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Abstract

Forest canopy complexity (i.e., the three-dimensional structure of the canopy)
is often associated with increased species diversity as well as high primary
productivity across natural forests. However, canopy complexity, tree diversity,
and productivity are often confounded in natural forests, and the mechanisms
of these relationships remain unclear. Here, we used two large tree diversity
experiments in North America to assess three hypotheses: (1) increasing tree
diversity leads to increased canopy complexity, (2) canopy complexity is posi-
tively related to tree productivity, and (3) the relationship between tree diver-
sity and tree productivity is indirect and driven by the positive effects of
canopy complexity. We found that increasing tree diversity from monocultures
to mixtures of 12 species increases canopy complexity and productivity by up
to 71% and 73%, respectively. Moreover, structural equation modeling indi-
cates that the effects of tree diversity on productivity are indirect and mediated
primarily by changes in internal canopy complexity. Ultimately, we suggest
that increasing canopy complexity can be a major mechanism by which tree
diversity enhances productivity in young forests.
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stands often exhibit higher net primary productivity (Huang
et al., 2018; Shovon et al., 2022; Urgoiti et al., 2022), support

Forests play a pivotal role in sustaining life on Earth by
providing essential ecosystem services that support both
ecological and human well-being, making it critical to
understand their functioning. Forest biodiversity-ecosystem
functioning (BEF) experiments show that diverse tree

greater diversity at higher trophic levels (Wan et al., 2020),
and confer resilience against environmental perturbations,
pests, and diseases (Guo et al., 2019; Jactel et al., 2017).
Moreover, it is increasingly recognized that forest structural
complexity may be an important mediator of ecosystem
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function that could underlie many BEF relationships
(Lang et al., 2023; LaRue et al., 2019). For example, the
architecture of the forest canopy, including variation in
tree heights, canopy gaps, and vertical stratification, can
influence tree productivity by altering light acquisition
among co-occurring species through increased canopy
packing (LaRue, Fahey, et al., 2023). Thus, increases in
structural diversity may be a key factor modulating the rela-
tionships between forest diversity and tree productivity.

Remote-sensing techniques capturing forest structure
across large spatial scales have generated insights into
the relationships among tree diversity, canopy com-
plexity, and tree productivity across a variety of natural
forests (Gough et al., 2019; LaRue, Knott, et al., 2023;
Yi et al., 2022). However, it remains difficult to determine
causation from these relationships, as canopy complexity
is often conflated with site-level variables like soil fertil-
ity, water availability, and successional stage, all of which
can also be associated with productivity (Coverdale
et al., 2023; Ehbrecht et al., 2021; Reed et al., 2022). For
example, a positive relationship between structural diver-
sity and primary productivity exists across National
Ecological Observatory Network (NEON) sites in the Eastern
United States (Gough et al., 2019), but the relationship was
negative across sites with varying disturbance regimes in
southeastern China (Yi et al., 2022). A mechanistic under-
standing of the complexity-productivity relationship is
needed to explain this variation.

Tree diversity-ecosystem function experiments provide
an ideal opportunity to tease apart diversity-productivity
relationships and their mechanisms. Diversity-driven
increases in productivity can stem from a range of
possible mechanisms, including above- or belowground
resource partitioning, selection effects, facilitation, or
trophic interactions. Previous studies suggest that forest
canopy traits, particularly ones that increase canopy
complexity, may play an important role in the diversity-
productivity relationship (Ray et al., 2023). This rela-
tionship may be driven by complementarity in resource
use among species, for example, through not only
increased light capture and canopy packing, but also
potential selection effects from size-asymmetric com-
petition (Pretzsch, 2014).

In this study, we took advantage of two large-scale
tree biodiversity-ecosystem function experiments in
eastern North America colocated with NEON sites to
address three hypotheses that are key to understand-
ing the impacts of tree diversity on forest productivity:
(1) increasing tree diversity leads to increased canopy
complexity, (2) greater canopy complexity is positively
related to tree productivity, and (3) canopy complexity
indirectly influences the relationship between tree
diversity and productivity.

METHODS
Study sites and experimental design

We examined growth and canopy structure across two forest
diversity experiments in North America, BiodiversiTREE@
SERC and BiodiversiTREE@SCBI, both of which are part
of the TreeDivNet global network of tree diversity experi-
ments (Grossman et al., 2018). BiodiversiTREE@SERC
is located at the Smithsonian Environmental Research
Center (SERC) near Edgewater, Maryland, USA (38.87 °N,
76.55 °W, elevation: 15 m, mean annual temperature
[MAT]: 13.2°C, mean annual precipitation [MAP]: 1068 mm).
In the spring of 2013, 17,850 1-year-old bareroot whips
from 16 tree species were planted in monoculture plots
(n =2 plots per tree species, 32 total plots), 4-species
polyculture plots (n = 19), and 12-species polyculture plots
(n = 19). Each plot is 35 m by 35 m, with 2.4-m spacing
between trees, with a total of 255 trees per plot planted in
an equidistant hexagonal grid (Appendix S1: Figure S1A).
All 16 tree species are native to mid-Atlantic forests and
were selected to include the most common species in
surrounding forests, including Acer rubrum, Carpinus
caroliniana, Carya tomentosa, Cayra glabra, Cornus florida,
Fagus grandifolia, Fraxinus pennsylvanica, Liquidambar
styraciflua, Liriodendron tulipifera, Nyssa sylvatica, Platanus
occidentalis, Quercus alba, Quercus pagoda, Quercus
rubra, Quercus velutina, and Ulmus americana. The site
is unfenced and, thus, accessible to common herbivores
like white-tailed deer (Odocoileus virginianus). In 2019
and 2022, we measured tree dbh on 50 randomly
selected “focal” trees out of the 110 total trees within
the interior of each plot (excluding the outer three rows
to reduce edge effects). All live stems with a height
greater than 1.3 m were measured.
BiodiversiTREE@SCBI is located at the Smithsonian
Conservation Biology Institute (SCBI) near Front Royal,
Virginia, USA (38.89 °N, 78.16 °W, elevation: 350 m,
MAT: 12.6°C, MAP: 1102 mm). In the spring of 2014,
10,000 1-year-old bareroot whips were planted from
16 tree species. Trees were planted in monoculture plots
(n =2 plots per tree species, 32 total plots), 4-species
polyculture plots (n = 10), or 12-species polyculture plots
(n = 18). Each plot is 35 m by 35 m, with 3 m between
trees, with a total of 145 trees per plot planted in a diamond
grid (Appendix S1: Figure S1B). The 16 tree species are
all native to Mid-Atlantic forests, including A. rubrum,
C. glabra, Castanea dentata, Celtis occidentalis, Corylus amer-
icana, Diospyros virginiana, F. grandifolia, F. pennsylvanica,
L. tulipifera, P. occidentalis, Prunus serotina, Q. alba, Quercus
prinus, Q. rubra, Q. velutina, and Tilia americana. Of the
16 species at each site, nine species are common between
the two sites, and seven species are unique. The site is
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surrounded by a 2.5-m fence to reduce damage by
white-tailed deer but did not prevent periodic damage
from American black bear (Ursus americana) at SCBI.
Tree dbh was measured for all live trees within the inte-
rior of each plot (65 trees/plot) in 2019 and 2022. Only
the largest stem per tree with a height greater than
1.3 m was measured.

For both sites, aboveground biomass (AGB) was esti-
mated from genus or species-specific allometric equations
from dbh measurements using the allodb package in
R (Gonzalez-Akre et al., 2023) (Appendix S1: Table S1).
Aboveground production per individual per year (P) was
calculated using the equation:

P =(AGB;n,; + mortality — AGByg19)/3 years,

where AGB,g,, and AGB,,;4 are the biomass of live stems
in 2022 and 2019 respectively, and mortality is the
biomass in 2019 of stems that died between 2019 and
2022 so that growth for stems that died is zero. Plot level
values were calculated as the average production per
individual of all the focal individuals per plot.

LiDAR measurements

Airborne light detection and ranging (LiDAR) data were
collected during the growing season in 2016, 2017, 2019,
2021, and 2022 by the Airborne Observatory Platform
(AOP) of the NEON at both sites (Appendix S1: Table S2)
(NEON, 2023). To quantify the characteristics of vertical
and horizontal canopy structure, we calculated five can-
opy complexity metrics derived from LiDAR data for
each plot at each site including height, openness, exterior
complexity (the canopy surface), and interior complexity
(vertical canopy strata) (Appendix S1: Table S3) (Atkins
et al., 2020). All complexity metrics were calculated after
filtering out heights below 2 m to avoid detecting changes
in vegetation from annual plot-cleaning. Plots where no
trees attained greater than 2 m height during the experi-
mental period were considered to have zero canopy com-
plexity for all metrics, except rumple index which was set
to its lowest value of 1. We generated a 1 X 1 m* canopy
height model to derive the following metrics: mean outer
canopy height (MOCH, mean value of canopy height
model, in meters), canopy cover (1-deep gap fraction,
proportion of canopy openings with heights less than
2 m, proportion), and canopy rumple index (surface
roughness; ratio of canopy surface area to area of the 2D
ground, ratio). Additionally, we calculated point-based
canopy metrics, including the Gini coefficient (GC,
unitless) index and foliage height diversity (FHD,
unitless). All LiDAR data processing and analysis were

performed using the lidR (Roussel et al., 2020) or leafR
(de Almeida et al., 2021) packages.

Statistical analysis

All statistical analyses were performed in R version 4.3.1
(R Core Team, 2023). All five canopy structure variables
were highly collinear (R? = 0.60-0.96), so we conducted
models with each variable separately (Appendix S1:
Figure S2). First, we conducted linear mixed-effects
models testing for the fixed effects of tree diversity, year,
site, and their interactions with each canopy structure
metric with plot as a random effect. Because we found
significant interactions between diversity and site, we
then tested the same models for each site separately.
Temporal autocorrelation was accounted for with a
first-order autoregressive structure using the nlme pack-
age (Pinheiro et al., 2016). Individual pairwise contrasts
among diversity levels by year were conducted using the
emmeans package with Tukey adjustments (Lenth,
2023). To test whether the effects of tree diversity on
productivity were direct or indirectly mediated by canopy
complexity, we built structural equation models (SEMs)
using the piecewiseSEM package (Lefcheck, 2016) for each
site consisting of two linear models: (1) tree diversity
effects on canopy complexity metrics in 2019 and (2) can-
opy complexity metrics and tree species diversity effects on
log-transformed productivity between 2019 and 2022. This
allowed us to assess the ability of canopy structure in 2019
to predict tree growth over the subsequent 3 years.

RESULTS
Diversity effects on structural complexity

We found positive effects of tree diversity on canopy
structural metrics over time at both sites (Figure 1;
Appendix S1: Figure S3, Tables S4 and S5). At SERC, a
significant diversity effect on GC was observed as early
as 2016 (1 vs. 12: p = 0.047), and at SCBI a significant
diversity effect was first observed in 2019 (1 vs. 12:
p = 0.008). By 2022, 9 years after planting at SERC, we
observed significant diversity effects on both canopy
complexity metrics. GC was 76% higher in 12 species
mixtures compared with monocultures (p < 0.001), and
41% higher in 12 species mixtures versus four species
mixtures (p < 0.001). FHD was 71% higher in 12 species
mixtures compared with monocultures (p < 0.001).

By 2022, 8 years after planting, there were significant
diversity effects for both internal canopy complexity
metrics at SCBI. GC was 46% higher in four species
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FIGURE 1 Light detection and ranging (LiDAR) metrics of canopy complexity, Gini coefficient, and foliage height diversity, for

Smithsonian Environmental Research Center (SERC) and Smithsonian Conservation Biology Institute (SCBI) BiodiversiTREE sites over

time between diversity treatments.

mixtures compared with monocultures (p = 0.025), and
57% higher in 12 species mixtures compared with
monocultures (p < 0.001), but 4 and 12 species mixtures
did not differ (p = 0.818). FHD was 53% higher in four
species mixtures compared with monocultures (p = 0.018),
and 40% higher in 12 species mixtures compared with
monocultures (p = 0.031), but again did not differ between
4 and 12 species mixtures (p = 0.794), indicating a poten-
tial saturating relationship (Appendix S1: Figure S4).

Direct and indirect effects on productivity

At SERC, average productivity per year was 74% higher
in 12 species mixtures compared with monocultures
(p =0.002) but not significantly different in 4 species
mixtures than either monocultures or 12 species mixtures
(p > 0.1; Appendix S1: Figure S5). At SCBI, productivity
was marginally higher (65%) in 4 species mixtures

(p = 0.068) but did not differ between 12 species mix-
tures and monocultures (p = 0.121). Across both sites,
canopy complexity in 2019 was strongly related to pro-
ductivity (Figure 2A; Appendix S1: Tables S6 and S7).
SEMs further showed that both canopy complexity metrics
were significant mediators of the diversity-productivity
relationships across both sites. Diversity was positively
related to GC (SERC: std. coef. = 0.53, p < 0.001; SCBI:
std. coef. = 0.33, p = 0.011) and FHD (SERC: std. coef.
=0.45, p < 0.001; SCBI: std. coef. = 0.32, p = 0.013), as
was productivity and GC (SERC: std. coef. = 0.71,
p <0.001; SCBI: std. coef. =0.59, p < 0.001) and FHD
(SERC: std. coef. = 0.80, p < 0.001; SCBI: std. coef. = 0.58,
p < 0.001), creating a positive indirect effect of diversity on
productivity (Figure 2B; Appendix S1: Tables S6 and S7). In
both SEMs, diversity had no direct effect on productivity
(p > 0.6), and only an indirect effect on productivity via
either of these internal canopy complexity metrics. At
SERC, the FHD model in particular explained 66% of the
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FIGURE 2

(A) Foliage height diversity (FDH) in 2019 versus tree productivity (in kilograms per individual per year) between 2019 and

2022 at Smithsonian Environmental Research Center (SERC) and Smithsonian Conservation Biology Institute (SCBI). (B) Structural equation
models for the effect of tree richness on FDH (image credit: S. Fei) and productivity (log-transformed) at SERC and SCBI. Solid black arrows
indicate significant paths and dashed gray arrows are nonsignificant paths. Standardized coefficients are displayed with corresponding path arrows
and arrow size is proportional to the standardized coefficients. R* values for each component models are presented below corresponding response
variables. White-tailed deer are excluded from plots at SCBI but open to browsing at SERC. All images licensed by Canva unless otherwise stated.

variation in productivity and 20% of the variation in FHD.
At SCBI, the FHD model was similar but explained less
variation compared with SERC, explaining 36% of variation
in productivity and 10% of variation in FHD. Ultimately,
across both sites, the two canopy complexity metrics played
significant roles in driving positive diversity-productivity
relationships. Additional canopy metrics are reported in
Appendix S1: Figure S3, Tables S4 and S5.

DISCUSSION

We used LiDAR metrics to quantify canopy structural
development over the course of 7 years across two tree
diversity-ecosystem function experiments. In line with
our hypotheses, we found that (1) increasing tree diver-
sity led to increased canopy complexity, (2) canopy com-
plexity showed a strong positive relationship to tree
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productivity, and (3) canopy complexity indirectly mediated
the positive relationship between tree diversity and pro-
ductivity at both sites. Thus, canopy complexity plays a
primary role in driving the positive effects of tree diversity
on tree productivity.

Diversity effects on canopy complexity

Diversity effects on canopy complexity emerged as quickly
as 3-5 years after planting and became more pronounced
over time at both sites. These early effects were likely
driven by selection effects from fast growing early suc-
cessional species and may shift to complementarity
effects or trait dependent effects over time as has been
observed for diversity-productivity relationships in for-
ests (Urgoiti et al., 2022). Moreover, the shape of the
diversity-complexity relationship provides further insight
into the mechanisms that drive tree diversity-productivity
relationships. Saturating relationships suggest functional
redundancy between species, whereas linear relationships
suggest more functional dissimilarity among species, and
both have been observed in previous studies (Coverdale
et al.,, 2023; Ehbrecht et al., 2017; Juchheim et al., 2020;
Perles-Garcia et al., 2021). At SERC, canopy complexity
metrics increased linearly across the diversity gradient
and showed no signs of saturation, whereas at SCBI,
increases in complexity saturated at four species mixtures.
A more functionally dissimilar species pool at SERC
seems unlikely given the taxonomically broad overlap in
the species pools, but this is an area that deserves further
attention as taxonomic and functional diversity are not
perfectly correlated. Furthermore, environmental context
can influence BEF relationships (Ratcliffe et al., 2017),
though the level of environmental stress and species
tolerance may interact resulting in species by environ-
ment interactions in functional complementarity among
species. Topography and climate differ between the
sites, where SCBI is higher elevation and has hilly ter-
rain, whereas SERC has a coastal climate and minimal
topography, so these differences could influence the
strength and shape of the diversity effects on canopy
complexity. Planting density is also lower at SCBI
(145 trees per 35X 35m plot) compared with SERC
(255 trees per 35 X 35m plot) meaning light competi-
tion may be slower to develop at that site.

One prominent difference between the sites is the
extent of browsing by white-tailed deer, which was greatly
reduced by fencing at SCBI compared with SERC. The
effects of browsing were clearly seen in the growth of
A. rubrum, which because of extensive deer browsing at
SERC were rarely able to reach dbh size (Cook-Patton
et al., 2014; Devaney et al., 2020). Alternatively, A. rubrum
was among the largest and fastest growing species at SCBI,

where fencing prevented excessive deer browsing. Given
the overall faster height growth at SERC, but with prefer-
ential browsing on some species, particularly in mixtures
(Devaney et al., 2020), we suggest that early browsing on
saplings could have suppressed the growth of palatable
species and therefore initiated greater size asymmetry in
canopy heights in mixtures at SERC (Reed et al., 2022).
This is significant because the development of canopy struc-
ture during early forest succession can determine niche
space for understory plants and wildlife populations
resulting in differences in overall ecosystem function
(Deere et al., 2020; LaRue et al., 2019; Rissanen et al., 2019).
Further work is needed to investigate the influence of
herbivore browsing as a potential moderating factor on
the relationship between tree species diversity and
structural complexity.

Diversity-canopy complexity-productivity
relationship

Canopy complexity was strongly correlated with produc-
tivity. Interestingly, we demonstrated that diversity itself
did not directly affect productivity, but internal canopy
complexity mediated significant indirect effects of diver-
sity on productivity at both sites. Greater canopy com-
plexity can increase canopy space filling across canopy
strata, thereby enhancing total light interception across
space and time, for example with variation in sun angle
(Danescu et al., 2016; Jucker et al., 2015; Kunz et al., 2019;
Mensah et al., 2018). Our results support findings from
another tree-BEF experiment showing that stand struc-
tural complexity mediates a significant indirect effect of
tree diversity on wood production and overyielding
(Ray et al., 2023). However, our results contrast with
the negative relationship observed between structural
diversity and wood production across successional forests
(Yi et al., 2022). Ultimately, despite varying strength in
diversity-complexity and diversity-productivity relation-
ships between sites, the indirect effect of diversity on
productivity mediated by structural complexity was
remarkably consistent. Therefore, we argue that increased
canopy complexity is a primary mechanism driving
diversity-productivity relationships in forests.

In summary, we highlight the positive impact of tree
species diversity on forest canopy structural complexity
and its relationship to productivity. The effect of tree
diversity on canopy complexity was more pronounced at
SERC than at SCBI, indicating the importance of con-
sidering site-specific conditions in understanding the
dynamic progression of canopy complexity. Despite
these differences, internal canopy complexity emerged
as a key mediator between diversity and productivity
across both sites, underscoring its crucial role in
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shaping the diversity effects observed in forest ecosys-
tems. Furthermore, the strong correlation between
internal canopy complexity and productivity across
diversity treatments and species composition demon-
strates that relatively easily obtained LiDAR data can pre-
dict forest productivity, at least in early successional
forests. Ultimately, understanding the relationships among
biodiversity, forest canopy structure, and productivity
could inform forest management and conservation, partic-
ularly given recent calls to diversify planted forests to miti-
gate against global change scenarios (Messier et al., 2021).
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