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An STL Formulation for Intent-Expressive
Motion Planning and Intent Estimation
With Output Feedback

Elikplim Gah™ and Sze Zheng Yong

Abstract—This letter presents a tractable signal tem-
poral logic (STL) approach for designing set-based
intent-expressive trajectory planning and intent estimation
algorithms with output feedback for multi-agent teams.
These algorithms allow an observed agent to implicitly
convey intent to observer agents while guaranteeing that
the agent robustly satisfies state and input constraints,
avoids obstacles and achieves its intended STL task spec-
ification under worst-case realizations of uncertainties.
Specifically, the intent-expressive trajectory planning algo-
rithm encodes intent information by ensuring that the
output reachable sets (i.e., all possible measured outputs
by the observer agents) for satisfying the intended STL
task specifications are disjoint from each other, while the
intent estimation algorithm enables the observer agents to
decode the intent by eliminating all intent models that are
incompatible with noisy run-time observations.

Index Terms—Autonomous systems, optimal control,
robust control, estimation, model validation.

[. INTRODUCTION

ULTI-AGENT systems rely on the transmission of data

and intent to allow for effective communication between
team members to facilitate safe, optimal decision-making and
task accomplishment. However, any number of factors ranging
from lossy transmission to noisy sensors can bring system
operations to a halt. Thus, intent-expressive motion planning,
which removes the need for explicit communication between
agents while facilitating effective collaboration, is a useful tool
for implementing such systems.

Literature Review. Intent-expressive motion planning has
been primarily studied in the context of human-robot interac-
tions [1], [2], where the goal is to ensure that the robot moves
in a way that the human understands and trusts. The use of
gestures or other implicit forms of communication (not unlike
non-verbal cues in humans) are commonplace [1]. However,
much of the advances made do not apply when the model
uncertainty or stochastic distributions are unknown.
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In our previous work [3], [4], we presented open-
and closed-loop set-based methods for solving this intent-
expressive motion planning problem inspired by the active
model discrimination (AMD) problem [5], [6]. AMD involves
designing a small input that guarantees distinction of the
observable output set of the intent model from any other
comparable models. Similarly, we designed an input to ensure
that trajectories generated for each intent model are dis-
tinct. However, these approaches involved solving bilevel
optimization algorithms that are computationally expensive
and often do not generalize to larger problems. In contrast,
this letter will consider an alternative formulation based on
signal temporal logic (STL) specifications, e.g., [7], which we
found to be computationally more advantageous.

For intent estimation, existing approaches often use a
probabilistic framework, e.g., [1], [2]. In contrast, we will
consider a set-based approach similar to [3] that leverages a
passive model discrimination approach based on model inval-
idation [8], [9], which uses only output data and knowledge
of system dynamics to determine which intent models are
incompatible.

Contribution: This letter introduces an improved closed-loop
set-based intent-expressive motion planning algorithm based on
an STL formulation. As in [4], our approach leverages tube-
based predictive control to obtain a closed-loop control law
instead of open-loop input sequences in [3]. However, unlike
the solution based on bilevel optimization in [4], our proposed
STL formulation, which is then recast as mixed-integer linear
constraints, achieves the same results with lower computational
complexity, and is found in simulations to be significantly
faster and to scale better with longer planning horizons. This
new formulation also generalizes the setting in [4] to allow
more general STL task specifications as intents. In addition,
we present an intent estimation algorithm as in [3]. The former
algorithm enables an observed agent to convey intent through
its motion without explicit communication by ensuring that the
output reachable sets for all STL task specifications are disjoint,
while the latter algorithm allows an observer agent to decode
the intended STL task from only noisy output observations.
Together, these algorithms allow multi-agent teams to convey
intent without explicit communication.

[1. PRELIMINARIES

Notations: Let x € R" be a vector with its norm denoted by
lx|l; with i € {1, 0o}, and M € R™™ a matrix, with transpose
MT and M > 0 denotes element-wise non-negativity. 0, 1 and
I represent the vector/matrix of zeros, the vector of ones and
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the identity matrix of appropriate dimensions. Further, ¢ > 0
is a small positive constant and {0, 1}" denotes a set of n-
dimensional binary vectors. The diag and vec operators are
defined for a set of matrices {M;}!_, and matrix M as:

. _ (M 0 - _ | M
diagy_;  {(Mi} = [ 0 M]] veck=(i jy{Mi} = [M]:|
M, My,
diagl_, (M;} = Jvee, My =| & |,
M, M,

diagy{M} = Iy @ M, vecy{M} =1y @ M,

where ® is the Kronecker product. The sets of positive and
non-negative integers up to n are denoted by Z7! and Zg,
respectively. Given two sets U, V € R”, the Minkowski sum
is defined as U @V = {u+v | u € U, v € V}, the Pontryagin
set difference Y ©V £ {u | u®V C U}, and the set minus
operation U/ \ V = {u € U : u ¢ V}. For a given matrix
K e R™" KU £ (Ku | u e U).

Definition 1 (SOS-1 Set): A special ordered set of degree 1
(SOS-1) constraint is a set of integer, continuous or mixed-
integer scalar variables for which at most one variable in
the set may take a value other than zero, denoted as SOS-
I: {v1,...,vn}. For instance, if v; # 0, then this constraint
imposes that v; = 0 for all j # i.

Further, we overload this constraint for vectors, where for a
pair of vectors u, v € R"?, SOS-1:{u, v} denotes element-wise
constraints SOS-1:{u;, v;} for all i.

Note that SOS-1 constraints can be incorporated into most
off-the-shelf optimization solvers, e.g., Gurobi [11].

A. Signal Temporal Logic (STL)

Let ¥ be a finite set of predicates. The syntax of signal
temporal logic (STL) formulas over ¥ is given by:

=T |pl =g o1 V| orUp.n e (1)
where T is the frue predicate, p"* € X is a predicate whose
truth value is determined by the sign of its underlying predicate
function © : R" — R™ and it is true if w(x) > 0 and
false otherwise, while —, Vv, and U, 1,1 are the negation,
disjunction, and time-constrained until operators, respectively,
and [f1,] C [0,00) is an interval of reals. Applying the
grammar given in (1), we can also define next ((); for
discrete-time systems), conjunction (A), implication (=),
eventually in [t1, ©2] (Ops,,1), and always in [t1, 12] (O ,51)
as O¢ = TUpne, ¢1 A g2 = —(0p1 V =), 1 =
@2 = TP \% @2, <>[t1,t2]‘/) = Tu[tl,fz](p = \/{[Z:t] O‘[gp’ and
Oin)® = —Om.m—e = A, O, respectively. Further,
we abbreviate U[p,o0), 0[0,00)> D[0,00) as U, O, 0.

Definition 2 (STL Semantics): Let x be an w-word of real-
valued vector signal over X € R”, i.e., x € X* and let o be
the w-word over X corresponding to the predicate of an STL
formula ¢, i.e., 0 € ¢, and let x(f) and o (f) be ™ element
of x and o. The STL semantics is given by:

D @0 Ep" & ax@®)>0(Ge,oc@)=p"=T),

2) x,0) Eop & (1) Fo,

3) &) ForVer & (x,0) Eeor 1) E e,

4) x,0) EorAp & x, 1) Eeand (x, 1) e,

5) @, 0) =@l e © I €lt+n, t+0]: x, 1) =@

and V¢’ € [t,1] : (x,!") = o1,

6) X, EOmne e I elt+n,t+0nl &) =9,

7 @) EOp eV elt+h,t+0] & 1) E¢.

We write x = ¢ if (x,0) E ¢.

Next, leveraging [10], we present the mixed-integer encod-
ing of STL formulas for the satisfaction of STL semantics,
ie., (x, 1) E ¢. First, we equivalently express (x, 1) = p”, i.e.,

Py =16 () =0,
using the following mixed-integer encoding:

7)) +st >0, wkx) <s,

SOS-1: {Pyrl,sT}, SOS-1:{(1—Py)L,s7}, (2)
where s and s~ are unconstrained real-valued slack variables.
Then, we present the encodings of the following operators of
the STL semantics, where p™, p? and p™ are predicates, and
pr is the truth value of formula ¢ at time ¢.

Negation: The formula ¢ = —p”™ can be modeled as:

[ !
Py =(1-Pix). 3)
Disjunction: The formula ¢ = \/i.‘:l p™ can be modeled as:
k . . k
Pl <BE P PL>PlieZh. 4)

Conjunction: The formula ¢ = /\f=1 p™ can be modeled as:
Pl > S Pla—(k—1); Py, <Py, ic VARG
Next: The formula ¢ = Op”™ can be modeled as:
t _ pt+l
Pl =P ©)
Until: The formula ¢ = p™ Uy, 1,1 p® can be modeled as:
j ji—1 . . t+t
o > P;¢ + E],:,P;n (=0, €L

i T 1+ j—1,
OlszP;W j S P, j €Ly T €Ly

+ . +
P, < S10, i Py = oy, j € Ly, (7)
Eventually: The formula ¢ = O, ,jp" can be modeled as:

s t+1p T . t T 1+t
Py =iy Pps Py =Pun, T €L, ®)

Always: The formula ¢ = O, ;,;p™ can be modeled as:
P> 3 Pl —(n—t): P <Pt eZi}. (9)
Further, to obtain algorithms with a finite number of
variables, we assume that the formulas ¢ are time-bounded,
i.e., of the (unbounded global/safety) form: ¢ = ¢, A D¢y,
where ¢, and ¢, are bounded negation-free formulas with
bounds 4® and b% (cf. [10, Definition 4]).

I1l. PROBLEM FORMULATION
A. Modeling Framework

We consider a collaborative setting where an agent must
coordinate with other agents to achieve tasks without “ver-
bally”/explicitly communicating its intent to its teammates.
Communication is “non-verbally”/indirectly achieved by plan-
ning and executing intent-expressive trajectories that allow
its stationary teammates to accurately infer the intent. We
consider affine system models with state and output equations:

x(k+ 1) = Ax(k) + Bu(k) + Ww(k) +f, (10)
z(k) = Cx(k) + Dyu(k) + Dyv(k) + g, (11)
with states x € R", inputs u € R™, outputs z € R™, process
noise w € R™ and measurement noise v € R™.
The initial condition, denoted by xyp = x(0), as well as the
noise signals w(k) and v(k) for all time steps k are uncertain
but bounded by polyhedral sets:

yeY={yeR|Pyy < pp)}, (12)

for y € {x(0), w(k), v(k), Vk} with ) € {Xp, W, V}, a €
{n, m,, m,} and b € {0, w, v}, respectively.
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The system input u is constrained to a polyhedral set:
uel = {ueR"| Py < pu, 13)

and the state x(k) at all times & must be controlled to
robustly remain within a collision-free space under worst-case
uncertainties Xp, W and V), ie., x(k) € Xy & X'\ (U/ 0)),

where X and O}, Vj € Z;()bx are polyhedral:

X2 (xeR"| P <p O 2 (x e R" | Phx < pl}. (14)

Finally, the intent i of an agent is modeled as a task specified
by a time-bounded STL, ¢’, whose predicate functions are
all linear inequalities. For instance, an intent i may be
to eventually reach and stay in a goal region, ie., ¢'
O[O,Tf]D P’gx < p;,. Then, each intent model is a tuple G
{A,B,W,C,Dy,,D,.f, 8 ¢}

B. Problem Statement

This letter will address two complementary problems,
where the observed agent solves an intent-expressive trajec-
tory planning problem to find an output feedback control
policy to produce trajectories that implicitly/“non-verbally”
encodes/conveys the intended goal, while the observer agents
solves an intent estimation problem to infer/decode the intent
at run time from (only) observed output trajectories.

Problem 1 (Intent-Expressive Tr]c\l]jectory Planning): For a

given set of affine models {G’ },.5, with state, input and
uncertainty sets, X, U and {Xy, W, V}, respectively, find a set
of N, output-feedback control policies/laws at each time step k,

{mi({z(x), lc}ﬁzo)}ff1 € U, such that the resulting closed-loop
output feedback policies/laws

1) yield distinct/disjoint output trajectories corresponding

to each intent that differ by a threshold € in at least one
time instance within the first 7' steps,

2) while staying within X for all k € Z%,

3) and attaining the intents ¢’ by time step Ty,
despite worst-case realizations of x(0) € Xy, w(k) € W for all
keZY and v(k) € V for all k € Z9_.

Problem 2 (Intent Estimation): Given the current time ¢ €
Z(} and the measured/observed noisy output trajectory z; =
{z(k)}f(zo, determine which intent models are compatible with
the observations and eliminate incompatible intent models
until only one compatible intent is left (that by construction,
is the intended intent model).

The requirements laid out in Problem 1 can be encoded
using time-bounded STLs. In this case, we refer to spec-
ifications 1 & 2 as the separation and safety conditions,
respectively, while specification 3 is the intent statement. In
the next sections, we describe how this encoding can be done.

V. MAIN APPROACH

In this section, we present a formulation for designing
closed-loop intent-expressive trajectory planning and intent
estimation algorithms. Our approach for designing the intent-
expressive trajectory planner with output feedback is informed
by tube-based predictive control, e.g., [12], which provides a
framework for ensuring that our uncertainty sets do not grow
exponentially but remains invariant.

1our goal is to enable the intent models to be inferred from observations
from a (much) shorter time horizon 7' < Ty before the agent/robot attains its
intent in 7y time steps (i.e., intent-expressive motion planning).

A. Tube-Based Output Feedback and Invariant Sets

We begin by presenting a tube-based output feedback
design. This design, as in [4], involves the designs of: (i) a
state estimator for each i € Z;{,g:

Xi(k + 1) = (A — LOYXi(k) + Bu;(k) + Lzi(k) + f + Lg, (15)

where z(k) is the measured output at run time and L is any
observer gain such that (A—LC) is Schur stable, (ii) a nominal
system for each i € Z;g:

Xi(k + 1) = Axi(k) + Bu;(k) + f, (16)
as well as (iii) an output feedback law for each i € Z,“\L,g:
ui(k) = (k) — K(%i(k) — x;(k)), (17)

with any feedback gain K such that (A — BK) is Schur stable.
Note that the feedback term —K (x;(k) — x;(k)) is the low-level
controller in a tube-based framework, while the nominal state
Xi(k) satisfying the dynamics in (16) and the nominal input
u;(k) are designed by the intent-expressive trajectory planner
in Section I'V-B.

Next, we define the estimation error X; = x; — %;, and the

tracking error s; £ x; — X;, whose dynamics are given by
Xitk+1) = (A — LO)Xi(k) + Ww(k) — LD,v(k), (18)
si(k+ 1) = (A — BK)s;(k) + BKx;(k) + Ww(k), (19)
and review the notion of robust positive invariance below that
we will leverage to ensure that the estimation and tracking
error sets are small and not growing with time.

Definition 3 (RPI Set): Given a system x(k+ 1) = Ax(k) +
w(k), Q@ C R”" is a robust positively invariant (RPI) set if for
all x(k) € , and w(k) € W, x(k + 1) satisfies x(k + 1) € Q.

The minimal RPI (mRPI) set is the smallest RPI set that
exists and can be found using the methods outlined in [13].
Using this, we propose to compute the mRPI sets £ and S for
the estimation and tracking errors, X and s, respectively,

Xik)y e E={x eR": PsX < pil, (20)
si(k) e S ={s e R" : Pgs < p,}. 21
such that we can guarantee that the actual state x(k) remains
close to the estimated and nominal states, as follows:
xi(k) = xi(k) + % (k) € {x(b)} ® &,
xi(k) = xi(k) + si(k) € {x(k)} & S.
Then, the output equation in (11) can be rewritten as
zi(k) = Cxi(k) + Csi(k) + Dyui(k) + Vv(k) + g,
and similarly, from (17), the output feedback law is
ui(k) = i (k) — K (% (k) — % (k) = i (k) + K(Gi(k) — si(k)). (23)
Thus, the input set ¢/ in (13) can be rewritten to obtain
neU=USKEOS) 2 {Quil <qu}, (24)
while the state constraints x;(k) € X; = X\ Uj O; can be
rewritten with the sets X and O; given by

X 1 Pu@h) + 5ik) < pr, O; 2 Py Gilk) + () < ply.
(25)
vec; ™ (P} and pp £

(22)

Moreover, we define Py 2

Vecj.v:"ll” {p’®}—ell such that the state x; must stay outside of O =

Uj O; £ [Pgx; < pg). Further, the constraints for X’ in (25)
can be equivalently written as constraints on the nominal states
X;(k) and X;(Ty), by considering the worst-case s; € S in a
procedure commonly known as constraint tightening [12], as
follows:
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$ih) e X =X682 (xeR"| Qux < gy} (26)

Finally, we derive the tightened constraint on X;(0) = X;
that ensures that Aj is contained in the tracking error set

centered at X; o, i.e., Xp € {X; 0} DS and consequently, —X; 0 €
S © A) that can be rewritten in terms of X; o as
X0 € X = —(S© X)) = (X € R" | Qoo < qo}. (27)

B. Output Feedback Intent-Expressive Trajectory
Planner

Having introduced the output feedback control framework
in Section IV-A above, our nominal system model can now be
defined as G' = {A,B,C, Dy, D,,f, g, ¢'}. And subsequently,
we can now restate Problem 1 to reflect the nominal system
variables {x, u} and uncertainty sets {£, S}.

Problem 3 (Intent-Expressive Trajectory Planning): For a

given set of affine models {g’l’},. £, with state, input and

uncertainty sets, X', U and {Xy, &, S, V), respectively, find
a set of N, (causal) output- feedback control policies/laws at

each time step k, {n,({z(ic) K}ﬁ o)) gl e U, to minimize a

given cost function Z 1S (i({z(), K}K —0» Xg.1)), such that
the resulting closed-loop output feedback policies/laws
1) yield distinct/disjoint output trajectories corresponding
to each intent that differ by a threshold € in at least one
time instance within the first 7' steps,
2) while staying within X for all k € Z

3) and attaining the intents ¢ by time step Ty,
desplte worst-case realizations of x(0) € Xp, s(k) € S for all
ke Z”l, and X(k) € £, v(k) € V for all k € Z9._,

Our approach to solve the above problem is to formulate the
three requirements above (referred to as separation, safety and
intent, respectively) using STL and then to find the equivalent
mixed-integer linear formulation via the following lemmas,
before integrating them into a single mixed-integer linear
program that can optimally solve Problem 3 using any off-the-
shelf solvers, e.g., Gurobi [11].

Lemma 1 (Separation as an STL): Given a pair g = (i, ),
i # j of intent models, the separation condition, i.e., the
requirement that the output trajectories for both intents must
differ by a threshold € > 0 in at least one time instance within
the first T steps, can be encoded as a time-bounded STL:

W9 £ Qo r—11—~(Fwir, 0,7 € Qillzi — Zjlloo <€), (28)

where w; 1 = [s,-TT Xl viTT] and similarly for j, and Q =

ST x €T x VT, with the time-concatenated vector notations
in the Appendix. Moreover, the corresponding mixed-integer
linear formulation for W7 is given by:

@) —(FZ,’;fﬁZ + T8+ e)
vkeZi. (PQTT " —(res)" oL
Vi e Z2nZ _(_]ﬁ) q= (rz)_i)‘r i

0
by €0, 1, 57 e RT, af € {0, 1),
Y bY D) +s“’(k) 1T, o=, (29)

SOS-1: {b;k,sq}, SOS-1: {ay 57}

with the vector and matrix definitions in the Appendix and the
superscript £ denotes the ¢-th row of given matrix.

Proof: 1t is straightforward to encode separation as the STL
in (28) using the negation of the existence of uncertainties w; 7
and wj 7 that make the output trajectories indistinguishable up

to a precision €. This is equivalent to

Jof € {Plof < gl}:
q = -
= Oro.7-1] (Rkwk - Sq '?1 5 _,_611>

_ \/ Va)k € {Pkwk < qk}
re! k“)k >T kuk + Fquo +€
2, (@) T (Fq G+ T+ 6)
= BNT 4 _ a.i\T
\/1 (P) T ; _(Fw,k> '
i= q
I >0
where the first equality uses the vector and matrix definitions
in the Appendix, the second equality applies the encoding of
¢ using a disjunction and enforces the negation by flipping the
inequality sign with a small € (to account for strict inequality),
while the final equality is obtained as the robust counterpart of
the second using robust optimization [14]. Finally, the mixed-
integer linear formulation in (29) is obtained by applying [15,
Lemma 2] for encoding disjunctions. |
Lemma 2 (Safety as an STL): For a given intent model i,

the safety condition, defined as always avoiding collision with
O, can be specified as a time-bounded STL:

® = Ojo.11=(3si7; € ST, k€ 2§, : xik) € 0), (30)

with O defined below (25). Moreover, the corresponding
mixed-integer linear formulation for &' is given by:

PT, (Al g+ Al Fio = A= 1)
S P —(A.’;,k>T
viezy, | -Pu|T (AL k)T |
-1 6
f’ke{o 1Vors | 5P e RUHL af € {0, 1)+,

Y b G) + vq’(k) > 1, Y Lyaf ) =T+ 1, B1)
SOS-1: {b (s (D}, SOS-1:: {a? (k), 57 (k)
with the vector and matrlx definitions in the Appendix.
Proof: Safety is enforced by negating the existence of any
uncertainty, STy that drives the system into the unsafe region,
which can be encoded as the STL in (30). Consequently,

i 3si. 1, € {Ps,1:5i1 < Ps.Ts)s
o = Opopq— Ty = BelpSiy Ty
[0.77] kezy,

.
= A\ (¥six € Prasi = Bosd s Pexich) < g + 10 )
k=0

_/\(VszkE{PskSzk<Psk} )
i i i)

KSik > Au,kuz,k - Axykxi,() + )Lk + Nk

: P®x,‘(k) < q®>

where for the second equality, we enforce the negation
by flipping the inequality sign and by introducing a slack
variable/vector n, that must have at least one zero element
to reflect that any one constraint violation would satisfy the
negation, as well as enforce the [ operator with a conjunction.
The third equality comes from expressing the inequalities
in terms of s;x, u#;x and Xx;o instead of x(k). Finally, we
obtain (31) by finding the robust counterpart of the former
using robust optimization [14]. [ |

Further, the mixed-integer linear encoding of the
intent constraint given as STL specifications ¢’ can be
obtained as described in Section II-A. Finally, the intent-
expressive trajectory planning algorithm is obtained with
the intent constraint, the separation and safety constraints
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in Lemmas 1-2, and the state constraints
in (33)—(34).

Complexity Analysis: For brevity, we mainly focus on the
number of integer variables in the resulting optimization
formulation for separation, since this is the main distinc-
tion from [4]. Specifically, our STL approach has Q(2n, +
1)T, while the previous bilevel optimization method in [4]
has (2Q0((¢s + ¢y) + ny)T, where cg, ¢, denote the number
of inequalities of the uncertainty sets S,). The decrease
of (20(cs + ¢y) — DT integer variables is likely the rea-
son for the observed speedup in solving times and for
the increased tractability for problems with longer planning

horizons.

input and

C. Intent Estimation

Next, we present the intent estimation algorithm for the
observer agents to decode the intended goal state. For brevity,
we mainly recap the feasibility check algorithm needed for
this purpose, and our readers are referred to [4, Sec. III-C] for
more details on the complete algorithm.

Proposition 1 (Feasibility Check):  [4, Proposition 1]
Given a measured output trajectory z; = {Z(k)};c:o at current
time ¢ € Z(}_ |» the i-th candidate intent model with @' and
Uy = {u(k)}ﬁczO is compatible/consistent with z; if there exist
st = {s(K)}i_g» X = {X(k)},_, and v, = {v(k)},_, such that:

Xi = Adi0 + Biiis + [, (32a)
Ur = L_ii,t + Kt(-;ci,t - Si,t) (32b)
2 = EXio + Futis + Fy 50+ Fz %+ Fy v + 8, (320)

sk) € S,x(k) e E,vk) eV, k) el Vk e 70, (32d)
where the concatenated matrices are defined in the
Appendix.

V. ILLUSTRATIVE EXAMPLE

As a demonstration of our proposed method, we con-
sider a similar example to [3], [4] (for the sake of
comparison):

x(k+ 1) = x(k) + ve(k)St, (a)
C, 5t

vilk+1) = (1 - M&)vx(k) )+ we)de. - (b)

y(k+ 1) = y(k) + vy (k)dt, ©

C, 51
Vylk 1) = (1= =281 )y (k) + Ly () + wy (), (@)

where x and y (in m) are the positions of the agent/rover, v,
and vy (in m/s) are the velocities in the x and y directions,
respectively. Similarly, u,, uy and wy, wy (in N) are the
acceleration input and process noise signals in the x and y
directions, respectively. We also assume that x and y are the
only observed states for intent estimation over a time horizon
of length T = 6 with signals bounded such that:

uy(k), uy (k) € [-8000, 8000]N, wy(k), wy(k) € [-50, 50]N,
ve(k), vy(k) € [-1, 1]m.

The initial state set is Xy = {xo} = {[0.25 0.1 0.25 0.1]7},
while the obstacle O and state constraints X’ are given by

x | —100 < x <100,

o= x| 0<x <10, _ y |.—100 <y < 100,
Tyl 75=<y<20 T v | 45 <ve <45 |0
vy | —10=<vy <45

60

T T
(a) Output reachable sets (magenta (b) Actual state trajectory (black
and yellow boxes with borders) line with * markers) for agent sat-
showing separation of output tra- isfying intent <p1 (visit goal region
jectories within k£ = 5 time steps. 2 and then 1).

Fig. 1.  Intent-expressive motion planning results (cf. Section 1V-B).
Nominal state trajectories are marked with x and estimated state
trajectories with o, with the corresponding tracking and estimation error
sets (larger and smaller boxes without borders in Fig. 1(b)).

60

—e— Intent 1
—e— Intent 2

Goal Region 2

40 Goal Region 1 Valid

>

Invalid

0 2 4 6 8
€T t

(a) Observed (partial) output tra- (b) Output trajectory in Filg. (2a)

jectory for intent estimation. is only compatible with ¢~ .

Fig. 2. Intent estimation results (cf. Section IV-C).
and the intent is specified using an STL formula ¢’ £
Qr0,111(xi € Xgi A O, T—11[%0 € Xy j]) with j = {1,2}\ 4,

x| -5<x<2, X 0<x<5,

_ 35=<y=40 _ 50<y=<45

Xe1 = V| =9<v,<9 |’ Yp2 = Ve[ =9 <vy<9

vyl —9<vy, <9 vyl =9<vy <9
Other parameters: ¢ = ¢ = 0.001, A = 1013, Ty = 15,

T) = 10, M = 500kg, §t = 0.75s, b = 0.022, ¢, = 5025
and Cy =70 % In Fig. 1, the output reachable sets become
disjoint after k = 5 (indicating intent-expressiveness), while
Fig. 2 shows that the intent ¢! is identified within 4 time steps.

In a second case, the intents are STL formulas ¢' =
Qom0 (x € Xgi), i € {1,2} with Ty = 15, such that the
approach in [4] can also be applied for comparison. The CPU
time using Gurobi [11] for the proposed STL formulation
for intent-expressive trajectory planning is 33.6 s, whereas the
bilevel approach in [4] did not terminate within 24 hours. This
speedup is likely due to the reduction of about 6.5 times in
the number of integer variables with our new approach.

VI. CONCLUSION

In this letter, we presented an STL formulation for set-based
intent-expressive trajectory planning and intent estimation
with (noisy) output feedback for multi-agent teams. The
intent-expressive trajectory planning algorithm encoded intent
information by making the output reachable sets for satis-
fying all STL task specifications disjoint, while the intent
estimation algorithm decoded the intent by ruling out all
intent models that are incompatible with run-time noisy
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observations. Our proposed approach has lower computa-
tional complexity and was found in simulations to result in
much faster computation than a previous bilevel program
formulation. Future work include extensions to continuous-
time trajectories, nonlinear dynamics and environments with
occlusion.

APPENDIX
A. Time-Concatenated Models and Constraints

We make use of time concatenated expressions to improve
legibility of our models and constraints. Given a time horizon
T, we concatenate the states, outputs, inputs and noises:

Xix £ veci_olXi(k)}, *ir £ vec_g{xi(k)},
for all * € {z, u, s, X, v}. Then, (16)—(23) can be written as:
Xir = AcXio + Brilir +fr,
Zir = Co(¥ir + i) + Ducltic + Dy oviz + 82
= EXi0+ Fucilic + FyrSic + FioXie + Fyvie + 8c,

with
I I 0 - 0
} A A I - 0
AT é ’ ®T é : : .. |
A"[ Af.—l AT._Z . H
N 0 = A 0
B: = _@TdiagrB:|’ fr= [@Tvec,f:|’

1>

C:
gt

[diag,C 0], D, . £ diag,D,, D, . = diag D;,

vecr g, Er £ C‘[Ata Fu,r = Du,t + (_:tBra

F, . = diag,(C — D,K), F;. = diag,(D,K),

Fyr £Dyr, g 2 Cofr + 30, Ko £ diag K.

The corresponding constraints can be written as:
Py,ryi,r Sﬁy,r» Py,r = diagT{Py}, I_7y,r = VeCr{Py},

for y € {s,x,v}. We also define an auxiliary variable @ to
represent the vector of all uncertain variables:

> 1>

(>

Si,t P . 0 0 Ps,t
Wit = | Xt |, Qw,r = 0 P)?,r (U qo,t = | Px,t
Vi,f 0 0 Pv,r pV,T

Moreover, we concatenate the input constraint matrices in
(24) across the time horizon 1 € {T, T¢} such that

Quiti, 1, < qu, with Q, = diag,{Qu}, Gu = vecr{qu}. (33)
By the same notion, we define

PL . 2 diag, , {O:}, PL, 2 vecri1{gy).
We can then combine the initial state and state constraints
from (26)—(27) as:

o _ 07- _
H)lc,rxl',o = h;c,r - I:Pl Bu; ¢,
X,T

=i Qo O0]|; q0
e T B PR

X,T X, T

(34)

with

Further, we also concatenate the obstacle constraints over
time to obtain
Py = diag,,{Pg), Pe,r = Vecr+1{pg),
Ax,r £ P@,rAr’ Ar éﬁ@,r - P@,rfm
Ayt £ P®,rBr’ Ast £ p@,ta Nt £ Vecz:()rl(k)-

(35)

B. Pair-Concatenated Constraints

To ensure the outputs of the intent models are distinct from
each other within a time horizon of T < Ty, we further
introduce the model pair, which consists of two different

models of G;. Considering N, discrete-time affine models,
ie., Gi. Ga, -+, G, there are Q = (A;) model pairs and
let g € ZE denote the pair of models (G;, Gy). Next, we

concatenate )_cf), u; 7 and z; 7 for each model pair g = (i, 1)
using x4 £ vecy—q; 1y {*¢} for all x € {Xo, i, zr}. Then, the
pairwise uncertainty constraints can be obtained as

Pl < . (36)

. ~ A . ~ A
with P £ diag,_; /{0 ). PF £ Vec(gz{i,i/}{qi’r}. )
Then, the diffgrence between pairwise outputs |2 —27[lco <
891 can be rewritten as

R1&] < 891 + STuf, + Y%7, (37)

with

R L Fsr Fir  |For]| [=Fsr —Fir —For
_FS,T — x,T _FV,T FS,T F)},T v,T ’

S92 __FM’T F%T yq 2 __ET E_T
Fu,T -y, T ’

Finally, we define the following for (29):

My 2 | Onoxpte=1) Lp Onoxpar—by
On,pr+k—1) Lp Ouxpr—io) |’

Tlp 2 MY, Ty 2 MiS?, T & MgRY.

REFERENCES

[1] C. Lichtenthdler and A. Kirsch. “Legibility of robot behavior: A
literature review.” Apr. 2016. [Online]. Available: https://hal.science/hal-
01306977

[2] A.D. Dragan, K. C. Lee, and S. S. Srinivasa, “Legibility and predictabil-
ity of robot motion,” in Proc. 8th ACM/IEEE Int. Conf. Human—Robot
Interact. (HRI), 2013, pp. 301-308.

[3] E. Gah, R. Niu, B. Geisel, and S. Z. Yong, “Set-based intent-expressive
trajectory planning and intent estimation,” IEEE Control Syst. Lett.,
vol. 7, pp. 151-156, 2022.

[4] E. Gah and S. Z. Yong, “Closed loop intent-expressive trajectory
planning and intent estimation,” in Proc. Amer. Control Conf., 2024,
p- 4. [Online]. Available: https://tinyurl.com/yzs6wnze

[5]1 Y. Ding, F. Harirchi, S. Z. Yong, E. Jacobsen, and N. Ozay, “Optimal

input design for affine model discrimination with applications in

intention-aware vehicles,” in Proc. ACM/IEEE Int. Conf. Cyber Phys.

Syst., 2018, p. 15.

R. Nikoukhah and S. Campbell, “Auxiliary signal design for active

failure detection in uncertain linear systems with a priori information,”

Automatica, vol. 42, no. 2, pp. 219-228, Feb. 2006.

[71 A. Donzé, “On signal temporal logic,” in Proc. Int. Conf. Runtime
Verification, 2013, pp. 382-383.

[8] R.S. Smith and J. C. Doyle, “Model invalidation: A connection between
robust control and identification,” in Proc. IEEE Amer. Control Conf.,
1989, pp. 1435-1440.

[9] F. Harirchi, S. Z. Yong, and N. Ozay, “Guaranteed fault detection and
isolation for switched affine models,” in Proc. IEEE Conf. Decis. Control
(CDC), 2017, pp. 5161-5167.

[10] R. Niu, S. M. Hassaan, L. Yang, Z. Jin, and S. Z. Yong, “Model
discrimination of switched nonlinear systems with temporal logic-
constrained switching,” IEEE Control Syst. Lett., vol. 6, pp. 151-156,
2021.

[11] Gurobi Optimization, Inc. “Gurobi Optimizer reference manual.” 2015.
[Online]. Available: http://www.gurobi.com

[12] D. Limén, 1. Alvarado, T. Alamo, and E. F. Camacho, “Robust tube-
based MPC for tracking of constrained linear systems with additive
disturbances,” J. Process Control, vol. 20, no. 3, pp. 248-260, 2010.

[13] S. V. Rakovic, E. C. Kerrigan, K. I. Kouramas, and D. Q. Mayne,
“Invariant approximations of the minimal robust positively invariant set,”
IEEE Trans. Autom. Control, vol. 50, no. 3, pp. 406410, Mar. 2005.

[14] D. Bertsimas, D. Brown, and C. Caramanis, “Theory and applications
of robust optimization,” SIAM Rev., vol. 53, no. 3, pp. 464-501, 2011.

[15] Q. Shen, R. Niu, and S. Z. Yong, “Tractable model discrimination
for safety—critical systems with disjunctive and coupled constraints,”
Nonlinear Anal. Hybrid Syst., vol. 46, no. 2, 2022, Art. no. 101217.

[6

—

Authorized licensed use limited to: Northeastern University. Downloaded on May 12,2025 at 13:15:31 UTC from IEEE Xplore. Restrictions apply.



