linear systems, predictions can be
found in closed-form as in [9]). Thus, we can equivalently
consider !pred in lieu of !delay owing to exact knowledge
of z(t) from x(t) and for ease of exposition, we will directly
consider the safe sets in terms of the predicted state z(t).

Definition 1 (Safe Sets). Let Sz ↗ Rn be a safe set of
!pred that describes desirable/given safety constraints on
the states, and let Sz,p ↗ Rn≃D[0,Tp) be the Tp-augmented
safe set of !pred, defined as

Sz,p ↭ {(z,dp) | z ↔ Sz,dp ↔ D[0,Tp)},
where D[0,Tp) is the set of all trajectories of d(ε) within the
time interval of [0, Tp] ↭ {ε |0 ↘ ε < Tp}, defined as,

D[0,Tp) ↭ {d(ε), ⇐ε ↔ [0, Tp] | d(ε) ↔ D}.
1 For ease of exposition, symmetric bounds are assumed. Any asymmetric

bounds can be handled by taking their midpoints as known signals and
deviations from these midpoints as signals with symmetric bounds.

Definition 2 (Controlled Invariant Set). A set C ↗ Sz is a
robust controlled invariant set of !pred in a safe set Sz ↗ Rn

if for all z(0) ↔ C, there exists some u(t) ↔ Rm such that
z(t) ↔ C ↗ Sz , ⇐t ⇒ 0 for all d(t) ↔ D. Cmax is the maximal
robust controlled invariant set in Sz if Cmax contains all
robust controlled invariant sets in Sz .

Further, a set Cp ↔ Sz,p is a limited preview controlled
invariant set of !pred in an augmented safe set Sz,p if for all
(z(0),dp(0)) ↔ Cp, there exists some u(t) ↔ Rm such that
(z(t),dp(t)) ↔ Cp ↗ Sz,p, ⇐t ⇒ 0 for all dnp ↔ D[Tp,→).
Cmax,p is the maximal limited preview controlled invariant
set in Sz,p if Cmax,p contains all limited preview controlled
invariant sets of !pred in Sz,p.

Specifically, we aim to find limited preview control barrier
functions with preview capabilities for !pred that render
some time-varying set Cz,t ↗ Sz controlled invariant. To
achieve this, we introduce a time-varying ‘limited preview
safe set’, denoted as Cz,p,t ↗ Sz,p, which is not only
controlled invariant but also implies the existence of some
Cz,t ↗ Sz that is controlled invariant by construction/design.

Definition 3 (Limited Preview Safe Set). Given a predictive
system with preview !pred (with known dp ↔ D[0,Tp) and
unknown dnp ↔ D[Tp,→)), a super-level set Cz,p,t defined on
a time-varying function h : X ≃D[0,Tp) ≃ R+ ↑ R:

Cz,p,t ↭ {(z,dp, t) | h(z,dp, t) ⇒ 0, }, (3)
which is defined based on another function hnp accord-
ing to h(z,dp, t) ↭ mindnp↓D[Tp,→) hnp(z,dp,dnp, t) with
D[Tp,→) being the set of all trajectories of d(t) starting from
Tp, is a limited preview safe set for !pred if (z(t),dp(t), t) ↔
Cz,p,t for all t ⇒ 0 implies that z(t) ↔ Sz for all t ⇒ 0..

Note that, by design, the limited preview robust safe set
in the above definition needs to be defined or chosen such
that its controlled invariance implies the existence of some
Cz,t ↗ Sz that is controlled invariant. Further, note that while
z(t) can be computed from x(t) using (2), predictions of
z(ε) for ε ⇒ Tp ↓ Ti are unknown and cannot generally
be obtained in closed-form unlike in linear systems as in
[9]; thus, in order to leverage the tools developed in [9], our
first problem of interest is to over-approximate the nonlinear
system by a linearized model with known error bounds.

Problem 1 (Algorithmic Linearization). Given an input-
delay system with preview !delay in (1) satisfying Assump-
tions 1–2, its corresponding equivalent predictor system
!pred in (2) and a safe set Sz (cf. Definition 1), design lin-
earization algorithms that return A, BL, Bi

d, i ↔ {0, . . . , r}
and em to obtain a linearized (immersion) model:
!lin : żL(t)=ALzL(t)+

∑r
i=0 B

i
dd

(i)(t+Ti)+BLu(t)+e(t),
(4)

that minimizes the linearization error J(em), where zL(t) is
the lifted predicted state, r is the relative degree of f(x, d)
with respect to u, d(i) is the i-th time derivative of d and e
is the linearization error such that |e| ↘ em ↔ Rn. In the
special case without lifting, zL(t) = z(t) and r = 0.
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Then, our second problem is to construct the input-
constrained limited preview (nonlinear) control barrier func-
tion (LPrev-nCBF) that is robust against linearization errors:

Problem 2 (Safety with Limited Preview). Given an input-
delay system with preview !delay in (1) satisfying Assump-
tions 1–2, its corresponding linearized system !lin in (4) and
a safe set Sz (cf. Definition 1), construct a limited preview
(nonlinear) control barrier function (LPrev-nCBF) corre-
sponding to Cz,p,t in (3) that guarantees limited preview con-
trolled invariance of !lin in Sz (and thus, safety of !delay

under Assumption 1 and the over-approximation/simulation
property of !lin).

III. MAIN RESULTS

Section III-A introduces two algorithmic linearization
methods to address Problem 1, while Section III-B presents
the LPrev-nCBF that solves Problem 2 using the linearized
models and their linearization error bounds from Problem 1.

A. Algorithmic Linearization Methods

As above-mentioned, closed-form predicted states are non-
trivial to obtain for nonlinear systems; hence, this section
presents two linearization algorithms to solve Problem 1 that
compute and minimize linearization error bounds.

1) Affine Abstraction: This first method builds upon
the affine abstraction approach from [11], [12] to ab-
stract/overapproximate the nonlinear function f(z, d) in (2)
within a given domain of z ↔ X and d ↔ D by a pair of
affine hyperplanes/functions f and f such that f(z, d) ↘
f(z, d) ↘ f(z, d) for all z ↔ X and d ↔ D with:

f(z, d) = Az +Bdd+ eω,
f(z, d) = Az +Bdd+ eω,

(5)

and to-be-determined matrices A,Bd and vectors eω, eω of
appropriate dimensions. The following algorithm allows us to
find these matrices and vectors that minimizes the magnitude
of the linearization error bound eω,m = 1

2 (eω ↓ eω) given by
⇑eω,m⇑→ = maxi eω,m,i.

Proposition 1 (Affine Abstraction [11]). Given the function
f : X ≃ D ⇓ R(n+l) ↑ Rn and the set M of (finite)
mesh/grid points of X ≃D. Suppose A,Bd, e, e, ϑ are solu-
tions to the following linear program (LP):

min
ε,A,Bd,e,e

ϑ (6)

s.t Azs+Bdds+eω+ϖ ↘ f(zs, ds) ↘ Azs+Bdds+eω↓ϖ,

eω ↓ eω ↓ 2ϖ ↘ ϑ1n, ⇐(zs, ds) ↔ M,

where 1n ↔ Rn is a vector of ones and ϖ can be computed
via [11, Proposition 1] for different function classes. Then,

f(z, d) = Azs +Bdd+ ec + eω, ⇐(z, d) ↔ X ≃D,

with a constant ec = 1
2 (eω+ eω) and a linearization error eω

satisfying ⇑eω⇑ ↘ eω,m = 1
2 (eω ↓ eω).

Proof. The proof is a slight modification of the one in [11,
Theorem 1] with A = A = A and B = B = Bd, as well as
with the interpolation error ϖ directly incorporated into the
linear program.

From Proposition 1, we obtain an affine abstraction-based
linearized model of the nonlinear predictor system !pred:

!abs : ż(t)=Az(t)+Bu(t)+Bdd(t+Ti)+ec+eω(t), (7)
with a constant ec = 1

2 (eω + eω) and a linearization error
satisfying |eω(t)| ↘ eω,m = 1

2 (eω ↓ eω).
2) Approximate Linear Immersion: The affine abstraction-

based linearization method may sometimes lead to poor over-
approximation of the nonlinear system and, in turn, a conser-
vative LPrev-nCBF. Thus, we propose a second method for
linearization that is an extension of the approximate linear
immersion from [13], [14] to systems with control inputs.
This approach involves lifting the nonlinear system to higher
dimensions and applying linearization to the higher order
derivative of the nonlinear function f(x, d) in (2).

Specifically, inspired by [14], our approach involves find-
ing an approximate linear immersion of the nonlinear func-
tion f(x, d) in (2) with an order that is equal to the relative
degree r of f with respect to u, i.e., ϑ

ϑx (L
i
ff)B = 0 for

all i < r ↓ 1 and ϑ
ϑx (L

i
ff)B ⇔= 0 for i = r ↓ 1 with Lf

being the Lie derivative with respect to f . The r-th order
approximate linear immersion is defined as

f (r)(z,qr, u) =
∑r↔1

l=0 ”lf (l)(z,qr↔1) +Aωz
+Bd,ωqr +Bu,ωu+ ec + eω,

(8)

with qi = [d, ḋ, d̈, . . . , d(i)], i ↔ {1, . . . , r}, |eω| ↘ eω,m, and
to-be-determined matrices ”1, . . . ,”r↔1, Aω, Bd,ω, Bu,ω and
vectors ec, eω,m of appropriate dimensions. The following
algorithm allows us to find these matrices and vectors that
minimize the magnitude of the linearization error bound eω,m
given by ⇑eω,m⇑→ = maxi eω,m,i.

Proposition 2 (Approximate Linear Immersion). Given the
function f : X ≃ Q ↑ Rn and the set MI of (finite)
mesh/grid points of the domain D ↭ X ≃Q≃ . . .≃Q(r)≃U .
Suppose ”1, . . . ,”r↔1, Aω, Bd,ω, Bu,ω, ec, eω,m, ϑI are solu-
tions to the following linear program (LP):

min
!1,...,!r↑1,!

↓
1 ,...,!↓

r↑1,!
↔
1 ,...,!↔

r↑1,
Aω,Bd,ω,Bu,ω,ec,eω,m,εI

ϑI (9)

s.t ↓ eω,m+ϖI ↘ f (r)(zs,q
r
s, us)↓Bd,ωq

r
s↓Bu,ωus

↓
∑r↔1

l=0 ”lf (l)(zs,qr↔1
s )↓Aωzs↓ec ↘ eω,m↓ϖI ,

ϖI = ϖr +
∑r↔1

l=0 (”
↗
l + ”↘

l )ϖl,

”l = ”↗
l ↓ ”↘

l ,”
↗
l ⇒ 0,”↘

l ⇒ 0,

eω ↓ eω ↓ 2ϖI ↘ ϑI1n, ⇐(zs,qr
s, us) ↔ MI ,

where 1n ↔ Rn is a vector of ones and ϖr can be computed
via [11, Proposition 1] for different function classes for each
nonlinear term f (r). Then, (8) holds for all (z,qr, u) ↔ D.

Proof. The first constraint in the optimization problem (9)
ensures that the upper and lower hyperplanes, Aωzs +
Bd,ωqr

s + ec + eω,m ↓ ϖI and Aωzs + Bd,ωqr
s + ec +

eω,m + ϖI , respectively, are always above and below
fω(·) ↭ f (r)(zs,qr

s, us) ↓
∑r↔1

l=0 ”lf (l)(zs,qr↔1
s ), for all

(zs,qr
s, us) ↔ MI , as in Proposition 1. However, unlike

f(z, d) in Proposition 1, the function fω(·) involves decision
variables ”l’s, which necessitates the use of triangle inequal-
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ity to bound the interpolation error ϖI = ϖr +
∑r↔1

l=0 |”i|ϖl

in the second constraint, where |”i| denotes element-wise
absolute value. Then, since |”i| = ”↗

l + ”↘
l if ”↗

l =
max(”l, 0) and ”↘ = ”↗

l ↓ ”l, we employ an optimization
trick to avoid requiring an absolute value (that would lead
to binary variables and hence, an NP-hard mixed-integer
linear program) by constraining ”↗

l ,”
↘
l ⇒ 0 using the third

constraint and allowing the optimization solver to enforce
the equivalence.

Further, we want to make the abstraction/over-
approximation as tight as possible by minimizing the distance
between the two abstractions ϑ = max(z,d) ||el↓el↓2ϖI ||→
and due to the linear nature of the upper and lower
hyperplanes (the difference is either decreasing or increasing
in each of the dimensions) the maximum difference happens
at the grid points which leads to the final constraint in the
optimization problem (8), thus completing the proof.

Then, augmenting the predictor system !pred with ad-
ditional states ϱ1, ϱ2, . . . , ϱr↔1 comprising ϱ1 = f(x, d)
and its higher-order time derivatives ϱi = ϱ̇i↔1 for all
i = {2, 3, . . . , r ↓ 1}, we obtain the lifted system:

żL =





0 I 0 · · · 0
0 0 I · · · 0
...

...
. . . · · ·

...
0 0 0 · · · I
Aω !0 !1 · · · !r→1




zL+





B
0
...
0

Bu,ω




u+





0
0
...
0

Bd,ω




q+





0
0
...
0
ecω




,

(10)

where ecω = ec+eω, q = [d, ḋ, d̈, . . . , d(r)] ↔ Q ↭ D≃D1≃
. . . ≃ Dr is treated as a previewable disturbance and zL =
[z≃, ϱ≃1 , . . . , ϱ

≃
r↔1]

≃ is the lifted state. Thus, we obtain an
immersion-based linearized model of the nonlinear predictor
system !pred given by:

!im : żL(t) = ALzL(t) +BLu(t) +Bd,Lq(t+ Ti)
+ec,L + eω,L(t),

(11)

with a constant vector ec,L = [0≃ e≃c ]
≃ and a linearization

error satisfying |eω,L(t)| ↘ eω,L,m = [0≃ e≃ω,m]≃.
Finally, to compare the approximation tightness of both

algorithmic linearization approaches in this section, we ap-
plied the techniques to the simulation example in Section
IV. Figure 1 shows that both algorithmic linearization ap-
proaches result in upper and lower bounds that truly bound
the true position e and velocity ė, as desired. Further, we
observe that the error bounds are tighter when using the
approximate linear immersion approach than with affine
abstraction, demonstrating the benefits of the proposed ap-
proximate linear immersion method.

B. Limited-Horizon Preview Control Barrier Functions

In this section, we present the idea of Limited-horizon
Preview Control Barrier Function for nonlinear input-delay
systems (LPrev-nCBF) as an extension of LPrev-CBF in [9]
to account for robustness to linearization errors.

Definition 4 (Limited-Horizon Preview Nonlinear CBF).
Given the input-delay system !delay and its corresponding
predictive system !pred with a limited-horizon previewable

Fig. 1: The predicted states trajectories of true system, affine
abstraction system, and approximate linear immersion system for
e(t) (left) and ė(t) (right) in the simulation example in Section IV.

disturbances that satisfy Assumptions 1–2 and a safe set
Sz (cf. Definition 1), the continuously differentiable function
h : X ≃ D[0,Tp) ≃ R+ ↑ R is a limited horizon preview
nonlinear CBF (LPrev-nCBF) for systems !delay and !pred

corresponding to time-varying limited preview safe set Cz,p,t
in (3), if ↖u ↔ U and ω ↔ K→ such that:

ḣ(z, u,dp, t) ⇒ ω(h(z,dp, t)), (12)
for all t ⇒ 0 and z ↔ X . Further, for any t ⇒ 0, z ↔ X and
dp ↔ D[0,Tp), a corresponding safe input set is defined as:

KC(z,dp, t)={u ↔ U | (12) holds}. (13)
Theorem 1 (Safety with Limited Preview). Given the input-
delay system !delay and its corresponding predictive system
!pred with a limited-horizon previewable disturbances that
satisfy Assumptions 1–2 and a safe set Sz (cf. Definition 1),
if h is a LPrev-nCBF and Cz,p,t is the corresponding limited
preview safety set from (3), then for the nonlinear predictive
system !pred with z(0) ↔ Sz , any Lipschitz continuous
controller u(x,dp, t) ↔ KC(z,dp, t) with known z(t) (since
Tp > Ti) ensures the controlled invariance of the limited
preview safety set Cz,p,t. Consequently, there exists some
set Cz,t ⇓ Sz for the system !pred for which u(x,dp, t)
also ensures its controlled invariance. Thus, the nonlinear
system with input-delay !delay is guaranteed to be safe, i.e.,
x(t) ↔ Sx, ⇐t ⇒ 0.

Proof. If h is a LPrev-nCBF corresponding to Cz,p,t (cf.
Definition 3), then any controller u ↔ KC(z,dp, t) ensures
the feasibility of (12) for all z ↔ X , ⇐t ⇒ 0; hence, Cz,p,t
is forward control invariant, i.e., h(z,dp, t) ⇒ 0, ⇐t ⇒ 0.
Consequently, the nonlinear predictive system !pred and
the corresponding nonlinear input-delay system !delay with
preview are safe for all t ↔ R⇐0 with respect to the safe set
Cz,t ↗ Sz (Cz,t exists by construction).

1) Closed-Form Candidate Limited Preview CBF: Next,
we formulate a closed-form candidate LPrev-nCBF and a
corresponding limited horizon preview safe set (cf. Definition
3), by projecting z into the future by a horizon T seconds
using the linear system approximation in (7) (or (11)).

z(t+T )=ς(t, T ) + φ(t, T ) +
∫ T
0 e

A(T↔ϖ)Bu(t+ε)dε, (14)

with ς(t, T ) ↭ eAT z(t)+
∫ Tε

0 eA(T↔ϖ)Bdd(t+ Ti + ε)dε +∫ T
0 eA(T↔ϖ)ecdε , Tϱ ↭ min(Tp ↓ Ti, T ) and φ(t, T ) ↭∫ T
Tε

eA(T↔ϖ)Bdd(t+ Ti + ε)dε+
∫ T
0 eA(T↔ϖ)eω(t)dε . Note

that ς(t, T ) can be computed at any given t, since Tp > Ti.
Further, the proposed LPrev-nCBF is robust to the lineariza-
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tion errors in φ(t, T ), and the desired safety is enforced by
enforcing that the (immediate) future minima or maxima of
output under maximal acceleration or deceleration, respec-
tively, as well as worst case linearization errors, similar to
[9]. The time associated with this minima or maxima, is
defined as the worst-case stopping time Ts.

Definition 5 (Worst-Case Stopping Time). Given t ⇒ 0 for
the predictive system !pred and its corresponding approx-
imate linear realization with fixed-horizon preview in (7)
or (11), the worst-case stopping time Ts(t) is defined as
the minimum Ts(t) such that the worst-case output velocity
ẏw(t + Ts(t)) = Cżw(t + Ts(t)) = CAzw(t + Ts(t)) = 0
under maximum control input acceleration and disturbance-
induced deceleration when ẏ(t) = Cż(t) ↘ 0 or maximum
control input deceleration and disturbance-induced acceler-
ation when ẏ(t) = Cż(t) ⇒ 0.

From (7) (or (11)), under the relative degree 2 assumption,
ÿ(t)=CA(Az(t)+Bu(t)+Bdd(t+ Ti)+ec+eω(t)), (15)

from which we can infer that ẏ(t) ↘ 0 2, the
maximum possible acceleration is with input
u(t) = diag(sgn(CAB))um under worst-case
linearization errors eω(t) = ↓diag(sgn(CA))eω,m and
d(t) = ↓diag(sgn(CABd))dm, and for ẏ(t) ⇒ 0,
the maximum possible deceleration is obtained with
input u(t) = ↓diag(sgn(CAB))um under worst-case
linearization errors eω(t) = diag(sgn(CA))eω,m and
d(t) = diag(sgn(CABd))dm. Consequently, the worst-
case output yw(t + Ts(t) and worst-case output velocity
ẏw(t+ Ts(t)) and computed by applying u(ε) = û(t) with

û(t) ↭ ↓sgn(ẏ(t))diag(sgn(CAB))um (16)
under worst-case linearization error eω(ε) = êω(t) and
d(ε) = d̂(t) and with

d̂(t) ↭ sgn(ẏ(t))diag(sgn(CABd))dm, (17)
êω(t) ↭ sgn(ẏ(t))diag(sgn(CA))eω,m, (18)

for all ε ↔ [t, Ts(t)], resulting in, ÿw(ε) = CA2zw(ε) +
CAec ↓ sgn(ẏ(t))|CAB|um + sgn(ẏ(t))|CABd|dm +
sgn(ẏ(t))|CA|eω,m, which is computed from (15) with u(t)
in (16), d(t) in (17) and h(t) in (18). Further, Ts(t) is the
solution to ẏw(t+ Ts(t)) = CAzw(t+ Ts(t)) = 0.

Note that at given time t ⇒ 0 for a computed (known)
time-varying worst-case stopping time Ts(t), under Assump-
tion 1–2 with a fixed input delay Ti and fixed preview
horizon Tp, when implemented to the predictor system !pred

framework to forecast z(t + Ts(t)) results in two distinct
cases: (i) When Ts(t) < Tp↓Ti (i.e., when the available pre-
view Tp exceeds the stopping time for z(t)), the disturbances
d(t + Ti) in (2) are known/previewed for the time interval
up to t + Ts(t) + Ti, and (ii) when Ts(t) ⇒ Tp ↓ Ti, the
previewable disturbances d(t + Ti) within the time interval
t+ Tp ↘ ε ↘ t+ Ts(t) + Ti is unpreviewable but bounded.

The idea of worst-case stopping time and the correspond-
ing immediate future minima or maxima are inspired by [9]

2Note that per Assumption 1, ẏ(t) = Cż(t) = CAz(t) is exactly known.

and [7], respectively. By enforcing safety for the worst-case
predicted outputs Ts(t) seconds into the future, i.e.,

|Czw(t+ Ts(t))| ↘ ym, ⇐t ⇒ 0, (19)
with Czw(t + Ts(t)) being a minimizer/maximizer, we are
guaranteeing the satisfaction of the safety constraints for a
future moving time horizon including the current time.

Next, a closed-form candidate LPrev-nCBF and its cor-
responding controlled invariant limited preview safe set are
presented. Note that for brevity, the (explicit) dependence on
the current time t is omitted for the rest of this manuscript.

Lemma 1 (Closed-Form Candidate Limited Preview CBF).
Given Assumptions 1–2 hold. Then, a valid candidate LPrev-
nCBF can be given as

h(z,dp, t) = ym ↓ sgn(ẏ(t))Czw(t+ Ts) ⇒ 0, (20)
with the worst case predicted state zw(t + Ts) =
ς(t, Ts) + φ̂(t, Ts)+(

∫ Ts

0 eA(Ts↔ϖ)dε)Bû from (14), ς(t, Ts)
as defined below (14) (with T = Ts) and φ̂(t, Ts) ↭
(
∫ Ts

Tε
eA(Ts↔ϖ)dε)Bdd̂ + (

∫ Ts

0 eA(Ts↔ϖ)dε)êω with d̂(ε) and
êω(ε) defined in (17) and (18), Tϱ = min(Tp ↓ Ti, Ts(t)).

Proof. We begin the proof by considering the immediate
smallest (worst-case under disturbance d̂) possible output
yw(t + Ts(t)) (when the system changes directions) under
maximum acceleration input û when ẏ(t) ↘ 0, and enforce
the desired safety condition yw(t+Ts(t)) ⇒ ↓ym. Similarly,
when ẏw(t) ⇒ 0 with maximum deceleration input û, the
desired safety condition is yw(t+ Ts) ↘ ym. Consequently,
the two conditions can be combined as

ym ↓ sgn(ẏ(t))yw(t+ Ts) ⇒ 0. (21)
Further, yw(t + Ts) = Czw(t + Ts) (as described above
(16)) with zw(t+Ts) as defined below (20) is the worst-case
predicted y that is derived from (14) by substituting T = Ts,
u(ε) = û(t) and d(ε) = d̂(ε), ⇐ε ↔ [t+ Tp, t+ Ts], where
d̂ and û are defined in (17) and (16), Further, yw(t+ Ts) =
Czw(t+Ts) (as described above (16)), where yw is the worst-
case predicted y that is derived from (14) by substituting
T = Ts, u(ε) = û(t) and d(ε) = d̂(ε), ⇐ε ↔ [t+Tp, t+Ts]
with d̂ and û defined in (17) and (16), respectively.

Thus, (19) can be enforced by enforcing (21). Hence, h
is a valid LPrev-nCBF, i.e., there exists a piece-wise con-
stant input u(ε) = û(t) = ↓sgn(ẏ(t))diag(sgn(CAB))um,
⇐ ε ↔ [t, t + Ts] that enforces h(z,dp, t) ⇒ 0, ⇐ t ⇒ 0.
Consequently, because of the guaranteed feasibility of (19)
at minima or maxima (i.e., when ẏw(t+Ts) = Cżw(t+Ts) =
0), the safety condition is also feasible for the horizon from
t+ Ti to t+ Ti + Ts, hence safety is guaranteed.

2) Worst-Case Stopping Time: The construction of the
candidate LPrev-nCBF in (20) depends on the stopping time
Ts (cf. Lemma 1), which is computed next.

Lemma 2 (Worst-Case Stopping Time). For a given time t,
the worst-case stopping time Ts(t) is a solution to CAzw(t+
Ts) = 0, specifically Ts(t) is the the smallest positive
solution, with zw(t+ Ts) given as (20), i.e.,
C(Aς(t, Ts)+eATs(Bû+êω)+eA(Ts↔Tε)Bdd̂)=Cêω (22)
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with û(t), d̂(t), êω(t) defined in (16), (17), (18), respectively,
and ς(t, Ts) and Tϱ defined below (14) (with T = Ts).

Proof. At any given t ⇒ 0, the predicted output velocity Ts

seconds into the future as per the predictor system in (4) is
ẏ(t + Ts) = Cż(t + Ts) = CAz(t + Ts) (relative degree 2
of the system with respect to both the disturbance and input
implies CB = CBd = 0). Consequently, with zw(t + Ts)
below (20), û(t), d̂(t), and êω(t), defined in (16)-(18), for all
ε ↔ [t, t+ Ts(t)], the worst-case output velocity is given by
ẏw(t+ Ts) = CAzw(t+ Ts)

= CAς(t, Ts) + C
∫ Ts

0 AeA(Ts↔ϖ)dε(Bû+ êω)

+C
∫ Ts

Tε
AeA(Ts↔ϖ)Bdd̂(ε)dε

= CAς(t, Ts) + C(eATs ↓ I)(Bû+ êω)
+C(eA(Ts↔Tε) ↓ I)Bdd̂
= CAς(t, Ts)+CeATs(Bû+ êω)+CeA(Ts↔Tε)Bdd̂↓ Cêω,

where the final equality is the consequence of relative degree
2 assumption (CB = CBd = 0).

C. Closed-Form Limited Preview Control Barrier Function
In this section, we show that the LPrev-nCBF in Lemma

1 is a valid limited preview nonlinear CBF per Definition 4.

Proposition 3 (Closed-Form LPrev-nCBF). Given an input-
delay system with preview !delay , its predictive system !pred

and its linear approximations (7) or (11) that satisfies As-
sumptions 1–2, with Ts(t) calculated based on Lemma 2. The
continuously differentiable mapping h : Rn≃D[0,Tp)≃R+ ↑
R in Lemma 1 is a limited preview horizon nonlinear control
barrier function for the input-delay system !delay and its
predictor system !pred, if ↖ u ↔ U and ↖ ω ↔ K→. such
that inequality (12) is satisfied with

ḣ(z, u,dp, t) = ↓sgn(ẏ(t))[CeATs(Az(t) +Bu(t)
+Bdd(t+ Ti) + ec + eω(t)) + ↼(t, Ts)],

(23)

with ↼(t, Ts) ↭
∫ Tε

0 CeA(Ts↔ϖ)Bdḋ(t+Ti+ε)dε , where Tϱ

is defined below (14) (with T = Ts). Further, (19) holds and
consequently, the output constraint in |y(t)| ↘ ym holds.

Proof. First, we consider the closed-form candidate LPrev-
nCBF h from (20) in Lemma 1. Next, we compute ḣ
the derivative of h with respect to the current time t and
apply Theorem 1 with the LPrev-nCBF condition in (23).
Consequently, ḣ(z, u,dp, t) = ↓sgn(ẏ(t)) d

dtyw(t+Ts), with
d
dtyw(t + Ts) computed from yw(t + Ts) as defined below
(21), which is derived by employing Leibniz integration rule
and the fact that CB = CBd = 0 (by the relative degree 2
assumption) as follows:
d
dtyw(t+ Ts) = CeATs ż(t) + ↼(t, Ts)

+CA(ς(t, Ts) + φ̂(t, Ts) + (
∫ Ts

0 eA(Ts↔ϖ)dε)(Bû+ êω)Ṫs

+CeA(Ts↔Tε)Bd(d(t+ Ti + Tϱ) + d̂)Ṫϱ

= CeATs ż + L(t) + ↼(t, Ts) + CAzw(t+ Ts)Ṫs

+CeA(Ts↔Tε)Bd(d(t+ Ti + Tϱ) + d̂)Ṫϱ,
(24)

with ↼(t, Ts) defined below (23), φ̂(t, Ts) and ς(t, Ts) de-
fined below (14) and (20), respectively, and zw(t + Ts)
defined below (20) in the second equality.

Next, CAzw(t + Ts) = 0, by Lemma 2, i.e., the third
term in the last equality above in (24) becomes 0. Further,
as a consequence of definition Tϱ = min(Tp↓Ti, Ts), when
Tϱ = Tp ↓ Ti we have Ṫϱ = 0 (Tp and Ti are fixed con-
stants) and when Tϱ = Ts, by relative degree 2 assumption
CeA(Ts↔Tε)Bd = CBd = 0; consequently, the final term in
(24) that contains Ṫϱ is also equal to 0. This further simplifies
the expression for ḣ to ḣ(z, u,dp, t) = ↓sgn(ẏ(t)) d

dtyw(t+
Ts) = ↓sgn(ẏ(t))(CeATs ż(t) + ↼(t, Ts)). Finally, (23) is
obtained by substituting ż(t) from the linearized (immersion)
system in (4).
D. Optimization-Based Safety Control

Next, using the proposed LPrev-nCBF we design a safety
critical controller by minimally modifying an existing nom-
inal or legacy controller.

Proposition 4 (Optimization-Based Safety Control). At any
given time t > 0, any stabilizing nominal controller u =
k(x, z, t) with known z(t) (since Tp > Ti), for the input-
delay system !delay in (1), can be minimally modified to
compute a safety critical controller u(x,dp, t) that guaran-
tees safety by solving the quadratic program (QP):

u(x,dp, t) = argmin
u↓U

1
2⇑u↓ k(x, z, t)⇑

s.t. P (t)u ↘ q(t),
(25)

with z, computed numerically and h(z,dp, t), Ts and
↼(t, Ts) from Lemma 1, Lemma 2, and Proposition 3 (as
defined below (23)), respectively, and ω ↔ K→, such that:

P (t) ↭ sgn(ẏ(t))CeATs(t)B,
q(t) ↭ω(h(z,dp, t))↓ sgn(ẏ(t))(↼(t, Ts)

+CeATs(t)(Az(t) +Bdd(t+ Ti) + ec) +#(t),
#(t) ↭ min {sgn(ẏ(t)CeATs(t)eω,m,

↓sgn(ẏ(t)CeATs(t)eω,m}.

Proof. The LPrev-nCBF constraint in (12) in Definition
4 and Theorem 1, ḣ(z, u,dp, t) ⇒ ↓ω(h(z,dp, t)), with
closed-from h(z,dp, t) from Lemma 1 and ḣ(z, u,dp, t)
given in (23) Proposition 3 implies:

↓ω(h(z,dp, t))↘ ↓sgn(ẏ(t))(CeATs(Az(t) +Bu(t)
Bdd(t+ Ti)) + ↼(t, Ts)),

which can be rearranged by defining P (t) and q(t) as shown
above to recover the constraint P (t)u ↘ q(t) in (25).

Note that analytically computing Ts(t) by solving (22)
for implementing the proposed safety critical controller in
Proposition 4 is non-trivial, but it can be numerically com-
puted, e.g., using MATLAB functions vpasolve, fzero
or fsolve. Our future work will consider ways to side-step
such computationally expensive numerical solvers.

IV. ILLUSTRATIVE EXAMPLES

In this section, we apply the proposed method to the lane-
keeping example for lateral positioning of a vehicle when
limited preview of the road curvature is available using the
nonlinear global frame vehicle dynamics and the road-centric
model in [15, Section 2.3, 2.5]:

!delay : ẋ(t)= Ax+Bu(t↓ Ti)) +Bfϑf +Brϑr, (26)
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with system parameters from [15, Section 3.1]3, as well as

A =





0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0



 , B =





0
2Cf

M
0

2Cf lf
Iz



 ,

Bd =
[
0 ↓v0 0 0

]≃
, C =

[
1 0 0 0

]
,

Bf =
[
0 ↔2Cf

M 0 ↔2Cf lf
Iz

]≃
, Br =

[
0 ↔2Cf

M 0 2Cf lf
Iz

]≃
,

and state x ↭ [e1, ė1, e2, ė2]≃, where e1 represents the dis-
tance of the center of gravity of the vehicle from the center of
the lane and e2 represents the orientation error of the vehicle
with respective to the road. The nonlinearity arises from the
front tire velocity angle ϑf = tan↔1( ė1+lf ė2

v0
↓e2+lfrd) and

the rear tire velocity angle ϑr = tan↔1( ė1↔lr ė2
v0

↓ e2↓ lrrd),
where rd(t) = 1

R(t) = 0.001sin(t) represents the road
curvature as previewable disturbance with radius of curvature
R(t), the input u denotes the front steering angle, and
v0 = 30m/s represents a constant longitudinal velocity.

Additionally, the system has a constant input delay of
Ti = 0.175 s and a preview of road curvature for a constant
preview time Tp = 0.3 s along with the initial predicted
state z(0) = [0.5481, 1.0032, 0.0338, 0.0364]≃. Moreover,
for stabilizing the vehicle in the center of the lane, we employ
a nominal controller k(z, t) = ↓Kz+↽ff , where the design
of the feedback gain K and feedforward correction term
↽ff is described in [15, Section 3.1] and [15, Section 3.2],
respectively. Safety here constitutes the vehicle’s distance to
the lane center adhering to the constraint |e1| ↘ ym, where
ym is chosen as 1.25 m in this example. Further, the input
constraint is |u| ↘ um, where we chose um = 0.5 rad.

We apply the proposed LPrev-nCBF in (20) in Lemma
1 within the optimization-based framework in Proposition 4
and compare its performance with the two linearized models.
Figure 2 (left) shows that the nominal controller fails to
satisfy the safety requirements without the LPrev-nCBF (WO
CBF), while the vehicle remains within the lane with the
LPrev-nCBF based on both linearized models. with the im-
mersion model being allowed closer to the safety boundaries
compared to the affine abstraction model due to the lower
approximation error, as elucidated by Figure 1. Further,
Figure 2 (right) shows that the input with the immersion
model (uim) intervenes later and with a reduced maximum
magnitude when compared to using the affine abstraction
model (uabs), indicating a less conservative solution.

V. CONCLUSION

This paper introduced a limited preview nonlinear con-
trol barrier function (LPrev-nCBF) for nonlinear systems
with input delays that leverage two algorithmic linearization
methods with linearization error characterization to guaran-
tee recursive safety. Specifically, the proposed approximate
linear immersion approach is found to produce a more
accurate approximation of the nonlinear system behavior and
thus, tighter bounds on the predicted states than the affine

3M = 1573 kg, lf = 1.1m, lr = 1.58m, Cr = 80000N/rad,
Cf = 80000N/rad, and Iz = 2873 kgm2.

Fig. 2: Lateral displacement from center trajectories y(t) (left) and
trajectories of CBF intervention of u(t) (right) given by ”u(t) ↭
u(t) → k(x(t), t), where k(x(t), t) is the nominal controller. The
black dotted lines in (left) are ±ymax, and the Tp and Ti are 0.3 and
0.175 s, respectively (subscripts abs: Abstraction, im: Immersion).

abstraction approach, which in turn led to a less conservative
solution in terms of less intervention (i.e., modifications of
the nominal controller) for enforcing safety. Our method will
help to balance performance and robustness for safer cyber-
physical systems in the real world, e.g., self-driving cars, by
taking advantage of preview information. Future directions
include investigating the control sharing property when there
is more than one (scalar) safety constraint and the scenario
when the preview horizon is state- or time-dependent.
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