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Abstract. We discuss averaging for dispersion-managed nonlinear Schrödinger
equations in the fast dispersion management regime,with an applica-
tion to the problem of constructing soliton-like solutions to dispersion-
managed nonlinear Schrödinger equations.
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1. Introduction

Our interests in this note are in averaging phenomena and soliton-type solu-
tions for dispersion-managed nonlinear Schrödinger equations. Here ‘dispersion-
managed’ refers to the presence of a time-periodic factor in the linear part of
the equation. These equations arise in the setting of nonlinear optics, e.g. in
the setting of laser light propagating down a fiber optics cable in which the
dispersion varies periodically. The basic idea is that by varying the disper-
sion periodically in such a way that the average dispersion is small, one can
suppress the undesired effects of dispersion on signal propagation (e.g. pulse
broadening). In particular, dispersion management is meant to have a stabi-
lizing effect on pulse propagation. See e.g. [29], as well as [26] for an extensive
review.

To fix ideas, we will restrict our attention to the focusing cubic equation
in 3d with positive average dispersion, i.e.

i∂tu + γ(t)Δu = −|u|2u, (t, x) ∈ R × R
3, (1.1)

with γ : R → R a 1-periodic function satisfying∫ 1

0

γ(t) dt = 1.

In the setting of nonlinear optics, a typical example is that of a piecewise
constant function γ that varies periodically.
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There has been significant recent mathematical interest in dispersion-
managed nonlinear Schrödinger equations. For the physical background of such
equations, as well as well-posedness results and related topics, we refer the
reader to [1,2,7–9,12,14–19,21,22,25,29] (and remark that this list is far from
exhaustive).

To the best of the author’s knowledge, the question of the existence of
solitons for the dispersion-managed equation in the form (1.1) still seems to be
open. On the other hand, there are a wealth of results concerning solitary wave
solutions for closely-related dispersion-managed models (e.g. averaged models
or other approximate models). Many results involve the study of solitons for a
related averaged equation arising in the strong dispersion management regime.
In this setting, one considers (1.1) with dispersion maps of the form 1

εγ( t
ε ) and

takes the limit as ε → 0. In this case, one arrives at a limiting equation in which
the time dependence is removed from the linear part of the equation and the
nonlinearity is replaced with a nonlocal version, namely

i∂tu = −〈γ〉Δu −
∫ 1

0

e−iτΔ
[|eiτΔu|2eiτΔu

]
dτ, 〈γ〉 =

∫ 1

0

γ(t) dt.

For more details, the reader may consult references such as [8–10,12,14,17,
18,20,21,25,26,29]. In particular, we refer the reader to [26] for an extensive
review article on the topic of dispersion-managed solitons. For results concern-
ing the case of zero average dispersion (which we will not consider here), one
can refer to works such as [2,18]. We would also like to highlight the work
of Pelinovsky [24], which studies the problem using a Gaussian ansatz, as an
example of a particularly interesting result in this area.

It is also possible to obtain the standard cubic NLS (i.e. (1.1) with γ ≡ 1)
as an averaged version of (1.1) by considering the so-called fast dispersion
management regime. This entails considering the solutions to the equations

i∂tu + γ( t
ε )Δu = −|u|2u (1.2)

and taking the limit as ε → 0 (see e.g. [2–5,28]). In this case, the existence of
solitons for the averaged equation is well-known (with the specific combination
of positive average dispersion and focusing nonlinearity). In particular, proving
convergence for solutions to (1.2) as ε → 0 could provide an approach to con-
structing soliton-like solutions to dispersion-managed nonlinear Schrödinger
equations. This is the basic idea considered in this paper.

In [5], we proved some averaging results for the cubic equation in 2d,
which is an L2-critical problem. Essentially, we proved that we can obtain
convergence on any time interval on which the solution to the underlying
equation obeys suitable space-time bounds. In particular, in the defocusing
case, one can obtain global-in-time averaging due to the result of [11]. In fact,
we proved two results in [5]. The first was a subcritical result (inspired by the
paper [2]), treating initial data belonging to Hs for some s > 0. In this scenario,
we could spend a bit of regularity to obtain quantitative (in ε) estimates for the
difference of the linear propagators associated to (1.1) and (1.2). The second
result treated L2 data (for a more restrictive class of dispersion maps), utilizing
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a change of variables from [13] and adapting techniques from the work [23] (on
spatial homogenization for the 2d cubic NLS).

As soliton solutions do not obey global space-time bounds, the techniques
presented in [5] only yield convergence for (1.2) on fixed time intervals. In this
note, we adapt the techniques of [5] (specifically, those used for the subcritical
result) to the 3d cubic equation and slightly refine the argument in order to
obtain convergence on a longer (although still finite) time interval in the case
of soliton data. Before stating our main result, we introduce some notation
and terminology.

First, we denote by Q the ground state soliton for the cubic NLS, i.e. the
unique radial, nonnegative, and decaying solution to the equation

−Q + ΔQ = −Q3

(see e.g. [27]).
Next, we introduce the notion of an admissible dispersion map (cf. [22]).

We call γ : R → R admissible if γ is 1-periodic, γ and 1
γ both belong to L∞,

and γ has at most finitely many discontinuities in [0, 1]. We will discuss local
well-posedness for (1.1) and (1.2) with admissible dispersion maps in Sect. 2
below.

Finally, given a time interval I ⊂ R, we introduce the Strichartz spaces
Ss(I) via the norm

‖u‖Ss(I) = ‖u‖L∞
t Hs

x(I×R3) + ‖u‖
L

10
3

t H
s, 103
x (I×R3)

.

Our main result is the following:

Theorem 1.1. Let γ be an admissible dispersion map with
∫ 1

0
γ dt = 1. Given

ε > 0, let uε denote the solution to (1.2) with uε|t=0 = Q. There exists
a, b > 0 such that for ε > 0 sufficiently small, the solution uε exists on
Iε := [− log(ε−a), log(ε−a)] and obeys

‖uε(t) − eitQ‖
S

1
2 (Iε)

� εb.

The strategy of proof is based on the prior work [5], which in turn built
on ideas from [2]. In particular, we let uε and u denote the solutions to (1.2)
and (1.1), respectively, both with initial data given by Q, the standard NLS
ground state. Using the Duhamel formula, we decompose the difference

uε(t) − u(t)

into two types of terms. In the first type of term, we can exhibit at least one
copy of uε −u. In particular, these terms can be incorporated into a bootstrap
estimate on sufficiently small intervals. In the second type of term, we can
exhibit the difference of propagators

eiΓε(t,s)Δ − ei(t−s)Δ (1.3)

(see (2.3) for the definition of Γε). We rely on quantitative Strichartz estimates
for (1.3) (as in [2,5]) to prove that such terms are O(εc) for some c > 0 (see
Theorem 2.1 below). In particular, we can iterate over ≈ | log ε| small intervals
and thereby obtain Theorem 1.1.
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Theorem 1.1 demonstrates the existence of soliton-like solutions to dispersion-
managed nonlinear Schrödinger equations on long time intervals. We note,
however, that the techniques presented here do not seem likely to establish
any type of global-in-time result. Indeed, the basic a priori estimate that
plays a key role in the proof of Theorem 1.1 (see (3.4) below) is only useful on
small time intervals. Refinements of this approach will be considered in future
work.

We also remark that the result as presented here does not depend on
the fact that Q is the ground state soliton. For example, the techniques here
may be applied to establish averaging results based around any traveling wave
solution to (1.1).

2. Preliminaries

We use the standard notation A � B to denote A ≤ CB for some C > 0. We
make regular use of the Strichartz norms

‖u‖Ss(I) = ‖u‖L∞
t Hs

x(I×R3) + ‖u‖
L

10
3

t H
s, 103
x (I×R3)

. (2.1)

Here we use the notation

‖u‖Hs,r
x (R3) = ‖u‖Lr

x(R3) + ‖|∇|su‖Lr
x(R3).

The fractional derivative |∇|s is defined as a Fourier multiplier operator: |∇|s =
F−1|ξ|sF . We also use the notation 〈∇〉s = F−1(1 + |ξ|2)s/2F .

Throughout this section, we fix an admissible dispersion map γ satisfying∫ 1

0

γ(t) dt = 1.

Here admissibility is defined as in [22]: specifically, we require that γ is 1-
periodic, that γ and 1

γ both belong to L∞, and that γ has at most finitely
many discontinuities in [0, 1].

Given ε > 0, the solution to the linear equation{
i∂tu + γ( t

ε )Δu = 0,

u(t, t0) = ϕ
(2.2)

is given by

u(t) = eiΓε(t,t0)Δϕ,

where

Γε(t, t0) :=
∫ t

t0

γ( τ
ε ) dτ. (2.3)

We will need some estimates from [5,22] (see also [2]). The first estimate
yields Strichartz estimates for (2.2) that hold uniformly in ε. The latter two
estimates establish convergence of the propagators eiΓε(t,t0)Δ to ei(t−t0)Δ as
ε → 0, which in turn relies on the basic but essential fact that

|Γε(t, t0) − (t − t0)| � ε (2.4)
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(see [5, Lemma 2.1]). In the present paper, we have specialized to the case that
〈γ〉 :=

∫ 1

0
γ = 1.

We call (q, r) a Schrödinger admissible pair (in three space dimensions)
if 2 < q ≤ ∞ and 2

q + 3
r = 3

2 . We omit the L2
t endpoint due to the use of the

Christ–Kiselev lemma in [5].

Theorem 2.1. (Strichartz estimates; convergence of propagators [5,22])
Given an admissible pair (q, r), we have the uniform Strichartz estimate

‖eiΓε(t,t0)Δ‖L2→Lq
t Lr

x
�γ 1 uniformly in ε > 0. (2.5)

Furthermore,

‖eiΓε(·,t0)Δ − ei(·−t0)Δ‖Hθ→Lq
t Lr

x
�γ ε(1− 2

q ) θ
2 , (2.6)

and if (q̃, r̃) is any other Schrödinger admissible pair,∥∥∥∥
∫ t

t0

[eiΓε(t,s)Δ − ei(t−s)Δ]F (s) ds

∥∥∥∥
Lq

t Lr
x

�γ ε(2− 2
q − 2

q̃ ) θ
2 ‖〈∇〉2θF‖

Lq̃′
t Lr̃′

x
,

where ′ denotes the Hölder dual.

We next record a local well-posedness result for (1.2). We construct so-
lutions to the Duhamel formula

u(t) = eiΓε(t,0)Δϕ + i

∫ t

0

eiΓε(t,s)Δ|u|2u(s) ds. (2.7)

We remark that in the following proposition, the interval of existence de-
pends on the initial condition but not on ε. This stems from the fact that
the Strichartz estimates appearing in (2.5) hold uniformly in ε.

Proposition 2.2. (Local well-posedness) Fix s ∈ [35 , 1] and an admissible dis-
persion map γ. Let ϕ ∈ Hs(R3) and ε > 0. Then there exists T = T (‖ϕ‖Hs)
and a solution uε : (−T, T ) × R

3 → C to (1.2) with uε|t=0 = ϕ. The solution
belongs to Ss((−T, T )) and may be extended as long as its S

1
2 -norm remains

finite.

Proof. Recall that the implicit constants in the Strichartz estimates in (2.5)
are uniform in ε > 0. We will focus on showing existence forward in time only.

The proof follows from the usual contraction mapping argument, i.e.
showing that the map

u 
→ Φ(u) := RHS(2.7)

is a contraction on a suitable complete metric space.
We let T > 0 to be determined below and take our metric space to be

X = {u : ‖u‖Ss([0,T ]) ≤ C‖ϕ‖Hs},

where C is related to the implicit constants in Strichartz estimates and Sobolev
embedding, with distance given by

d(u, v) = ‖u − v‖
L

10
3

t,x([0,T ]×R3)
.
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To see that Φ : X → X, we let u ∈ X and apply Strichartz estimates.
Focusing on the contribution of the inhomogeneous terms, we use the fractional
chain rule, Hölder’s inequality, and Sobolev embedding to estimate

‖|u|2u‖L1
t Hs

x
� T

1
10 ‖u‖2

L
10
3

t L10
x

‖u‖
L

10
3

t H
s, 103
x

� T
1
10 ‖|∇| 3

5 u‖2

L
10
3

t L
10
3

x

‖u‖
L

10
3

t H
s, 103
x

� T
1
10 [C‖ϕ‖Hs ]3 ≤ 1

2C‖ϕ‖Hs

for T = T (‖ϕ‖Hs) sufficiently small. Thus we may obtain that Φ : X → X.
Choosing u, v ∈ X and estimating similarly, we can obtain

d(Φ(u),Φ(v)) �
{‖u‖2

L
10
3

t Ḣ
3
5 , 103

x

+ ‖v‖2

L
10
3

t Ḣ
3
5 , 103

x

}‖u − v‖
L

10
3

t,x

� T
1
10 [C‖ϕ‖Hs ]2‖u − v‖

L
10
3

t,x

≤ 1
2d(u, v)

for T = T (‖ϕ‖Hs) sufficiently small.
It follows that Φ is a contraction on X and hence has a unique fixed

point, yielding our desired solution.
It remains to show that the solution may be continued as long as its

S
1
2 -norm remains finite. To see this, first note that the local existence result

just proven guarantees that a solution may be extended as long as its Hs-
norm remains finite; that is, if the solution cannot be extended past some time
T∗ > 0, we must have that ‖u(t)‖Hs → ∞ as t ↑ T ∗.

Thus it suffices to prove that if a solution exists on some interval I and
satisfies

‖u‖
S

1
2 (I)

< ∞, (2.8)

then

‖u‖Ss(I) < ∞. (2.9)

Suppose (2.8) holds. We let η > 0 to be determined below and split I
into finitely many intervals Ij = [tj , tj+1] such that

‖u‖
L

10
3

t H
1
2 , 103

x (Ij×R3)
< η.

Restricting to an interval of the form [tj , t], we can estimate essentially as we
did above to obtain

‖u‖Ss([tj ,t]) � ‖u(tj)‖Hs + ‖|u|2u‖
L

10
9

t H
s, 3017
x

� ‖u(tj)‖Hs + ‖u‖2

L
10
3

t L
15
2

x

‖u‖
L

10
3

t H
s, 103
x

� ‖u(tj)‖Hs + ‖u‖2

L
10
3

t Ḣ
1
2 , 103

x

‖u‖Ss([tj ,t])

� ‖u(tj)‖Hs + η2‖u‖Ss([tj ,t]).
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Thus, by a standard continuity argument, we may obtain that

‖u‖Ss(Ij) ≤ 2C‖u(tj)‖Hs .

Iterating over the finite collection of intervals, we can obtain the desired con-
clusion (2.9). �

We remark once again that the time of existence in Proposition 2.2 de-
pends on the initial data, but not on ε. This is a consequence of the fact that
the Strichartz estimates for eiΓε(t,t0)Δ are uniform in ε.

Note also that we have not optimized the preceding result in terms of
the regularity of the data. Indeed, the argument could be extended to any
subcritical regularity (i.e. data in Hs for s > 1

2 ).
On the other hand, obtaining a critical result (i.e. working with data in

H
1
2 ) that is uniform in ε > 0 is a bit more subtle. In this case, one would like

to choose the existence time T > 0 small enough that

‖eiΓε(t,0)Δϕ‖
L

10
3

t H
1
2 , 103

x ([0,T ]×R3)
� 1.

For fixed ε > 0, this is indeed possible by the monotone convergence theorem,
using the fact that

‖eiΓε(t,0)Δϕ‖
L

10
3

t H
1
2 , 103

x (R×R3)
� ‖ϕ‖

H
1
2
.

However, even though the implicit constant in this Strichartz estimate is uni-
form in ε > 0, it is not clear that one can choose T independent of ε > 0.

One way to proceed is to require a bit of extra regularity on the data ϕ
and utilize (2.6). In particular, if we take ϕ ∈ H

1
2+θ and suppose (without loss

of generality) that
∫ 1

0
γ = 1, then for any T > 0 we can estimate

‖eiΓε(t,0)Δϕ‖
L

10
3

t H
1
2 , 103

x ([0,T ]×R3)

� ‖eitΔϕ‖
L

10
3

t H
1
2 , 103

x ([0,T ]×R3)
+ ε

θ
5 ‖ϕ‖

H
1
2+θ .

By choosing T = T (ϕ) and ε > 0 sufficiently small, we can make this quantity
arbitrarily small. In this way, one could obtain a local theory using only ‘critical
spaces’ (albeit for data slightly more regular than H

1
2 ) that holds uniformly

for (small) ε > 0.

3. Proof of the main result

We turn to the proof of Theorem 1.1. We focus on proving estimates forward
in time only.

Proof of Theorem 1.1. We let γ be an admissible dispersion map with∫ 1

0

γ(t) dt = 1,

and define γε and Γε as in the previous section.
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Given ε > 0, we apply Proposition 2.2 and let uε be the solution to (1.2)
with uε|t=0 = Q. We also let u(t) = eitQ, which solves

i∂tu + Δu = −|u|2u
and exists globally in time. Our goal is to estimate the difference between the
solutions uε and u.

By Proposition 2.2, the solutions uε exist on some interval [0, T ] (for some
T independent of ε) and may be continued as long as their S

1
2 -norms remain

under control (recall the definition of this norm in (2.1)). Thus, in what follows
we will assume that the solutions uε exist and establish a priori bounds on
the difference between uε and u in the S

1
2 -norm. The implicit constants below

will generally depend on the fixed dispersion map γ, but not on ε.
Fix t, t0 ∈ R and denote F (z) = |z|2z. We begin by using the Duhamel

formula to write

uε(t) − u(t) = eiΓε(t,t0)Δ[uε(t0) − u(t0)]

+ [eiΓε(t,t0)Δ − ei(t−t0)Δ]u(t0)

+ i

∫ t

t0

eiΓε(t,s)Δ[F (uε(s)) − F (u(s))] ds

+ i

∫ t

t0

[eiΓε(t,s)Δ − ei(t−s)Δ]F (u(s)) ds.

(3.1)

Letting I � t0, we can therefore use the estimates from the proof of Proposi-
tion 2.2 and Theorem 2.1 and obtain

‖uε − u‖
S

1
2

� ‖uε(t0) − u(t0)‖
H

1
2

+ εc‖u‖L∞
t Hs

x

+ ‖F (uε) − F (u)‖
L

10
9

t H
1
2 , 3017

x

+ εc‖F (u)‖
L

10
9

t H
s, 3017
x

for some s ∈ ( 1
2 , 1) and c = c(s) > 0, where all norms are taken over I × R

3.
We first observe that

εc‖u‖L∞
t Hs

x
�Q εc.

We next observe that F (uε) − F (u) may be written as a sum of terms of
the form

vw[uε − u], v, w ∈ {u, uε − u}
up to complex conjugation. Thus, applying the fractional product rule, using
the same spaces as in the proof of Proposition 2.2, applying Young’s inequality,
and recalling that u(t) = eitQ with Q smooth and rapidly decaying, we may
obtain

‖F (uε) − F (u)‖
L

10
9

t H
1
2 , 3017

x

� ‖u‖2

L
10
3

t H
1
2 , 103

x

‖uε − u‖
S

1
2

+ ‖uε − u‖3

S
1
2

�Q |I| 3
5 ‖uε − u‖

S
1
2

+ ‖uε − u‖3

S
1
2
.
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Finally, we have

εc‖F (u)‖
L

10
9

t H
s, 3017
x

�Q εc|I| 9
10 .

Combining the estimates above, we arrive at our basic a priori estimate:

‖uε − u‖
S

1
2 (I)

≤ C
[‖uε(t0) − u(t0)‖

H
1
2

+ εc + |I| 3
5 ‖uε − u‖

S
1
2 (I)

+ ‖uε − u‖3

S
1
2 (I)

+ εc|I| 9
10

]
.

(3.2)

We will now proceed by using this estimate iteratively to propagate good
bounds for uε − u over sufficiently small intervals. To this end, we define

Tε = log[ε−a] (3.3)

for some a ∈ (0, c). We split [0, Tε] into J ∼ Tε intervals of the form

Ij = [tj , tj+1]

so that |Ij | � 1 for each j.
On any interval I = [tj , t] ⊂ Ij the a priori estimate implies

‖uε − u‖
S

1
2 (I)

≤ 2C
[‖uε(t0) − u(t0)‖

H
1
2

+ 2εc + ‖uε − u‖3

S
1
2 (I)

]
. (3.4)

We now define

A0 = 8C and Aj = 4C[Aj−1 + 2] for 1 ≤ j ≤ J.

One can verify by induction that

Aj ≤ (16C)J+1 for all j,

and in particular (recalling the definition of Tε) we have

Ajε
c � 1 (3.5)

for all j, provided ε is sufficiently small.
We will prove by induction that

‖uε − u‖S(Ij) ≤ Ajε
c for all j. (3.6)

For j = 0, we use the fact that uε(t0) = u(t0) = Q, so that (3.4) implies

‖uε − u‖
S

1
2 (I)

≤ 4Cεc + 2C‖uε − u‖3

S
1
2 (I)

for any I = [0, t] ⊂ I0. By a continuity argument, this implies

‖uε − u‖
S

1
2 (I0)

≤ 8Cεc

provided ε is sufficiently small. This yields the base case.
Now suppose that (3.6) holds up to level j − 1. Then (3.4) implies

‖uε − u‖
S

1
2 (I)

≤ 2CAj−1ε
c + 4Cεc + 2C‖uε − u‖3

S
1
2 (I)

≤ 1
2Ajε

c + 2C‖uε − u‖3

S
1
2 (I)

.

for I = [tj , t] ⊂ Ij . As Ajε
c � 1 (cf. (3.5)), another continuity argument

implies

‖uε − u‖
S

1
2 (Ij)

≤ Ajε
c,
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thus completing the induction. Recalling the definition of Tε in (3.3), we can
now obtain

‖uε − u‖
S

1
2 ([0,Tε])

� AJεc � εb

for some b > 0, thus completing the proof of Theorem 1.1.
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