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We consider a class of finite-dimensional dynamical systems whose equations of motion are derived
from a non-local-in-time action principle. The action functional has a zeroth-order piece derived from a
local Hamiltonian and a perturbation in the form of a nonlocal functional of the trajectory on phase space.
We prove that the dynamics of these systems admits a local Hamiltonian description to all orders in the
perturbation and we provide explicit formulas for the A'th-order Hamiltonian and symplectic form in terms
of the (N — 1)th-order Hamiltonian flow. In the context of general relativity, these systems arise in the
study of binary systems such as pairs of black holes or neutron stars in the small mass-ratio and post-
Newtonian approximations. We provide applications of the formalism to binary systems in these regimes.
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I. INTRODUCTION

In this paper we will study a class of finite dimensional
dynamical systems with non-local-in-time interactions. Such
systems can be described in terms of action functionals on
paths in phase space, where the action contains multiple
integrals with respect to time. Their equations of motion
are integrodifferential equations as opposed to the ordinary
differential equations characteristic of Hamiltonian dynami-
cal systems. A simple example of such an integrodifferential
equation is

[58)

¥(t) = f(x, 1) +/ K(t,1)x(¢)dr. (1)

—0o0

Here f(x, t) is the local piece of the force and the integral
is a non-local-in-time force that is a functional of the
position x(#').

Non-local-in-time interactions generally arise when one
“integrates out” some of the degrees of freedom of a
system, giving rise to a nonlocal interaction between the
remaining degrees of freedom. In the context of general
relativity, in the study of binary systems such as gravitating
pairs of black holes or neutron stars, non-local-in-time
interactions appear in the small mass ratio and post-
Newtonian approximations [1-4]. They are also useful
for the description of cracks and other nonlocal deforma-
tions on materials [5]. Non-local-in-time interactions are
sometimes parametrized in terms of frequency-dependent
coefficients, such as the electric permittivity and suscep-
tibility [6]. They also appear in Fokker-Wheeler-Feynman
electrodynamics [7].

In the case of ordinary differential equations obtained
from a Hamiltonian system, standard existence and
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uniqueness theorems [8] state that the space of solutions
can be parametrized by initial data, i.e. points in phase
space. When non-local-in-time interactions are included,
however, it is not clear how to obtain a simple para-
metrization of the space of solutions [9]. However, as is
well known, when non-local-in-time interactions are
treated perturbatively, the resulting dynamics can be cast
as a local dynamical system, order by order. It is less well
known, however, under what circumstances this local
dynamical system admits a Hamiltonian description at
each order. In this paper we derive the existence of such
Hamiltonian description for a broad class of non-local-in-
time action principles [Eq. (8) below].

This paper is organized as follows: In Sec. II, we review
the dynamics obtained from non-local-in-time action prin-
ciples and derive their equations of motion. We then treat
the nonlocalities perturbatively to obtain local equations of
motion order by order. In Sec. IIl, we prove that the local
dynamics admits a local Hamiltonian description to any
order in the perturbations. We provide explicit expressions
for the Hamiltonian and symplectic form up to N\th order in
terms of the (A — 1)th Hamiltonian flow. Sections V and
VI apply this result in the context of gravitational binary
systems in general relativity. Uninterested readers can skip
both sections altogether and focus on the rest of the paper.
Section VI specializes to the dynamics of binary systems
in the post-Newtonian approximation, where nonlocal
effects start at fourth order [3,4]. Section V applies the
results of this paper to extreme-mass-ratio inspirals, where
the gravitational self-interaction of a small object orbiting
around a much larger one includes nonlocal effects due to
the backscattering of gravitational waves [1,2]. In previous
work [10,11], the conservative piece of the dynamics of a
binary system in the small mass ratio regime was recast as a
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local Hamiltonian system to first order in the small mass
ratio. This paper generalizes the methods used in
Refs. [10,11] to a more general class of nonlocal systems
and to arbitrary high orders in perturbation theory. It is our
hope that they can be applied in other fields where these
non-local-in-time interactions arise.

This formalism is an extension of work done by Llosa
and Vives [9]. The relation between their work and the
results of this paper is discussed in Appendix A.

II. DYNAMICAL SYSTEMS DESCRIBED
BY NONLOCAL ACTION PRINCIPLES

We start this section by reviewing the description of
phase space flows. Consider a phase space I' with coor-
dinates

0" = (q".p,) 2)
and a symplectic form €y = ép, A 6q". We define a flow
in phase space X (Q):R xI" » I" which takes any point

Qerl into X (Q)€el. The flow is required to be the
identity map at s =0

Xo(Q) = 0Q (3)

and to satisfy the composition rule

Xs<Xs’(Q)) - Xs+s’(Q) (4)

for all s,s'€R. A flow X,(Q) on phase space will be
determined by a vector field V= VA9, according to

dX;(0)
ds

= VAX,(Q)]. (5)
If we specialize Eq. (5) to s = 0 we get

dx$(Q)

—yA

() (6)
so the flow is determined by its derivative at s = 0.
Throughout this paper, we will parametrize and character-
ize flows by their derivatives (6) at s = 0 with the under-
standing that the full flows are obtained by solving Eq. (5).

We will consider dynamical systems described by non-
local action functionals of paths X of the form

sm:/mwu/mmemML ()

Here, Hy(Q) is a local Hamiltonian function on phase
space and the nonlocal piece of the action is

N
Sn[[X] = —Z%/dsl...dsn

n=2

xgn(xﬁ,...

X35 =S8, —51), (8)

where G, is some n-point function G,: I x R"~! - R.
Here ¢, is a formal expansion parameter used to keep track
of orders in the nonlocal action and N is a finite but
otherwise arbitrary positive integer. Note that because the
n-point function G, is integrated n times, the nonlocal
action will automatically pick out its fully symmetric piece,
so that without loss of generality we can assume that G,
satisfies

gn(Xsl, ...,Xsn;ﬁlz, ...,U]n)

=0u(X, .- X, 10 Cpp,) 9)

pipy e

for all (sy, ..., s,). Here 6;; = s; — s, for short and {p;} is
any permutation of the integers from 1 to n. We will also
assume that the n-point functions satisfy asymptotic falloff
conditions given in detail in Eq. (15) below.

We will write the equations of motion in terms of a
function ®(Q, Q', [X]) which is a local function of two
points Q and Q' in phase space in its first two arguments
and a functional of a trajectory X, which passes through Q’
at s = 0 in its last argument. The definition of @ is

N
®(0.0'. X)) :Ze,,/dsz...dsn

n=2

X gn(vasz(Q/)y "'7Xs,,(Q/);SZ9 caey Sn).
(10)

The equations of motion are obtained by varying the action
functional (7) with respect to the trajectory X. The variation
of the nth term in the nonlocal piece will give n contri-
butions with derivatives acting on each of the first n
arguments of G,. From property (9), it follows that all
these contributions coincide, so we can add them up. The
final result is a factor of n times the derivative with respect
to the first argument of ®. The resulting equations of
motion are

0
ABdS_

ax® T 9 P ,
@HO(Q) +@‘D(Q, Q' [X])

0'=0=X;

(11)

Here the subscript Q' = Q means that first two arguments
of @ are evaluated at coincidence after differentiating @
with respect to its first entry. Subsequently, the whole right-
hand side is evaluated at X.
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A. Local dynamical systems obtained by treating
nonlocalities perturbatively

Equation (11) is an integrodifferential system of equa-
tions for the trajectories X, on phase space, as opposed to a
differential system of equations that depend locally on a
point Q, as is the case for Hamilton’s equations derived
from action principles without nonlocalities. Because of
this property, solutions will generally not be parametrized
by initial data Q. In fact, the space of initial data required
to determine solutions of integrodifferential systems of
equations can be, in general, infinite dimensional and
require derivatives of x* and p, with respect to time of
all orders [9].

However, if we take the nonlocal contribution to the

action to be small we can treat the problem perturbatively.

We define a sequence of phase space flows XEN)(Q) by

induction as follows. The zeroth-order flow )_(§0>(Q) is
generated by the Hamiltonian H,, with all nonlocal terms in
Eq. (11) dropped. Then, we can evaluate the functional
dependence of @ in Eq. (11) on the zeroth-order flow and

define the first-order flow X(;l)(Q) by

QgB - Hy

s=0 aQA

+ o
00

Q.0 X)) .
0'=0
(12)

This process can be repeated to any desired order to define
the Ath-order flow in terms of the (A — 1)th flow as

o M) o
QA s H,
P )
——®(Q, 0, [XV :
+ [aQA (0.0,] ) oo
(13)

Equation (13) is a set of ordinary differential equations
which determines the N'th flow, once the (N — 1)th flow
is speciﬁed.1 Hence all the flows are determined by
induction.”

The flow determined by Eq. (13) agrees with the exact
flow determined by Eq. (11) up to corrections of order

lEquations of motion like these can be derived from a pseudo-
Hamiltonian function, first defined in Ref. [10]. We detail the
relation of this paper to pseudo-Hamiltonians in Appendix B,
although we will not use that formalism here.

As is well known, perturbative expansions of this form can
break down after long timescales when there are dissipative
effects present. Here, we are concerned only with conservative
dynamics and so we can neglect this issue.

O(el" x e x ... x €})) with Y_N_, g; = N'+ 1. For sim-
plicity, when we expand the Hamiltonian and symplectic
form explicitly below, we will introduce a formal expansion
parameter € such that

N

n=1

OVt =0(el' x> x ... x €lY),

(14)
We will also assume that the sequence of flows X EN) (Q) are
such that the n-point functions G, introduced in the
nonlocal action principle in Eq. (8) satisfy the following
property: For any j € [1, n| and with all s, with k # j fixed,

the limit when s; — oo of the n-point function G,

N)

evaluated on the flow Xy’ is zero

XX

ceey R

lim G, (ngv ),

§j—to0

(15)

52 = Sy ey 857 810y Sy —sl) =0.

III. LOCAL HAMILTONIAN DESCRIPTION

In this section, we will obtain a local Hamiltonian
description for the Ath-order flow, in term of the known
(N = 1)th-order flow. We define the Hamiltonian and
symplectic form in this subsection and derive their equiv-
alence to the system (13) in the next subsection.

Given a phase space flow X,(Q) and a point Q in T, we
define a function

1N
Y(Q, [X])—§Z€n/ds1...dsn)((s1,...,s,,)
n=2

d
Xa_g(Xsl<Q)"'7XSH<Q);S2_S17""Sn_sl)
S1

(16)

where

_senlo) =senlen) = o msmn(s) g

2(S1sesSy)
Here the partial derivative d/ds, indicates that the deriva-
tive acts only on the explicit dependence of the n-point
function in its last n — 1 arguments and not on the implicit
dependence that arises through X .

We now define the local Hamiltonian function in terms
of the (N — 1)th flow as
HN)(Q) = Hy(Q) + @M(Q) + YN (Q).  (18)

where
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=®(Q, 0, [XWV1)), (19a)
(19b)

We also define a new function of n points on phase space as

K,,N)(Q],...,Q,,):en/dsl...ds,,)((sl,...,s,,)
%G, (X700, KTV (0,);

sz—sl,...,sn—sl). (20)

Note that the subscript n labels the number of arguments in
the n-point function G, while the superscript (N') denotes
an object constructed from the (N — 1)th-order flow and
contains terms of order O(¢!\') and lower. Using definition
(20) we define the local symplectic form

QW) = Q)+ AQW), (21a)
Qy = dp, A 5", (21b)
/\/
ICTTII ) uy g ><Ql,...,Qn>]
n=2 m= ZaQ ()Q {0;}=0
(21¢)

where {Q;} = Q means that we evaluate at coincidence
Q1 =0,=...=0, = Q. Here, brackets denote antisym-
metrization Qup = 5 (Qup — Qpa)-

Both HV) and QW) can be expanded perturbatively
using the formal expansion parameter (14) as

N
=Ho+ Y eH, (22a)
r=1
N
QN = Q)+ ) "eraql, (22b)

where a superscript [7] indicates a term that is exclusively
O(e"), as opposed to a superscript (N') which indicates a
term that contains contributions of order O(&") and lower.

A. Derivation of Hamilton formulation

In this subsection we will prove that the Hamiltonian
function (18) equipped with the symplectic form (21)
reproduces the perturbative local dynamical system (13)
up to corrections of order O(eV*1).

The Hamiltonian function (18) equipped with the sym-
plectic form (21) determines the flow

dx™) P
dS 5s=0 aQA

08, + 0l o+ 040 4 9],

(23)

First, note that since we want the equations of motion to be

accurate up to corrections of order O(eV*1), we can drop
higher order corrections in the second term in the left side
of Eq. (23)

o(N) o(N-1)
W) dXs W) dXs N+1
AQ = AQ + 0 24
AB g - ‘AB ds |, (") (24)

where we replaced XV) with XW=1 since AQW) is O(e).
We will calculate the first term in the right-hand side
of Eq. (24) in a series of steps. First, the contraction
AQ%M)‘(EN‘”/ ds|,_o will have two pieces coming from
the antisymetrization of the indices AB in Eq. (21c). The
first one is

02
e B yes . (25
s=0 |:aQAaQB <Q1 Q ) {Qj}:Q ( )

The derivative of )_(FYN_I)B is evaluated at Q but we are
allowed to move it inside the brackets and evaluate it at Q,,,
since the bracket is evaluated at coincidence {Q;} = Q
Using property (4), the contraction dX5/ds|,_,0/00"
acting on any function f(X,(Q),s) will create a total
derivative d/ds, minus a correction d/ds due to the explicit
time dependence of f

dx* o d -
K0 = ] f(Res(@))
~ - armi@es. e

Using the identity (26) in Eq. (25) we get

5] d P
{aQA/dsl ds,,)((sl,...,sn){dsm_m}

%Gy (X700 X0V (0,

sz—sl,...,sn—s1>} . (27)

{Qj}=Q

We integrate by parts the total derivative d/ds,,, use
property (15) to throw away boundary terms, relabel
s, <> 51 and use the properties (9) and

d +6(sy) forj=1
- yeees ) = 28
i {50 e @
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to get

|:6QA/ds2 dsngn(leng_l)(QZ) XS,, (Qn) 82508 n):| . (29)

{Q[}:Q

Note that once we sum over n and m this term will give the n — 1 last derivatives of the n-point function G, in Eq. (10),

which can be expressed as

00"

@@ Qx| (30)
0'=0

where the prime index in Q" means that the derivative acts on Q' but not Q. Regarding the term proportional to the partial

derivative d/0s,, in Eq. (27), note that we can pull the sum > "

~ 0 S(N—1)
Sn) |:— Y;E} gn <X~\'|

d
[aQA/dsl Asp(sy, .y

d d —(N—
[aQA/dsl dsn)((sl,...,s,,)a—Slgn(X&

where we used a chain rule to replace the derivatives respect
to all the s,, with a derivative respect to s;.
Now, we move on to the other piece of the contraction

AQ%)d)_(EN_U /ds|,_, coming from the antisymmetriza-
tion of indices AB in Eq. (21c¢)

ngN—l)B P
- ds |: Q aQB (Qh"'v Qn) °
5=0 {Qj}:Q
(32)

The contraction once again will give a total derivative
d/ds, minus a correction d/ds; due to the explicit time
dependence on K. Integrating by parts the total derivative
recovers Eq. (29). The term proportional to the partial
derivative is

3} 3}
LQA/CZSI ds,,;((sl,...,sn)a—s1

x G, (X0, XYV,
SZ—S],...,Sn—S]>:| . (33)
0,=

Now we apply the sum over m to this last term and add it to
the term in Eq. (31) to create a derivative d, acting on every
argument of K. Putting Egs. (29), (31), and (33) together
we get that

from Eq. (21c¢) inside K to get

m=2

T |
{0j}=0
(). X Q)5 =511 )| a1
{0;}=0
[
#\)
(V) aX; _ |9 RN =1)
A ds S:o_ [GQA/(D(Q’Q’[X ]) 0'=0
+ 0, YN (Q) + O(eNH). (34)

Plugging this into Eq. (23) we see that the first term on the
right-hand side of Eq. (34) cancels all the extra derivatives
with respect to the last (n — 1) arguments of the n-point
function in d,® in Eq. (23). The last term in the right-hand
side of Eq. (34) cancels the term aA‘P(N ) in Eq. (23) and we
recover Eq. (13) up to corrections of order O(eV*!) as
desired.

IV. ALTERNATIVE FORMULATION
OF LOCAL HAMILTONIAN SYSTEM

In this section we prove that, up to any order in €1, €, ...,
€,, there exists a diffeomorphism in phase space that puts
the symplectic form (21) in canonical form. We then apply
this result up to second order and give explicit expressions
for the diffeomorphism and the resulting Hamiltonian. We
use arrows V = V49, for vectors and tildes & = w,dQ*
for 1-forms. Indices will be raised and lowered by con-
traction with the first index on the zeroth order symplectic
form Q3.

We consider a one-parameter family of diffeomorphisms
@(€):T = T that transform the A'th order Hamiltonian
system (Q + AQWN) HWV)) to an equivalent Hamiltonian
system

(0.Q0 + 9, AQWN), o, HN)) (35)
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where ¢, is the pullback3 defined by the diffeomor-
phism ¢(e).

We now specialize the diffeomorphism ¢ to make the
new Hamiltonian system take the form (€, p, H™)), i.e. to
make the transformed symplectic form coincide with the
original zeroth order symplectic form

0. QW) = Q)+ 0(eNH). (36)

First, note that we can express the perturbation (21) to the
symplectic form AQWN) as an exact form. We define the
1-form

. O) (37)
{0;}=0

:__Z[aQA Ql,...

such that the perturbation to the symplectic form is

AQYY(0) = (dEM)
= 0,0 — 9, (38)

The 1-form ) is sourced by the (N = 1)th order flow
and is accurate up to corrections of order O(eV*!).
Plugging Eq. (38) into the symplectic form (21) we get

QN = Q) + dEN) - o(eN ). (39)

Now, consider a one-parameter family of diffemorphisms
@(€):T' > I'. We parametrize this diffeomorphism up to

order V' by N vector fields £; with i = 1, ..., \ as

¢(e) =Dz (¢V)oDz _ (¥ )o...

N

oD, (e)[1 + O],
(40)

where the mapping ’Dz(e) moves any point € units along the
vector field 5 . The pullback ¢, can be expressed in terms of
Lie derivatives as

2 3

¢ =1+e€L; +2£§£§+ Lz L5 Lz

2, 3/, /. 3.
+e Egz—}—e £§]£gz+€ £§3+... (41)

We want this diffeomorphism to make the symplectic
form coincide with Q; up to A'th order, as in Eq. (36).

3As is well known, these transformations can be seen from a
passive or an active viewpoint. The passive viewpoint considers
the transformation to be a coordinate transformation, keeping all
fields fixed. The active viewpoint considers the transformation as
a field redefinition instead, with all coordinates unchanged. Both
viewpoints are equivalent, but in this paper we adopt the active
viewpoint for clarity.

Combining Egs. (36) and (41) and inverting the pullback
perturbatively, we can invert Eq. (36) to get

3
N . Cror.re
Q( ) €£ QO + £ £§IQO 6 £§1£CI ﬁC] QO

- €3£EZQO +e [:ZZEZI Qy — 63523520 + ... (42)
We expand the 1-form (37) in powers of the formal
parameter ¢ defined in Eq. (14)

N ~
=> el (43)
r=1

where &'l is the piece of EV) of order O(e”) and can be

obtained by expanding the flow XV (Q) in the definition
(20) and plugging the expansion back into Eq. (37). We
plug the expansion (43) into (39) and then into Eq. (42) and
equate coefficients of powers of € on both sides to obtain

L; Q) = ~dg" (44a)
Lz Qy = —dE? + 5£2,L7 9, (44b)
N 1
_ 3 N I A I . I A
£E3QO - _dé[ ] + ECZECIQO 6£§1£C|£C|QO’
(44c)

Using Cartan’s magic formula and the fact that the
symplectic form € is closed, we can prove that the Lie
derivative of the zeroth order symplectic form Q, with

respect to any vector field V is exact

=dvV. (45)
Here i@ is the interior product, which contracts V with the

first entry of any differential form it acts on. In the last line
of Eq. (45) we used the zeroth order symplectic form to
lower the index V= VAQY,. Using identity (45),
Eq. (44a) becomes

df, = —dE. (46)
From the definition of & in (37) we obtain the solution
o =9’

1 N 0
— __QAB E { R . 47
270 o anf (Ql Q) {0,}=0 (“47)

024061-6



LOCAL HAMILTONIAN DYNAMICS FROM NONLOCAL ACTION ...

PHYS. REV. D 110, 024061 (2024)

Now, we use the identity (45) in Eq. (44) to get
dBy = —dE? + 1L d&F
2= 276 1
~ 1 -
= —dE? + d(i 52151> : (48)

A solution of this equation for the second order vector
field is

1 -
V- OB(L; B (49)

N
0 =P -

It is easy to see that using Eq. (44) and the identity (45)
and the fact that exterior derivatives and Lie derivatives

commute, we can find solutions for the vector fields Z’ ; that
parametrize the diffeomorphism ¢(¢) up to any order.

A. Transformed second order Hamiltonian
We now compute the transformed Hamiltonian function
(35) starting with the expression (18) for the N'th order

Hamiltonian HW) and specializing to second order for
simplicity. The second order Hamiltonian will be expressed
in terms of the following functions:

@(Q) =®(0.0.[X1)), (50a)

(50b)

where the right-hand side terms were defined in Egs. (10),
(16), and (19). Both ®? and ¥©® in Egs. (50a) and (50b)
have contributions of order O(e) and O(e?).

We now specialize the order of the expansion of the
diffeomorphism (40) to second order. Its action on the

Hamiltonian will produce a new Hamiltonian A @ =
H® given by

. 1
2 — . 2, L2, L 2 3
H? = <1+€£§] +eLy +5e Lglﬁcl)H )+ 0(ed).

(51)

We can simplify this expression using the results (47)

and (49) for Z’ 1 and 22. We can also use Eq. (43) to regroup
€&l + €&l = &) + O(?). The result is

. 1
H® = H® — £ly0nH") — ZQAB (ﬁaz o )BOAH<2)

1
+ 56004 (60, 05H) + O(€?). (52)

In order to calculate A we will make frequent use of the
identity (34), specialized to N =2, which becomes

&(1)B
dX; 0 -
AQ = [—A, (0, 0", [X))
ds |—o 00 0'=0
+0,¥(Q) + 0(e)). (53)
We will also use
y(1)A
@dX" 10y go
=—-0 b4 4
gA dS 2 + (5 )

which can be derived from Eq. (47) using techniques
similar to the ones in Sec. III A [see, for example, Eq. (25)].
The first correction in Eq. (52) is 5?2)@,1{ (2). We use the

equations of motion (23) to replace 9, H® by Q()dX (V8 /ds

dx(B

+AQG) =+ 0(¢).  (55)

ffz)aAH @ = 5?2) (o

Now, we use identity (54) for the first term and identity (53)
for the second term to get

1 ]

A 1702) — L 5(2) A /

EyHP =500 +¥0) + &, QA,<I>(Q Q. [X\V]) o
+ &4 0P +0(). (56)

The second correction term in Eq. (52) is more involved, let
us simplify it first. Using Cartan’s magic formula we can
write

Lt = iz %)
- i 2
=i 5(2)A§2< ) (57)
where we used Eq. (38) to replace dé@) by the correction to
the symplectic form AQ(?). Next, we use the equations of
motion to replace d, H?) by Qf ‘”2 + O(€?). Combining
this with Eq. (57), the second term in Eq. (52) becomes

1 dxp
=560 Qe — — (58)
Now, we use identity (53) to get
|20 0 X))
2°(@ QA 00
+ 55?2)0A‘P(2)(Q) + O(e3). (59)
The last term in Eq. (52) is
1
ngz)aA (g(Bz)aBH@)). (60)
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Again, we use Hamilton’s equations to replace dzH®? =

Q)X 1 O(?). We then use identity (54) to get

1

1
55?2>5A (Eqﬂ - ‘P(2>>. (61)

Combining Eqgs. (56), (59), and (61) and plugging them into
Eq. (52), the final expression for the new Hamiltonian is

H? = H, + %(D(z) —~ %gﬁz)a@@)
+3h [50r®(@.0 K| o). (@
2@ {904 B 0—0
Note that the third and fourth terms include contributions of
order O(e*) which could be discarded without affecting the
accuracy of the result.

V. APPLICATION: HAMILTONIAN DESCRIPTION
OF THE CONSERVATIVE SELF-FORCE ON
POINT PARTICLES IN GENERAL RELATIVITY

We now turn to studying binary systems in the small
mass-ratio approximation in general relativity. These sys-
tems consist of a primary object of mass M and a secondary
of mass m with m << M orbiting around it. The dynamics
of the secondary are described by its position and momen-
tum Q4 = (¥#, P,)- When the secondary’s mass is zero, it
moves on a geodesic determined by the metric sourced by
the primary. To leading order in the mass ratio ¢ = m/M,
the motion of the secondary deviates from geodesic motion
due to its interaction with its own gravitational field, known
as the self-force. In [10], we found that the conservative
piece of the gravitational self-force to leading order in the
mass ratio can be derived from a nonlocal action principle
with zeroth order Hamiltonian

HO(Q) Y _g/wpypy (63)

and a nonlocal perturbation
SalX] :% / dsds'G[X{"(0), X (0)] + 0(e?)  (64)

where the 2-point function is

PuPuPo Pp
(_gpopppa) (_gp/dpp’pa’)

G(Q.Q") = G*F (x,x) (65)

Here G**/ (x, x') is the time symmetric Green’s function
for the linearized Einstein equations in the Lorenz gauge.
The parameter s is proper time in the background metric.
The leading order conservative piece of the scalar and
electromagnetic self-forces can be derived from the same
Hamiltonian by replacing the 2-point function by

Gscalar(Qv Q/) = G(X, xl)v (663)
/ p pl/'
GEM(Q, Q/) = le (x, x’) K
\/ _gpdpppa \/ _gp/O/pp’pa’
(66b)

with G and G* the time-symmetric pieces of the Green’s
function for the Klein-Gordon equation and the Maxwell
equations, respectively. The gravitational, electromagnetic,
and scalar Green’s functions are regularized using the
Detweiler-Whiting prescription [12]. Since these 2-point
functions are all symmetric under exchange of arguments,
the results of Sec. III show that the conservative first order
dynamics have a local Hamiltonian description. This was
shown in [10], using a method more restrictive than the
one presented in this paper, valid only to first order in
perturbation theory.

In [13], we show how to express the second-order self-
force as the integral of a 3-point function and then apply the
results of this paper to derive the Hamiltonian description
of the conservative piece of the scalar self-force up to
second order for nonspinning particles in any stationary
spacetime.

VI. APPLICATION: BINARY SYSTEMS IN
GENERAL RELATIVITY IN THE POST-
NEWTONIAN APPROXIMATION

The motion of binary systems in general relativity can be
studied in the post-Newtonian approximation, where their
dynamics is expanded in powers of 1/c?. A term of order
1/c*" is called nPN in the literature. In [14], Damour et al.
give an explicit expression for the 4PN nonlocal
Hamiltonian® of two nonspinning point particles with phase
space coordinates Q% = (x,,p,) and masses m, with
a =1, 2 and boldface representing 3-vectors. Following
the notation of this paper, we use X, for a trajectory in
phase space parametrized by s. Their result is

H_pn (0. [X]) = Hogpn(Q) + HiSY(0)
+ HgR(0, [X]) (67)

where H _4py gathers all the contributions of order 3PN or
less and H'3s¥ gives the local piece of the 4PN Hamiltonian.
We will focus on the last term, which is written in terms of
the quadrupole moment

“In a follow-up paper [15], the same authors utilize an
(infinite-)order-reduction of the nonlocal dynamics to a local
dynamical system. This procedure is similar to the one carried in
Sec. I A and, similarly, does not result in a Hamiltonian system.
Instead, the procedure determines a pseudo-Hamiltonian dynami-
cal system (see Appendix B for details).
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2
i, T
Px) =S om (=30 ) )

a=1

as

(- o Ii(X,
HIR (0. 1x) = (o) [“ae T (69)

=

where C is a normalization factor whose value is not
important here. Hjgmocd! js the nonlocal or “tail” piece of
the 4PN Hamiltonian. The nonlocality arises from the
integral over the full trajectory X,. In Eq. (5.1) of [14], they
also derive a nonlocal contribution to the action principle
from which HigMc can be derived, which is

Note that in Egs. (69) and (70) we are dropping the
regularization prescription used in [16] to take care of the
ultraviolet divergences of Hijgnocdl that occur at the coinci-
dence limit 7 — 7’. The regularization can be reapplied after
a local Hamiltonian is obtained.

We now show that the dynamical system (67) can be
casted as a local Hamiltonian system by using the results of
Sec. III. We define a 2-point function

Cﬁj(Ql)j;'j(Qz)

gZ(le QZ’G) = |6| (71)

such that the nonlocal action in (70) takes the form of
Eq. (8). Following the steps of Sec. III, we can evaluate the
functional dependence of the nonlocal Hamiltonian (69) on
the OPN flow X, which is the Newtonian solution to the
equations of motion. It is not necessary to include correc-
tions of order 1/c? or higher in the flow, since that would
give corrections to the Hamiltonian at SPN and higher.

It follows that the nonlocal Hamiltonian H .4py admits a
local Hamiltonian description up to O(1/c®), with
Hamiltonian function and symplectic form given by the
results in Sec. III.

VII. CONCLUSIONS

In this paper we described a class of dynamical systems
whose equations of motion are derived from nonlocal
action principles. We reviewed the well-known procedure
for deriving local equations of motion by treating the
nonlocalities perturbatively. Then we proved that the
perturbative local dynamics admit a local Hamiltonian
descriptions up to any order in perturbation theory. We
discussed a diffeomorphism on phase space that puts the
symplectic form into canonical form up to any order and
gave an explicit expression for the new Hamiltonian up to

second order in perturbation theory. Finally, we applied
these results to the small mass-ratio and post-Newtonian
approximations for the study of binary systems in the
context of general relativity.
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APPENDIX A: RELATION TO THE WORK
OF LLOSA AND VIVES

Llosa and Vives [9] consider non-local-in-time action
principles in configuration space (x*,%*), which they
describe as a nonlocal Lagrangian L[x] which is a func-
tional of x. In this paper we consider, instead, an action
functional of a phase space trajectory Q% = (x*, p,).
Furthermore, they do not carry the perturbative expansion
of the nonlocalities explicitly but rather leave the nonlocal
piece of the action principle unspecified. This affects their
final results in two ways. First, their expressions for the
local Hamiltonian and symplectic forms depend on func-
tional derivatives of the action functional. Second, without
using a perturbative expansion of the nonlocalities, the
space of initial data for the Hamiltonian flow is not defined.
They assume that an order reduction procedure to make the
dynamics local exists and work with this unspecified space
of initial data instead. In this paper, we expand the non-
local-in-time piece of the action functional as a series of
integrals of N-point functions, which allows us to derive a
simpler local Hamiltonian and symplectic form, expressed
explicitly in terms of integrals of said N-point functions,
evaluated on points in the unperturbed phase space, which
constitutes our space of initial data. Although it is possible
that the results of Sec. III could be obtained from results in
their work, our results are derived using a different method
and provide a simpler and more streamlined framework
for studying non-local-in-time perturbations to all orders.
Sections IV-VI are entirely original results.

APPENDIX B: RELATION TO
PSEUDO-HAMILTONIAN SYSTEMS

We define a pseudo-Hamiltonian dynamical system to
consist of a phase space I', a closed, nondegenerate 2-form
Q. and a smooth pseudo-Hamiltonian function
H:T'xI' > R, for which the dynamics are given by
integral curves of the vector field

a /
vt = QAB@H(Q, Q')

oo (BD

where QA8Qp- = 54 and Q4 are coordinates on T".
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The perturbative local dynamical systems derived in
Sec. I A are examples of pseudo-Hamiltonian systems which
are perturbations of a Hamiltonian system. The symplectic
form and pseudo-Hamiltonian up to N'th order are

Qup = Qoap, (B2a)

HWN(Q, Q") = Hy(Q) + @(Q, 0", [XW-1)),

where ®(Q, Q',[X]) is defined in Eq. (10). The local
equations of motion (23) are obtained by plugging the
pseudo-Hamiltonian system (B2) into Eq. (B1).

In this paper, we derived pseudo-Hamiltonian equations
of motion from a nonlocal action principle. However,

(B2b)

pseudo-Hamiltonians can be used in a broader context,
and need not be derived from a variational principle. In that
case, the n-point functions G, that appear in the defini-
tion (10) of ®(Q, Q', [X]) need not satisfy the symmetry
property (9). A pseudo-Hamiltonian system obtained by
starting from Eqgs. (10) and (B2b), without imposing that
the n-point functions obey the symmetry property (9) can
include dissipative effects [17]. In the context of the
first-order gravitational self-force, for example, we can
construct a pseudo-Hamiltonian using the retarded Green’s
function, which encodes both dissipative and conservative
effects, as opposed to the time-symmetric Green’s func-
tion, which only describes the conservative piece of the
dynamics.
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