Compact: Approximating Complex Activation Functions for
Secure Computation

Mazharul Islam*, Sunpreet S. Arora’, Rahul Chatterjee*, Peter Rindal’, Maliheh Shirvanian*

* University of Wisconsin—Madison,

ABSTRACT

Secure multi-party computation (MPC) techniques can be used to
provide data privacy when users query deep neural network (DNN)
models hosted on a public cloud. State-of-the-art MPC techniques
can be directly leveraged for DNN models that use simple activation
functions such as ReLU. However, these techniques are ineffective
for the complex and highly non-linear activation functions used in
cutting-edge DNN models.

We present Compact, which produces piece-wise polynomial
approximations of complex activation functions that can be used
with state-of-the-art MPC techniques. Compact neither requires
nor imposes any restriction on model training and achievesnear-
identical model accuracy. We design Compact with input density
awareness and use an application specific simulated annealing type
optimization to generate computationally efficient approximations
of complex activation functions. We extensively evaluate Compact
on four different machine-learning tasks with DNN architectures
that use popular complex activation functions SiLU, GeLU, and
Mish. Our experimental results show that Compact incurs negligi-
ble accuracy loss while being 2x—5X faster than state-of-the-art
approaches for DNN models with large number of hidden layers.
Our work accelerates easy adoption of MPC techniques to provide
user data privacy even when the queried DNN models consist of a
number of hidden layers and complex activation functions.

1 INTRODUCTION

Deep neural networks (DNNs) based inference services are being
increasingly adopted in various emerging applications, such as
early disease discovery from personal health records [76], personal-
ized product recommendations [13], media translations [12], image
recognition [3], and even biometric authentication [18]. Trained
DNN models are typically hosted on a cloud server for applica-
tions or users to query for inference tasks. These services however
can pose serious privacy concerns. For instance, users are required
to share their facial images with an online service hosting a face
recognition DNN model. Indeed due to such privacy concerns, the
Internal Revenue Service (IRS) removed the identity verification
service based on facial recognition [18].

DNN models used for inference cannot be transferred to the
client devices because they can be proprietary and trained on pri-
vate training data such as users’ medical records [23, 43]. Clients

This work is licensed under the Creative Commons Attribu- @
tion 4.0 International License. To view a copy of this license
visit https://creativecommons.org/licenses/by/4.0/ or send a BY

letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.
Proceedings on Privacy Enhancing Technologies YYYY(X), 1-17

© YYYY Copyright held by the owner/author(s).
https://doi.org/XXXXXXX.XXXXXXX

T Visa Research, ¥ Netflix

also would like to avoid sharing their private data with the model
hosting server. This problem is generally referred to as secure in-
ference, where a client can obtain the inference results on their
private input without sharing it with the server, nor learning any-
thing about the DNN model parameters. The secure multi-party
computation (MPC) is a promising approach to solve the secure
inference problem [81]. However, a key challenge is computing
the non-linear activation functions (AFs) efficiently. Indeed, studies
have shown that AFs are the bottleneck — compared to linear layers
— for performing secure inference [24, 25, 36, 56, 68].

Prior works [11, 14, 26, 47, 68, 69] have provided several solutions
for secure inference for DNN models with ReLU AF — a relatively
simple non-linear AFs. However, lately, ML researchers are favoring
more complex and highly non-linear AFs such as SiLU, GeLU, Mish
for new ML applications. State-of-the-art secure inference protocols
are either unsuitable or inefficient for DNN models trained over
these complex AFs.

Complex AFs can be approximated using piece-wise polynomials
for efficient computation in MPC frameworks, as shown in recent
works [48, 51, 60]. However, a key limitation of these approaches
is that they incur high accuracy loss compared to plaintext (“not
secure”) inference. Fan et al. recently proposed NFGen [21], that can
generate MPC-friendly polynomial approximation of a variety of
non-linear functions used in scientific domains without introducing
significant accuracy loss. Although this approach is generic and can
be used to approximate complex AFs, doing so with NFGen incurs
significant performance overhead (as we show in Section 5.4).

This is because generating approximations of complex AFs that
have both negligible accuracy loss, and performance overhead
requires carefully searching for optimal parameters used in the
approximation process. Conservatively setting these parameters,
as done in NFGen, to generate an approximation that does not
introduce significant accuracy loss will in turn increase the com-
putational overhead. One may settle for parameters that yield an
imprecise approximation of AFs to improve the speed of secure
inference using NFGen, but it will end up degrading the accuracy of
the DNN model. Swapping out the complex AF with ReLU increases
accuracy loss, and might require retraining or fine-tuning, which
are computationally expensive for large DNN models.

We devise a new approach to approximate complex AFs that
does not degrade inference accuracy even for DNN models with
many hidden layers. We do so without requiring any retraining of
the model or change in the model architecture.

There are two main challenges to achieve an improved approxi-
mation of AFs. First, due to input normalization, most of the inputs
to AFs are around zero, where complex AFs are highly non-linear.
Chabanne et al. [10] observed that for a nine-layered DNN model
normalization pushes 99.73% of the input values to the ReLU AF

Proceedings on Privacy Enhancing Technologies YYYY(X)

between [—3,3]. Second, the approximation approach needs to bal-
ance the trade-offs between performance overhead and inference
accuracy loss carefully.

To handle these two challenges, we incorporate the observation
that in state-of-the-art DNN models, inputs to complex AFs are
normalized, into our approximation generation process. Such nor-
malization gives a way to estimate the input probability density
to the complex AF as the majority of the normalized inputs to the
complex AF would fall into specific places near the region close
to zero with high probability — while a small portion will fall into
places in regions away from zero with low probability. We hypoth-
esize that taking this observation into account will help mitigate
the cumulative impact of errors introduced by MPC-friendly ap-
proximations from one layer to subsequent layers of a deeper or
wider DNN model. While prior work [10] has used this observa-
tion for generating fully homomorphic encryption (FHE)-friendly
approximations of ReLU AF, their proposed approach of using a
single polynomial generated via “least square fit” would not work
well for MPC-friendly approximations of complex AFs when DNN
models have a high number of hidden layers [55].

We use the Chebyshev sequence-based interpolation [53] for
piece-wise polynomial approximation, which is shown to provide
better approximation for non-linear functions involving operations,
including e, In(x), tanh(x), 1/x, etc., as it is the case with complex
AFs [55, Table 5.2]. !

Piece-wise polynomial approximation can be parameterized by
the degree of the polynomial (k), the number of pieces (m), and
the Ring in which the MPC will be executed (R). We establish
a procedure to find a better tradeoff between accuracy loss and
computational overhead. using application-specific heuristic that
dynamically adjusts these parameters to find a desirable piece-wise
polynomial. Specifically, we first pose this problem as a constraint
optimization problem (COP) by setting a constraint of the maximum
accuracy loss, say v, that a practitioner can tolerate. Then we search
for a (m’, k’/, R”) that yields an approximation that has the lowest
inference time under the constraint that accuracy loss is below v.
We base our searching heuristic on simulated annealing (SA) which
is a popular framework to solve COP.

Concretely, we start with an initial solution with high (myo, ko, Ro)
so that it yields an approximation that has accuracy loss < v, but not
necessarily the lowest inference time. As a result the initial choice
of {my, ko, Ro) may result in an approximation having pronounced
inference time yielding an imbalance between performance and ac-
curacy. To fix this, we randomly make local adjustments to explore
adjacent solutions of {my, ko, Ro), and continue moving towards
a solution (m’, k’, R’) under the SA framework that reduces per-
formance overhead and accuracy loss remains less than v — for a
fixed number of iterations.

We carefully incorporate a number of application-specific tech-
niques into the heuristic to avoid getting stuck on local optimal
(m’,k’,R"). For example, we find the approximation error thresh-
old — an important component of the heuristic — via binary search
instead of settling for a fixed value as prior work [21] (Section 4.2.3).

! Although NFGen also used Chebyshev interpolation, they did not consider
input normalization to improve accuracy.

Islam et al.

Furthermore, we introduce a DNN-specific modification to enhance
the performance efficacy (Section 4.2.5).

We implement Compact and perform extensive experiments
using four different state-of-the-art DNN models with many hid-
den layers on diverse classification tasks. We find that Compact
and NFGen [21] incur negligible accuracy loss compared to exist-
ing approaches [48, 51, 67] (Section 5.3). Then, to compare perfor-
mance overhead between Compact and NFGen, we incorporate
their generated MPC-friendly approximation of complex AFs to
two state-of-the-art secure inference MPC libraries ABY3 [58] and
CryptFlow2 [68], and measure average inference time. Our exper-
iments reveal that our DNN model-specific optimizations make
Compact 2X-5x computationally more efficient than NFGen [21]
— for DNN models having a high number of hidden layers, all while
maintaining negligible accuracy loss. We have released Compact
as an open source project [39].

Summary. Our contributions are as follows:

e We present Compact, a scheme that can generate MPC-friendly
piece-wise polynomial approximations for complex non-linear
AFs. The generated approximation is generic and can be eas-
ily incorporated into state-of-the-art multi-party computation
scenarios (Section 4.1).

e The approximation technique used in our scheme is input den-
sity aware and accurately approximates regions with high input
probability density while coarsely estimating regions with low
input probability density (Section 4.2).

e We propose a new searching heuristic based on simulated an-
nealing framework to find parameters that dynamically adjust
an approximation that have balance performance overhead and
accuracy loss (Section 4.3).

e We conduct extensive experiments and show that Compact gen-
erated MPC-friendly approximation of complex AFs have both
negligible inference accuracy loss than other DNN-specific ap-

proaches [48, 51, 67], and 2x-5x faster than NFGen [21] (Section 5).

2 BACKGROUND AND RELATED WORK

This section summarizes relevant background and prior work from
deep neural networks (Section 2.1) and cryptographic techniques
developed for solving the secure inference problem (Section 2.2).

2.1 Deep Neural Network Preliminaries

Activation Functions (AFs). AFs are used for adding non-linearity
to the learning process and play a major role in enhancing the train-
ing capabilities and accuracy of the DNN models. Many contem-
porary models use ReLU AF, which makes a hard gating decision
based on the input sign (Figure 1). Despite being theoretically sim-
ple, ReLU provides remarkably faster convergence and performance
in practice [45, 61]. However, ReLU outputs a value of zero when-
ever the input is negative, and as such, the neural network loses
a certain amount of valid information as soon as inputs become

Compact: Approximating Complex Activation Functions for Secure Computation

ReLU(x) = max(0, x) SiLU(x) =x/(1+e™™)

Proceedings on Privacy Enhancing Technologies YYYY(X)

GeLU(x) » x/(1 + e~ 1702x)¥ Mish(x) = xtanh(In(1 + e%¥))

—fx) ——f(x) ——f(x) ——f(x)
4| a4 =) a4 =) a4 =)
= 2 = 2 = 2
.
A
04 0 — ——a— 04 — ——a— |
T T T T T T T T T T T T T T T T T T T T
-4 -2 0 2 4 -4 -2 0 2 4 -4 -2 0 2 4 -4 -2 0 2 4
X X X X

T Second derivatives f”(x) equal to zero indicates that linear polynomials can easily approximate the function.

¥ More accurate version is GeLU (x) = 0.5x(1 + tanh[+/2/7 (x + 0.044715x3)]).

Figure 1: Complex activation functions (AFs) we focus in our work f(x) € {SiLU, GeLU, Mish} and their second derivatives
f”(x). These AFs are hard to approximate accurately in regions close to zero where f”/(x) > 0. We argue this is especially
problematic for DNN models as the majority of the input to the complex AF falls to the region that are hard to approximate
accurately (i.e., close to zero) due to normalization (Figure 2). In contrast, ReLU(x) AF can be precisely approximated with only
two simple polynomials {f, f,} which are f;(x) = 0 when x < 0 and f,(x) = x when x > 0.

negative. This drawback prompted ML communities to develop
complex AFs, overcoming the limitations of ReLU.

Complex AFs. In recent years, a range of complex AFs, such as
SiLU [19], GeLU [31], and Mish [57], have emerged surpassing the
performance of ReLU in state-of-the-art DNN models applied across
computer vision, natural language processing, and reinforcement
learning applications. These AFs as shown in Figure 1, are smooth
and continuous, can handle small weight changes, and aid in effec-
tively regularizing DNN models. For example, Hendrycks et al. [31]
empirically illustrated the robustness of GeLU-trained DNN models
against noisy inputs, often surpassing the accuracy of ReLU-trained
models. Ramachandran et al. [66] used automatic search techniques
to uncover SiLU (also called Swish). This complex AF improved
image classification accuracy of Inception-ResNet-v2 model by 0.6%
and by 0.9% of Mobile NASNET-A model by simply substituting it
with ReLU. Misra et al. [57] proposed the self-regularized AF Mish
that exhibits superior performance compared to AFs for YOLOv4,
ResNet models.

Hence, complex AFs offer a compelling advantage in building
better-performing models in terms of convergence and classifi-
cation accuracy when compared to ReLU. Unfortunately, unlike
ReLU, which is relatively easy to compute for secure evaluation,
these complex AFs exhibit a higher degree of non-linearity near
the region close to zero as shown in Figure 1. This makes their use
with existing MPC techniques challenging. In this work, we address
this limitation by designing an MPC-friendly version of these three
complex AFs. We refer more interested readers to Appendix A for
additional details on other complex AFs used in neural networks
that lie outside the scope of this work.

Batch normalization. Batch normalization (BN) is used to ad-
dress internal covariance shift problem in neural networks — which
happens when a layer’s input distribution changes abruptly due to
its dependency on previous layers [38]. BN lends stability to the
training process by reducing dependence on initial parameter se-
lection, requiring a lower learning rate, and number of epochs. BN

Linear Normalization Non-linear
=ty Sy T B
operations operations

Figure 2: The output of the linear operations (a’) are normal-
ized to a’ using Equation (2) before they are forwarded for
applying non-linear operations involving complex activation
functions (AFs).

is performed on the outputs of the linear transformations, and nor-
malized outputs are forwarded to non-linear AFs. Thus, non-linear
AFs receive normalized inputs. Figure 2 illustrates BN process for
£t layer where input to the linear operations is hf and output is

‘{, ag, cee ,af;) is d-dimensional. If the

population mean and variance are E[a’], Var[a’] respectively, then

a’ is normalized to a’

T
al = w' bl Assume af = (a

using the following Equation (2) such that
the probability distribution of @ follows a normal distribution with
zero mean and unit variance:

A, = (af, ~ Elag)/Varlaf] (2) @

BN is widely used in state-of-the-art DNN models to calibrate
the input to the non-linear AFs during both training and inference
phases. This makes BN a good estimator of the input density to com-
plex AFs in DNN models during inference. Our scheme leverages
this estimation to improve the inference accuracy of the generated
MPC-friendly approximations.

2.2 Secure Inference for DNN models

State-of-the-art MPC techniques enable computation on encrypted
data and have been used to address the secure inference problem.
Generally, a client encrypts their input and sends the encrypted
input to a cloud service. The cloud service performs inference
using trained DNN models over the encrypted input. Typically,
MPC techniques are optimized for linear transformations (e.g., ad-
dition, matrix-vector multiplications, etc.). Therefore, computing

Proceedings on Privacy Enhancing Technologies YYYY(X)

non-linear operations involved in secure inference (e.g., non-linear
AFs) is one of the main challenges.

RelLU specific secure inference. Given the popularity of ReLU in
practical deployments of DNNs, recent research has mostly focused
on the use of ReLU. Early two works [10, 26] in this area generate
Fully Homomorphic Encryption (FHE) friendly approximation of
ReLU AF for secure inference. Recent work focuses on MPC friendly
approximation of ReLU [11, 35, 68, 77, 78].

For example, Rathee et al. [68] propose a novel 2PC protocol for
secure comparison and division for efficient evaluation of ReLU
in semi-honest settings. Follow-up works extend this protocol to
the malicious client threat model [11, 35]. However, ReLU specific
optimizations proposed in the aforementioned methods do not
generalize to other complex AFs. Another set of methods uses
Garbled Circuits (GC) for secure evaluation of ReLU [41, 47, 56,
70]. However, communication overhead limits its applicability to
shallow DNN models (less than seven layers). It is challenging to
generalize these methods to wide DNN models that use complex
AFs other than RelLU for secure inference.

A different approach for computing non-linear AFs efficiently in
the encrypted domain is by restricting the way DNN models are
trained. For example, Riazi et al. [69] leverage GC based protocol
for secure inference on binary neural networks (BNN). However,
retraining and pruning proprietary models with these restrictions
could be costly and oftentimes practically infeasible. Imposing such
limitations on the training process can also impact the performance
of DNNGs in practice. Pereteanu et al. [65] introduce the notion of
partially private DNN models such that the middle part of the model
is sent in plaintext to clients to reduce communication overhead.
However, in practice, cloud service providers would want to keep
their full part of the DNN model secret lest revealing any part of
the property model leaks sensitive information, resulting in severe
business consequences.

In summary, while many promising works [63] have focused on
secure inference for ReLU-based DNNSs, our work focuses on novel
complex AFs that have been shown to outperform RelLU and are
getting traction in the ML community.

Secure inference for other non-linear AFs. A common ap-
proach for secure inference involving non-linear AFs is by approxi-
mating them with low-degree polynomials. These polynomials are
easy to compute for MPC frameworks and thus are MPC-friendly.
The challenge is not to degrade the inference accuracy, as the ap-
proximation error can cause incorrect results. Delphi [56], for ex-
ample, runs a planner that balances which AF can be replaced
with low-degree polynomials without introducing too many inac-
curacies and achieving a significant communication benefit. Cryp-
toNet [26] CryptoDL [32], MiniONN [51] also, use similar ideas
for approximating non-linear AFs. However, they are application-
specific, and switching to another application degrades accuracy
significantly [24] due to small errors getting propagated resulting
in numeric instability. In addition, MiniONN [51] is heavily focused
on sigmoid AF — which is essential for logistic regression models.

However, as we will show in Section 5.3, when we use their
recipe for generating MPC-friendly approximation of the complex
AFs that we focus on in this work, the inference accuracy decreases

Islam et al.
#" Proprietary “Cloud v 7 U """""
. ser
DNN Model MPC Service °
Friendly Provider | -
v Model MPC | i—(Secure |—| MPC
T Engine | i<—(Inference J<—i| Engine
Non-MPC
i friendly Model || Compact o T :
i | with Complex AF i rivate
)

@ (b ©

Figure 3: Secure inference in cloud-based deployment setting.
(a) Proprietary DNN model trained over private data that is
not MPC-friendly due to complex non-linear activation func-
tions (AFs) (e.g., SiLU, GeLU, Mish). An MPC-friendly model
is generated by replacing the complex AFs with their approxi-
mations using Compact. (b) Next, we generate n secret shares
of the MPC-friendly model and distribute them with n com-
puting servers (in this figure n = 3) on the cloud. (c) To get the
inference result, the client gets the private input data from
the user, generates shares of it and distribute these with the n
servers. These servers on the cloud perform secure inference
using an MPC engine and return the shares of the inference
result to the client, and the client uses them to reconstruct
the original inference result.

drastically. Recently, Fan et al. [21] proposed NFGen, a technique
capable of converting popular non-linear functions — used in scien-
tific domains — to MPC-friendly ones. One may also choose to use
this approximation-based approach to do the same for complex non-
linear AFs. In fact, NFGen is the closest related work to ours. How-
ever, NFGen is not specifically customized for widely used complex
AFs inside DNN models. Absence of such customized techniques
makes NFGen computationally less efficient when we compare it
with our scheme through extensive experiments (Section 5.4).

3 PROBLEM OVERVIEW & DESIGN GOALS

In this section, we first formulate the problem of secure inference
and detail the threat model (Section 3.1). Then we describe the de-
sign goals we want to ensure while developing Compact (Section 3.2).

3.1 Problem Overview

Problem formulation. We refer to the server holding the DNN
model by Sowner. The DNN model consists of L layers, each com-
prising linear transformations and non-linear complex activation
function (AF) Fyct. In between linear and non-linear complex AF,
batch normalization is also present. We assume a machine learn-
ing as a service (MLasS) [1] inspired scenario where weights W =
[wi1,wg, -+ ,wr] of all L layers of the model have already been
trained, and the trained model is being used to provide cloud-based
inference z over client (C) uploaded input x using Equation (3).

2 := Fact(WL - -+ Fact (W2 - Fact (W1 - X))) ®)

The problem secure inference tackles is how to compute the
above equation obliviously to satisfy the privacy needs of both C
and Sowner- This requires designing a system such that C knows

Compact: Approximating Complex Activation Functions for Secure Computation

nothing about model weights W and Sowner learns nothing about
x; yet C can get the inference result z. Moreover, we need to achieve
this privacy need with both negligible accuracy loss and reduced
performance overhead.

Scenario Setup. Secure multi-party computation (MPC) tech-
niques enable a set of mutually distrusting parties to compute a
function over their private inputs without revealing the inputs to
other parties. Most MPC platforms use a version of secret shar-
ing [5]. A (¢, n)-secret sharing scheme divides a secret input s into
n shares, such that any t — 1 of these shares reveal no information
about s, whereas any ¢ shares allow complete reconstruction of s.
Based on this primitive, we consider the following scenario to solve
the secure inference problem using MPC.

In our setup, there are two parties: the first one is Sowner Wwho
owns the trained model with weights W. The second party is the
user C who queries the model with their private data x. In a typical
secure inference system, a set of semi-honest computing servers
help compute the secure inference. These servers do not have any
input of their own but facilitate the secure computation procedure.
Neither the model owner Sowner nor the client C trust these servers
with their private inputs; however, they trust them to follow the
protocol specified.

Secure inference is performed in two phases. In the first phase,
Sowner locally generates n secret shares of their private data W
as [W1, Wz, -- Wy], and distributes them amongst n comput-
ing servers over the network. After this phase, when the client
C wants to query the secure inference service with their privacy-
sensitive data x, they need to generate n secret shares of it locally as
[[xl, X2, * ,x,,]], and send these shares to the n computing servers.
Finally, these n computing servers engage in an MPC protocol to
securely compute Equation (3), and generate n secret shares of the
result z. At the end of the protocol, ¢ of these secret shares of z
are sent to the querying user who can combine these n shares to
construct the final result z. Following prior work we consider two
settings based on the number of computing servers: (i) n = 2 [56, 60],
and (ii) n = 3 [71, 78, 78]. In this study, we refer to them as 2PC and
3PC scenarios respectively.

Threat model and scope. In this work, the techniques we use do
not apply any restriction on how the adversary A is modeled by
the MPC scheme or the type of secret sharing being used by the
MPC scheme. Henceforth we can inherit the security requirements
of the underlying MPC scheme.

That being said, the majority of the existing works on secure
inference assume that these n computing servers are semi-honest
(i.e., adversaries who do not deviate from the protocol but try to
learn as much information as possible as from the messages they
receive) [63]. In practice, this can be achieved by placing these
computing servers under the regulation of a trusted organization,
and monitoring that they are following the MPC protocol. In our
experimental evaluation, we adopt this threat model.

We note that our scheme does not guarantee protection of W,
and x against attacks such as training data poisoning [73], model
inversion [23], adversarial examples [27], membership inference
attacks [9], etc. One wishes to do so should employ defenses from
existing literature, and whether MPC schemes can be leveraged

Proceedings on Privacy Enhancing Technologies YYYY(X)

Method G Supp. o Supp. o Comp. ° Supp. any
cmplx. AF many HL w/ MPC libs training proc.
CryptFlow2 [68]* O [J O [J
SIMC [11]% © () O [)
Cheeta [35]% O [J O [J
Delphi [56]*% O [J O O
XONN [69]% © ® O O
SIRNN [67] © @) O [
MUSE [47]% © ® O [
SecureNN [77]% O [J O o
FALCON [78]% O o O [
NFGen [21] [J O [] {]
Compact (this) o o o [)

@ Yes; [)) Unclear; ONo

* Support for large number of hidden layers (HLs) for these methods is
experimentally validated for DNN models for ReLU.

§ Although Delphi uses GC to evaluate non-linear layers, the MPC-friendly square
function used to replace ReLU is specific towards ReLU. Therefore, we do not
consider it compatible with complex AFs.

Table 1: Comparison of related work with Compact.

to provide protections against such attacks is an open question as
discussed further in Section 6.

Motivating example. One of the motivating realizations of se-
cure inference scenarios can be in the medical domain as pictured
in Figure 3. In particular, where a DNN model weights W has been
trained by a trusted organization (e.g., National Institutes of Health)
leveraging substantial computational resources and exclusive ac-
cess to users’ private health records. To preserve the privacy of
the proprietary DNN model, NIH can generate secret shares of
the model W and distribute them across n different semi-honest
computing servers, possibly hosted by different hospitals. When
patients submit their private health data x, they can generate n
secret shares and share them with the n different hospitals. In this
way, the patient learns the final result without learning anything
about W or revealing their private information x to any hospital.

Difficulty in computing non-linear AFs. A major bottleneck
while running the MPC protocol is computing Fact(x) securely
shown in Equation (3). This is because Fact(x) is non-linear, which
consumes most of the communication and latency costs of the
overall protocol execution, as illustrated by many prior works (e.g.,
Rathee et al. [68, Table 6]). Linear operations (i.e., matrix-vector
multiplication) are less expensive comparatively.

3.2 Design Goals

While designing Compact, we want to ensure DNN model designers
are not restricted to the set of AFs and model architectures that
MPC platforms support. We distill four criteria for this and show
how prior work on secure inference fail to satisfy one or more of
these design goals in Table 1.

@ Support complex AF. We want our scheme to be compatible
with the majority of the DNN models used by inference services.
Therefore, in this work, we do not use ReLU-specific optimizations.
Majority of prior works are devoted to optimize ReLU and fail
to satisfy this design goal [35, 56, 68, 77, 78]. Few works rely on
garbled circuits (GC) to evaluate AFs, but experimental evaluations

Proceedings on Privacy Enhancing Technologies YYYY(X)

are limited to ReLU AF [11, 47, 67, 69]. Therefore, it is unclear if
these GC-based protocols can generalize to other complex AFs such
as SiLU, GeLU, and Mish. We marked them as unclear in the first
column of Table 1.

@ Supports large number of hidden layers. The error intro-
duced due to replacing F,¢t with its MPC-friendly approximation
Fact in Equation (3) can accumulate and possibly lead to a signif-
icant loss in accuracy as the number of hidden layers increases.
Unfortunately, few prior works [48, 51, 67] that support complex
AFs show significant accuracy loss for DNN models with a high
number of hidden layers. NFGen, however, does not exhibit this
accuracy loss as the number of hidden layers increases, but this neg-
ligible accuracy loss comes at the cost of paying high-performance
overhead. We want our scheme to endure such accuracy loss as the
number of hidden layers increases without increasing the perfor-
mance overhead significantly.

@ Compatible with MPC libraries. The secure inference proce-
dure we develop should not only support a wide variety of AFs but
also should be easy to implement. Implementations that require new
cryptographic primitives for secure inference will be hard and slow
to deploy. Therefore, in this work, we aim to design a scheme that
can be implemented with generic MPC libraries currently in use.
Our solution only requires secure addition, multiplication, and com-
parison operations. This would also allow seamless transitioning
from inference service using ReLU based DNN models to complex
AF-based DNNs. Prior works other than NFGen do not satisfy this
design goal.

O No restriction on training. To handle accuracy loss with an
increasing number of hidden layers, some prior works change the
way DNN models are traditionally trained. For example, XONN
requires restricting the weights of the DNN model to binary values
(i.e., £1); similarly, Delphi replaces certain AFs (i.e., ReLU) with a
square function during training. We believe this type of restriction
poses additional constraints for deployment of secure inference as
existing DNN models are most likely trained without these restric-
tions, and the weight of the already trained DNN models must be
adjusted (e.g., fine-tuning by applying these restrictions) to comply
with these protocols. Therefore, we aim to design Compact without
any restriction on the training process of the DNN models.

In summary, recent proposal in secure inference literature holds
promise toward realizing secure inference; but they do not satisfy
the above-mentioned generality, deployability, and scalability as-
pects important for realizing secure inference in practice. We aim
to bridge this gap via our designed scheme Compact.

4 DESIGN OF COMPACT

In this section, we first give an overview of our scheme in Section 4.1.
Then, we gradually detail our scheme in Section 4.2 and Section 4.3.
We sketch our scheme in Figure 4 with a summary of used notations
in Table 2.

4.1 Overview of Compact

Piece-wise polynomial approximation approach. Our scheme
Compact follows the idea of approximating a complex activation

Islam et al.

Symbol Description of the symbol

Fact(x) complex activation function we want to approximate.

Fact(x) MPC friendly piece-wise polynomial approximation of
Fact (x).

& distance metric used to estimate the approximation er-
ror between Fuct (x) and l?act(x)

1 maximum threshold for approximation error.

m # of piece-wise polynomials used for approximation.

k maximum degree of each of m piece-wise polynomials.

Red ring of size ¢ is used in MPC library with last d bits
representing the fractional parts.

fi(x) single polynomial approximating Fct(x) between
[xi, xi41]

[s,e] the interval over which we are trying to approximate
Fact

[a, B] a continuous closed interval between « and f

P probability distribution of the input to the activation
function.

Table 2: Notations used in this paper.

function (AF) using a number of piece-wise polynomials. First, we
observe that complex AF can be approximated easily using linear
functions outside a certain range. (Fan et al. [21] made similar
observations for sigmoid.) Therefore, we only need to approximate
a small range of x values, say [s, e]. We will approximate F,¢t using
a piece-wise polynomial function, with m pieces [f, fo, -, f]
defined as follows:

m+1

Fact(%) = D 1i(x) - f3(x))
i=0

where I;(x) = 1if x € (xj—1,x;i], and 0 otherwise, for all i €
{0,1,....m+ 1}, x_1 = =00, x0 = 8, Xm = e, and Iyy1(x) = 1, if
x > e, and 0 otherwise. The functions I; define the pieces, and
functions f; define the polynomials. From Figure 1, it is easy to
see that when x < —5 or x > 5, Fat(x) becomes equal (or very
close) to zero and x, respectively. As such, we can set f,(x) = 0,
and f,,,;(x) = x by maintaining s < =5, and e > 5 for all complex
AFs. For the other polynomials, we impose an additional constrain
that f; must be of degree k or less, Vi Deg(f;) < k as following.

fi(x) = ap + arx + apx? + - + apxk)

The above-mentioned approach is not specific towards ReLU and
can approximate complex AFs (e.g., SiLU, GeLU, Mish) — satisfying
design goal @ as described in Section 3.2. Furthermore Equation (4),
and (5) comprise of three math operations ADD, MUL, and COMP
and the majority of the MPC libraries support these three math op-
erations and thus Compact generated approximations of AF satisfy
design goal €.

However, generally approximation-based approaches tend to be
inaccurate [42]. Thus, maintaining negligible accuracy loss with in-
creasing hidden layers (design goal @) and imposing no restriction
on training (design goal @) at the same time become challenging.
We address this challenge by developing the techniques described
in the subsequent sections.

Compact: Approximating Complex Activation Functions for Secure Computation

Proceedings on Privacy Enhancing Technologies YYYY(X)

Global parameters used by Compact
F,¢t « activation function to approximate between [s, e]
P« N(0,1); & < EMean; S «— —5;e <5
n « plaintext inference accuracy using Fjct

v 1072 accuracy loss practitioners can tolerate.

GenAccuracteApprox (0):
(mk,R) «— 6
Ae—(e—s)/m
BBt 0; 8o — 0; Sn — MAX_APPROX_ERROR
while 8|, < y;
Fact < 05 Smid < (3o + Shigh) /2; a5 fe—a+A
while § < e:
f « InterPolate (Fact, k, a,)
& — & (P, Fact, fr . B)
if & > 6mid/m3
Fact (_Factu{f}§ a <_ﬁ
p—p+A
n’ « compute accuracy using Fpet on R
if ('] - ']’)/'LS VA |Fat] S m:
Ffﬁs' — Fact; Shi < Omid
else: Ol < Smid

Tbest
return F3

FindBestPiecePoly ():

Ocur < (mo, ko, Ro)
Fil « GenAccuracteApprox(6Ocur)
Solving the constraint optimization problem in Equation (10)

for i « 1to imax // imax < 10 for our experiments

T; « xo/log(1+1i) // yo < 0.2 for our experiments

0; < GenerateNeighbour (6cyr)

F. < GenAccuracteApprox(6;)

if Fi = 0: continue
r«$ U|0,1]
if exp ((Time(ﬁgc“t' - Time(faict))/'l}) >r:

ﬁ;:ltr « }?;ct; Ocur — 0;

Initial solution

cannot find an ITM with (n—n')/n<v

Teur
return F({

GenerateNeighbour(6):

(m,k,R) « 0

Sample 21, z; € Z according to the probability density function p(z) = 1/3- 272l
m «—m+z; kK «—k+z

¢ 5 {128,84,64,32}; y, <5 {1.5,2,2.5,3,3.5,4}

d [ty

0 — ("KL)

return 6’

Figure 4: (Right-top) FindBestPiecePoly procedure to find an MPC-friendly approximation Fact of the complex activation
function (AF) Fyct (Section 4.3). The procedure balances the trade-off between inference accuracy loss and performance overhead
using an application-specific optimization approach (simulated annealing). It uses two sub-procedures—GenerateNeighbour
to generate a random neighbor ¢’ from a given 6 (shown Right-bottom) and GenAccuracteApprox to approximate the region
[s, e] accurately using a set of at most m polynomials (shown Left) with degree < k (Section 4.2). Notations are explained briefly

in Table 2.

4.2 Generating Accurate Approximations

To approximate F,¢t for a given region [s, e] using m piece-wise
polynomials with degree at most k and has negligible accuracy loss,
we use an opportunistic approach GenAccuracteApprox as shown
in Figure 4. We use an interpolation technique similar to the one
proposed in NFGen [21]. However we use dynamic approximation
which makes Compact computationally more efficient than NFGen
as the number of hidden layers increases (experimentally illustrated
in Section 5.4).

4.2.1 Computing P(x). We aim to design approximate polynomials
that are close to accurate on likely values of x, meaning higher
probability according to P(x), while may have higher error on
values of x, which are less likely. A challenge, however, is how to
estimate the distribution P. Interestingly, in DNN models, the inputs
to an AF are first batch normalized (BN) using Equation (2), to
help the network converge faster during training (discussed earlier
in Section 2.1). Therefore, the set of values the AF is computed on
is distributed (approximately) as a normal distribution with zero
mean and unit standard deviation. The approximating piecewise
polynomial, therefore, should ensure low error on highly likely
inputs, whereas on low probable inputs, it may allow making a
higher error.

Our key insight is that P(x) can guide us to focus on approximat-
ing those regions more accurately where P(x) is high. We estimate
P(x) using a standard normal distribution N (0, 1), and use a cus-
tomized function to compute the approximation error that takes
into account P(x), as we describe next. We remark on one caveat of

this design choice: Compact becomes reliant on BN as we discuss
further in Section 6.

4.2.2 Designing E. To incorporate P(x) to the approximation pro-
cedure, we customize an approximation error which we refer to as
weighted mean approximation error denoted by Emean-

EMean (P, Factsf, a, ,5) =

B
(ﬂ—ia)a/' P(x) « |Fact(x) — f(x)|dx (6)

As shown in Equation (6), in addition to considering how accurately
f(x) estimates Fact(x) for a given region between « and f, Emean
also takes P(x) into account. NFGen [21] uses max approximation
error, which we denote by Epmax as a way to design E.

EMax(Fact, fra,) = max |Faet(x) = f(x)]
x€[a.p]

We choose to use Epean 0ver Epmax as it is easy to guide the ap-
proximation process via P(x) using Emean-

4.2.3 Selecting a threshold § for approximation error Epean- A
straightforward ad hoc way to ensure the accuracy of the approx-
imation is to set a fixed approximation error threshold (§) and
consider an approximation accurate if approximation error calcu-
lated via € is < 8. NFGen follows this ad hoc approach and sets
§ = 1073. Via empirical experimentation, they observed that if
EMax < 1073, then the generated approximation, when used in lo-
gistic regression and y? testing, does not degrade accuracy without
adding much performance overhead.

Proceedings on Privacy Enhancing Technologies YYYY(X)

We refrain from setting a fixed § for Compact as the appropri-
ate § may vary from one DNN model or dataset to another. Also,
Compact should systematically find the appropriate 8, relieving
the practitioners of the additional burden of finding an appropri-
ate § on their own. Thus, Compact discovers an appropriate § by
performing a binary search over § and finding the highest § such
that the approximation corresponding to ¢ incurs a negligible infer-
ence accuracy loss. This is sound due to the monotonic relationship
between approximation error and inference accuracy. Lastly, one
challenge of this approach is checking if the inference accuracy loss
is small at each step of the binary search. We describe a solution to
this challenge next.

4.24 Measuring accuracy loss. It is difficult to analytically find the
optimal § that minimizes inference accuracy loss while having re-
duced performance overhead. We attempt to handle this challenge
empirically by relying on well-known closed-world assumption
used in machine learning (i.e., for each testing class enough rep-
resentative examples are available in the training dataset). More
specifically, we replace the original F,¢; with the generated MPC-
friendly approximation Fact and calculate the inference accuracy
over the training dataset. We call this inference accuracy n” and
compare it with the plaintext inference accuracy n which uses the
original F,¢t over the same training dataset. If (5 — ") /n < v, we
consider l?act to be accurate enough, where v is a small value repre-
senting the accuracy loss the practitioner can tolerate for switching
to secure inference from plaintext inference.

4.2.5 Designing f;gf We also added another DNN model-specific
optional optimization. Instead of approximating the original F,¢t (x),
we manually introduce a crude MPC-friendly approximation of
Fact(x), which we call 1’5;?2 Then, we use GenAccuracteApprox

rerd
- Fact

procedure to approximate (Fact(x) (x)). The final approx-

imation of an AF would be F;g? (x) + Fact (x). Note that }A’;Ef is
designed to be simple and linear, making it easy to use with stan-
dard MPC libraries. We find this approach significantly improves
the approximation procedure

For SiLU AF, since SiLU(x) = x - sigmoid(x), we can simply
borrow the structure of the MPC-friendly approximation for
sigmoid(x) ~ max(0, min(x+0.5, 1)) from [59]. We tweak it slightly
to be more precise and multiply it by x to get F;rlﬂ as shown
in Equation (7).

silu

Frerd (x) = x - max (0, min(6x + 0.5, 1)) (7)

For GeLU AF, since GeLU(x) =~ x - sigmoid(1.702x), similarly
we can write crude MPC-friendly approximation of GeLU AF by
leveraging the same structure of MPC approximation for sigmoid
as shown in Equation (8).

Fgg,_u (x) = x - max (0, min(10x, 0.5)) (8)

Since Mish cannot be expressed easily in terms of sigmoid, we
denote crude MPC friendly approximation of it by ReLU as shown
in Equation (9).

Fod (x) = max(0,x) (9)

2For simplicity this is not shown in Figure 4 GenAccuracteApprox.

Islam et al.

4.2.6 Performing interpolation. We interpolate f (x) between range
[a, f] by a k-degree polynomial f (Equation (5)) using the InterPolate
procedure. To find the best performing f(x), similar to NFGen, we
adopt Chebyshev interpolation [53] over other alternatives, such
as cubic spline or uniform polynomial. This is due to an established
fact in the area of function approximation theory [55] that Cheby-
shev polynomial interpolation generally has superior performance
to cubic spline or uniform polynomials interpolation when f(x)
involves non-linear operations such as e *, In, tanh, as it is the case
with complex AFs shown in Figure 1.

GenAccuracteApprox procedure. Now we can piece together
the above-mentioned techniques and describe the procedure to
approximate F,¢t within region [s, e] using a number of piece-wise
polynomials in detail (as shown in GenAccuracteApprox Figure 4).
First, we set a step size A, @ < s, and f < a + A. Then at each
step, we increase the pointer f§ by A. Before increasing f3, we check
if the adjusted approximation error §’ in the region [,] is more
than the expected approximation error §/m.

If this is the case, we approximate the region [a, f] using a
polynomial f using the Chebyshev interpolation algorithm, add
that polynomial piece to Fact — Fact U{ f}, and update « to . Next,
we update f by A, and again perform the above-mentioned check
until we have approximated the whole region [s, e].

4.3 Finding Efficient Approximation

Now that we can generate MPC-friendly approximations Fact using
GenAccuracteApprox procedure that have negligible accuracy loss
for a given (m, k, R), one can search over all possible values of
(m, k, R) and select the I?act that is computationally more efficient.
We use 0 to represent (m, k, R). We also use Time(lzct) to represent
the average time it takes to complete secure inference with the
approximation I?;ct generated using 6’ in the approximation process.

The accuracy loss can be presented by Achoss(I?;ct, Fact) = (n —
n’)/n; where n is the accuracy when we use the complex AF Fy¢
as it is (i.e., plaintext accuracy), and n’ is the accuracy when we
replace the complex AF with its MPC-friendly approximation f; ot
(i.e., secure inference accuracy).

Unfortunately, because of performing the binary search to find
the appropriate 8, GenAccuracteApprox becomes time-consuming.
This is because determining if the accuracy loss is negligible at
each step of binary search with reasonable confidence requires
performing inference over the large training dataset (as explained
in Section 4.2.4), and it makes exhaustively iterating over all possi-
ble values of 6 from the search space © infeasible.

In this work, we treat this problem of finding optimal 6 used for
the approximation to balance performance overhead and accuracy
loss, as a constraint optimization problem (COP). Roughly, this
means, we find a 8’ € © that minimizes the average inference time
under the constraint that the accuracy loss is less than a specified
threshold v.

Concretely, for a given Fact, we want to solve the following
optimization problem.

0 «— argmin Time(F.) s.t AccLoss(Flep, Fact) < v (10)

0'c®

ct>

Compact: Approximating Complex Activation Functions for Secure Computation

Here v is the specified maximum accuracy loss threshold we can tol-
erate, and F; <t 1s the MPC-friendly approximation of Fact generated
by Compact using 6’. Now to solve this COP problem in Equation (10),
we devise a search technique based on simulated annealing (SA) [40].
SA is a general framework to tackle COP. Briefly, SA starts with
an initial solution, generates new neighboring solutions relative to
the current solution, and probabilistically decides between moving
to the new solution or staying with the current solution for fixed
number of iterations. One advantage of sketching SA-based search-
ing for optimal solution @ is that SA is gradient-free — suiting our
needs — overcoming the difficulty to underpin an analytical for-
mula of Vy_(m | ®) GenAccuracteApprox(-). That being said, other
gradient-free searching techniques may also work as well [20], and
we detail some additional discussions about this in Appendix B.

One important characteristic of SA—we need to model for this
case—is how to avoid being trapped in a local suboptimal solution.
To this extent, we follow suggestions from prior work [15, 37],
and probabilistically move towards a new solution 0; even if 6; is
computationally less efficient approximation than the current best
solution (Bcyr).

More precisely, if at i-th iteration, we denote the MPC-friendly

approximation from 6; as 1:";" then we always update our current

ct’

best solution 8¢y to 0; if I’:th

than f;é‘tr (ie., Time(}?;é‘t') > Time(fi’;ct)). Otherwise, we update
Ocur to 0; with a certain acceptance probability. This probability
depends on two factors. First, the temperature at i-th iteration called
T; — which is initially high, meaning we have a high tendency to
accept a solution computationally less efficient, but after a few
more iterations T; decreases and so does our tendency to accept
a computationally less efficient solution. Second, the amount of
computation less efficient cmt is compared to f;gtr. In other words,
we accept 0; when exp(y//T;) > r is true. Here ¢ represents the
computational efficiency of ﬁ;ct over the current approximation
I?;'C"tr expressed as i/ « Time (I?gé‘t') —Time(l::a‘;ct), and r is a randomly
chosen number given by r «s Ujq .

We have to design two more parameters carefully. One is the
neighborhood generation heuristic for 8, and the other is setting a
cooling schedule for the temperature T;. Without careful handling of
these two parameters SA may lead to undesired approximations [6].

is computationally more efficient

Neighbour generation heuristic. At iteration i, we generate a
new neighbor 6; = (m’, k’, R’) from 6 = (m, k, R) in the following
way: for m’, k" we randomly sample two integer numbers z1,z2 € Z
from a probability distribution having density function p(x = z) =
(1/3) - 271#1 such that and set m’ < m + z; and k’ «— k + z,. This
means that the chances of moving further away from the current
value m and k decreases exponentially.

To specify a R, we need two numbers: i) the size of the ring
used in MPC library (denoted by ¢), and ii) the number of last bits
to represent the fractional parts (denoted by d). Typically, MPC
libraries use R sizes of {128, 84, 64, 32}. We randomly sample a ring
size from these for ¢, and regarding values of d we set it to d «
L£/y2] where y» is randomly sample from y, €g {1.5,2,2.5,3,3.5,4}.

Cooling schedule. As for the cooling schedule, we adopt the classi-
cal logarithmic series T; < yo/log(i + 1) at i-th iteration following
Hajek et al. [28]. This choice ensures that initially, T; would be high,

Proceedings on Privacy Enhancing Technologies YYYY(X)

thereby increasing the chances of accepting a computationally less
efficient approximation during the early iterations. But as the num-
ber of iterations increases, T; progressively decreases, lowering this
chance. We simply set yo = 0.2 for all of our experiments, yielding
T1 ~ 0.67 and Typ ~ 0.2.

We show the pseudocode for finding computationally efficient
approximation FindBestPiecePoly and the procedure for generating
neighbors at each iteration GenerateNeighbour in Figure 4.

5 EXPERIMENTAL EVALUATION

We conduct experiments to address the following questions:

(1) Model Accuracy (Section 5.3): What is the impact on model
inference accuracy of using MPC-friendly activation func-
tions Fact (x) generated using our scheme Compact and other
existing approaches [21, 48, 51, 67]?

(2) Inference Time (Section 5.4): What is the inference time over-
head of Compact compared to NFGen [21] as the number of
hidden layers increases?

5.1 Implementation Details

Our Scheme. We implement our scheme using Python 3.8 in about
800 lines of code. We approximate the region between x € [-5,5]
for all activation functions (AFs) as beyond that region, they can
be easily approximated using simple polynomials. Also, we use
SymPy [54] library for the majority of mathematical operations,
including calculating the approximation error between a given
region of a polynomial using Equation (6) and performing Cheby-
shev interpolation as mentioned in Section 4.2.6. Our source code
is publicly available [39].

Our scheme requires testing if the generated approximation has
negligible accuracy loss by checking (n — n”)/n < v (as described
in Section 4.2.4). We also configure FindBestPiecePoly with ten
iterations (imgx = 10) to find a computationally efficient approxi-
mation and set yo = 0.2. For the initial solution 6y = (my, ko, Ro),
we set mg = 10% and kg = 10 (default parameters taken from
NFGen [21]). For R¢y, 4,)> We use {fo, do) = (128, 64) — a popular
choice of ring size by many MPC libraries. With this configura-
tion, FindBestPiecePoly took less than 25 minutes on commodity
hardware to finish the four tasks and three complex AFs we detail
in Section 5.2. Table 6 shows the appropriate m, k, R we find via
FindBestPiecePoly for all tasks and complex AFs.

Other Approaches. We consider four state-of-the-art approaches
for comparison: NFGen [21], MiniONN [51], MPCFormer [48] and
SIRNN [67]. Additionally, we consider a rudimentary base approach:
replacing the complex AF with a popular MPC-friendly AF ReLU.
We consider this approach as ReLU is relatively MPC-friendly be-
cause it can be computed using only two piece-wise polynomials.

For NFGen, we add a wrapper class to the author’s open-source
implementation to measure the inference accuracy and compu-
tational overhead for the four tasks. Besides that, we keep their
implementation unchanged — using & max (Equation (4.2.2)) to mea-
sure the approximation error, setting § = 1073, k = 10, and m = 10%.
Liu et al. [51] describe an approach called MiniONN for gener-
ating MPC-friendly approximations of sigmoid AF. Since there

Proceedings on Privacy Enhancing Technologies YYYY(X)

is no publicly available implementation of MiniONN, we imple-
ment it ourselves based on the description given in [51] and extend
the approach to generate MPC-friendly versions of complex AF
Fact € {SiLU, Mish, GeLU}. Further details of MiniONN, and our
extension are discussed in Appendix C.

MPCFormer [48] approximates GeLU using an MPC-friendly
polynomial given by GeLU(x) = 0.125x +0.25x +0.5. This approx-
imation was motivated by the need to perform secure inference
for transformer-based DNN models where GeLU activation is used
extensively. Since Li et al. [48] did not provide any recipes that
could be generalized directly to other AF, we only compare the
accuracy and computational overhead for GeLU.

Lastly, Rathee et al. [67] present a library called SIRNN that
computes complex mathematical operations (e.g., €, In(x), %) se-
curely using a combination of lookup tables and numerical methods
(e.g., Goldschmidt’s iterations). Thus, complex AFs can be computed
sequentially by performing the aforementioned operations and com-
bining the intermediate results using ADD, MUL, COMP operators
to evaluate Fyct. Recently, Hao et al. [29] extended their approach
to computing GeLU AF efficiently by reducing one network call.
Nevertheless, this work uses the open source implementation of
SIRNN [60].

5.2 Experimental Setup

To demonstrate that inference accuracy and performance overhead
is negligible for secure inference using our scheme, we consider four
state-of-the-art image classification tasks as shown in Table 3 and
three complex activation functions (AF) Fact € {SiLU, GeLU, Mish}.
We train the four models corresponding to each complex AF for
each task. While training these models, we preserve the widely
use parameters as proposed in the literature for all models (e.g.,
the overall architecture of the model, # of epochs, learning rate,
optimizer, etc.) — including a batch normalization layer before
inputs are being fed to complex activation functions of each hidden
layer as illustrated in Figure 2.

Below, we provide brief details about these four classification
tasks, and further details are in Appendix D.

Four classification tasks. For the first task, we consider a simple
classification task of MNIST dataset [46] using a three-layer deep
fully connected network (FCN) with one input, output, and hidden
layer. MNIST dataset contains 70 thousand 28 x 28 handwritten
digits grey images, and the three-layer deep FCN achieves close to
0.99 training accuracy for the three complex AFs. We refer to this
task as DigitRecognition in the paper. Next, we move towards a
more complex classification task of CIFAR-10 dataset [44] — which
we refer to as CIFAR10Classification.

CIFAR-10 consists of 60 thousand 32 X 32 color images with
six thousand images per 10 classes. For performing classification
on this dataset, we use a a convolutional neural network (Con-
vNet) [64] with five hidden layers and train it over the 50 thousand
training images of CIFAR-10 dataset using three different complex
AFs. For the third task, we consider performing classification on
ImageNet-1K dataset which has been one of the challenging bench-
mark datasets in image classification [16]. We refer to this task as
ImageNet1KClassification in this paper.

10

Islam et al.

The ImageNet-1K dataset contains around one million annotated
images with 50 thousand validation images and 100 thousand test
images. We use a deep residual neural network (ResNet9) [30] model
having eight hidden layers over the training images for 50 epochs
for three complex activation functions and achieved a validation
accuracy of around 0.74. Lastly, we perform experiments to detect
spoofed images in CelebA-Spoof [83] dataset. We refer to this task
as SpoofFaceDetection in this paper.

CelebA-Spoof is a large-scale face anti-spoofing dataset used to
train anti-spoofing DNN models. CelebA-Spoof contains 625 thou-
sand facial images from around 10 thousand subjects with each
image having 43 attributes; 40 of them correspond to indicating
facial components of real images and three of them correspond
to attributes of spoofed facial images. For training, we perform
an 80%-20% split of the CelebA-Spoof dataset and adopted the Effi-
cientNetB0 [74] model, which is the state-of-the-art top-performing
anti-spoofing detection model and winner of the CVPR challenge
of detecting spoofed face images [50]. The EfficientNetB0 model
consists of 17 hidden layers, and after training the model for 25
epochs, it achieved a training accuracy of 0.98.

Machine specification. We train the models on a Linux machine
with an Intel Core i9 processor having 128 GB RAM and Nvidia GTX
1080 GPU. The training split of each dataset is used for training the
models. After the training is completed, we save these models. We
assume Sowner holds these saved models and the weights of these
models are W which Sgwner does not want to reveal to C while
performing secure inference. We simulate the C’s input x using the
testing split of the corresponding datasets for each task.

5.3 Model Accuracy

We first measure the inference accuracy of the trained models over
the testing split of the dataset by using the (non-MPC-friendly)
complex activation functions as it is and refer to it as plaintext ac-
curacy (n). Then, we replace the complex activation function with
its MPC-friendly approximation generated by different approaches
and measure its inference accuracy (1"). Thus, v = (n — ") /n gives
the inference accuracy loss introduced by MPC-friendly approxi-
mations. Table 3 shows the inference accuracy loss (in percentage)
for Compact generated MPC-friendly approximation and other
state-of-the-art approaches generated MPC-friendly approxima-
tion [21, 29, 51] — for each task across the three complex AFs SiLU,
GelLU, Mish.

Now we discuss the inference accuracy loss for different ap-
proaches, and throughout the discussion, we conservatively con-
sider accuracy loss negligible if v < 1072,

ReLU based approach. We observe that although for the first
DigitRecognition task, the inference accuracy loss is within 1.54%-
2.68% for the last three tasks accuracy loss is higher — at least
45.66% — making this approach unsatisfactory.

SIRNN [67]. For SIRNN, we observe that for DigitRecognition
task, we observe less significant accuracy loss (0.95%-2.37%). Fur-
thermore for SpoofFaceDetection the accuracy does not degrade
too much — by 0.48%-1.78%. However, for CIFAR10Classification
and ImageNet1KClassification task the accuracy degradation is
higher — suffering from an accuracy loss of 2.58%-16.31%.

Compact: Approximating Complex Activation Functions for Secure Computation

Proceedings on Privacy Enhancing Technologies YYYY(X)

% Plaintext

% Accuracy loss®

;
Task Name Model Dataset Fact accuracy ReLU NFGen MiniONN MPCFormer SIRNN Compact
SiLU 98.73 2.31 0.43 20.88 n/a 2.37 0.17
DigitRecognition FCN MNIST GelU 98.45 1.54 0.23 42.31 0.18 1.32 0.97
Mish 99.07 2.68 0.19 30.41 n/a 0.95 0.06
SiLU 86.53 49.80 0.51 18.50 n/a 2.58 0.49
CIFAR10Classification ConvNet CIFAR-10 GelU 87.11 45.66 0.64 30.04 7.07 4.01 0.25
Mish 89.30 57.07 0.27 57.07 n/a 13.64 0.11
SiLU 72.89 98.39 1.36 27.12 n/a 10.59 0.91
ImageNet1KClassification =~ ResNet9 ImageNet-1K GelU 75.43 77.66 0.05 36.21 9.43 6.68 0.03
Mish 75.78 98.97 0.61 39.89 n/a 16.31 0.55
SiLU 90.87 71.72 0.14 4.27 n/a 1.75 0.08
SpoofFaceDetection EfficientNetBO CelebA-Spoof GelLU 92.19 75.94 0.20 9.75 0.09 0.48 0.77
Mish 92.23 77.71 0.53 1.32 n/a 1.78 0.66

n/a = MPCFormer does not propose MPC friendly approximation for SiLU, Mish.

S Accuracy loss is reported by comparing the inference accuracy # and 7’ obtained using AF F,¢; and I?m, respectively. Accuracy loss = (7 — ”) /n, and reported in percentage (%).

Accuracy losses of < 1072 or < 1% are highlighted in gray.
For all models, batch normalization is used before each activation layer.

Table 3: Inference accuracy of MPC-friendly approximation of three complex activation functions (AF) for four different tasks
using state-of-the-art approaches. Except for NFGen and our approach other DNN-specific approaches show a significant drop
in inference accuracy if we use their generated MPC-friendly version of complex AF. We compare the performance overhead of
our approach with NFGen in Section 5.4 and show results in Table 4.

We hypothesize such accuracy degradation is primarily due to
two reasons: 1) intermediate steps overflowing in the fixed point
representation, and 2) errors introduced in one layer propagating
to subsequent layers and accumulating in the process. This further
motivates the need to take a piece-wise polynomial approximation-
based approach for designing MPC-friendly approximation of com-
plex AF when state-of-the-art DNN models are used, confirming
findings from prior work [21].

MPCFormer [48] For MPCFormer, we observe a negligible ac-
curacy loss for DigitRecognition and SpoofFaceDetection tasks
of 0.18% and 0.09% respectively. However, similar to SIRNN, it
exhibits a non-negligible accuracy loss of 9.4% and 7.07% for ClI-
FAR10Classification and ImageNet1KClassification task respec-
tively. We suspect this is because GeLU activation approximation
by MPCFormer relies on knowledge distillation (KD) [33] — which is
essentially fine-tuning the sequence-to-sequence-based pre-trained
model for efficiency. In absence of KD, a simple plug-and-play
replacement of polynomial approximation of GeLU activation pro-
posed by MPCFormer does not work well.

MiniONN [51]. For MiniONN, we observe that the inference
accuracy loss becomes significant when we use their recipe to
generate a friendly approximation of complex AFs SiLU, GeLU,
Mish. The accuracy loss becomes catastrophically high, especially
for ImageNet1KClassification, (27.12%-39.89%). This shows that
although the recipe proposed by MiniONN does not show accuracy
degradation for sigmoid AF for simplistic logistic regression models,
there is a generalization gap when such recipes are used for DNN
models trained on diverse datasets involving complex AFs.

Compact and NFGen [21] We observe that for all tasks, in gen-
eral, Compact and NFGen generated MPC-friendly approximations
have negligible accuracy loss of < 1%. For one instance, though,

11

ImageNet1KClassification task involving SiLU AF, NFGen has an
accuracy loss of 1.36% — marginally higher than the aforemen-
tioned threshold. When comparing the two approaches, generally,
Compact generated approximation has lower accuracy loss, ex-
cept for two instances showing a slight deviation. The first one is
DigitRecognition task involving GeLU (0.37% vs 0.23%) and Spoof-
FaceDetection task involving Mish AF (0.66% vs 0.53%).

Results summary. We conclude from these experiments that
NFGen and Compact are resistant to significant accuracy loss —
when we use their generated MPC-friendly approximation instead
of the original complex AF — compared to other approaches we
consider. Keeping that in mind, we can now investigate the next
important aspect of secure inference, measuring performance over-
head. We narrow down our experiments to NFGen and Compact —
excluding the other approaches — as their accuracy loss is signifi-
cantly high.

5.4 Inference Time

We benchmark the inference time of NFGen and Compact to mea-
sure the performance overhead. While benchmarking, we instanti-
ate each party in the protocol by machines running on commodity-
type hardware — having an Intel Core i7 processor with 64 GB
RAM and connected over a 252 Mbits/sec network link. We use
the average inference time for a single image calculated over the
testing split of the datasets and include both computational and
communication costs while reporting the results.

We consider two state-of-the-art MPC libraries [58, 68] designed
for secure inference — one for a 2PC scenario and the other for a
3PC scenario (as described earlier in Section 3).

3PC results. First, for the 3PC scenario, we consider ABY3 [58]
that uses replicated secret sharing (SS) based secure inference pro-
tocol. Table 4 compares the performance overhead of Compact and

Proceedings on Privacy Enhancing Technologies YYYY(X)

Task Name # HLs" Fact NFGen Ours Speedup
SiLU 40 43 0.93X
DigitRecognition 1 GelU 35 32 1.09%
Mish 52 49 1.06X
SiLU 114 58 1.96X
CIFAR10Classification 5 GelLU 194 94 2.05%
Mish 117 62 1.89X
SiLU 359 102 3.52X
ImageNet1KClassification 8 GelLU 446 106 4.17X
Mish 473 104 4.52X
SiLU 204 47 4.34X
SpoofFaceDetection 17 GelLU 221 45 4.91%
Mish 195 41 4.75X

T # HLs = Number of hidden layers.

Table 4: Comparison of inference time (ms) of three activa-
tion functions (Fyt) over four different classification tasks
for n = 3 computing servers using ABY3 library.

NFGen for the 3PC setting using ABY3 library. We observe that
Compact outperforms NFGen 2X-5X for the last three classification
tasks involving a high number of layers. However, Compact’s per-
formance efficacy for the first task DigitRecognition is comparable
to NFGen—exhibiting similar inference time. We hypothesize this is
because the number of hidden layers is only one for the DNN model
used in this first task. In contrast, the number of hidden layers for
the other classification tasks is 5, 8, and 17 respectively. Because
of this, there is a higher chance of the approximation errors intro-
duced in one hidden layer propagating to the next hidden layers.
Our DNN-specific techniques discussed in Section 4 can effectively
curb out this approximation error from propagating to the hidden
next layers without sacrificing much performance overhead com-
pared to NFGen. Thus, Compact’s superior performance becomes
more pronounced as number of hidden layers becomes high.

2PC results. For the 2PC scenario, we consider CryptFlow2 [68]
another state-of-the-art library for secure inference based on a
novel protocol for millionaries’ problem [82] and division over fixed-
point arithmetic. We experiment with the oblivious transfer (OT)
based construction of CryptoFlow2 but believe performance results
would also be similar for homomorphic encryption (HE) based con-
struction. We observe a performance efficiency trend of Compact
with NFGen similar to the 3PC scenario. We present detailed results
of those experiments in Appendix E.

Ablation study. From the above experiments, it is clear that Com-
pact is 2x—5x computationally more efficient than NFGen while
maintaining a negligible accuracy loss. We perform an ablation
study to investigate further what makes Compact more efficient
than NFGen. For this study, we train 10 convolutional neural net-
works on the CIFAR-100 dataset having 1 to 10 hidden layers. We
consider two approximation error thresholds & for NFGen: § = 1073
as used by Fan et al. [21], and § = 107! set by us. Figure 5 shows
the percentage accuracy loss and inference time for 3PC scenario
and SiLU activation function.

We observe that, on the one hand, although NFGen with a crude
approximation error threshold § = 10! generates an approxima-
tion of SiLU that renders inference time closer to Compact with

12

Islam et al.

20

——NFGen (§ = 107°)
= NFGen (§=107")
—e— Compact (Ours)

——NFGen (§ = 107%)
—=—NFGen (5 = 107")

00h —e— Compact (Ours)

200 - 10

100 |-

Inference Time (ms)
Accuracy loss (%)

0k i T i

I
B 10

of hidden layers (#HLs)

i
10

4 6 8
of hidden layers (#HLs)

Figure 5: Comparison of inference time (left), and accuracy
loss (right) of NFGen with Compact. For both lower is better.
We experiment with two approximation error thresholds for
NFGen: i) § = 10~! (a crude one we set) and ii) § = 1073 (used
in [21]). NFGen (5 = 107!) achieves a lower inference time
but has significant accuracy loss—while NFGen (5 = 1073%)
shows the opposite characteristic when we compare them
with Compact as #HLs increases. Compact performs well on
both accounts.

increasing number of hidden layers, it suffers from significant accu-
racy loss. On the other hand, NFGen with § = 1073 has negligible
accuracy loss similar to Compact. But it has a high inference time
with increasing hidden layers.

We believe this is due to two reasons. First, Compact automati-
cally finds the optimal 6 = (m, k, R) via binary search over § cou-
pled with a simulated annealing-based heuristic. Using a fixed § as
NFGen fails to achieve this. Second, we incorporate batch normaliza-
tion into approximation error calculation Epean (Equation (4.2.2))
to have a better approximation to polynomial pieces near the zero
regions. This is different from the approximation error calculated by
NFGen, which uses Epmax. As the number of complex AFs increases
from with the number of layers, Compact’s small efficiency for a
single complex AF over NFGen becomes pronounced.

6 CONCLUSION AND FUTURE WORK

In this work, we present Compact that enables fast secure inference
for DNN models that use complex activation functions (AFs). We
experimentally validate that Compact have better performance and
inference accuracy on the three most popular complex AFs (i.e.,
SiLU, GeLU, Mish) than the state-of-the-art approaches when the
number of hidden layers is more than one. Thus, we believe Com-
pact can accelerate easy adoption of secure inference even when
DNN models have a number of hidden layers, trained over complex
AFs to generate robust, noise-resistant, better-performing DNN
models. Deploying Compact is straightforward as it is compatible
with standard MPC libraries, and obviates the need to retrain/fine-
tune DNN models further after replacing the complex AF with
RelLU AF to make it compatible with secure inference protocols
specific to ReLU. Furthermore, one can easily use our approach to
approximate other less widely used complex AFs as well (e.g., tanh,
Smish, etc.). We point few promising research directions that we
hope future work will investigate.

Accelerating secure inference time using GPU. In the plain-
text setting, impressive ML inference time has been achieved by
harnessing GPUs, which support highly parallelizable workloads.

Compact: Approximating Complex Activation Functions for Secure Computation

This boost in inference speed can also be extended to secure set-
ting by running MPC operations inside GPUs. Indeed, recent works
have shown how to achieve significant speedup in machine learning
training and inference by making MPC operations GPU-friendly [75,
80]. We did not use GPUs while benchmarking secure inference
time. Thus, future work can look at porting these GPU-friendly tech-
niques to two state-of-the-art secure inference protocols ABY3 and
CryptFlow2, we use for benchmarking and improve the inference
time reported in Table 4.

Dependence on batch normalization. As batch normalization
(BN) is employed before AFs by the majority of state-of-the-art
DNN models used in computer vision, Compact leverages the phe-
nomenon that BN shifts the input distribution to have zero mean
and unit variance. We believe other normalization approach, such
as layer normalization - typically used in natural language process-
ing — can also be leveraged to design an approach similar to ours
in the future.

Robustness of secure inference and training. For safety-critical,
and privacy-sensitive applications, understanding the robustness
of the model against attacks like training data poisoning, model in-
version, adversarial examples, and membership inference attacks is
crucial before deploying them in practice. To the best of our knowl-
edge, such attacks are not considered by most prior work [63] on
secure cryptographic training and inference. Only recently secure
training and inference have demonstrated performance levels suit-
able for practical deployment. Therefore, it is now important to
evaluate the robustness of existing secure training or inference
protocols against such attacks, before deploying these applications
in practice.

Membership inference attacks. Compact uses the training data
(or a holdout data) to find an approximated AF that does not de-
grade accuracy and performance overhead, and one may assume
there is a chance that it could affect membership inference attacks
for outliers. In fact, any work introducing a cryptography-friendly
approximation of AF, that relies on training or holdout data, to bal-
ance accuracy and performance, could be susceptible. For example,
Delphi [56] uses the training data to run a planner that replaces
certain ReLU AF with cryptography-friendly square function, and
SecureML [59] replaces ReLU AF with a new cryptography-friendly
approximation. We discuss if using cryptography-friendly approxi-
mation of activation functions for secure inference could impact
membership inference attacks briefly in Appendix F.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their valuable comments.
We also thank Jihye Choi and Maximilian Zinkus for their feed-
back on the initial draft of this paper. This work was partially
completed when the first and the last authors were at Visa Re-
search. This research is supported in part by the University of
Wisconsin—Madison Office of the Vice Chancellor for Research and
Graduate Education and NSF award #2339679, and US Department
of Commerce award #70NANB21H043.

13

Proceedings on Privacy Enhancing Technologies YYYY(X)

REFERENCES

[1] 2022. Machine Learning as a Service: What It Is, When to Use It and What Are
the Best Tools Out There. https://neptune.ai/blog/machine-learning-as-a-
service-what-it-is-when-to-use-it-and-what- are- the-best-tools-out- there.
Toluwani Aremu and Karthik Nandakumar. 2023. PolyKervNets: Activation-free
Neural Networks For Efficient Private Inference. In 2023 IEEE Conference on Secure
and Trustworthy Machine Learning (SaTML). 593-604. https://doi.org/10.1109/Sa
TML54575.2023.00045

[3] Amazon AWS. 2023. Image Classification - MXNet. https://docs.aws.amazon.co
m/sagemaker/latest/dg/image-classification.html.

[4] Shayan Aziznejad and Michael Unser. 2019. Deep spline networks with control
of Lipschitz regularity. In ICASSP 2019-2019 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). IEEE, 3242-3246.

[5] Amos Beimel. 2011. Secret-sharing schemes: A survey. In International conference
on coding and cryptology. Springer, 11-46.

[6] Walid Ben-Ameur. 2004. Computing the initial temperature of simulated anneal-
ing. Computational optimization and applications 29 (2004), 369-385.

[7] Pakshal Bohra, Joaquim Campos, Harshit Gupta, Shayan Aziznejad, and Michael

Unser. 2020. Learning activation functions in deep (spline) neural networks. IEEE

Open Journal of Signal Processing 1 (2020), 295-309.

Pakshal Bohra, Dimitris Perdios, Alexis Goujon, Sébastien Emery, and Michael

Unser. 2021. Learning Lipschitz-controlled activation functions in neural net-

works for plug-and-play image reconstruction methods. In NeurIPS 2021 Workshop

on Deep Learning and Inverse Problems.

[9] Nicholas Carlini, Steve Chien, Milad Nasr, Shuang Song, Andreas Terzis, and

Florian Tramer. 2022. Membership inference attacks from first principles. In 2022

IEEE Symposium on Security and Privacy (SP). IEEE, 1897-1914.

Hervé Chabanne, Amaury De Wargny, Jonathan Milgram, Constance Morel,

and Emmanuel Prouff. 2017. Privacy-preserving classification on deep neural

network. Cryptology ePrint Archive (2017).

Nishanth Chandran, Divya Gupta, Sai Lakshmi Bhavana Obbattu, and Akash Shah.

2022. SIMC: ML Inference Secure Against Malicious Clients at Semi-Honest Cost.

In 31st USENIX Security Symposium (USENIX Security 22). USENIX Association,

Boston, MA, 1361-1378. https://www.usenix.org/conference/usenixsecurity22

/presentation/chandran

Google Cloud. 2023. Media Translation: Add real-time audio translation directly

to your content and applications. https://cloud.google.com/media-translation.

Google Cloud. 2023. Recommendations Al: Deliver highly personalized product

recommendations at scale. https://cloud.google.com/recommendations.

Anders Dalskov, Daniel Escudero, and Marcel Keller. 2020. Secure evaluation of

quantized neural networks. Proceedings on Privacy Enhancing Technologies 2020,

4 (2020), 355-375.

Kalyanmoy Deb. 2012. Optimization for engineering design: Algorithms and

examples. PHI Learning Pvt. Ltd.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Imagenet:

A large-scale hierarchical image database. In 2009 IEEE conference on computer

vision and pattern recognition. leee, 248-255.

Abdulrahman Diaa, Lucas Fenaux, Thomas Humphries, Marian Dietz, Faezeh

Ebrahimianghazani, Bailey Kacsmar, Xinda Li, Nils Lukas, Rasoul Akhavan Mah-

davi, Simon Oya, et al. 2023. Fast and Private Inference of Deep Neural Networks

by Co-designing Activation Functions. arXiv preprint arXiv:2306.08538 (2023).

Ashlea Ebeling. 2022. IRS To Drop Facial Scan ID.me Verification For Online

Accounts. https://www.forbes.com/sites/ashleaebeling/2022/02/07/irs-to-drop-

facial-scan-idme-verification-for-online-accounts/?sh=105801ad7c9b.

Stefan Elfwing, Eiji Uchibe, and Kenji Doya. 2018. Sigmoid-weighted linear units

for neural network function approximation in reinforcement learning. Neural

Networks 107 (2018), 3-11.

Yavuz Eren, Ibrahim B Kiigiikkdemiral, and flker Ustoglu. 2017. Introduction to

optimization. In Optimization in renewable energy systems. Elsevier, 27-74.

Xiaoyu Fan, Kun Chen, Guosai Wang, Mingchun Zhuang, Yi Li, and Wei Xu. 2022.

NFGen: Automatic Non-Linear Function Evaluation Code Generator for General-

Purpose MPC Platforms. In Proceedings of the 2022 ACM SIGSAC Conference

on Computer and Communications Security (Los Angeles, CA, USA) (CCS °22).

Association for Computing Machinery, New York, NY, USA, 995-1008. https:

//doi.org/10.1145/3548606.3560565

Frederic B Fitch. 1944. Warren S. McCulloch and Walter Pitts. A logical calculus

of the ideas immanent in nervous activity. Bulletin of mathematical biophysics,

vol. 5 (1943), pp. 115-133. The Journal of Symbolic Logic 9, 2 (1944), 49-50.

Matt Fredrikson, Somesh Jha, and Thomas Ristenpart. 2015. Model inversion

attacks that exploit confidence information and basic countermeasures. In Pro-

ceedings of the 22nd ACM SIGSAC conference on computer and communications

security. 1322-1333.

Karthik Garimella, Nandan Kumar Jha, and Brandon Reagen. 2021. Sisyphus: A

cautionary tale of using low-degree polynomial activations in privacy-preserving

deep learning. arXiv preprint arXiv:2107.12342 (2021).

[2

—_
&

[11

(12]

=
&

(18

[19

[20

[21

[22

[23

[24

Proceedings on Privacy Enhancing Technologies YYYY(X)

[25]

[26]

[27

[28

[29]

[30]

[31]
[32]
[33]

(34]

[35]

[36]

[37]

[42]

[43]

[44]

[45]

[46]

[47]

[50

Zahra Ghodsi, Akshaj Kumar Veldanda, Brandon Reagen, and Siddharth Garg.
2020. Cryptonas: Private inference on a relu budget. Advances in Neural Infor-
mation Processing Systems 33 (2020), 16961-16971.

Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine, Kristin Lauter, Michael Naehrig,
and John Wernsing. 2016. Cryptonets: Applying neural networks to encrypted
data with high throughput and accuracy. In International conference on machine
learning. PMLR, 201-210.

Tan J Goodfellow, Jonathon Shlens, and Christian Szegedy. 2014. Explaining and
harnessing adversarial examples. arXiv preprint arXiv:1412.6572 (2014).

Bruce Hajek. 1988. Cooling schedules for optimal annealing. Mathematics of
operations research 13, 2 (1988), 311-329.

Meng Hao, Hongwei Li, Hanxiao Chen, Pengzhi Xing, Guowen Xu, and Tianwei
Zhang. 2022. Iron: Private Inference on Transformers. In Advances in Neural
Information Processing Systems.

Kaiming He, Xiangyu Zhang, Shaoging Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770-778.

Dan Hendrycks and Kevin Gimpel. 2016. Gaussian Error Linear Units (Gelus).
arXiv preprint arXiv:1606.08415 (2016).

Ehsan Hesamifard, Hassan Takabi, and Mehdi Ghasemi. 2017. CryptoDL: Deep
neural networks over encrypted data. arXiv preprint arXiv:1711.05189 (2017).
Geoffrey E Hinton, Simon Osindero, and Yee-Whye Teh. 2006. A fast learning
algorithm for deep belief nets. Neural computation 18, 7 (2006), 1527-1554.
John J Hopfield. 1982. Neural networks and physical systems with emergent
collective computational abilities. Proceedings of the national academy of sciences
79, 8 (1982), 2554-2558.

Zhicong Huang, Wen jie Lu, Cheng Hong, and Jiansheng Ding. 2022. Cheetah:
Lean and Fast Secure Two-Party Deep Neural Network Inference. In 31st USENIX
Security Symposium (USENIX Security 22). USENIX Association, Boston, MA, 809—
826. https://www.usenix.org/conference/usenixsecurity22/presentation/huang-
zhicong

Siam Umar Hussain, Mojan Javaheripi, Mohammad Samragh, and Farinaz
Koushanfar. 2021. Coinn: Crypto/ml codesign for oblivious inference via neural
networks. In Proceedings of the 2021 ACM SIGSAC Conference on Computer and
Communications Security. 3266—3281.

Chii-Ruey Hwang. 1988. Simulated annealing: Theory and applications: PJM van
Laarhoven and EHL Aarts: D. Reidel, Dordrecht, 1987, 198 pp., ISBN 90-277-2513-6,
DAl. 120.

Sergey Ioffe and Christian Szegedy. 2015. Batch normalization: Accelerating deep
network training by reducing internal covariate shift. In International conference
on machine learning. PMLR, 448-456.

Mazharul Islam. 2024. Compact. https://github.com/islamazhar/compact-public.
David S Johnson, Cecilia R Aragon, Lyle A McGeoch, and Catherine Schevon.
1989. Optimization by simulated annealing: An experimental evaluation; part I,
graph partitioning. Operations research 37, 6 (1989), 865-892.

Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha Chandrakasan. 2018.
{GAZELLE}: A low latency framework for secure neural network inference. In
27th USENIX Security Symposium (USENIX Security 18). 1651-1669.

Mahimna Kelkar, Phi Hung Le, Mariana Raykova, and Karn Seth. 2022. Secure
poisson regression. In 31st USENIX Security Symposium (USENIX Security 22).
791-808.

Manish Kesarwani, Bhaskar Mukhoty, Vijay Arya, and Sameep Mehta. 2018.
Model Extraction Warning in MLaa$S Paradigm. In Proceedings of the 34th Annual
Computer Security Applications Conference (San Juan, PR, USA) (ACSAC ’18).
Association for Computing Machinery, New York, NY, USA, 371-380. https:
//doi.org/10.1145/3274694.3274740

Alex Krizhevsky and Geoffrey Hinton. 2009. Learning multiple layers of features
from tiny images. Technical Report 0. University of Toronto, Toronto, Ontario.
Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2017. Imagenet classi-
fication with deep convolutional neural networks. Commun. ACM 60, 6 (2017),
84-90.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. 1998. Gradient-
based learning applied to document recognition. Proc. IEEE 86, 11 (1998), 2278~
2324.

Ryan Lehmkuhl, Pratyush Mishra, Akshayaram Srinivasan, and Raluca Ada Popa.
2021. Muse: Secure inference resilient to malicious clients. In 30th USENIX
Security Symposium (USENIX Security 21). 2201-2218.

Dacheng Li, Rulin Shao, Hongyi Wang, Han Guo, Eric P Xing, and Hao Zhang.
2022. MPCFormer: fast, performant and private Transformer inference with MPC.
arXiv preprint arXiv:2211.01452 (2022).

Qiyang Li, Saminul Haque, Cem Anil, James Lucas, Roger B Grosse, and J6rn-
Henrik Jacobsen. 2019. Preventing gradient attenuation in lipschitz constrained
convolutional networks. Advances in neural information processing systems 32
(2019).

Ajian Liu, Chenxu Zhao, Zitong Yu, Anyang Su, Xing Liu, Zijian Kong, Jun Wan,
Sergio Escalera, Hugo Jair Escalante, Zhen Lei, et al. 2021. 3D High-Fidelity Mask
Face Presentation Attack Detection Challenge. In Proceedings of the IEEE/CVF
International Conference on Computer Vision. 814-823.

14

[51]

[52

[53

[54]

[55

[56

[57

[58

[59

[60]
[61]

[62

o
A

[64

[65

[66

[67]

[69

[70

[74

Islam et al.

Jian Liu, Mika Juuti, Yao Lu, and Nadarajah Asokan. 2017. Oblivious neural
network predictions via MiniONN transformations. In Proceedings of the 2017
ACM SIGSAC conference on computer and communications security. 619-631.
Ezequiel Lopez-Rubio, Francisco Ortega-Zamorano, Enrique Dominguez, and José
Murioz-Pérez. 2019. Piecewise polynomial activation functions for feedforward
neural networks. Neural Processing Letters 50 (2019), 121-147.

Nicholas Marshall. 2024. Chebyshev Interpolation. https://web.math.princeton.e
du/~nfm2/chebyshev-interpolation.pdf.

Aaron Meurer, Christopher P. Smith, Mateusz Paprocki, Ondfej Certik, Sergey B.
Kirpichev, Matthew Rocklin, AMiT Kumar, Sergiu Ivanov, Jason K. Moore, Sar-
taj Singh, Thilina Rathnayake, Sean Vig, Brian E. Granger, Richard P. Muller,
Francesco Bonazzi, Harsh Gupta, Shivam Vats, Fredrik Johansson, Fabian Pe-
dregosa, Matthew J. Curry, Andy R. Terrel, Stépan Roucka, Ashutosh Saboo,
Isuru Fernando, Sumith Kulal, Robert Cimrman, and Anthony Scopatz. 2017.
SymPy: symbolic computing in Python. PeerJ Computer Science 3 (Jan. 2017),
€103. https://doi.org/10.7717/peerj-cs.103

Mario J Miranda and Paul R Fackler. 1996. Lecture Notes In Computational
Economic Dynamics; Chapter 5 Function Approximation. http://fmwww.bc.edu
/ec-p/software/Miranda/chapt5.pdf.

Pratyush Mishra, Ryan Lehmkuhl, Akshayaram Srinivasan, Wenting Zheng, and
Raluca Ada Popa. 2020. Delphi: A Cryptographic Inference Service for Neural
Networks. In 29th USENIX Security Symposium (USENIX Security 20). USENIX
Association, 2505-2522. https://www.usenix.org/conference/usenixsecurity20/p
resentation/mishra

Diganta Misra. 2019. Mish: A self regularized non-monotonic neural activation
function. arXiv preprint arXiv:1908.08681 (2019).

Payman Mohassel and Peter Rindal. 2018. ABY3: A Mixed Protocol Framework
for Machine Learning. In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security (Toronto, Canada) (CCS ’18). Association
for Computing Machinery, New York, NY, USA, 35-52. https://doi.org/10.1145/
3243734.3243760

Payman Mohassel and Yupeng Zhang. 2017. Secureml: A system for scalable
privacy-preserving machine learning. In 2017 IEEE symposium on security and
privacy (SP). IEEE, 19-38.

mpc msri. 2023. EzPC - a language for secure machine learning. https://github.c
om/mpc-msri/EzPC/tree/master/EzPC.

Vinod Nair and Geoffrey E Hinton. 2010. Rectified linear units improve restricted
boltzmann machines. In Ieml.

Sebastian Neumayer, Alexis Goujon, Pakshal Bohra, and Michael Unser. 2022.
Approximation of Lipschitz Functions using Deep Spline Neural Networks. arXiv
preprint arXiv:2204.06233 (2022).

Lucien KL Ng and Sherman SM Chow. 2023. SoK: Cryptographic Neural-Network
Computation. In 2023 IEEE Symposium on Security and Privacy (SP). IEEE Com-
puter Society, 497-514.

Keiron O’Shea and Ryan Nash. 2015. An introduction to convolutional neural
networks. arXiv preprint arXiv:1511.08458 (2015).

George-Liviu Pereteanu, Amir Alansary, and Jonathan Passerat-Palmbach. 2022.
Split HE: Fast Secure Inference Combining Split Learning and Homomorphic
Encryption. arXiv preprint arXiv:2202.13351 (2022).

Prajit Ramachandran, Barret Zoph, and Quoc V Le. 2017. Searching for activation
functions. arXiv preprint arXiv:1710.05941 (2017).

Deevashwer Rathee, Mayank Rathee, Rahul Kranti Kiran Goli, Divya Gupta,
Rahul Sharma, Nishanth Chandran, and Aseem Rastogi. 2021. SiRnn: A Math
Library for Secure RNN Inference. In 2021 IEEE Symposium on Security and Privacy
(SP). 1003-1020. https://doi.org/10.1109/SP40001.2021.00086

Deevashwer Rathee, Mayank Rathee, Nishant Kumar, Nishanth Chandran, Divya
Gupta, Aseem Rastogi, and Rahul Sharma. 2020. CrypTFlow2: Practical 2-party
secure inference. In Proceedings of the 2020 ACM SIGSAC Conference on Computer
and Communications Security. 325-342.

M Sadegh Riazi, Mohammad Samragh, Hao Chen, Kim Laine, Kristin Lauter,
and Farinaz Koushanfar. 2019. {XONN}:{XNOR-based} Oblivious Deep Neural
Network Inference. In 28th USENIX Security Symposium (USENIX Security 19).
1501-1518.

M Sadegh Riazi, Christian Weinert, Oleksandr Tkachenko, Ebrahim M Songhori,
Thomas Schneider, and Farinaz Koushanfar. 2018. Chameleon: A hybrid secure
computation framework for machine learning applications. In Proceedings of the
2018 on Asia conference on computer and communications security. 707-721.
Peter Rindal. 2020. The ABY3 Framework for Machine Learning and Database
Operations. https://github.com/ladnir/aby3.

Bart Selman and Carla P Gomes. 2006. Hill-climbing search. Encyclopedia of
cognitive science 81 (2006), 82.

Ali Shafahi, W Ronny Huang, Mahyar Najibi, Octavian Suciu, Christoph Studer,
Tudor Dumitras, and Tom Goldstein. 2018. Poison frogs! targeted clean-label
poisoning attacks on neural networks. Advances in neural information processing
systems 31 (2018).

Mingxing Tan and Quoc Le. 2019. Efficientnet: Rethinking model scaling for
convolutional neural networks. In International conference on machine learning.

Compact: Approximating Complex Activation Functions for Secure Computation

PMLR, 6105-6114.

Sijun Tan, Brian Knott, Yuan Tian, and David] Wu. 2021. CryptGPU: Fast privacy-
preserving machine learning on the GPU. In 2021 IEEE Symposium on Security
and Privacy (SP). IEEE, 1021-1038.

Nenad Tomasev, Xavier Glorot, Jack W Rae, Michal Zielinski, Harry Askham,
Andre Saraiva, Anne Mottram, Clemens Meyer, Suman Ravuri, Ivan Protsyuk,
et al. 2019. A clinically applicable approach to continuous prediction of future
acute kidney injury. Nature 572, 7767 (2019), 116-119.

Sameer Wagh, Divya Gupta, and Nishanth Chandran. 2019. SecureNN: 3-Party
Secure Computation for Neural Network Training. Proc. Priv. Enhancing Technol.
2019, 3 (2019), 26—49.

Sameer Wagh, Shruti Tople, Fabrice Benhamouda, Eyal Kushilevitz, Prateek Mit-
tal, and Tal Rabin. 2020. Falcon: Honest-majority maliciously secure framework
for private deep learning. arXiv preprint arXiv:2004.02229 (2020).

Jiachuan Wang, Lei Chen, and Charles Wang Wai Ng. 2022. A new class of
polynomial activation functions of deep learning for precipitation forecasting.
In Proceedings of the Fifteenth ACM International Conference on Web Search and
Data Mining. 1025-1035.

Jean-Luc Watson, Sameer Wagh, and Raluca Ada Popa. 2022. Piranha: A {GPU}
Platform for Secure Computation. In 31st USENIX Security Symposium (USENIX
Security 22). 827-844.

Runhua Xu, Nathalie Baracaldo, and James Joshi. 2021. Privacy-preserving
machine learning: Methods, challenges and directions. arXiv preprint
arXiv:2108.04417 (2021).

Andrew Chi-Chih Yao. 1986. How to generate and exchange secrets. In 27th
annual symposium on foundations of computer science (Sfcs 1986). IEEE, 162-167.

Yuanhan Zhang, ZhenFei Yin, Yidong Li, Guojun Yin, Junjie Yan, Jing Shao, and
Ziwei Liu. 2020. Celeba-spoof: Large-scale face anti-spoofing dataset with rich
annotations. In European Conference on Computer Vision. Springer, 70-85.

[75

[76]

[77

[78]

[79]

[80]

[81

(82

o
&

A RELATED WORK ON COMPLEX
ACTIVATION FUNCTIONS

In this section, we review some work on activation functions (AFs)
that fall outside the scope of our work — but nevertheless be inter-
esting to readers.

Complex AFs used in early NN. Early neural network (NN) mod-
els used binary threshold units [22, 34] and subsequently sigmoid
and TanH as AFs. The AFs are complex as well. However, research in
the last decades has exhibited ReLU AF outperforms such complex
used by primary NN models convincingly. Hence, in our work, we
focus on more recent complex AFs that have superior performance
than ReLU.

Linear splines based AFs. Methods presented in [4, 7, 8, 62] use a
set of linear learnable splines as AFs in 1-Lipschitz constraint neural
network. These linear splines are MCP-friendly. But 1-Lipschitz
constraint neural network, due to being prone to vanishing gradi-
ents problem and having less expressiveness [49], is not generally
used for cloud-based inference services. Thus, they fall outside the
scope of our paper.

Polynomial AFs. Recently, another trendy line of work attempts
to redesign AF with a polynomial function [2, 17]. During training,
these new AF are used instead of the traditional AF. However, in
many real-world scenarios, we assume the DNN model has already
been trained over traditionally used complex AF, and retraining
further is considered expensive and time-consuming. Hence, these
works are outside the scope of our work as well.

Batch normalization and AF approximation. Prior works [10,
52, 79] that use batch normalization to generate an accurate ap-
proximation of activation function mostly focus on ReLU. Amongst
these, only the work from Chabanne et al. [10] falls within the
scope of this study. However, their “least square fit” approach with

15

Proceedings on Privacy Enhancing Technologies YYYY(X)

MiniONN (m, k, n, a, b):

Pick n equally-spaced points in [a, b]
Xe—{a+i-(b-a)/n|ic{0,1,...,n}}
S «— {a, b}
while [S| < m+2do

x" « argming, . x; fitness(X, S U {x}, k)
S« SU{x"}
I?act — 0
foriec {2,...,|S|} do
X' —{xeX|S[i-1] <x < S[i]}
Y e {Fact (x) |X €X'}
fi « spline(X’,Y’", k)
FactA‘_ Fact U{ﬁ}
return Fy¢

fitness(X, S, k) : // Measures goodness of the fit
Sort S in ascending order. Also ensure S[1] =a and S[|S|]=b

fori=2,...,|S| do

X' —{xeX|S[i-1] <x < S[i]}

Y — {Fa(x) |x € X"}

fi « polyfit(X’, Y, k)

S — Zxex’ IFact (x) = fi(x) 1l
return };; 5;

§Similar to Liu et al. [51], we use scipy.interpolate.UnivariateSpline, and
numpy . polyfit libraries to implement Spline, and polyfit function respectively.

Figure 6: Recipe used by MiniONN [51] to approximate acti-
vation functions F,ct between [a, b] by a set of m piece-wise
continuous splines Fact = UL, {f;} such that Vi Deg(f;) < k.

a single polynomial makes it unsuitable to render an approximation
that has negligible accuracy loss.

The other two works, do not fall within the scope, as they require
further re-training of the model over the approximated ReLU which
does not satisfy our design goal @.

B DISCUSSION ON GRADIENT FREE LOCAL
OPTIMIZATIONS

As discussed in Section 4.3, in this work, we try to solve the con-
straint optimization problem in Equation (10).

Our initial attempt was to solve Equation (10) using a hill climb-
ing (HC) [72] type approach. However, it failed as HC tends to get
stuck while solving optimization problems. We, therefore, choose
a simulated annealing-based approach since it is scholastic and
generally resistant to getting stuck during solution searches. One
may explore other techniques from the existing gradient-free local
optimization literature (e.g., ant colony optimization, tabu search,
genetic algorithm, etc.) [20]. We believe they may work equally
well given they are successfully customized for secure inference.

C DETAILS OF MINIONN

Liu et al. [51] proposed MiniONN, a scheme to to generate MPC-
friendly piece-wise polynomials approximations for sigmoid, and
tanh function. We implement this recipe ourselves to generate
MPC-friendly approximations for complex activation functions
(AFs) (e.g., SiLU, GeLU, Mish) between range a = -5, and b = 5 as
shown in Figure 6

Briefly, this approach takes n equally spaced points between
[a,b] to approximate the given AF F,ct. Let’s denote the set of
these points as X « {x1,x2,...,x,} where x; = a, and x, = b, and

Proceedings on Privacy Enhancing Technologies YYYY(X)

Input layer:

784 x 50

batch normalization1d (50)

activation function()
Hidden layer 1:

50 x 50

batch normalization1d (50)

activation function()
Layer 3: Output layer:

50 x 10

batch normalization1d (50)

activation function()

Figure 7: Fully connected neural network with one hidden
layer we use for DigitRecognition task.

Y « {y1,y2,...,yn} be the set of values used to approximate Fact
where y; = Fact(x;). Then MiniONN attempts to find a set of m
switchover points S « {s1,s2,...sm} between [a, b]. The points
from S are used as knots to approximate F,¢t using m + 1 MPC-
friendly polynomials (same as Equation (4)); where f; is a spline
approximating the region between {s;, s;+1} fori € {1,2,...m—1}.
Note f, =0, and f,,,;(x) = x. MiniONN finds these m switching
points by iterating over each x € X and selecting a new point for
iteration that maximizes the overall goodness of the fit.

For our case, we consider squared mean error as way to measure

the goodness of the fit — as shown in the fitness procedure (Figure 6).

We explored a few parameters for (n, m, k) and settle for n = 1, 000,
m = 20, and k = 3 since it yields the best accuracy as reported
in Table 3.

D DNN MODELS CONSIDERED FOR
DIFFERENT TASKS

For experimental evaluation, in this work, we consider four DNN
models for four image classification tasks. For DigitRecognition
task, we consider a fully connected neural network (FCN) with
one hidden layer as shown in Figure 7. For the second task CI-
FAR10Classification, we consider a convolutional neural network
(CNN) with five hidden layers (Figure 8). Since the datasets we con-
sider for the last two tasks are relatively more complex, we select
complex DNN models for them.

In particular, for ImageNet1KClassification, we consider a resid-
ual neural network (ResNet9) having eight hidden layers (Figure 9).
For SpoofFaceDetection task we choose the EfficientNetB0 model
having 17 hidden layers (Figure 10). We refer the interested reader
to [30, 74] for more details. Reader should observe that inputs to
the activation function are batch normalized for each of the four
models — a standard practice in DNN models.

E 2PC RESULTS

We use the oblivious transfer-based construction for CryptFlow2.
We observe a similar performance gain as the 3PC scenario — 2X-5%
speedup of Compact compared to NFGen— as shown in Table 5.

F MEMBERSHIP INFERENCE ATTACKS

Membership inference (MI) is a popular way to examine the privacy
of the training data and predicts if a given input (x, y) was used

16

Islam et al.

Input layer:
conv2d (3, 32); Kernel size = 3 ; Padding - 1
batch normalization (32)
activation function
Hidden layer 1:
conv2d (32, 64); Kernel size = 3; Padding - 1; Stride = 1
batch normalization (64)
activation function
max pool (2,2)
Hidden layer 2:
conv2d (128, 256); Kernel size = 3; Padding - 1; Stride = 1
batch normalization (128)
activation function
Hidden layer 3:
conv2d (256, 256); Kernel size = 3; Padding - 1; Stride = 1
batch normalization (256)
activation function
max pool (2,2)
Hidden layer 4:
Linear (256 x 4 x 4, 1024)
Batch normalization (1024)
activation function
Hidden layer 5:
Linear (1024, 512)
Batch normalization (512)
activation function
Output layer:
Linear (512, 10)
Softmax (dim=1)

Figure 8: Convolutional neural network (CNN) model with 5
hidden layers we use for CIFAR10Classification task.

Task Name # HLs' Fact NFGen Ours Speedup
Mish 184 170 1.08%
DigitRecognition 1 SiLu 290 305 0.95%
GelLU 135 133 1.01x
SiLU 723 205 3.52X
CIFAR10Classification 5 GelLU 745 165 4.50%
Mish 825 229 3.60%
SiLU 512 122 4.20x
ImageNet1KClassification 8 GelLU 502 108 4.64%
Mish 537 147 3.63%
SiLU 827 189 4.37X
SpoofFaceDetection 17 GelLU 876 192 4.54%
Mish 893 203 4.38%

4 HLs = Number of hidden layers. We experiment with the oblivious transfer (OT)
based construction of CryptFlow2.

Table 5: Comparison of inference time (ms) of three activa-
tion functions (F,ct) over four different classification tasks for
N = 2 servers using CryptFlow2 MPC library. Since the DNN
model used in DigitRecognition task has only one hidden
layer (# HLs=1), the performance of NFGen task is similar to
Compact. However, as DNN models become more complex
and deep, having high hidden layers; for the other three tasks
Compact outperforms NFGen — exhibiting a speedup 2x-5%
when compared to NFGen.

to train a model fy. We focus on the state-of-the-art MI attack by
Carlini et al. [9].

To find if a specific input value (x, y) was used to train a model,
the attacker first creates N samples of training data from the data
distribution D, such that half of the datasets contain (x, y) in them,

Compact:

Approximating Complex Activation Functions for Secure Computation

Input layer:
conv2d (3, 64); Kernel size = 3 ; Padding = 1
batch normalization (32)
activaton function

Hidden layer 1:

conv2d (64, 128); Kernel size = 3; Padding = 1
batch normalization (64)
activaton function
max pool (2,2)
Hidden layer 2:
conv2d (128, 128); Kernel size = 3; Padding = 1
batch normalization (128)
activaton function
Hidden layer 3:
conv2d (128, 128); Kernel size = 3; Padding = 1
batch normalization (128)
activaton function
Hidden layer 4:
conv2d (128, 256); Kernel size = 3; Padding - 1; Stride = 1
batch normalization (256)
activaton function
max pool (2,2)
Hidden layer 5:
conv2d (256, 256) Kernel size = 3; Padding - 1; Stride = 1
Batch normalization (512)
activaton function
Hidden layer 6:
conv2d (256, 512) Kernel size = 3; Padding - 1; Stride = 1
Batch normalization (512)
activaton function
Hidden layer 7:
conv2d (512, 512) Kernel size = 3; Padding - 1; Stride = 1
Batch normalization (512)
activaton function
Hidden layer 8:
conv2d (512, 512) Kernel size = 3; Padding - 1; Stride = 1
Batch normalization (512)
activaton function
Output layer:
Max pool
Flatten ()
Dropout
Linear (512, 100)
Softmax (dim=1)

Figure 9: ResNet9 [30] DNN architecture with eight hidden
layers we use for ImageNet1KClassification task.

Task Name Fact m k R
SiLU 78 3 (64,32)

DigitRecognition GelLU 82 5 (64,32)
Mish 85 3 (64,32)

SiILU 77 3 (84,42)

CIFAR10Classification GelLU 34 3 (84,63)
Mish 93 4 (84,42)

SiLU 91 5 (84,42)

ImageNet1KClassification ~ GeLU 101 5 (84,42)
Mish 96 5 (84,42)

SiLU 81 5 (64,32)

SpoofFaceDetection GeLU 90 5 (64,32)
Mish 93 5 (64,32)

Table 6: m, k, R for four tasks using FindBestPiecePoly. We
consider accuracy loss v < 1072 as negligible. R is presented
as (£, d).

and other half do not. Then the attacker trains two sets of shadow
models M; (where the datasets contain (x, y)) and My (where the

17

Proceedings on Privacy Enhancing Technologies YYYY(X)

MBConvl (K x K, B, S):
Depthwise Conv (K x K, M, S)
Batch normalization

Activation function
SE (R=4)

MBConv6 (K x K, B, S):
Conv (1x 1, 6M, 1)
Batch normalization
Activation function
Depthwise Conv (K x K, 6M, S)

Batch normalization
Activation function
SE(R=4)
Conv(1x1,B,1)
Batch normalization

Conv(1x1,B,1)
Batch normalization

Input layer: conv2d (3, 3); Kernel size =32 x32x 3
Hidden layer 1: MBConv1 (3, 3); Kernel size = 16 x 16 x 32
Hidden layer 2: MBConv6 (3, 3); Kernel size = 16 x 16 x 16
Hidden layer 3: MBConv6 (3, 3); Kernel size = 8 x 8 x 24
Hidden layer 4: MBConvé (3, 3); Kernel size = 8 x 8 x 24
Hidden layer 5: MBConv6 (3, 3); Kernel size = 4 x 4 x 40
(3.3)
(3.3)
(3.3)

Hidden layer 6: MBConv6 Kernel size = 4 x 4 x 40
Hidden layer 7: MBConv6 Kernel size = 4 x 4 x 80
Hidden layer 8: MBConv6 Kernel size = 4 x 4 x 80
Hidden layer 9: MBConvé (3, 3); Kernel size = 4 x 4 x 80
Hidden layer 10: MBConvé (3, 3); Kernel size = 2 x 2 x 112
Hidden layer 11: MBConvé (3, 3); Kernel size = 1 x 1 x 112
Hidden layer 12: MBConv6 (3, 3); Kernel size = 1 x 1 x 112
Hidden layer 13: MBConv6 (3, 3); Kernel size = 1 x 1 x 112
Hidden layer 14: MBConv6 (3, 3); Kernel size = 1 x 1 x 192
Hidden layer 15: MBConv6 (3, 3); Kernel size = 1 x 1 x 192
Hidden layer 16: MBConvé (3, 3); Kernel size = 1 x 1 x 192
Hidden layer 17: MBConvé6 (3, 3); Kernel size = 1 x 1 x 320
Output layer: Max pool, Flatten, Dropout, Linear (512, 100), Softmax (dim=1)

Figure 10: EfficientNetB0 [74] DNN architecture with 17 lay-
ers we use for SpoofFaceDetection task.

datasets do not contain (x, y)). Qj,, denotes the distribution of losses
of (x,y) from M; and Qg is the distribution of the cross losses
from Mj. Finally, the attacker calculates the cross entropy loss of
(x, y) on the target model #(fy (x), y) and measure the likelihood of
this loss under the distributions Qj, (x, y) and Qout (x, y) and return
whichever is more likely.

Thus, any approach [56, 59] (including ours) leveraging training
data (or a holdout data) to find an approximate AF could affect
£(fp(x),y), Qin, and Qout, and thus potentially has an impact on
MI attack. However, since all these prior works have negligible
accuracy loss over the testing data which is sampled from the
distribution D (i.e., in-distribution-data), we conjecture that there
is a chance that ¢(fy(x), y), and Qj, or Qoyut remain mostly similar
when the given input {x, y} is sampled from the in-distribution
data, and thus may not affect MI attack.

When the given input {x,y} is sampled from outside the in-
distribution data (i.e., outliers), it is difficult to assess how £(fp (x), y),
Qin(x, y) or Qout (x, y) would get affected. Interestingly, Carlini et
al. [9] briefly discuss that outliers are inherently more vulnerable
to their MI attack. This is because, as they experimentally show,
the gap between Qj, and Qoyt widens when outliers are inserted
into the training dataset of fy [9, Figure 11], and this enables the
attacker to make predictions about {x, y} with higher accuracy.

In summary, how £(f(x),y), and Qj,, or Qoyt are affected for
both in-distribution, and outlier data due to the introduction of
secure inference or training protocols, and whether such secure
protocols can be used to defend against MI attacks is an interesting
open question.

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Deep Neural Network Preliminaries
	2.2 Secure Inference for DNN models

	3 Problem Overview & Design Goals
	3.1 Problem Overview
	3.2 Design Goals

	4 Design of Compact
	4.1 Overview of Compact
	4.2 Generating Accurate Approximations
	4.3 Finding Efficient Approximation

	5 Experimental Evaluation
	5.1 Implementation Details
	5.2 Experimental Setup
	5.3 Model Accuracy
	5.4 Inference Time

	6 Conclusion and Future work
	Acknowledgments
	References
	A Related Work on Complex Activation Functions
	B Discussion on Gradient free local optimizations
	C Details of MiniONN
	D DNN Models Considered for Different Tasks
	E 2PC Results
	F Membership Inference attacks

