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Abstract

Drought poses a major threat to agricultural production and food security. This study evaluates the
changes in drought-induced crop yield loss risk for six crops (alfalfa, barley, corn, soybean, spring
wheat, and winter wheat) between 1971-2000 and 1991-2020 across the contiguous US. Using a
copula-based probabilistic framework, our results reveal a spatially heterogeneous change in yield
risk to meteorological droughts, which varies with crop types. Regional analyses identify the largest
temporal decline in yield risk in the Southeast and Upper Midwest, while the Northwest and South
show an increase in risk. Among the considered anthropogenic and climatic drivers of crop
productivity, changes in climatic variables such as high temperatures (e.g., killing degree days),
vapor pressure deficit and precipitation show significantly stronger associations with changes in
yield risk than irrigated area and nitrogen fertilizer application. Among the counties that observe
drier drought events, only 55% exhibit an increase in crop yield loss risk due to drier droughts. The
rest 45% show a decrease in yield loss risk due to mediation of favorable climatic and
anthropogenic factors. Alarmingly, more than half (for barley and spring wheat), and one-third
(for alfalfa, corn, soybean and winter wheat) of that the risk increasing regions have outsized
influence on destabilizing national crop production. The findings provide valuable insights for
policymakers, agricultural stakeholders, and decision-makers in terms of the potential ways and
locations to be prioritized for enhancing local and national agricultural resilience and ensuring

food security.

1. Introduction

Ensuring food security is a critical challenge in the
21st century, as the growing population and chan-
ging climate place unprecedented pressure on agricul-
tural systems. Extreme climatic events pose a signific-
ant threat to global food security by disrupting agri-
cultural production [1]. Among such events, drought
stands out as a ubiquitous, recurring, and intensi-
fying hazard with far-reaching impacts across vari-
ous sectors including agriculture, economics, water
resources and energy [2, 3]. Globally, around 38% of
theland area is exposed to drought, with about 1.1 bil-
lion people residing in areas within the top 30th per-
centile of long-term average drought severity [4]. In
the United States alone, drought events between 2000

© 2024 The Author(s). Published by IOP Publishing Ltd

and 2023 have incurred losses exceeding $200 bil-
lion [5]. Alarmingly, drought is a multidimensional
hazard that can manifest as precipitation shortages
(meteorological drought), low soil moisture (agricul-
tural drought), or depleted surface and groundwater
water resources (hydrological drought) or low water
availability and growing human water consumption
(anthropogenic drought) [6, 7]. Agricultural sec-
tors rely heavily on surface and sub-surface water
resources and are highly vulnerable to drought stress
[8, 9], often resulting in significant crop damage
worldwide [10, 11].

Water stress due to drought—both severity and
duration, hinders all phases of crop growth, from
seed germination to shoot and root development and
maturation [12]. Crop yield loss due to water stress
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often exceeds loss from all other stressors combined
[13]. Evaluating drought impact on crop vyield is
essential to understand the extreme weather risks and
develop mitigation strategies to ensure food security.
Previous studies have extensively employed process-
based [14-18] and statistical models [19-25], and
empirical analysis over historical records [26], to
study the effects of extreme climate events on crop
yield. Machine learning and hybrid algorithms are
also being increasingly used for analyzing climate-
crop yield relationships [27-30]. Irrespective of the
method used, prior studies have demonstrated that
the impact of drought on crop yield, often quan-
tified as crop yield sensitivity or loss risk, varies
substantially across space and time due to differ-
ences in climate, management practices, and local
and regional policies. For example, Zipper et al
[20] employed statistical models to assess changes in
drought impact on corn and soybean yields. Lobell
et al [31] used statistical models to reveal an increas-
ing corn yield sensitivity with vapor pressure defi-
cit (VPD). A few assessments [21, 32, 33] quanti-
fied decadal or regional crop yield losses and dynam-
ics. While these studies provide strong evidence of
spatiotemporal differences, the drivers for changing
drought sensitivity remain elusive. Understanding the
key influential drivers for crop yield losses is crucial
for enhancing drought resilience. Kamali et al [34]
examined the spatial patterns of crop yield loss risk
and contribution of climatic and soil parameters for
sub-Saharan Africa. However, their analysis did not
cover the role of potential influencers on temporal
changes in drought risk. This study addresses the fol-
lowing five key questions: (a) to what extent have crop
yield risks from droughts during the growing sea-
sons historically changed in the US? (b) Are there dis-
tinct changes in the influencing factors on crop yields
between regions that experience higher versus lower
shifts in risk? (c) Does increased dryness of meteoro-
logical droughts during crop-growing seasons neces-
sarily lead to a higher risk of reduced crop yields? (d)
What are the relative contributions of changes in cli-
matological and anthropogenic factors to these shifts
in risk? and (e) What fraction of risk-increasing agri-
cultural regions have a destabilizing effect on nation
crop production?

This study aims to assess crop yield loss risk
from drought for major crops across the continental
United States and characterize the contrasts in poten-
tial drivers across regions exposed to increase vs.
decrease in risks. We focus on six crops: alfalfa, bar-
ley, corn, soybean, spring wheat, and winter wheat,
which are the major cereal crops in the US. Shifts in
yield loss risk are evaluated using copula-based mod-
els between two overlapping 30-year periods, 1971—
2000 and 1991-2020. We also examine how many
counties across all considered crops have experienced
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increasingly drier droughts, and whether that neces-
sarily indicates a heightened risk of crop yield loss.
The study specifically highlights the risk trajectories
within the major agricultural regions that are crucial
for national production variability.

2. Methodology

2.1. Datasets

The county level crop yield, production, and harves-
ted area records from 1971-2020 were obtained from
the United States Department of Agriculture National
Agricultural Statistics Service [35]. The planting and
harvesting dates were retrieved from Sacks et al [36].
Daily temperature, precipitation and relative humid-
ity time series at 0.25° spatial resolution were down-
loaded (for 1971-2020 period) from the GSWP3-
W5 x 10° product of the Inter Sectoral Impact Model
Intercomparison Project, which is a bias-corrected
reanalysis product derived from both observations
and models incorporating the WATCH forcing cli-
mate records [37-39]. Irrigated area was obtained
from the global area equipped for irrigation dataset
at 5 arcmin spatial resolution from 1971-2015 [40].
Gridded nitrogen fertilizer application rate for 1971—
2015 was obtained at 5 x 5 km resolution from Cao
et al [41] and combined with cropland area cover-
age data from Yu and Lu to obtain total nitrogen
applied [42]. All gridded datasets were aggregated at
the county scale.

2.2. Estimation of crop yield loss risk due to
drought

County level SPI for each crop was calculated using
a non-parametric approach by employing empirical
Gringorten plotting position [43] method as:

pla) = 02 (1)

- n+0.12
where x represents the precipitation, x, is the grow-
ing season precipitation magnitude with rank r, p (x;)
is the empirical probability of x,, and # is the num-
ber of years under consideration. SPI was calculated
by standardizing the empirical probability using the
standard normal distribution [44].

SPI=® "' (p(x,)) (2)

where ® is the standard normal distribution.

Copula functions [45] were used to estimate the
joint distribution of crop yield and SPI. Copulas
enable representation of the joint distribution of
two random variables with different marginal distri-
butions. In other words, they are used to describe
the dependence structure between random variables,
allowing for modeling complex relationships in mul-
tivariate distributions. In the current context, copulas
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facilitate modeling of the relationship between crop
yield and SPI. The joint distribution of crop yield (Y)
and SPI can be given as follows:

Fspry (spi,y) = C|[Fspi (spi), Fy ()] (3)

where Fspy (spi) and Fy(y) are the marginal distri-
butions of SPI and crop yield, respectively, and C is
the copula function. Here we used seven commonly
used copula families: Gaussian and Student ¢ copulas
from elliptical copula class; Clayton, Rotated Clayton,
Gumbel-Hougaard, Rotated Gumbel and Frank cop-
ulas from Archimedean copula class, and Plackett
copula (table S1). Copula parameters were obtained
by maximum pseudo likelihood estimation and the
best fit copula was selected based on the minimum
Akaike information criteria (AIC) as implemented in
the R package VineCopula [46]. An independent cop-
ula was selected if it had lower AIC than parametric
copulas and no significant dependence between crop
yield and SPI was detected. The goodness-of-fit of the
copulas were then evaluated using the Cramér—von
Mises statistic at 5% significance level for 500 boot-
strap samples.

Crop vyield loss risk (Ryr) was quantified based
on the joint distribution of crop yield and SPI. Ry,
is the conditional probability of lower than average
(Yavg) crop yield given drought condition specified
by SPI <—0.8. The SPI threshold of —0.8 is generally
considered for moderate drought by the US Drought
Monitor [47].

P (Y < Yay, SPI< —0.8)
P(SPI < —0.8)

Ryr = Py(y,,| spi<—0.8 =

(4)

C(Y < Yag, SPI < —0.8)
Fspp (—0.8)

Ryr = (5)

Crop vyield values were standardized to remove
any trends due to technological developments in
farming, improved seed varieties, and other agro-
environmental factors. Following Troy et al [26], we
implemented a 7 years moving window to detrend
possible positive trends in crop yield records due to
technological innovations.

2.3. Evaluation of changes in climatic and
anthropogenic drivers vis-a-vis changes in crop
yield loss risk and dryness of droughts

To assess the relative role of potential drivers for
the changes in risk between 1971-2000 and 1991-
2020, we investigated two major categories of con-
tributors: anthropogenic and climatic. For anthro-
pogenic controls, we examined county level irrig-
ated area and nitrogen fertilizer application. The cli-
mate controls included precipitation (e.g. total pre-
cipitation and coefficient of variation of precipita-
tion (PrecCV)) and temperature metrics (e.g. mean
temperature (Tmean), growing degree days (GDD),

3
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killing degree days (KDD), and VPD. These variables
were aggregated at county-level over the growing sea-
son based on their planting and harvesting dates. The
considered factors are detailed in table S3. We ana-
lyzed the temporal shifts in potential contributors
between the two time windows at each county level.
We also examined their associations with increase or
decrease in crop yield loss risk. Based on the grow-
ing period, which is different for crop types and
across counties, the climate controls were aggregated
considering the growing seasons for each county. It
is important to note that the climate controls were
aggregated only for the dry years (SPI <—0.8) as the
risk assessment focuses specifically on such drought
conditions.

We assessed changes in anthropogenic and cli-
mate controls between the recent (1991-2020) and
the retrospective period (1971-2000), separately for
counties where crop yield loss risk showed an increase
(ARyr > 0) and a decrease (ARyr < 0). The wil-
coxon rank sum test was performed to evaluate
whether differences between potential controls were
significant for risk-reducing versus risk-increasing
counties. The association of a driver with risk reduc-
tion is considered positive if the increase in the driver
is statistically significantly greater in risk-reducing
counties, otherwise the association is considered neg-
ative. In other words, a positive association indic-
ates the driver’s contribution towards reducing yield
risk. Assessment was also conducted on the changes
in anthropogenic and climate factors for counties
experiencing drier drought trends. This evaluation
began by identifying, for each crop, the number of
counties where net precipitation during growing sea-
son droughts decreased in the subsequent period.
This process was repeated for all crops. Subsequently,
the percentage of counties with drier droughts was
calculated using the formula: 100 x (total number
of counties experiencing drier droughts across all
crops)/(total number of counties across all crops). A
similar assessment was carried out for counties exhib-
iting wetter drought trends, resulting in the determ-
ination of the percentage of counties with wetter
droughts.

2.4. Quantifying the relative influence of changes
in various drivers on crop yield loss risk change

To assess the relative influence of changes in climatic
and anthropogenic variables in determining whether
a county has ARy > 0 or ARy, < 0, we employed
the SHAP (SHapley Additive exPlanations) analysis
[48]. The SHAP assessment coupled with a random
forest (RF) classification model, enables the quan-
tification of each predictor variable’s (i.e., changes
in anthropogenic and climate controls) impact on
the predictand (ARyp). We utilized TreeExplainer,
an explanation algorithm designed for tree-based
machine learning models. This method computes
explanations using exact shapley values and accounts
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for correlations among features [49]. This approach
ensures that the feature importance analysis con-
siders the correlations present between the different
predictors.

2.5. Counties with potential to destabilize national
crop production

Ry, was specifically evaluated for counties contrib-
uting to destabilization of national crop production.
Following Mehrabi and Ramankutty [50], we iden-
tified the destabilizing counties for each crop based
on counties contribution to national crop produc-
tion variance. The destabilizing counties were the
counties which have historically increased the inter-
annual variance in national crop production. The
contribution of each county in national crop pro-
duction variance was calculated using the following
instability index (I):

o2

L= (1 - ”21) +100 (6)

o

where o2 is the national variance, and o2_, is the
national variance when county z is removed from the
total number of producing counties. Stability index
(Iz) was calculated for each crop in each county. A
positive I (i.e. 0> > o2_,), represents destabilizing
behavior of a county while negative values (i.e. 0% <
2 ) represent stabilizing behavior. Destabilizing
counties increase the national variance with a positive
index, while stabilizing counties decrease the national

variance resulting in a negative index value.

ag

3. Results

In majority of the counties, Clayton and Gumbel
followed by Independent copulas were identified as
the best-fitting copulas among the considered ones.
These were followed by Gaussian and Frank copulas
(figure S1). The goodness-of-fit statistic of the copu-
las were computed for both considered time periods,
i.e. 1971-2000 and 1991-2020. In nearly all counties,
the best performing copula showed a strong agree-
ment with data (figure S2). Counties with poor cop-
ula fit (p < 0.05) or with insufficient data length (less
than 25 years data) are discarded. Next, we analyzed
the spatial and temporal changes in Ry for 1971-
2000 and 1991-2020.

3.1. Spatiotemporal assessments of Ry,

The crop yield loss risk (Ryr) for the six crops showed
distinct spatial patterns (figure S3). Corn and to some
extent soybean exhibited high risk in Southeastern
states compared to Midwestern states. Winter wheat
and alfalfa showed elevated risk in Great Plains, while
spring wheat and barley showed greater risk in north-
ern Montana. During 1971-2000, over one-third of
the harvested area for alfalfa, barley, soybeans, winter

L S Rathore et al

wheat and spring wheat lies in the Ry; > 0.75 zone,
hereafter also referred as high-risk areas. This high-
risk area tends to reduce in the recent era (1991-2020)
for alfalfa, soybean and spring wheat, while increas-
ing for barley, corn and winter wheat (figure S4(a)).
Those counties that experienced Ry; in both periods
were analyzed to assess changes in Ryp, for the time
slice 1991-2020 versus 1971-2000 to (ARy;). Corn
has the highest area (11.9 mil ha, 56% of its average
area during 1971-2020) experiencing Ry; increase in
1991-2020 w.r.t. 1971-2000, followed by soybean (9.2
mil ha, 45%), winter wheat (7.9 mil ha, 62%), spring
wheat (2 mil ha, 43%), alfalfa (1.3 mil ha, 45%) and
barley (400 thousand ha, 30%) (table S2). For alfalfa,
Ry1 majorly decreases in Minnesota and Wisconsin,
but increases in North Dakota, Arizona, New Mexico,
Kansas and Colorado (figure 1). Corn and soybean
exhibited similar ARy patterns, with elevated risk
in southern states but reduced risk in southeast-
ern and a few northern Corn Belt regions. Winter
wheat exhibited higher risk in most of its produc-
tion region except for the Southeast. For spring wheat,
ARy, decreased in North Dakota and Minnesota but
increased in most of Montana. Barley showed reduced
risk patterns in North Dakota, Idaho, and Montana.
These results challenge the widespread notion that cli-
mate change will universally increase drought intens-
ity and negatively impact crop production. Instead,
the changes in risk exhibit divergent trends across dif-
ferent U.S. counties.

The aggregated change analysis for the risks in
nine climatic regions defined by the National Centers
for Environmental Information [51] showed the
largest reduction in risk occurred in the Southeast
followed by the Northern Rockies and Plains
and Upper Midwest. In contrast, the Northwest
had the greatest increase in risk followed by the
South, West, Southwest, Ohio Valley and Northeast
(figure 2). Specifically, an elevated corn yield loss
risk is apparent across the Ohio Valley (Illinois,
Indiana, Kentucky, Missouri, Ohio, Tennessee, West
Virginia) and South (Arkansas, Kansas, Louisiana,
Mississippi, Oklahoma, Texas). However, it shows a
decline in the Southeast (Alabama, Florida, Georgia,
North Carolina, South Carolina, Virginia), Upper
Midwest (Iowa, Michigan, Minnesota, Wisconsin)
and Northern Rockies and Plains (Montana,
Nebraska, Dakotas, Wyoming). Similarly, soybean
shows reduced risk in the majority of the regions,
except for the South. This aligns with previous
findings by Zipper et al [20]. Winter wheat exhib-
ited decreased risk in the Southeast and Upper
Midwest but increased risk in other regions. For
spring wheat, risk declined in its major production
areas of the Upper Midwest and Northern Rockies
and Plain. Barley, primarily grown in Northern
Rockies and Plain and Upper Midwest, showed
reduced risk in these regions. Alfalfa displayed a
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Figure 1. The difference in crop yield loss risk due to drought (ARyr.) between 1971-2000 and 1991-2020 for six crops across US
counties. White region represents counties that reported fewer than 25 yield observation in either of the two time windows.
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Figure 2. The difference in crop yield loss risk due to drought (ARyy) in nine climatic regions. Bar plots depict the difference in
crop yield loss risk for each crop within each region; blue and red bars represent the risk values in 1971-2000 and 1991-2020,

reduction in the risk in all the major producing
regions except the Southwest. The national aggreg-
ated risk analysis showed crop yield loss risk signi-
ficantly decreased for spring wheat, soybeans, bar-
ley and alfalfa (figure S5). Corn exhibits a minor
increase in the national crop yield loss risk, whereas
winter wheat shows a substantial increase in yield
loss risk.

Separate risk evaluations were performed for
rainfed versus irrigated corn and soybean yields
across both study periods. Our analysis showed dis-
tinct risk profiles between the two practices. Rainfed
yield displayed higher average risk, with mean Ry, of
0.78 (0.87) for corn and 0.79 (0.91) for soybeans in
1971-2000 (1991-2020). In contrast, irrigated yields
showed a lower mean risk of 0.62 (0.56) for corn
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Figure 3. Density plots of rainfed (RF, in red), and irrigated (IF, in blue) crop yield loss risk (Ryr) for corn (top) and soybean
(bottom). Subplots a and e depict the distribution of Ryr, in 1971-2000, b and f in 1991-2020, and ¢ and g illustrate the
distribution of change in crop yield loss risk (ARyr). The shaded area under the curves denotes fraction of counties where Ryr,

>0.75in a, b, e, and f, and where ARy, >0 in cand g

and 0.67 (0.65) for soybeans (figure 3). The differ-
ence in the density distributions of risks in figure 3
demonstrates that crop yield losses due to water defi-
cits are significantly less prevalent in irrigated regions
compared to rain-fed crops. This highlights the role
of water stress in shaping risk patterns and under-
scores the potential of irrigation expansion in mitig-
ating drought risks to crop yields. Remarkably, only
15% (9%) of total irrigated corn counties had Ryy,
exceeding 0.75, while for rainfed counties Ryy, exceeds
65% (94%) in 1971-2000 (1991-2020). Similarly,
only 23% (25%) of irrigated soybean counties sur-
passed the 0.75 yield risk threshold, versus 70% (98%)
of rainfed counties.

A larger proportion of irrigated areas displayed
reduced risk (negative ARy;) compared to rainfed
counties for both crops. Specifically, 25% of irrig-
ated corn counties experienced enhanced risk com-
pared to 74% of the rainfed counties. Likewise, 42% of
irrigated soybean counties had positive ARyr, but the
corresponding magnitude is around 88% for rainfed
counties. These patterns indicate the rise in drought-
related yield losses was more severe under rainfed
conditions. Conversely, irrigated crops showed resi-
lience, with a shift toward reduced yield loss risk
over time. The comparative ARy results emphas-
ize the protective role of irrigation against extreme
drought impacts on crop yields during the analysis
period.

3.2. Drivers of positive and negative ARyp
We calculated the changes in anthropogenic and cli-
matic drivers between the two time periods and

evaluated their association with the risk reduc-
tion. The changes in seasonal precipitation from
1971-2000 to 1991-2020 were significantly differ-
ent in risk-increasing (A Ry;>0) and risk-reducing
(ARyp <0) counties for alfalfa, corn and soy-
bean. Moreover, precipitation increases were larger in
risk reducing counties than risk increasing counties
(figure 4) which indicates a positive association. This
positive link between precipitation increase and risk
reduction indicates that an increase in precipita-
tion contributes toward lowering crop yield losses.
Although mean precipitation changes were negat-
ive for barley, corn and winter wheat, risk increas-
ing counties experienced more negative changes than
risk reducing counties (figure S6). Apart from this,
the PrecCV change was found statistically different
for barley and corn and showed a negative associ-
ation with risk reduction. For all crops, the mean
increase in PrecCV was higher in risk-increasing
counties, compared to risk-reducing counties. Risk-
increasing counties also observed a higher increase
in KDD compared to the risk-reducing counties.
KDD reduced more in counties with risk reduction
compared to those with risk-increases and the dif-
ference was found significant for all crops except
winter wheat. This underscores the negative impact of
increasing KDD on crop yield which has been noted
in several studies [52-54]. Similarly, VPD showed a
negative association with risk reduction with a signi-
ficant higher increase in risk-increasing counties for
all crops except alfalfa. The risk-increasing counties
experienced more significant increase in mean tem-
perature and GDD for corn and barley. Contrary
to the previous findings, GDD showed a negative
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Figure 4. Box plots illustrating the change (A) in anthropogenic and climatic variables between 1971-2000 and 1991-2020 across
counties. The green and red boxes represent change in the variables in risk-reducing and risk-increasing counties, respectively.
The values on the y-axis are normalized to the range —1 to 1 by dividing the values by the absolute maximum value to preserve
the sign. Box plot shows the median (solid line), interquartile range (i.e., from first quantile Q1 to third quantile Q3), and
whiskers extending to Q1-1.5IQR and Q3 + 1.5IQR. An asterisk “*” above a box indicates a significant difference (p <0.05)
between risk-increasing and risk-reducing counties for a crop.

association with risk reduction for corn and barley. AKDD with the impact of KDD being opposite to
The possible reason for this can be the low feature that of GDD (figure S7).

importance of AGDD on ARy, (figure 6) or the Positive association was also observed for
significant positive correlation between AGDD and  irrigated area, however, it was significant only for
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Figure 5. Percentage of counties across the considered crops where drought gets drier and wetter in the later time period, i.e.
1991-2020, w.r.t. 1971-2000. The bar charts show the changes in medians of climatic and anthropogenic variables across the two
periods, for risk-increasing (ARyy, >0) and risk-reducing (A Ry <0) counties, with respect to corresponding changes in these
variables over all counties experiencing drier (left) and wetter (right) droughts.

corn. The mean irrigated area increased more in
risk-reducing counties compared to risk-increasing
counties for alfalfa, barley, corn and spring wheat.
The mean irrigated area experienced a decrease in
risk-increasing counties while an increase in risk-
reducing counties for alfalfa and winter wheat. In
contrast, irrigated area decreased for barley in both
county types. The decrease is more pronounced in
risk-increasing counties. The nitrogen application
showed a significant difference for barley, winter
wheat and soybean, where it exhibited a positive
association for barley and soybean and a negative
association for winter wheat.

3.3. Mediating roles of climatic and anthropogenic
factors on crop yield loss risk change in counties
experiencing drier drought shifts

Results showed around 52% of the counties, across
the considered crops, observed drier droughts,
i.e. precipitation during drought years reduced in
the later time period. Notably, precipitation data for
drought analysis were aggregated only for the crops’
growing periods rather than on an annual basis as is
usually performed in drought trend analysis studies
[55-57]. Interestingly, despite the expectation that
drier droughts would increase crop risk, only 55%
of the counties experiencing drier droughts repor-
ted an increase in crop yield loss risk. Further ana-
lysis indicated the mediating roles of ancillary cli-
matic and anthropogenic factors on drought-induced
crop vyield loss risk. For example, the median KDD
change was —94% in the counties with reduced risk
but drier droughts, compared to an 87% increase in

8

the counties with increased crop yield loss risk and
drier droughts (figure 5). These changes are relative
to the median values across all counties affected by
drier droughts. Additionally, in counties with reduced
crop yield loss risks but drier droughts, the change in
median irrigated area and nitrogen fertilizer applic-
ation was 15% and 28% higher, respectively, com-
pared to the overall medians of these variables in the
drier drought counties. In contrast, in counties with
increased crop yield loss risk and drier droughts, the
changes in median irrigated area and nitrogen fertil-
izer application were 8% and 12% lower, respectively.
Similarly, among the counties with wetter droughts
(precipitation increased during the drought periods
within the crop growing seasons), 45% of the counties
reported an increase in the crop yield loss risk. These
results can be explained by the unfavorable changes in
climatic and anthropogenic factors. For example, the
median KDD and PrecCV in wetter drought counties
were found to be higher than their median values dur-
ing the latter period, while irrigated area and nitro-
gen application were found to be lower in these risk
increasing counties. Overall, these findings emphas-
ize that the changes in drought severity alone do not
fully account for the variations in crop yield loss risk.
They also highlight the significant mediating effects
of climatic and anthropogenic factors in influencing
these risk changes.

3.4. Relative influence of the considered climatic
and anthropogenic factors on ARyy,

The RF model performed satisfactorily with an accur-
acy of 0.62. Results showed that changes in VPD is
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Figure 6. Relative importance of changes in climatic and anthropogenic variables calculated using the SHAP values. Higher SHAP
values signify greater importance of a variable on model prediction.

the most influential variable, which is closely fol-
lowed by changes in the KDD and precipitation
(figure 6). Drivers such as difference in nitrogen
application, mean temperature, and GDD exhibited
relatively lower feature importance values. While pre-
vious studies have underscored the important role of
VPD in drought impacts on crop yield [58, 59], our
findings reveal that changes in VPD and KDD have a
far greater influence than variations in nitrogen fertil-
ization and irrigation area transitions within the ana-
lysis region and time period.

3.5. Change in crop yield loss risk in destabilizing
agricultural regions

Following on the identification of ‘hotspot’ counties
where crop yield loss due to drought have changed
over the years and the key causal drivers for this
change, next we assessed whether hotspots are occur-
ring in regions that are known to have the poten-
tial to destabilize national crop production. To this
end, we identified destabilizing counties for each
crop using an instability index that measures indi-
vidual county contributions to national produc-
tion variance. Counties having a positive instability
index value, deemed as major destabilizing regions,
are selected for further analysis. These influential
counties collectively contributed to the national aver-
age production, accounting for 52%, 70%, 67%,
66%, 63%, and 83% of the total average produc-
tion from 1971 to 2020 for alfalfa, barley, corn, soy-
bean, winter wheat, and spring wheat, respectively.
Notably, individual counties can exert substantial
local influence in the variance of national production,
with maximum contributions reaching 1.5%, 5.4%,
1.3%, 1.2%, 2.1%, and 4.4% for alfalfa, barley, corn,
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soybean, winter wheat, and spring wheat, respectively
(figure S8). We identified the destabilizing regions for
each crop. The fraction of risk increasing counties
that emerged as destabilizing regions for alfalfa, bar-
ley, corn, soybean, winter wheat, and spring wheat
were 32%, 57%, 33%, 35%, 39%, and 71%, respect-
ively. For alfalfa, the majority of such counties are
situated in North Dakota and Wisconsin. Corn and
soybeans display similar geographic patterns, with
destabilizing and risk-increasing counties spatially
clustered in Iowa, Illinois, Indiana, Ohio, Nebraska
and Minnesota (figure 7). A few soybean-growing
destabilizing counties in Mississippi and Tennessee
also showed increased risk. Kansas, Oklahoma and
Texas experienced the elevated risk with destabilizing
effects for winter wheat. For spring wheat, counties
in Montana and North Dakota showed such effect;
and for barley, most of the counties considered for the
ARyy analysis which were situated in Montana and
Idaho had destabilizing and risk increasing effects.

4, Discussion

The crop yield loss risk assessment to drought is
vital for understanding the vulnerability of agricul-
tural systems. This study investigates the historical
spatiotemporal changes in crop yield loss risk due to
meteorological drought across six major crops in the
US. The findings reveal a heterogeneous impact of
meteorological drought on crops, varying with crop
types and growing regions. Utilizing crop yield and
precipitation records from 1971 to 2020, along with
copula-based probabilistic modeling, we demonstrate
that among the six major crops analyzed, corn and
winter wheat experienced an increase-in nationally
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Figure 7. Spatial distribution of risk-increasing counties (shown in red) and destabilizing counties (i.e. I, >0, with green

boundary) for the six selected crops.

aggregated crop yield loss risk, while alfalfa, barley,
soybean, and spring-wheat saw a reduction. Given the
divergent trends of crop yield loss risk, the results
challenge the belief that climate change will intensify
droughts and harm crop production. The crop yield
loss risk change analysis over the nine homogeneous
climatic regions of the US revealed that crops in the
Southeast and Upper Midwest regions experienced
the highest reduction, whereas the Northwest and
South witnessed a higher increase in risk between
1971-2000 and 1991-2020. A comparative analysis of
rainfed versus irrigated crop yield loss risk provides
valuable insights into the potential of irrigation to
mitigate drought stress impacts on crop production.
Irrigated crops showed a lower likelihood of crop
yield loss risk compared to its rainfed counterparts,
with a similarly low increase in risk for irrigated crops.

Next, this study examined the potential anthropo-
genic and climate controls for changes in crop yield
loss risk due to drought. Drivers such as changes in
precipitation, KDD, VPD, GDD, irrigated area, and
PrecCV significantly varied between regions exper-
iencing risk increases or reductions over time. The
higher precipitation or the increase in irrigated area
in risk-reducing counties indicate a favorable impact
on risk reduction. In contrast, counties with increased
exposure to climate stressors, such as incidence of
high-temperatures, as captured by KDD, or higher
precipitation variability showed an increased risk of
crop yield loss.

The results revealed that only 52% of the
counties across all considered crops experienced
drier droughts, defined as a reduction in precipit-
ation during the growing season droughts between
1971-2000 and 1991-2020. Among these counties,
a significant proportion (45%) showed a decrease
in crop yield loss risk. This counterintuitive result
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is attributed to favorable changes in climatic and
anthropogenic factors, such as an increase in irrigated
areas, enhanced nitrogen application, and a reduction
in KDD. These factors mitigated the expected negative
impact of drier droughts on crop yields. Conversely,
counties that experienced wetter droughts during the
latter period were also found to exhibit increasing
crop yield loss risk 45% of instances. This increase in
risk was associated with a reduction in irrigated areas,
decreased nitrogen application, and an increase in
KDD. These findings challenge the general expecta-
tion that drier droughts invariably lead to higher crop
yield loss risk, highlighting the complex interplay of
climatic and anthropogenic factors in determining
crop yvield outcomes. Additional analyses revealed
that the examined climate controls had higher contri-
bution to crop yield loss risk than the two considered
anthropogenic controls. Notably, more than half of
barley and spring wheat and one-third of alfalfa, corn,
soybean and winter wheat risk-increasing counties
had a destabilizing effect on the national crop produc-
tion. It is to be noted that the study identifies associ-
ations between changes in climatological and anthro-
pogenic variables vis-a-vis yield risk change, but that
does not establish causal relationships. It is possible
that additional covarying latent factors could be caus-
ing the risk change. The study uses specific time win-
dows to assess changes in yield risks, and it may not
necessarily be representative of long-term trends and
anomalies that occur outside these periods. The ana-
lysis will benefit from finer spatial resolution data of
climatological and anthropogenic variables. Despite
aforementioned limitations, by bridging the research
gap between assessments of drought impact on crop
yield losses for major crops, and the potential con-
tributing drivers, this study provides critical insights
into the impact of various anthropogenic and climate
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controls on the evolving risk of crop yield to drought.
By identifying the crop types and regions where yield
risks to droughts are being significantly altered, poli-
cymakers can prioritize resources and devise resilient
adaptation practices to mitigate the adverse impacts.
Focusing on measures to mitigate drought impacts
on crops that have experienced an increase in yield
loss risk could be made a priority. Policymakers can
utilize the findings from this study to develop targeted
policies aimed at reducing the vulnerability of crop-
ping systems to drought. For example, policies could
incentivize the adoption of drought-resistant crop
varieties, promote sustainable irrigation practices, or
provide financial support for fertilizers or extensions
for soil testing in counties experiencing enhanced
crop yield loss risk due to drought. This could involve
crop diversification or adjusting planting schedules
based on drought forecasts. Policies that incentivize
sustainable agricultural practices, such as conserva-
tion tillage, cover cropping, and soil moisture man-
agement, could be used to improve resilience against
droughts, especially in regions facing enhancement in
yield risks. Overall, the findings can aid in enhancing
agricultural resilience both locally and nationally, and
ensure food security amidst changing climate condi-
tions. Future work could incorporate crop modeling
into the analysis to help understand the changing
regime of crop yield loss risk vis-a-vis changes in dif-
ferent drought characteristics, and to develop altern-
ative mitigation scenarios to ensure yield resilience.
The methodology used in this study can be applied
in future research to examine how other types of
droughts, such as groundwater drought, hydrolo-
gic drought, or socioeconomic drought, influence
changes in crop yield loss risks.
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