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Abstract. We discuss averaging for dispersion-managed nonlinear Schrodinger
equations in the fast dispersion management regime,with an applica-
tion to the problem of constructing soliton-like solutions to dispersion-
managed nonlinear Schrédinger equations.
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1. Introduction

Our interests in this note are in averaging phenomena and soliton-type solu-
tions for dispersion-managed nonlinear Schrédinger equations. Here ‘dispersion-
managed’ refers to the presence of a time-periodic factor in the linear part of
the equation. These equations arise in the setting of nonlinear optics, e.g. in
the setting of laser light propagating down a fiber optics cable in which the
dispersion varies periodically. The basic idea is that by varying the disper-
sion periodically in such a way that the average dispersion is small, one can
suppress the undesired effects of dispersion on signal propagation (e.g. pulse
broadening). In particular, dispersion management is meant to have a stabi-
lizing effect on pulse propagation. See e.g. [29], as well as [26] for an extensive
review.

To fix ideas, we will restrict our attention to the focusing cubic equation
in 3d with positive average dispersion, i.e.

i0u + y(t)Au = —|u*u, (t,z) € R x R3, (1.1)
with v : R — R a 1-periodic function satisfying

1
/ ~v(t)dt = 1.
0

In the setting of nonlinear optics, a typical example is that of a piecewise
constant function v that varies periodically.
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There has been significant recent mathematical interest in dispersion-
managed nonlinear Schréodinger equations. For the physical background of such
equations, as well as well-posedness results and related topics, we refer the
reader to [1,2,7-9,12,14-19,21,22,25,29] (and remark that this list is far from
exhaustive).

To the best of the author’s knowledge, the question of the existence of
solitons for the dispersion-managed equation in the form (1.1) still seems to be
open. On the other hand, there are a wealth of results concerning solitary wave
solutions for closely-related dispersion-managed models (e.g. averaged models
or other approximate models). Many results involve the study of solitons for a
related averaged equation arising in the strong dispersion management regime.
In this setting, one considers (1.1) with dispersion maps of the form 1~(£) and
takes the limit as € — 0. In this case, one arrives at a limiting equation in which
the time dependence is removed from the linear part of the equation and the
nonlinearity is replaced with a nonlocal version, namely

1 1
10w = —(7)Au — / e iTA [\e”Au|2e”Au] dr, {(v)= / ~(t) dt.
0 0

For more details, the reader may consult references such as [8-10,12,14,17,
18,20,21,25,26,29]. In particular, we refer the reader to [26] for an extensive
review article on the topic of dispersion-managed solitons. For results concern-
ing the case of zero average dispersion (which we will not consider here), one
can refer to works such as [2,18]. We would also like to highlight the work
of Pelinovsky [24], which studies the problem using a Gaussian ansatz, as an
example of a particularly interesting result in this area.

It is also possible to obtain the standard cubic NLS (i.e. (1.1) with v = 1)
as an averaged version of (1.1) by considering the so-called fast dispersion
management regime. This entails considering the solutions to the equations

i+ (L) Au = —|u[*u (1.2)

and taking the limit as € — 0 (see e.g. [2-5,28]). In this case, the existence of
solitons for the averaged equation is well-known (with the specific combination
of positive average dispersion and focusing nonlinearity). In particular, proving
convergence for solutions to (1.2) as € — 0 could provide an approach to con-
structing soliton-like solutions to dispersion-managed nonlinear Schrédinger
equations. This is the basic idea considered in this paper.

In [5], we proved some averaging results for the cubic equation in 2d,
which is an L?-critical problem. Essentially, we proved that we can obtain
convergence on any time interval on which the solution to the underlying
equation obeys suitable space-time bounds. In particular, in the defocusing
case, one can obtain global-in-time averaging due to the result of [11]. In fact,
we proved two results in [5]. The first was a subcritical result (inspired by the
paper [2]), treating initial data belonging to H*® for some s > 0. In this scenario,
we could spend a bit of regularity to obtain quantitative (in €) estimates for the
difference of the linear propagators associated to (1.1) and (1.2). The second
result treated L? data (for a more restrictive class of dispersion maps), utilizing
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a change of variables from [13] and adapting techniques from the work [23] (on
spatial homogenization for the 2d cubic NLS).

As soliton solutions do not obey global space-time bounds, the techniques
presented in [5] only yield convergence for (1.2) on fixed time intervals. In this
note, we adapt the techniques of [5] (specifically, those used for the subcritical
result) to the 3d cubic equation and slightly refine the argument in order to
obtain convergence on a longer (although still finite) time interval in the case
of soliton data. Before stating our main result, we introduce some notation
and terminology.

First, we denote by @ the ground state soliton for the cubic NLS, i.e. the
unique radial, nonnegative, and decaying solution to the equation

Q+AQ=-Q°
(see e.g. [27]).

Next, we introduce the notion of an admissible dispersion map (cf. [22]).
We call v : R — R admissible if v is 1-periodic, v and % both belong to L,
and v has at most finitely many discontinuities in [0, 1]. We will discuss local
well-posedness for (1.1) and (1.2) with admissible dispersion maps in Sect. 2
below.

Finally, given a time interval I C R, we introduce the Strichartz spaces
S*¥(I) via the norm

lullss(ry = [lwll go s (rxrsy + HUHL;TU 10

Hy 3 (IxR3)

Our main result is the following:

Theorem 1.1. Let v be an admissible dispersion map with fol vdt = 1. Given
e > 0, let u® denote the solution to (1.2) with u®|i=g = Q. There exists
a,b > 0 such that for ¢ > 0 sufficiently small, the solution u® exists on
I, :=[—log(e~%),log(e*)] and obeys

i b
[ (8) = €"QlL g3, S <"

The strategy of proof is based on the prior work [5], which in turn built
on ideas from [2]. In particular, we let u® and u denote the solutions to (1.2)
and (1.1), respectively, both with initial data given by @, the standard NLS
ground state. Using the Duhamel formula, we decompose the difference

u®(t) — u(t)

into two types of terms. In the first type of term, we can exhibit at least one
copy of u® —u. In particular, these terms can be incorporated into a bootstrap
estimate on sufficiently small intervals. In the second type of term, we can
exhibit the difference of propagators

eile(t o)A _ ilt—s)A (1.3)

(see (2.3) for the definition of T'.). We rely on quantitative Strichartz estimates
for (1.3) (as in [2,5]) to prove that such terms are O(e®) for some ¢ > 0 (see
Theorem 2.1 below). In particular, we can iterate over ~ | loge| small intervals
and thereby obtain Theorem 1.1.
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Theorem 1.1 demonstrates the existence of soliton-like solutions to dispersion-
managed nonlinear Schrodinger equations on long time intervals. We note,
however, that the techniques presented here do not seem likely to establish
any type of global-in-time result. Indeed, the basic a priori estimate that
plays a key role in the proof of Theorem 1.1 (see (3.4) below) is only useful on
small time intervals. Refinements of this approach will be considered in future
work.

We also remark that the result as presented here does not depend on
the fact that @ is the ground state soliton. For example, the techniques here
may be applied to establish averaging results based around any traveling wave
solution to (1.1).

2. Preliminaries

We use the standard notation A < B to denote A < C'B for some C > 0. We
make regular use of the Strichartz norms

(2.1)

lullseny = lullamscrcmy + lull s e o

Here we use the notation
[ull g ey = llully @s) + 1IVIPull Ly @s)-
The fractional derivative |V|® is defined as a Fourier multiplier operator: |V|* =

FHEPEF. We also use the notation (V) = F~1(1 4 |¢]2)5/2F.
Throughout this section, we fix an admissible dispersion map -y satisfying

1
/ ~y(t)dt = 1.
0

Here admissibility is defined as in [22]: specifically, we require that ~ is 1-
periodic, that v and % both belong to L, and that  has at most finitely
many discontinuities in [0, 1].

Given € > 0, the solution to the linear equation

{ iOpu+ (L) Au =0, (2.2)
u(t, to) = ¢
is given by
u(t) = eile(tto)d
where

T.(t to) := / ¥(Z)dr. (2.3)

to
We will need some estimates from [5,22] (see also [2]). The first estimate
yields Strichartz estimates for (2.2) that hold uniformly in e. The latter two
estimates establish convergence of the propagators el =(t:t0)A to ¢ilt—t0)A aq
e — 0, which in turn relies on the basic but essential fact that

[Ce(t,to) = (t—to)| S € (2.4)
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(see [5, Lemma 2.1]). In the present paper, we have specialized to the case that
1
<’}/> = fo v=1
We call (¢,r) a Schrodinger admissible pair (in three space dimensions)
if 2< ¢ <ooand 2+ 2 =3 Weomit the Lf endpoint due to the use of the
Christ—Kiselev lemma in [5].

Theorem 2.1. (Strichartz estimates; convergence of propagators [5,22])
Given an admissible pair (q,7), we have the uniform Strichartz estimate

Heirf(t’t‘))AHLzﬂLth; <+ 1 uniformly in &> 0. (2.5)
Furthermore,
[0t — e CtR o pap, <y gm0, (2.6)

and if (¢,7) is any other Schrédinger admissible pair,
t
’ / [eiFE(us)A o ei(t—s)A]F(s) ds

to
where ' denotes the Holder dual.

LiL7

We next record a local well-posedness result for (1.2). We construct so-
lutions to the Duhamel formula

t
u(t) :eiFS(t,O)A<p+i/ T (LD 4120 () ds. (2.7)
0

We remark that in the following proposition, the interval of existence de-
pends on the initial condition but not on e. This stems from the fact that
the Strichartz estimates appearing in (2.5) hold uniformly in €.

Proposition 2.2. (Local well-posedness) Fiz s € [2,1] and an admissible dis-
persion map 7. Let o € H*(R?) and ¢ > 0. Then there exists T = T(||¢|| =)
and a solution u® : (=T, T) x R® — C to (1.2) with uf|—o = . The solution
belongs to S*((=T,T)) and may be extended as long as its S -norm remains
finite.

Proof. Recall that the implicit constants in the Strichartz estimates in (2.5)
are uniform in € > 0. We will focus on showing existence forward in time only.

The proof follows from the usual contraction mapping argument, i.e.
showing that the map

u— ®(u) := RHS(2.7)
is a contraction on a suitable complete metric space.
We let T' > 0 to be determined below and take our metric space to be
X =A{u:[lulls=o,m) < Cllella-},

where C'is related to the implicit constants in Strichartz estimates and Sobolev
embedding, with distance given by

d(u,v) = ||Ju—v|| .

10
L,% ([0,T]xR?)
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To see that & : X — X, we let u € X and apply Strichartz estimates.
Focusing on the contribution of the inhomogeneous terms, we use the fractional
chain rule, Holder’s inequality, and Sobolev embedding to estimate

10 10
SH,—,;3

2 < T 2
Il S TNl sl

ST V|5 ul|

%10 wflull s
L2 L3 L3 H,

1
STH([Cllela:]® < 5CI¢lla-

for T'=T(||¢|| =) sufficiently small. Thus we may obtain that ® : X — X.
Choosing u,v € X and estimating similarly, we can obtain

10
3

2 2
AR, ) S (Nl 330 + 1012 30, 330 Ml =0l
1
ST [Clleplls)? |u — ull 2
t,x
< 3d(u,v)

for T =T(||¢||g=) sufficiently small.

It follows that ® is a contraction on X and hence has a unique fixed
point, yielding our desired solution.

It remains to show that the solution may be continued as long as its
S2-norm remains finite. To see this, first note that the local existence result
just proven guarantees that a solution may be extended as long as its H?*-
norm remains finite; that is, if the solution cannot be extended past some time
T, > 0, we must have that ||u(¢)||gs — oo as t | T*.

Thus it suffices to prove that if a solution exists on some interval I and
satisfies

lull g3y < 00 (2.8)
then
[ullss (1) < oo (2.9)

Suppose (2.8) holds. We let > 0 to be determined below and split I
into finitely many intervals I; = [t;,t;41] such that

HUHL;TOHI%’%(I]-XDW) <7

Restricting to an interval of the form [¢;, ¢], we can estimate essentially as we
did above to obtain

[[ul

se(its) S 1)l + [[lufull

s, 30
17
t Hm

3

S lult)llas + llul? s s llul
L,° Ly

10 10
3 ’ 3
L2 H,

10 [[ul
3

< I #rs 2 .
S )l + IIUIIL%Hz S ([t,t))

1
@

< lult) s + 02 llull s e.0)-
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Thus, by a standard continuity argument, we may obtain that
lulls(z,) < 2Cult;)l|a--

Iterating over the finite collection of intervals, we can obtain the desired con-
clusion (2.9). O

We remark once again that the time of existence in Proposition 2.2 de-
pends on the initial data, but not on . This is a consequence of the fact that
the Strichartz estimates for e''=(t:t0)2 are uniform in e.

Note also that we have not optimized the preceding result in terms of
the regularity of the data. Indeed, the argument could be extended to any
subcritical regularity (i.e. data in H* for s > 1).

On the other hand, obtaining a critical result (i.e. working with data in
H?) that is uniform in & > 0 is a bit more subtle. In this case, one would like
to choose the existence time 7" > 0 small enough that

iT.(t,0)A

le ol 10 10

L3 H ([0,T]xR3)

For fixed € > 0, this is indeed possible by the monotone convergence theorem,
using the fact that

leT=ED2 g 10 40

< :
L0 3 gy < 19

However, even though the implicit constant in this Strichartz estimate is uni-
form in € > 0, it is not clear that one can choose T independent of € > 0.

One way to proceed is to require a bit of extra regularity on the data ¢
and utilize (2.6). In particular, if we take ¢ € H 210 and suppose (without loss
of generality) that fol v =1, then for any 7' > 0 we can estimate

R

< itA
< el

([0, T]xR3)

0
10 + s
3

10 "2} 1 .
3 ([0,T]xR3) 3o

1
HZ
By choosing T'= T'(¢) and ¢ > 0 sufficiently small, we can make this quantity
arbitrarily small. In this way, one could obtain a local theory using only ‘critical

spaces’ (albeit for data slightly more regular than H %) that holds uniformly
for (small) € > 0.

3. Proof of the main result

We turn to the proof of Theorem 1.1. We focus on proving estimates forward
in time only.

Proof of Theorem 1.1. We let v be an admissible dispersion map with

1
| mar=1.
0

and define 7. and I'; as in the previous section.
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Given ¢ > 0, we apply Proposition 2.2 and let u® be the solution to (1.2)
with uf|;—o = Q. We also let u(t) = e"Q, which solves

i0u + Au = —|u|?u

and exists globally in time. Our goal is to estimate the difference between the
solutions u® and wu.

By Proposition 2.2, the solutions u¢ exist on some interval [0, 7] (for some
T independent of €) and may be continued as long as their S2-norms remain
under control (recall the definition of this norm in (2.1)). Thus, in what follows
we will assume that the solutions u® exist and establish a priori bounds on
the difference between u¢ and u in the S2-norm. The implicit constants below
will generally depend on the fixed dispersion map -y, but not on ¢.

Fix t,ty € R and denote F(z) = |z|?2. We begin by using the Duhamel
formula to write

(1) = u(t) = T u (1) — ulo)]

+ [eiFE(t,to)A _ ei(t_tO)A}u(to)

+¢/2”N@ﬂmmg»—FW@ﬂ@ (3.1)

to
t
+g/kﬁwﬁAfaW@ﬂFm@»@.
to

Letting I > ¢y, we can therefore use the estimates from the proof of Proposi-

tion 2.2 and Theorem 2.1 and obtain

s —ull
S lu(to) — ulto)ll 3 + °llullen;
FIFEE) ~ F@l 3 g0+ IF@]
t

1 s, 30
9 271 17
o Hg

H;'!

for some s € (3,1) and ¢ = ¢(s) > 0, where all norms are taken over I x R3.
We first observe that

eNull e ry S &

We next observe that F(u®) — F(u) may be written as a sum of terms of
the form

vwu® —ul, v,w € {u,u® — u}

up to complex conjugation. Thus, applying the fractional product rule, using
the same spaces as in the proof of Proposition 2.2, applying Young’s inequality,
and recalling that u(t) = €@ with Q smooth and rapidly decaying, we may
obtain

€ 2 € 3
1) = Fll i S Tl g 0 =l gy + 1w =l
3

So 13 1u® = ull gy + v — ]l
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Finally, we have

e F(u )IILIQOHS% <q €91,

Combining the estimates above, we arrive at our basic a priori estimate:

< Ol (to) — ulto)ll 13 +&° + 117 ||u® —ull 43

[0 —ull 3

S3 (1)

=y,

S3 (1)
Y (3.2)
+ €€|I]0].
We will now proceed by using this estimate iteratively to propagate good
bounds for u® — u over sufficiently small intervals. To this end, we define
T, =logle™] (3.3)
for some a € (0,¢). We split [0, 7] into J ~ T, intervals of the form
Iy = [tj,t41]
so that |I;| < 1 for each j.
On any interval I = [t;,t] C I, the a priori estimate implies

lu® = ull gy ) < 20[Iu (o) —ultolll, 3 +2¢° + flus —ully ). (34)

(I
We now define
Ag=8C and A; =4C[A;_1+2] for 1<j<J
One can verify by induction that
A; < (16C)7 T for all 4,
and in particular (recalling the definition of T.) we have
Aje <1 (3.5)
for all j, provided ¢ is sufficiently small.
We will prove by induction that
lu® —ulls,) < Aje® forall j. (3.6)
For j = 0, we use the fact that u®(ty) = u(tp) = @, so that (3.4) implies
< A4Ce° + 20 |uf —u||S -

g

[[u" = ul]

S3 (1)
for any I = [0,t] C Iy. By a continuity argument, this implies

[|u® u|| ) < 8Ce°

provided ¢ is sufficiently small. This ylelds the base case.
Now suppose that (3.6) holds up to level j — 1. Then (3.4) implies

us —ull 1, < 20A;_16°+4Ce + 2C||uf — ul?,

53 (I) s2 (I)

< 1A 420 uf —ul?
¢ [u® =l sty

for T = [tj,t] C I;. As A;e® < 1 (cf. (3.5)), another continuity argument
implies

e =l gy < Age,
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thus completing the induction. Recalling the definition of 7. in (3.3), we can
now obtain

s — ull ) S Aget <eéb

S2 ([0, T

for some b > 0, thus completing the proof of Theorem 1.1.
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