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ABSTRACT: A cobalt (II) mononuclear complex was synthesized by two-nitrobenzoic acid and pyrazine-two- 
carboxamide ligands in the presence of sodium bicarbonate and aqueous solution of cobalt acetate tetrahydrate. The 
synthesized cobalt(II) complex was characterized by single crystal X-rays diffraction. The coordination geometry of the 
cobalt complex was octahedral with water molecules occupying the axial sites. A lot of intermolecular interactions were 
in response to stabilize the supramolecular assembly which were inspected by Hirshfeld surface analysis. Enrichment 
ratios were calculated to find the pair of atoms having the highest propensity to form crystal packing interactions. Void 
analysis was conducted to forecast how the crystal would respond to applied stress. Interaction energy calculations were 
carried out using the B3LYP/6-31G(d,p) electron density model to identify which energy types most significantly con-
tributed to the supramolecular assembly. Moreover, the energy data obtained from DFT calculations showed an average 
level of stability of the molecule. The moderate HOMO-LUMO energy gap suggested reactivity, while a high electro-
philicity index indicates a strong tendency for electron-accepting reactions.

KEYWORDS: Pyrazine derivative; mononuclear cobalt(II) complex; single crystal X-ray diffraction analysis; hirshfeld  
surface analysis; DFT.

1.  INTRODUCTION
For decades, researchers have been synthesizing new 
coordination compounds from the ligands as the bio-
logical activities of the coordination complexes are 
better than the biological activities of the free ligands.1–3 
Pyrazinecarboxamide is widely used as a ligand in the 
synthesis of coordination complexes because of its two 
nitrogens and oxygen which can act as donor sites for 
the metals. Various coordination modes of the pyrazine-
carboxamide are reported in literature, mono-dentate,4–7  
bidentate by oxygen and one of its nitrogen,8–10 bridging11, 12  

as shown in Fig. 1. According to Cambridge structural 
database CSD 2024.1 (updated March 2024),13 74 crys-
tal structures of the metal complexes (mono nuclear, 
multinuclear, polymeric) are reported in literature  
till date that contained pyrazinecarboxamide ligand 
along with one or more co-ligands. 12 out of 74 struc-
tures contained cobalt metal. Three polymeric14–16 and 
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nine nonpolymeric structures17–19 containing pyrazine-
carboxamide ligand and a co-ligand coordinated with 
cobalt metal are reported. Pyrazinecarboxamide-
containing compounds find diverse applications across 
various fields, including their use as corrosion inhibi-
tors,20 violet and ultraviolet luminescence production 
upon excitation by ultraviolet light,14 antimycobacte-
rial,21 antiviral,22 electrocatalytic agents,23 dyes24 and 
drugs. The luminescence properties of a ligand can 
either increase or decrease upon coordination with a 
metal center, and this outcome depends on the different 
factors pertaining to the ligand’s nature, the metal and 
their interaction.25–27 Deprotonated aromatic carboxylic 
acid especially two-nitrobenzoic acid can act as 
monodentate, bidentate and chelating ligand for  
various metals.28–32 As a result of the coordination of 
two-nitrobenzoate ligand with various derivatives of 
pyrazinecarboxamide ligands, the number of coordina-
tion geometries are reported from four-coordinated to 
eight-coordinated.4,7,29,33–38 Based on our specialty on 
single crystal XRD and computational study of the 
metal complexes,39–42 we are going to report the synthe-
sis, single crystal XRD characterization, examination of 
the supramolecular assembly through Hirshfeld surface 
analysis and detailed computational study of the cobalt 
complex constructed from pyrazine derivative (pyrazi-
necarboxamide) and aromatic carboxylic acid (two- 
nitrobenzoic acid). 

2.  EXPERIMENTAL 

2.1.  Materials and methods 
Starting materials and all chemical reagents for synthe-
sis were obtained from Merck and used without further 
purification.

2.2.  Synthesis of [Co(NB)2(Pyz)2(H2O)2]
In 20 ml hot distilled water, two-nitrobenzoaic acid 
(0.33 mg, 2 mmol) was added and stirred. The sodium 
bicarbonate (0.17 mg, 2 mmol) was added step by step 
and stirring continued for 15 min. The resulting solu-
tion was filtered and aqueous solution of cobalt acetate 
tetrahydrate (0.25 mg, 1 mmol) was added to the for-
mer solution. The solution of pyrazine-two-carboxamide  
(0.25 mg, 2 mmol) in water was added step by step to 
the previously obtained solution. The resulting solu-
tion was stirred at rt. for 18 h, hot water was added and 
sodium acetate was filtered off. It was left for four to 
five days to obtain blue prism-like crystals (Scheme 1) 
(yield = 0.44 g, 65%).

2.3. � Single crystal X-ray diffraction 
analysis procedure 

The appropriate quality crystal selected by optical 
microscope was inserted into STOE IPDS 2 diffractom-
eter for data collection. For the structure solution, 
SHELXT 201443 was used and SHELXL 2019/244 was 
used for refinement. Disorder was observed and 
resolved in the nitro group of X-ray crystal structure by 
the usage of appropriate restraints. Hydrogen atoms 
were placed by using the ridding model except for 
hydrogens of the amino group which were freely refined 
for correct orientation. PLATON45 and Mercury 4.046 
software represented results in the form of figures. 

2.4.  Computational details 
The study employed Density Functional Theory (DFT) 
via the B3LYP method with the 6-31G(d,p) basis set, 
utilizing Gaussian 16W47 and GaussView 6.1 soft-
ware.48 Initially, the experimental geometry, sourced in 
CIF format, was converted to MOL2 format using 
Mercury 2024.1.0 (build 401958).46 This format transi-
tion facilitated the importation of the geometry into 
GaussView 6.1.48 Following importation, Gaussian’s 
optimization algorithm refined the geometry for 
enhanced accuracy. Subsequently, Gaussian’s energy 
calculation algorithm was engaged to derive energy 

Fig. 1.    (Color online) Coordination modes of pyrazinecarboxamide 
ligand with metals through (a) nitrogen, (b) nitrogen and oxygen, 
and (c) both nitrogens and oxygen. 

(a) (b)

(c)
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values for both the frontier molecular orbitals and the 
entire molecular structure. Additionally, the software 
computed the dipole moment, which is crucial for 
understanding molecular polarity. Visualizing frontier 
molecular orbitals aided in comprehending their spa-
tial distribution and characteristics. To further analyze 
the molecule’s properties, molecular electrostatic 
potential mapping was conducted using GaussView 
6.1’s contour builder tool.48 This process facilitated the 
visualization and interpretation of electrostatic poten-
tial surfaces, providing insights into molecular reactiv-
ity and intermolecular interactions.

3.  RESULTS AND DISCUSSIONS 

3.1.  Single crystal XRD exploration 
The lattice parameters along with other important 
details are listed in Table 1. The asymmetric unit of the 
cobalt complex [Co(NB)2(Pyz)2(H2O)2] (Fig. 2) has 
half a molecule and the completion of the molecule is 
due to the inversion symmetry. Cobalt center is coordi-
nated by two-nitrobenzoate by one of its O-atom of 
benzoate, pyrazinecarboxamide by one of its nitrogen 
and water ligands. The coordination fashion of the 
two-nitrobenzoate and pyrazinecarboxamide ligands is 
similar to nonchelating. Cobalt center is hexa- 
coordinated and octahedral geometry is formed in 
which water O-atoms occupy axial sites while the 
remaining atoms of the coordination sphere occupy 

equatorial sites. The equatorial coordination plane 
makes the dihedral angles of 38.1 (1) and 84.7 (2)° with 
root mean square plane of the pyrazine ring and car-
boxylate group, respectively. The twist between pyra-
zine and phenyl ring is 87.2 (8)°. Pyrazinecarboxamide 
is planar with root mean square deviation of 0.0223 Å 
whereas two-nitrobenzoate ligand is nonplanar. The 
carboxylate group, major and minor parts of the nitro 
group are orientated at dihedral angles of 20.9 (3)°, 
60.2 (3)° and 52.9 (3)° with respect to the phenyl ring. 
The configuration of the molecule is stabilized by 
O–H…O and N–H…N bonding (Table 2). The mole-
cules are connected in the form of dimers through 
O–H…O and N–H…N bonding (Fig. S1, Table 2). 
Amino group, carbonyl O-atom of pyrazinecarboxam-
ide and non-coordinating O-atom of benzoate are 
involved in H-bonding. Water molecule and amino 
group played important roles in the crystal packing as 
both hydrogen of the amino group and water partici-
pate in H-bonding. A significant role in supramolecu-
lar assembly is also played by C–H…π interaction 
(Fig. 3, Table 2). Very weak π…π interactions are found 
with inter-centroid separation of 4.33 to 4.49 Å. 

The literature survey was performed by using the 
Cambridge structural database CSD 2014.1 (updated 
March 2024).13 Two copper complex structures con-
taining two-nitrobenzoic acid and pyrazine-two- 
carboxamide ligands are found with reference codes 
DIFKAG4 and DIFKAG01.7 The coordination mode of 
the ligands with copper metal in these reported 

Scheme 1.    (Color online) Synthesis pathway for the preparation of [Co(NB)2(Pyz)2(H2O)2] complex.
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structures is similar to the coordination mode of the 
ligands with cobalt metal in our structure. The struc-
ture with reference code DIFKAG01 is the polymorph 
of the structure with reference code DIFKAG. The 
dihedral angle between pyrazine and phenyl ring is 
81.79 (1) and 81.90 (2)° in DIFKAG and DIFKAG01, 
respectively. No other metal structure is reported con-
taining two-nitrobenzoic acid and pyrazine-two- 
carboxamide ligands. In order to find more related 
structures, a search was performed for structures con-
taining two-nitrobezoate, pyrazine and any metal. A 
crystal structure of the copper complex is reported in 
the literature that contained nitro group at third and 
fifth positions of benzoate group with reference code 
DIFJUZ.4 The dihedral angle between pyrazine and 
phenyl ring is 58.01 (1)° in DIFJUZ. Four silver poly-
meric structure complexes containing substituted 

pyrazine ligand were reported in the literature with 
reference codes AJIPAM,29 HATSUT,33 KEXPIP34 and 
TAYZIF.37 Moreover, related dinuclear cadmium com-
plex and polymeric manganese structures were 
reported with reference codes XICTOV38 and 
NULLEN,35 respectively. The bond lengths and bond 
angles of [Co(NB)2(Pyz)2(H2O)2] (Table 3) are consist-
ent with the corresponding ones in the reported struc-
tures. The simulated powder XRD diffraction pattern 
is shown in Fig. S2 which exhibits higher as well as 
lower intensities of reflections. The highest intensity is 
noticed at 2θ slightly greater than 5°. 

3.2.  Hirshfeld surface analysis
The field of crystal engineering is paying special atten-
tion to getting deep investigation of the intermolecular 
interactions in crystals as this is directly linked with 
the properties of crystals. In this regard, the study of 
intermolecular interactions is done by Hirshfeld sur-
face analysis. Crystal Explorer v. 21.549 is used for that. 
For comparison, Hirshfeld surface analysis of 
[Co(NB)2(Pyz)2(H2O)2] is compared with the analysis 
of the crystal structure with reference code DIFJUZ.4 
Hirshfeld surface idea emerged from making the frag-
ments of the crystal density for integration. Hirshfeld 
surface designed on normalized distances separate 
contacts on the basis of interatomic contact type.50–52 
Short and long contacts are shown by red and blue 
spots on the surface whereas equal contacts (dis-
tance = sum of the Van der Waal radii) are shown by 
white spots. Figures 4(a) and 4(b) are Hirshfeld sur-
faces designed over normalized distances for 
[Co(NB)2(Pyz)2(H2O)2] and DIFJUZ, respectively. For 
surface of [Co(NB)2(Pyz)2(H2O)2], the red spots 
around amino H-atoms, carbonyl O-atom of pyrazine-
carboxamide, H-atom of water and non-coordinating 
O-atom of benzoate indicate that these atoms form 
short contacts (Fig. 4(a)). Red spots on the surface of 
DIFJUZ around particular atoms indicate that these 
atoms formed short contacts (Fig. 4(b)). The O-atoms 
of nitro groups formed short contact in DIFJUZ 
whereas in case of [Co(NB)2(Pyz)2(H2O)2], these atoms 
do not form any significant short contact. π…π stack-
ing interactions can be checked and for that, the sur-
face is formed on shape index. The regions marked in 
dashed elliptical shape on the surface for 
[Co(NB)2(Pyz)2(H2O)2] and DIFJUZ (Figs. 4(c) and 
4(d)) indicate that the rings are involved in π…π stack-
ing interactions. 2D fingerprint plots enabled to find 
the contribution of individual contact in the stabiliza-
tion of the supramolecular assembly.53–55 In most of the 

Table 1.    Important experimental particulars of [Co(NB)2(Pyz)2 

(H2O)2].

CCDC 2102866

Chemical formula C24H22CoN8O12

Mr 673.42

Crystal system, space group Monoclinic, P21/n
Temperature (K) 293

a, b, c (Å) 7.7371 (3), 19.2601 (9), 
9.9276 (4)

β (°) 107.955 (3)

V (Å3) 1407.34 (11)

Z 2

Radiation type Mo Kα
Wavelength (Å) 0.71073 

Color and shape of crystal Light brown rod

µ (mm−1) 0.69

Crystal size (mm) 0.44 × 0.22 × 0.20

Diffractometer STOE IPDS 2

Absorption correction Integration STOE X-RED
No. of measured, independent and 

observed [I > 2σ(I)] reflections
20980, 2936, 2464

Rint 0.052

(sin θ/λ)max (Å−1) 0.630

R[F 2 > 2σ(F 2)], wR(F 2), S 0.043, 0.116, 1.06

No. of reflections 2936

No. of parameters 206

H-atom treatment H atoms treated by a mixture 
of independent and 
constrained refinement

Δρmax, Δρmin (e Å−3) 0.56, −0.43
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Fig. 2.    (Color online) Molecular ORTEP view of [Co(NB)2(Pyz)2(H2O)2] at 50% probability level. 

Table 2.    Hydrogen-bond geometry (Å, °) for [Co(NB)2(Pyz)2 

(H2O)2].

D—H···A D—H H···A D···A <(D—H···A)°

O6—H6A···O1i 0.79 (4) 2.10 (4) 2.881 (3) 167 (3)

O6—H6B···O3 0.85 (4) 1.77 (4) 2.595 (3) 163 (3)

N3—H3A···O1ii 0.86 2.16 2.938 (3) 150

N3—H3B···O3iii 0.86 2.29 2.986 (4) 138

C—H···π C—H H···π C···π <(C—H···π)°
C2—H2···Cg1iii — 2.97 3.684 (3) 135

Notes: Symmetry codes: (i) −x+1, −y, −z; (iii) x, y, z−1; −x+1, −y, −z−1.  
Cg1 is the centroid of the phenyl ring.

Fig. 3.    (Color online) Graphical representation of C–H…π interactions view in [Co(NB)2(Pyz)2(H2O)2]. Distances are measured in Å. 

Table 3.    Geometry describing parameters of [Co(NB)2 

(Pyz)2(H2O)2].

Bond lengths (Å) Bond angles (°)

Co1—O2 2.0843 (17) O2i—Co1—O2 180.0

Co1—O6 2.1278 (18) O2—Co1—O6 93.51 (7)

Co1—N1 2.148 (2) O2—Co1—O6i 86.49 (7)

O1—C5 1.235 (3) O6i—Co1—O6 180.0

O2—C6 1.251 (3) O2—Co1—N1 91.60 (8)

O3—C6 1.247 (3) O2—Co1—N1i 88.40 (8)

N1—C1 1.328 (3) O6—Co1—N1 86.28 (8)

N1—C4 1.337 (3) O6—Co1—N1i 93.72 (8)

N2—C2 1.328 (4) N1i—Co1—N1 180.0

Notes: Symmetry code: (i) −x, −y, −z.
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Fig. 4.    (Color online) Hirshfeld surface designed by using (a),(b) normalized distances, (c),(d) shape index for [Co(NB)2(Pyz)2(H2O)2] and 
crystal structure with reference code DIFJUZ. 

crystals, H…H contact dominant on other contacts but 
in case of [Co(NB)2(Pyz)2(H2O)2] and DIFJUZ, H…O 
contact is the most important one as it has highest con-
tribution (36.3%) in [Co(NB)2(Pyz)2(H2O)2] (Fig. 5(a)) 
and 41.4% in DIFJUZ (Fig. 5(d)). The contacts at sec-
ond and third numbers are H…H and H…C in 
[Co(NB)2(Pyz)2(H2O)2] but in case of DIFJUZ, the 
third larger contributor is C…O contact. The contribu-
tion of H…H contact is 9.6% larger in case of 
[Co(NB)2(Pyz)2(H2O)2] as compared to in DIFJUZ. 
The 2D fingerprint plots for the other interatomic con-
tacts are shown in Figs. S3 and S4, respectively. 
Enrichment ratios provide the pairs of atoms that have 
a higher propensity to form contacts than other pairs.56 
The pair with an enrichment ratio greater than one has 
higher tendency to form crystal packing interactions 
than others. Carbon-nitrogen pair has the highest such 
propensity with enrichment ratio of 3.59 and 1.84 in 
[Co(NB)2(Pyz)2(H2O)2] and DIFJUZ, respectively 
(Table S1). After that, the pair of higher propensity is 
oxygen-cobalt with an enrichment ratio of 2.08 in 
[Co(NB)2(Pyz)2(H2O)2] whereas the carbon-carbon 
pair with enrichment ratio 1.61 for DIFJUZ.

3.3.  Voids analysis
The empty spaces generated by the packing of molecules 
that are not solvent-accessible provide information 

about the response of the crystal upon external stress. 
Such empty spaces or voids are calculated based on the 
idea of pro-crystal electron density.57 Figure 6 shows 
isosurfaces of voids in [Co(NB)2(Pyz)2(H2O)2] and 
DIFJUZ. The volume of voids is 160.60 and 109.14 Å3 in 
[Co(NB)2(Pyz)2(H2O)2] and DIFJUZ, respectively. The 
voids space is 11.4% and 14.2% voids in [Co(NB)2 
(Pyz)2(H2O)2] and DIFJUZ, respectively. Majority of the 
spaces in supramolecular assembly are occupied by 
molecules indicating the absence of any large cavity  
and both compounds are expected to bear a considera-
ble amount of stress without permanent change in their 
shapes. 

3.4. � Interaction energies between  
molecular pairs 

The supramolecular assembly investigation is further 
carried out by intermolecular interaction energies cal-
culations at B3LYP/6-31G(d,p) electron density model 
using Crystal Explorer version 21.5.49 Generation of a 
3.8 Å cluster around the reference molecule is added in 
calculations. The interaction between molecules is the 
sum of electrostatic coulomb, dispersion, polarization 
and repulsion energy.58 The later energy type is always 
repulsive (positive value) whereas second and third are 
always attractive (negative value). The Coulomb energy 
between a pair can be attractive or repulsive but in the 
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Fig. 5.    (Color online) 2D fingerprint plots for important interatomic contacts for (a)–(c) [Co(NB)2(Pyz)2(H2O)2], (d)–(f) DIFJUZ. 

(a) (b) (c)

(d) (e) (f)

Fig. 6.    (Color online) Isosurfaces of voids for (a) [Co(NB)2 (Pyz)2(H2O)2] and (b) DIFJUZ. 

(b)(a)
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present case, it is attractive for the pairs involved in 
calculations (Fig.  7(a)). Total interaction energy and 
contribution of total attractive energy are greatest for 
the pair with the smallest intermolecular separation 
although the dispersion energy is greatest for the pair 
which has the second smallest separation. The contri-
bution of coulomb, dispersion and polarization ener-
gies in total attractive energy is also calculated for the 
pairs which showed that the dispersion energy has a 
prominent role in attractive energy contribution as 
compared to others. Furthermore, difference of the 
role of coulomb and dispersion energy is displayed by 
energy frameworks in which the center of molecules is 
joined by the cylinder of width proportional to the 
strength of the corresponding energy type. Although 
the width of cylinders for the larger contribution pairs 
looks almost identical and the width of the central cyl-
inder is larger for Coulomb energy (Fig. 7(b)) than 
dispersion energy, there are lots of other pairs for 

which the width of cylinders for Coulomb energy is 
also negligible as compared to the corresponding width 
for dispersion energy (Fig. 7(c)). This showed that the 
dispersion energy played the most dominant role in the 
stabilization of the supramolecular assembly as com-
pared to Coulomb energy. 

3.5.  Computational study
To thoroughly understand the title compound, we per-
formed the Density Functional Theory (DFT) compu-
tational analysis. The optimized geometry is illustrated 
in Fig. 8. The values of geometry parameters acquired 
from XRD are consistent with the corresponding ones 
calculated by DFT. Through an analysis of the energy 
levels of the highest occupied molecular orbital 
(HOMO) and the lowest unoccupied molecular orbital 
(LUMO), we gained valuable insights into the com-
pound’s energy distribution and anticipated chemical 

Fig. 7.    (Color online) (a) Interaction energy results in detail, energy frameworks for (b) coulomb energy and (c) dispersion energy.

(a)

(b) (c)
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behavior.59–61 We visualized the molecular orbitals 
(Fig.  9), where the red color represents the positive 
phase, while the negative phase is depicted in green. 
The energy difference between the HOMO and  
LUMO elucidates the charge transfer interaction 
occurring within the molecule.62 The negativity of  
both EHOMO and ELUMO signifies the compound’s stabil-
ity. Furthermore, the energy gap ΔE (ELUMO – EHOMO) 
denotes the minimum energy needed for electron 
excitation within the compound. This gap plays a crit-
ical role in determining the compound’s kinetic stabil-
ity and chemical reactivity.63–65 A compound possessing 

a relatively large energy difference of HOMO–LUMO 
is considered hard, displaying lower polarizability and 
reactivity. Conversely, compounds with a narrower 
HOMO–LUMO gap are characterized as soft, exhibit-
ing higher polarizability and reactivity. This under-
standing aids in elucidating the compound’s behavior 
and potential applications. We evaluated the energy 
levels spanning from (HOMO) to the third HOMO 
(HOMO-2), as well as from (LUMO) to the third 
LUMO (LUMO+2). Detailed energy values for these 
molecular orbitals can be found in Table 4, accompa-
nied by visual representations in Fig. 9.

Data of the calculated energy for HOMO-HOMO-2 
and LUMO-LUMO+2 and energy differences between 
them (see Table 4). The HOMO-LUMO value of 
−3.2466 eV suggests a moderate energy difference 
between the (HOMO) and (LUMO). This implies that 
the molecule may possess a moderate level of stability. 
While not as wide as larger HOMO-LUMO gaps, a 
moderate gap indicates that the molecule still has the 
potential for reactivity. It may undergo electron excita-
tion more readily compared to molecules with larger 
HOMO-LUMO gaps, making it somewhat reactive.

Also, the chemical reactivity parameters of the 
molecule under this study, including its chemical soft-
ness (S), hardness (η), chemical potential (μ) and elec-
trophilicity index (ω), were found to be 0.308015 eV−1, 
1.62, 4.25, 5.56 eV, respectively. Electrophilicity value 
of 5.56 eV indicates a relatively high electrophilic reac-
tivity, which means that [Co(NB)2(Pyz)2(H2O)2] is 
highly reactive towards electrophiles, which are species 
that seek electrons to form bonds. Molecules with high 
electrophilicity indices are more likely to encounter 
reactions where they act as electron acceptors.

Fig. 9.    (Color online) Molecular orbitals of the [Co(NB)2 

(Pyz)2(H2O)2] for experimental data. 

Fig. 8.    (color online) Optimized geometry of [Co(NB)2 

(Pyz)2(H2O)2].

Table 4.    Energy data for the HOMO, HOMO-2, LUMO and 
LUMO+2, along with the energy differences among these orbitals.

Experimental geometry

Level Energy (eV) Level Energy (eV) ΔEnergy (eV)

HOMO −5.8711 LUMO −2.6245 −3.2466

HOMO −5.8711 LUMO+1 −2.5415 −3.3296

HOMO −5.8711 LUMO+2 −2.0770 −3.7941

HOMO-1 −6.2567 LUMO −2.6245 −3.6322

HOMO-2 −6.2570 LUMO −2.6245 −3.6324

HOMO-1 −6.2567 LUMO+1 −2.5415 −3.7152

HOMO-2 −6.2570 LUMO+2 −2.0770 −4.1799
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3.5.1.  Molecular electrostatic potential analysis 
The Molecular Electrostatic Potential (MEP) analysis is 
a valuable tool for identifying regions in molecules that 
are prone to nucleophilic or electrophilic attacks.63–65 
This method is based on the distribution of positive 
and negative charges within the molecular structure. In 
the experimental model (see Fig. 10), the MEP values 
range from −7.555e−2 to +7.555e−2.

Areas with negative electrostatic potential are 
more likely to attract nucleophiles, while those with 
positive potential are more likely to attract electro-
philes. The analysis reveals that the nitro group 
(R-NO2) in the molecule shows strong electrophilic 
properties, while the amino group demonstrates 
nucleophilic behavior in the positively charged regions.

4.  CONCLUSIONS 
The cobalt complex was synthesized by two-nitroben-
zoic acid and pyrazine-two-carboxamide ligands 
assisted by hot water, sodium bicarbonate and cobalt 
acetate tetrahydrate. The crystal structure of the cobalt 
complex was verified by single crystal XRD technique 
which showed that the complex was mononuclear and 
ligands were coordinated in such a way that the octahe-
dral geometry was formed. Supramolecular assembly 
was stabilized by O–H…O and N–H…N, π…π and 
C–H…π interactions. Hirshfeld surface analysis 
inferred that most of the contribution for supramolec-
ular assembly was from O…H contact followed by 
H…H and H…C contacts. Enrichment ratios showed 
that carbon-nitrogen pair had the highest tendency to 
make crystal-packing interactions. Void analysis 

predicted that the crystal could bear considerable 
amount of stress. Interaction energy calculations 
showed that dispersion energy was the one that played 
the most significant role in stabilization for the supra-
molecular assembly. The computational analysis using 
DFT consistently matched the geometry parameters 
found in the experimental XRD data, indicating the 
molecule’s stability. A moderate HOMO-LUMO energy 
gap suggests potential reactivity, while a high electro-
philicity index highlights its tendency for electron- 
accepting reactions. Additionally, the analysis of the 
molecular electrostatic potential shows that the exper-
imental geometry of the organic salt exhibits both 
electronegative and electropositive regions, enabling 
nucleophilic and electrophilic attacks, thus indicating 
high chemical reactivity. 
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