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Abstract—Millimeter-wave (mmWave) radars are indispens-
able for perception tasks of autonomous vehicles, thanks to
their resilience in challenging weather and light conditions. Yet,
their deployment is often limited by insufficient spatial resolu-
tion for precise semantic scene interpretation. Classical super-
resolution techniques adapted from optical imaging inadequately
address the distinct characteristics of radar data. In response,
our study herein redefines super-resolution radar imaging as a
one-dimensional (1D) signal super-resolution spectra estimation
problem by harnessing the radar domain knowledge, introducing
innovative data normalization, signal-level augmentation, and a
domain-informed signal-to-noise ratio (SNR)-guided loss func-
tion. Like an image drawn with points and lines, radar imaging
can be viewed as generated from points (antenna elements) and
lines (frequency spectra). Our tailored deep learning network
for automotive radar imaging exhibits remarkable scalability
and parameter efficiency, alongside enhanced performance in
terms of radar imaging quality and resolution. We further
present a novel real-world dataset, pivotal for both advancing
radar imaging and refining super-resolution spectra estimation
techniques. Extensive testing confirms that our SR-SPECNet sets
a new benchmark in producing high-resolution radar range-
azimuth images, outperforming existing methods. The source
code and radar dataset utilized for evaluation will be made
publicly available at https://github.com/ruxinzh/SR-SPECNet.

Index Terms—Automotive Radar, High-Resolution Radar
Imaging, Real-World Dataset, Direction-of-Arrival Estimation,
Deep Learning

I. INTRODUCTION

Radar technology, particularly in the form of millimeter
wave radars, has become a cornerstone for advanced driver
assistance systems (ADAS) and autonomous vehicles, surpass-
ing the capabilities of traditional RGB cameras and LiDAR in
challenging weather and low visibility conditions [1]–[9]. Its
adoption is largely driven by the robust, cost-effective, and
reliable sensing solutions it offers, operational under virtually
all environmental scenarios. Frequency-modulated continuous-
wave (FMCW) signals within the millimeter-wave band are
primarily utilized in these radar systems, chosen for their cost-
efficient operation and potential for high-resolution sensing.

The work of R. Zheng, S. Sun and H. Liu was supported in part by
U.S. National Science Foundation (NSF) under Grants CCF-2153386, ECCS-
2033433, and Alabama Transportation Institute (ATI).

R. Zheng, S. Sun and H. Liu are with the Department of Electrical and
Computer Engineering, The University of Alabama, Tuscaloosa, AL, USA
(emails: rzheng9@crimson.ua.edu, shunqiao.sun@ua.edu).

H. Chen is with Mathworks, Inc, Natick, MA, USA (email:
hchen@mathworks.com)

J. Li is with the Department of Electrical and Computer Engineering,
University of Florida, Gainesville, FL, USA (email: li@dsp.ufl.edu)

Much like an exquisite image woven from points and lines,
radar imaging emerges from the harmonious interplay of
antenna elements as points and frequency spectra as lines.
Radar sensing is pivotal for a broad spectrum of autonomous
driving functionalities, including free space detection, 360◦

surrounding sensing, object detection and classification, and
simultaneous localization and mapping (SLAM) [10]–[12].

Historically, the automotive radar technology, dating back to
the late 1990s and early 2000s, was developed with a focus on
supporting ADAS functions like adaptive cruise control (ACC)
[4]. However, these radar systems primarily measure speed
and range, offering limited azimuth angular resolution. Level
4 and 5 fully autonomous driving demands four-dimensional
(4D) high-resolution sensing [10]. Such advanced sensing is
essential for speed, range determination and for accurately
estimating targets’ azimuth and elevation angles with high
resolution. Figure 1 illustrates how antenna aperture and super-
resolution algorithms influence the quality of range-azimuth
(RA) heatmaps. The high-resolution RA heatmaps contain rich
information of the objects, including their shapes, facilitating
object detection and classification through using deep neural
networks [7].

The challenge of enhancing angular resolution has led to the
standardization of the multiple-input multiple-output (MIMO)
radar technology. MIMO radar forms a large virtual aperture
through exploiting waveform diversity, significantly improving
angular resolution with a manageable number of transmit
and receive antennas [3], [13]–[15]. Further, signal processing
techniques have been explored to further improve the angular
resolution beyond what is achievable through digital beam-
forming implemented via fast Fourier transform (FFT). Super-
resolution direction-of-arrival (DOA) estimation algorithms,
such as compressive sensing (CS) [16]–[18] and the itera-
tive adaptive approach (IAA) [19], [20], have made notable
advancements in this area. Yet, their computational demand
presents a formidable barrier to real-time implementation in
automotive radars with embedded digital signal processors.

The adoption of deep learning (DL) techniques for radar
image enhancement has yielded significant advances within the
realm of image super-resolution, as demonstrated in computer
vision research [21]–[23]. Applying these methods to enhance
azimuth resolution in RA heatmaps presents significant po-
tential for substantial improvement. Nonetheless, few studies
have focused on generating super-resolution RA heatmaps
using raw radar signals by exploiting radar domain knowledge.
Approaches that consider generating radar super-resolution
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Figure 1: Impact of antenna aperture and super-resolution algorithms on RA heatmap quality: (a) shows an RGB bus image.
RA heatmaps using FFT for (b) 10, (c) 40, and (d) 86 antennas contrast with (e) LiDAR bird eye view (BEV). Heatmaps
with IAA for (f) 10, (g) 40, and (h) 86 antennas highlight the improved clarity from both antenna count and super-resolution
algorithm.

RA heatmaps as straightforward image-to-image or volume-
to-volume tasks often overlook the critical domain knowledge
of radar signal processing [22], [23]. This oversight can lead to
data-intensive solutions, reliance on excessively large networks
that lack explainability, an aspect particularly important in
safety-critical applications−or fail to deliver optimal perfor-
mance and scalability, both of which are key concerns in
autonomous driving applications where rapid inference and
compact model size are essential for on-chip implementations.

Research in the domain of super-resolution RA heatmap
generation for automotive radar remains limited, with the
majority of studies relying on FFT-generated ground truths
from larger antenna arrays [22], [23]. To the best of our
knowledge, no existing methods leverage RA heatmaps pro-
duced through using super-resolution algorithms as ground
truths. This paper addresses these gaps by introducing the
Super-Resolution Angular Spectra Estimation Network (SR-
SPECNet). Built upon a deep integration of radar signal
processing domain knowledge, SR-SPECNet significantly ad-
vances the generation of super-resolution angular spectra. By
transforming RA heatmap enhancement into a more tractable
1D azimuth super-resolution problem, SR-SPECNet efficiently
harnesses radar-specific insights to enhance performance while
maintaining model interpretability, which is crucial for safety-
critical applications. This transformation is supported by our
novel data normalization approach, signal-level augmentation
and a signal-to-noise ratio (SNR)-guided loss function. We
evaluate SR-SPECNet extensively using both our proprietary
real-world dataset and publicly available dataset. Our exper-
imental analysis demonstrates that SR-SPECNet offers ex-
ceptional parameter efficiency, superior imaging quality, and
remarkable scalability, consistently outperforming established
benchmarks.

The key contributions of our work include:

• We present SR-SPECNet, a radar-domain knowledge-
driven network engineered for both efficiency and ef-
fectiveness. SR-SPECNet leverages single-snapshot mea-

surements to deliver high-resolution automotive RA
imaging, comparable to that typically achieved through
IAA with a large radar array aperture. However, it
surpasses IAA by offering superior performance while
significantly reducing computational costs.

• We introduced novel signal augmentation methods and
leveraged domain knowledge from radar signal pro-
cessing to guide neural network design, demonstrating
SR-SPECNet’s scalability, efficiency, and robust perfor-
mance. This approach involves conceptualizing RA imag-
ing as a 1D spectral estimation problem, introducing an
innovative normalization method for real radar data, and
implementing a SNR-guided loss function.

The remainder of this paper is organized as follows. We
first review related work, including super-resolution DOA es-
timation algorithms (both model-based and DL-based), current
methods for improving radar RA heatmap resolution, and
existing automotive radar datasets, along with an introduction
to our own dataset. We then present SR-SPECNet, beginning
with the system model for DOA estimation and the IAA
algorithm, followed by the SR-SPECNet architecture inspired
by IAA. This section also covers data preprocessing, signal-
level augmentation, and the SNR-guided loss function. Finally,
the experimental section details the benchmark networks,
evaluation metrics, implementation specifics, and performance
evaluation, with visualizations of SR-SPECNet’s outputs to
highlight its effectiveness.

II. RELATED WORK

Efforts to enhance radar imaging have primarily focused
on improving azimuth resolution, especially due to limited
antenna elements, as range resolution is typically improved
by increased bandwidth. This section reviews super-resolution
algorithms for spectral estimation, including both model-based
and deep learning (DL)-based methods, deep learning enable
super-resolution approaches, and radar datasets.



ZHENG AND ET. AL.: MODEL-BASED KNOWLEDGE-DRIVEN LEARNING APPROACH FOR AUTOMOTIVE RADAR IMAGING 3

A. Super-Resolution Algorithms

1) Model-Based Approaches: The evolution of DOA esti-
mation methodologies has been marked by significant mile-
stones over the past decades, with substantial advancements
in both theory and application [24], [25]. In the automotive
radar domain, digital beamforming (DBF) has emerged as the
predominant DOA estimation algorithm, favored for its com-
putational efficiency and robustness. This technique, typically
implemented via FFT, however, faces limitations in angular
resolution due to the Rayleigh criterion and is characterized
by relatively high sidelobes [3], [26].

Automotive radars, operating within highly dynamic envi-
ronments, often have access to only a limited number of snap-
shots, sometimes as few as a single snapshot. This scenario
renders traditional super-resolution methods, such as Capon
beamforming, MUSIC [27], and ESPRIT [28], which require
multiple snapshots for accurate covariance matrix estimation,
less viable.

Compressive sensing (CS) techniques [16], [18], which ex-
ploit the sparsity of target distributions in the angular domain,
have shown exceptional super-resolution capabilities and are
notably effective in snapshot-constrained settings. However,
CS methods require the dictionary matrix to have low mutual
coherence.

On the contrary, the iterative adaptive approach (IAA) [19],
[20] offers a robust DOA estimation performance under limited
snapshots, utilizing an iterative, nonparametric methodology.
However, IAA has high computational complexity, involving
large dimensional matrix inversions in each iteration. Efforts
to mitigate these computational challenges have led to the
development of fast algorithms, including fast IAA [29], [30],
and super fast IAA [31]. Yet, the computational overhead
remains considerable.

2) DL-Based Approaches: Unlike the model-based ap-
proaches, which are based on simple mathematical models
that are hand-designed from domain knowledge, DL-based
approaches currently prevalent to replace simple principled
models with purely data-driven pipelines, trained with massive
labeled datasets. The DL-based DOA estimation approaches
have been shown to have rapid inference, enhanced super-
resolution capabilities, and robustness in low SNR conditions
[32]–[37].

In terms of network output, the DL-based approaches can
be broadly classified into two categories. The first category
addresses DOA estimation as a binary classification challenge,
determining the presence or absence of targets across a dis-
cretized angle grid. However, as the grid resolution increases
and the number of potential targets grows, the combinations
of possible target angles increase exponentially. This results
in challenges such as unbalanced training data and significant
hardware demands, making the training dataset excessively
large and the network impractical to train. In contrast, the
second category approaches DOA estimation through a re-
gression framework, producing continuous line spectra. The
latter method proves particularly beneficial for generating
continuous spectra, which are crucial for creating detailed RA
heatmaps.

Moreover, the process of collecting and labeling automotive
radar data necessary for training these systems is both costly
and labor-intensive, posing additional challenges to the devel-
opment and deployment of robust DOA estimation models.

3) Model-Based DL Approaches: Purely data-driven ap-
proaches to DOA estimation often suffer from limited inter-
pretability and require extensive datasets for effective training.
To address the challenges associated with traditional model-
based methods and the lack of transparency in black-box deep
learning systems, model-based deep learning techniques have
been developed. These techniques integrate the strengths of
signal processing and machine learning, benefiting from both
domains [25], [49], [50].

Prominent examples of model-based deep learning ap-
proaches include algorithm unrolling [51] and plug-and-play
networks [49], [52]. These hybrid methods merge math-
ematical optimization models with the flexibility of data-
driven frameworks, leveraging domain-specific knowledge and
mathematical structures to offer a principled and interpretable
solution [49], [53]–[58].

Despite these advances, current DL-based and model-based
deep learning approaches rely heavily on oversimplified sim-
ulated datasets, typically consisting of point targets such as
light poles. These datasets fail to capture the complexity of
real-world automotive radar scenarios, which often involve
extended targets like trucks and multiple scatterers such as
buildings. Furthermore, many existing methods require multi-
ple snapshots as input, while automotive radar systems often
have access to only limited or even single-snapshot data. To the
best of our knowledge, no existing network has been trained
or tested on real-world single-snapshot automotive radar data
for DOA estimation purposes.

B. Enhance Radar-Based Imaging Resolution

Recently, deep learning techniques have been employed
to tackle the challenges of enhancing resolution in radar-
based imaging. An adversarial network was tailored for super-
resolution in micro-Doppler imagery [21], showcasing the
potential of generative adversarial networks (GANs) in radar
image enhancement. A U-Net architecture was employed for
the super-resolution of weather radar maps [22], demon-
strating the adaptability of deep convolutional networks to
various radar data modalities. Notably, [23] ventured into
extrapolating received antenna signals through a compact
network, followed by the application of a 3D U-Net on the
range-Doppler-azimuth data cube, facilitating the generation
of super-resolution RA heatmaps. However, the existing body
of work primarily leverages 2D or 3D network architectures,
predicated on the assumption that the problem space necessi-
tates multi-dimensional data processing to achieve enhanced
resolution. This perspective, while valid, overlooks the po-
tential efficiencies and novel insights that can be garnered
from reinterpreting the challenge through a one-dimensional
lens. To our best knowledge, no prior work has endeavored to
address radar azimuth super-resolution within RA heatmaps
using a 1D approach.
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Figure 2: Left to right columns: radar point clouds, RA maps in Cartesian coordinates, LiDAR point clouds in bird’s-eye view,
and camera image.

Dataset # of Frames Data Type Resolution Radar/Technology

nuScenes [38] 40, 000 Sparse PC Low Continental ARS408

Oxford Radar [39] 240, 000 RA High Navtech Spinning Radar

RADIATE [40] 44, 000 RA High Navtech Spinning Radar

CRUW [41] 396, 241 RA Low TI AWR1843

Zendar [42] 94, 460 ADC,RD,PC High SAR

CARRADA [43] 12, 666 RA,RD,RAD Low TI AWR1843

RadarScenes [44] 975 Dense PC High 77GHz Middle-Range Radar

RADIal [45] 25, 000 ADC,RD,PC High Valeo Middle Range DDM

View-of-Delft [46] 8, 693 PC+Doppler High ZF FRGen21 Radar

K-Radar [47] 35, 000 4D Tensor High KAIST-Radar

Radatron [48] 152, 000 4D Tensor High TI Cascade Imaging Radar

Ours 17, 000 ADC High TI Cascade Imaging Radar

Table I: Overview of publicly available radar data sets. Data Type: Raw ADC data (ADC), Range-Doppler map (RD), Range-
Azimuth map (RA), point clouds (PC).

C. Radar Datasets

Automotive radar machine learning heavily relies on high-
quality radar data to ensure accurate model training and
robust performance in real-world applications. As shown in
Table I, CARRADA and CRUW datasets employ single-
chip Texas Instruments (TI) radar systems, offering modest
angular resolutions exceeding 10◦. Technologies like spin-
ning radar, utilized in the RADIATE and Oxford Radar
RobotCar datasets, provide high-resolution 360-degree field-
of-view (FOV) imagery, albeit at limited frame rates, which
can introduce motion blur challenges. The Zendar dataset,
leveraging synthetic aperture radar (SAR) technology, excels
in imaging static targets by integrating measurements from
different vehicle positions. The View-of-Delft dataset takes
advantage of the ZF FRGen21 radar’s long-range and high-
resolution imaging capabilities [59], offering point cloud data
with object annotations confined to a 50 meter range.

In this paper, we curate our own radar dataset for the
proposed model-based, knowledge-driven network, which ne-
cessitates detailed radar configuration parameters and exten-
sive raw analog-to-digital converter (ADC) data processing
to seamlessly integrate super-resolution algorithms and assess
network performance across various antenna apertures. The
centerpiece of our dataset is the TI cascaded imaging radar
system [60], mounted on a Lexus RX450h SUV, together with
other sensing modalities, including Teledyne FLIR Blackfly S
stereo cameras, and a Velodyne Ultra Puck VLP-32C LiDAR
sensor. The radar is configured for MIMO operations with
an array of 12 transmit and 16 receive antennas, synthesizing
a virtual uniform linear array (ULA) of 86 elements, with
half-wavelength spacing, rendering an azimuth resolution of
roughly 1.2◦ via FFT. As illustrated in Fig. 2, our dataset
showcases the exceptional high-resolution capabilities.
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Figure 3: The signal processing pipeline of high-resolution radar imaging.

III. SUPER-RESOLUTION ANGULAR SPECTRA

ESTIMATION NETWORK (SR-SPECNET)

In this section, we present a model-based, knowledge-driven
neural network approach to transform raw ADC data into high-
resolution RA maps. In contrast to recent methods that derive
high-resolution ground truth from RA maps using an expanded
antenna array [23], our approach additionally utilizes RA maps
refined through IAA algorithms, serving as our ground truth.

A. System Model

The proposed high-resolution radar imaging signal pro-
cessing flow with SR-SPECNet is shown in Figure 3. The
input ADC data, IADC ∈ C

Nfast×Nslow×Nch , encapsulates
three dimensions: Nfast for fast time samples, Nslow for
slow time samples (or chirps), and Nch for channels (or
receivers). Through a 2D FFT to IADC across both fast and
slow time dimensions, we obtain range-Doppler-channel data,
IRDC ∈ C

NRange×NDoppler×Nch . Subsequently, beam vectors
y ∈ C

1×1×Nch are extracted from each range-Doppler bin.
These vectors are processed by SR-SPECNet to generate a
super-resolution spectrum. This operation, performed on all
beam vectors across all range-Doppler bins, yields the range-
Doppler-azimuth data, IRDA ∈ R

NRange×NDoppler×NAzimuth .
Notably, this procedure is highly parallelizable, treating the
dataset as a 2D matrix with a batch size of NRange ×NDoppler.
The final high-resolution RA maps, M ∈ R

NRange×NAzimuth ,
are achieved by averaging IRDA over Doppler dimension.

To facilitate the introduction of our proposed model-based,
knowledge-driven neural network approach, we first present
the array model and super-resolution spectral estimation. Let’s
consider a scenario with K narrowband far-field source signals
sk for k = 1, · · · ,K, are incident upon a linear, omnidirec-
tional antenna array consisting of N elements. These signals
arrive from directions θk for k = 1, · · · ,K. The temporal
differences among the sensors can be accurately captured
through simple phase shifts, resulting in the following data

model

y(t) =

K
∑

k=1

a(θk)sk(k) + n(t)

= A(θ)s(t) + n(t), t = 1, · · · , T,

(1)

where t denotes the snapshot index, n is a complex N×1 white
Gaussian noise vector, and A(θ) = [a(θ1),a(θ2), · · · ,a(θK)]
represents the N × K array manifold matrix. The array
response vector a(θ) is defined as

a(θ) =

[

1, e
2πd2

λ
sin θ, · · · , e

2πd
N

λ
sin θ

]T

. (2)

Here, θ represents the direction of arrival of the signal, dn
indicates the spacing between the n-th element and the first
element, while s = [s1, s2, · · · , sK ]T denotes the vector of
source signals. In this study, our analysis is concentrated on
the single snapshot scenario, driven by the highly dynamic
environments encountered in automotive radar applications.
Therefore, we base our model on a singular snapshot y of the
array’s response. With T set to 1, the signal snapshot model
simplifies to y = A(θ)s+ n.

IAA is a data-dependent, nonparametric algorithm [19]. It
discretizes the DOA space into an L point grid, defining the
array manifold as A(θ) = [a(θ1), · · · ,a(θL)]. The fictitious
covariance matrix of y is represented as Rf = A(θ)PAH(θ),
where P is a L × L diagonal matrix with the l-th diagonal
element being pl = |ŝl|

2, and ŝl is the source reflection
coefficient corresponding to direction θl.

IAA iteratively estimates the reflection coefficient ŝ
and updates the fictitious covariance matrix by minimiz-
ing the weighted least-square (WLS) cost function ∥y −

sla(θl)∥
2

Q
−1

(θl)
, where ∥X∥2

Q
−1

(θl)

∆
= X

H
Q

−1(θl)X and

Q(θl) = Rf − Pla(θl)a
H(θl). The solution to this optimiza-

tion problem is

ŝl =
a
H(θl)R

−1
f

a
H(θl)R

−1
f a(θl)

y. (3)

From Equation (3), each iteration of the IAA essentially
involves performing MPDR type of beamforming. In IAA, new
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Figure 4: Architecture of SR-SPECNet.

beamformer weights are iteratively calculated, coupled with
the application of diagonal loading techniques [61], [62] to
the fictitious covariance matrix before matrix inversion, which
enhances the algorithm’s robustness and stability.

B. SR-SPECNet Architecture

The model-based, knowledge-driven SR-SPECNet is de-
signed with insights from the IAA algorithm. Under IAA,
the estimated reflection coefficient at direction θl in the n-th
iteration can be obtained as

ŝl(n) =
a
H(θl)R

−1
(n−1)y

a
H(θl)R

−1
(n−1)a(θl)

. (4)

The initial spectrum estimation, which is used to calculate the
fictitious covariance matrix R(0), is initialized using DFT, i.e.,

ŝl(0) =

∣

∣

∣

∣

∣

a
H(θl)y

Nch

∣

∣

∣

∣

∣

, (5)

where |·| denotes the absolute value. Equation (4) can be
further rewritten as:

ŝ(n) = T (̂s(n−1),y)ºB(̂s(n−1)), (6)

where
T (̂s(n−1),y) = A

H(θ)R−1
(n−1)y, (7)

B(̂s(n−1)) = Diag
(

A
H(θ)R−1

(n−1)A(θ)
)

, (8)

R(n−1) = A(θ)diag
(

ŝ
2
(n−1)

)

A
H(θ), (9)

and ŝ = {ŝ1, ŝ2, · · · , ŝl}. The notation diag(·) denotes the
operation of creating a diagonal matrix from a vector, and
Diag(·) signifies extracting the diagonal elements of a matrix.
The symbol º represents element-wise division.

The architecture of SR-SPECNet is illustrated in Fig. 4.
The network is designed to enhance spectral resolution in RA
imaging by incorporating radar signal processing principles
within a deep learning framework. The input to the network
is a beam vector y1 ∈ C

Nch1 , which represents the received
radar signal after range-Doppler processing. Before entering
the network, an initial spectrum estimate ŝ(0) is computed

using a DFT-based beamforming method. Since SR-SPECNet
processes only real-valued inputs, the real and imaginary
components of y1 are separated and concatenated with ŝ(0),
ensuring that the network preserves essential spectral and
phase information necessary for accurate DOA estimation.

SR-SPECNet is structured to explicitly mirror IAA, de-
composing the spectral estimation process into two primary
components: a top network that learns the transformation
T (̂s(0),y1), and a bottom network that approximates the nor-
malization function B(̂s(n−1)). This structured decomposition
allows the network to incorporate domain knowledge from
IAA, ensuring that it operates as a model-driven hybrid rather
than a purely data-driven deep learning model.

1) Top Network: The transformation T (̂s(0),y1) involves
the inversion of the covariance matrix, which is then used to
compute a beamforming weight matrix. This transformation is
inherently global in nature, as each output element depends
on all elements of the input. The top network employs a
multilayer perceptron (MLP) to approximate this transforma-
tion while simultaneously mapping the input beam vector
from Nch1, a lower-dimensional space, to Nch2, a higher-
dimensional space, which corresponds to the resolution of the
IAA-based ground truth spectra. The dimensionality expansion
performed by the MLP is a critical aspect of SR-SPECNet, as
it ensures that the output beam vector ŷ2 ∈ C

Nch2 matches
the resolution required for high-fidelity spectral reconstruction.
This mapping not only approximates the inverse covariance
transformation but also performs a structured extrapolation that
effectively expands the array aperture from the input beam
vector, enhancing spatial resolution.

Additionally, the transformation performed by the top net-
work involves nonlinear mappings that are not adequately cap-
tured by traditional beamforming techniques. The nonlinearity
introduced by the activation functions in the MLP enables the
network to approximate complex mappings required for spec-
tral enhancement. Unlike CNNs, which assume that adjacent
input elements are related through local spatial structures, an
MLP does not rely on locality assumptions and can effectively
model global dependencies across the entire beam vector. After
processing by the MLP, DBF is applied to ŷ2, forming the final
output of the top network. This transformed representation
corresponds to the numerator in the IAA formulation, ensuring
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that spectral enhancement is applied in accordance with the
learned inverse covariance transformation.

2) Bottom Network: The bottom network is designed to
approximate the function B(̂s(n−1)), which acts as a normal-
ization term in IAA, adjusting the spectral estimates to ensure
stability and robustness against noise. This function scales the
spectral estimates in a locally structured manner, ensuring that
peaks corresponding to true targets are properly emphasized
relative to surrounding noise and sidelobes. Since this function
inherently captures local spectral relationships, the bottom
network adopts a 1D U-Net [63] architecture, which is well
suited for refining spectral estimates while preserving fine-
scale structures.

The 1D U-Net is particularly advantageous due to its
ability to extract spectral patterns at multiple scales while
maintaining spectral coherence. Its encoder-decoder structure
facilitates multi-scale feature refinement, ensuring that spectral
estimates remain stable and physically interpretable. Moreover,
the U-Net preserves the input-output dimensionality, aligning
naturally with the properties of B(̂s(n−1)) in IAA. The skip
connections within the U-Net play a crucial role in retaining
fine spectral details and preventing information loss during
encoding and decoding, which is particularly beneficial for
mitigating sidelobes and enhancing the clarity of the recon-
structed RA heatmaps. By leveraging convolutional feature
extraction, the U-Net effectively models the structured nature
of the IAA normalization function, ensuring that the final
spectral output remains well-conditioned and suitable for high-
resolution radar imaging.

The final super-resolved spectral estimate is obtained
through an element-wise multiplication of the outputs from
the top and bottom networks, directly aligning with the
IAA formulation. This structured integration ensures that SR-
SPECNet adheres to a model-driven approach rather than
relying solely on data-driven learning. The top network cap-
tures global dependencies, emulates the inverse covariance
transformation, and performs dimensional expansion. Simul-
taneously, the bottom network stabilizes the spectral estimate,
refines local structures, and mitigates sidelobes, collectively
enhancing resolution and improving spectral clarity.

C. Data Preprocessing

Proper data normalization is crucial for training neural
networks, especially for regression tasks. Different from sim-
ulated signals with controlled factors like SNRs, target reflec-
tion coefficients, and target number, real-world signals add
unpredictability in SNR and reflection coefficients, challenging
normalization. SNR varies significantly within a radar frame
and from frame to frame. Maintaining a comparable intensity
among beam vectors is crucial for constructing accurate RA
heatmaps. We introduce a frequency domain normalization
method designed to produce consistent and interpretable inputs
for neural network training. This approach entails determining
a normalization factor, α, for each beam vector, calculated as
the maximum absolute value of the frequency spectra, obtained
by multiplying A

H to the beam vector, equivalent to an FFT
operation, and then divided by the total number of elements,
Nch:

α = max

(
∣

∣

∣

∣

∣

A
H(θ)y

Nch

∣

∣

∣

∣

∣

)

. (10)

Subsequently, the raw signal y is normalized using α to
yield ynorm = y/α, ensuring that the signal levels are
stable across varying SNR conditions. Similarly, the label,
represented by the IAA spectra ŝIAA, is normalized to snorm =
ŝIAA/α. This normalization strategy effectively scales the
signal and the IAA spectra so that their values fall within a
comparable range, thereby facilitating more effective network
training.

Moreover, α preserves the relative intensity across all beam
vectors in a radar frame, maintaining the spatial relationships
essential for accurate synthesis of RA heatmaps.

D. Signal Level Augmentation

Data augmentation, crucial for enhancing deep learning
model robustness and preventing overfitting, is implemented
by artificially expanding the dataset with transformations such
as flipping, rotation, and translation [64]. While these tech-
niques are well-established in the realm of image processing,
the domain of radar signal processing conspicuously lacks
bespoke augmentation methods. Addressing this gap, we in-
troduce a novel approach tailored specifically for radar signal
augmentation. This method aims to enrich the training dataset,
thereby improving the generalization capability of models
dedicated to processing radar signals.

1) Flip: Unlike the flip augmentation applied to images,
flipping the spectrum in radar signal processing involves
taking the complex conjugate of the signal. This process
changes the sign of the imaginary part of the signal’s complex
representation, effectively mirroring the spectral components.

2) Shift: In contrast to the simple circular shift utilized in
image augmentation, frequency shifting in signal processing
adopts a more sophisticated approach. This technique involves
modulating the signal by element-wise multiplying the signal
vector y with the array response vector a(∆θ), where ∆θ rep-
resents the angle of shift. The resulting operation is articulated
in the following equation:

yshift = a(∆θ)» y, (11)

where » denotes the element-wise multiplication. This mod-
ulation effectively shifts the signal’s spectrum, thereby facili-
tating the desired augmentation.

E. SNR-Guided Loss Function

The normalization factor α, representing the maximum
value in the signal’s frequency domain, is directly proportional
to the signal’s SNR. A higher α indicates a higher SNR,
which in turn suggests a more significant impact on the
quality of the final RA heatmap. We propose a novel loss
function that prioritizes signals with higher SNRs during the
training process. This SNR-guided loss function is designed
to emphasize the importance of high-quality signals, ensuring
that the model focuses on learning from the most informative
data points. By incorporating the SNR information into the
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loss calculation, we effectively assign higher weights to signals
with better SNRs, akin to a weighted mean squared error
(MSE) approach. The loss function is defined as follows:

LSNR = α ·
1

L

L
∑

i=1

(si − ŝi)
2, (12)

where L is the number of samples, si is the actual value,
and ŝi is the predicted value for each sample. This approach
ensures that our model is finely tuned to emphasize higher
quality signals.

IV. EXPERIMENT

We trained and evaluated our SR-SPECNet model using our
own dataset of 17, 000 frames of raw ADC radar data. To en-
hance data diversity and reduce redundancy from consecutive
frames, we strategically selected every tenth frame, resulting
in a subset of 1, 700 frames. Of these, the first 1, 400 frames
were used for training, while the remaining 300 frames were
reserved for testing. To further assess the generalizability of
our proposed methods, we utilized raw data from the Radartron
dataset [48]. Applying the same signal processing steps on the
Radartron dataset, we generated an additional 2, 667 frames
for testing. It is noteworthy that while Radartron uses the
same TI cascade radar board for data collection, it employs
different radar parameters, providing an excellent opportunity
to evaluate the methods’ generalizability.

A. Benchmarks

To assess the effectiveness of SR-SPECNet, we compare
it against leading models in line spectrum estimation and
high-resolution imaging. Specifically, for line spectrum esti-
mation, we selected the DeepFreq network [37] and SDOA-
Net [36], both of which are tailored for learning signal
frequency representations for DOA estimation, serving as per-
tinent benchmarks. Additionally, our evaluation encompasses
models that enhance spatial resolution, such as the 2D U-Net
[63], which converts low-resolution RA heatmaps to high-
resolution equivalents, and the 3D U-Net [23], designed to
improve low-resolution Range-Azimuth-Doppler (RAD) data
into detailed high-resolution RAD data cube.

B. Evaluation Metrics

We utilize MSE and mean absolute error (MAE) as our
primary metrics to assess the effectiveness of our approach
in 1D line spectra estimation. To comprehensively assess
the quality of the high-resolution RA heatmaps, we employ
established image evaluation metrics. Specifically, we use
normalized mean squared error (NMSE) to quantify the mag-
nitude of errors, peak signal-to-noise ratio (PSNR) in decibels
(dB) to measure the ratio of signal power to noise power
affecting image fidelity, and the structural similarity index
(SSIM) to evaluate changes in image composition that impact
perceived quality. Collectively, these metrics provide a robust
assessment.

C. Implementation Details

The task of super-resolution RA heatmap is framed as a
1D line spectra estimation problem, utilizing beam vectors
as input data. Our radar configuration involves Nfast = 256
fast-time samples, Nslow = 64 slow-time samples, and post-
MIMO processing, yielding beam vectors with 86 elements
each. This configuration results in a raw radar ADC data cube
IADC ∈ C

256×64×86, as depicted in Fig 3. After applying a
Range-Doppler FFT, we obtain the Range-Doppler-Channel
data IRDC ∈ C

256×64×86. For efficiency and to reduce
memory requirements during training, we truncate IRDC along
the range axis to the first 200 elements and along the channel
axis to the first 10 elements, resulting in a truncated dataset
ItruncRDC ∈ C

200×64×10.
We set the angular grid size to L = 256 for frequency

domain uniformity. The labels for our 10-element antenna
arrays are derived from the IAA spectra of a 20-element
antenna array to achieve higher resolution spectra.

As shown in Fig 4, the input to SR-SPECNet, beam vector
y1 ∈ C

10, is processed using a 10-element DBF to obtain
the initial estimated spectra Ŝ(0) ∈ R

256. This is input into
a 1D U-Net consisting of four down-sampling and four up-
sampling layers, with channel sizes for the down-sampling
layers set at 16, 32, 64, and 128, and for the up-sampling
layers at 64, 32, 16, and 8, culminating in an output layer
with a channel size of one. The final output of the 1D U-Net
matches the size of Ŝ(0). Concurrently, Ŝ(0) is concatenated
with the processed beam vector, split into real and imaginary
parts, to form an input to the MLP network of size 276. The
MLP network consists of four fully connected layers with
output sizes of 1024, 512, 256, and 40. Each layer is followed
by a ReLU activation layer, except for the last layer. The
MLP output is transformed into a complex number by using
the first 20 numbers as the real part and the last 20 as the
imaginary part, creating the estimated beam vector ŷ2 for a 20-
element antenna array. This is followed by a 20-element DBF,
ensuring that the output sizes of both network sections match.
An element-wise multiplication is then applied to produce the
final estimated spectra Ŝ.

SR-SPECNet and the benchmark models were implemented
using PyTorch, with training standardized using the Adam op-
timizer at a learning rate of 0.0001 for 500 epochs, accelerated
on four Nvidia RTX A6000 GPUs for efficiency.

D. Results and Comparisons in Super-Resolution

1) Spectra Estimation: We benchmarked the performance
of our SR-SPECNet against two established one-dimensional
baseline models, as detailed in IV-A. For consistency, each
model was trained using an MSE loss function. All models
were trained under two scenarios, with and without signal-
level augmentation, to demonstrate the effectiveness of our
proposed augmentation method. The results, detailed in Table
II, reveal distinct performance characteristics. Notably, SR-
SPECNet outperforms the baseline models, achieving the
lowest MSE and MAE in both scenarios.

A closer examination of Table II shows that the DeepFreq
model [37] has the fewest trainable parameters, while SDOA-
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Figure 5: Scalability of SR-SPECNet and SR-SPECNet+ across variable NRange and NDoppler. The figure contrasts RA heatmap
reconstructions using SR-SPECNet and SR-SPECNet+, respectively. In the first row, NRange = 200, NDoppler = 64; in the
second row, NRange = 10, NDoppler = 50, showcasing the model’s scalability.

LR Ground Truth SR-SPECNet+ U-Net 2D RAD-NetSR-SPECNet
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Figure 6: RA heatmap quality comparison. Heatmaps from the same radar frame are reconstructed by SR-SPECNet, SR-
SPECNet+, and baseline 2D U-Net and 3D RAD-Net models, alongside the ground truth.

Net [36] has the most. Surprisingly, despite SDOA-Net’s
increased complexity and higher number of parameters, it fails
to provide a significant performance boost over DeepFreq.
In contrast, our SR-SPECNet, which contains 1.1205 million
parameters, substantially fewer than SDOA-Net, achieves the
best performance among the three models. Without signal-
level augmentation, SR-SPECNet attains an MSE of 0.0072
and an MAE of 0.0488. When signal-level augmentation is
applied, the performance is further enhanced to an MSE of
0.0065 and an MAE of 0.0459.

2) Single-Target DOA Estimation Accuracy: To evaluate
the accuracy of SR-SPECNet in estimating the DOA for a
single target, we conducted a Monte Carlo simulation with
2, 000 trials for each SNR level, ranging from 0 dB to 30 dB
in 5 dB increments. The root mean squared error (RMSE) of

the DOA estimation was computed for each SNR level and
compared against baseline methods, including model-based
algorithms such as FFT and IAA, deep learning networks like
DeepFreq and SDOA-Net, and the Cramer-Rao lower bound
(CRLB). The results are shown in Figure 7, with the black
dashed line representing the grid-induced error.

SR-SPECNet outperforms the benchmark deep learning
networks across all SNR levels. At 0 dB, it achieves the
best performance among all methods, including FFT and IAA.
From 5 dB to 15 dB, SR-SPECNet demonstrates comparable
accuracy to FFT and IAA, highlighting its robustness in low
to moderate SNR scenarios. At higher SNR levels, specifically
between 20 dB and 30 dB, the performance of SR-SPECNet
shows a slight decline relative to IAA and FFT. This behavior
can be explained by the distribution of training data: the
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Models P(M)
w/o Augmentation w Augmentation

MSE↓ MAE↓ MSE↓ MAE↓

DeepFreq [37] 0.0232 0.0103 0.0613 0.0100 0.0598

SDOA-Net [36] 5.3050 0.0104 0.0603 0.0099 0.0593

SR-SPECNet 1.1205 0.0072 0.0488 0.0065 0.0459

Table II: Comparative performance metrics for different deep learning models. MSE and MAE are reported alongside the
number of parameters (P) in millions (M).
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Figure 7: RMSE of DOA estimation for SR-SPECNet, FFT,
IAA, SDOA-Net, DeepFreq, and the CRLB across SNR levels,
with the black dashed line indicating the grid-induced error.

real-world radar dataset used to train SR-SPECNet contains
fewer high-SNR samples, as such conditions are less common
in practical automotive radar scenarios. Consequently, the
network is less exposed to high-SNR data during training,
which limits its ability to achieve optimal performance in
these regimes. In contrast, IAA and FFT are not influenced
by data limitations and consistently perform well across all
SNR levels.

3) Resolution of Closely Spaced Targets: To evaluate the
resolution capability of SR-SPECNet and benchmark methods,
a Monte Carlo simulation was conducted with two closely
spaced targets at an SNR of 15 dB. The angular separation
(∆θ) between the targets was varied from 4◦ to 30◦ in
steps of 2◦. For each angular separation, 2, 000 trials were
performed. A trial was considered successful if both targets
were correctly detected and resolved, defined as the angular
estimation error for each target being smaller than 1◦. The
hit rate was calculated as the ratio of successful trials to the
total number of trials and is presented as a function of ∆θ in
Figure 8.

As shown in Figure 8, SR-SPECNet demonstrates superior
resolution capability compared to DeepFreq and SDOA-Net,
particularly for smaller angular separations. Below 10◦, SR-
SPECNet achieves higher hit rates than IAA, while at 10◦

and above, both SR-SPECNet and IAA resolve all targets in
every trial. These results highlight SR-SPECNet’s ability to
effectively resolve closely spaced targets.
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Figure 8: Hit rate as a function of angular separation (∆θ) for
two closely spaced targets at an SNR of 15 dB. The perfor-
mance of SR-SPECNet, FFT, IAA, DeepFreq, and SDOA-Net
is compared. A trial is considered successful if both targets
are correctly detected and resolved.

4) High-Resolution RA Heatmap: We subsequently investi-
gated the performance of deep learning networks in generating
high-resolution RA heatmaps. To this end, we evaluated SR-
SPECNet and SR-SPECNet+, trained using MSE loss and
our novel SNR-guided loss, respectively, against established
benchmark models. As detailed in Table III, our models were
tested on both our own dataset and the Radartron dataset [48].

SR-SPECNet is specifically designed for one-dimensional
line spectra estimation and consequently has significantly
fewer parameters and lower model complexity compared to the
2D U-Net (31.0365 million parameters) and the 3D RAD-Net
(56.4639 million parameters). Despite its lower complexity,
SR-SPECNet demonstrates strong performance, as evidenced
in Table III.

To ensure fair evaluation across datasets, we use NMSE
instead of MSE, as it normalizes errors relative to the total
magnitude of the ground truth, making it more robust to vari-
ations in target density and radar configurations. In our self-
built dataset, which captures long-range scenes, the ground
truth often contains extensive regions with low-magnitude
values, resulting in a smaller overall sum of squared values.
As a result, even minor prediction errors appear dispropor-
tionately large when normalized in NMSE. This effect is
less pronounced in the Radartron dataset, where targets are
more densely distributed. Despite this, SR-SPECNet maintains
consistent NMSE performance, demonstrating its robustness
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Models P(M)
Ours Radatron [48]

NMSE↓ SSIM↑ PSNR↑ NMSE↓ SSIM↑ PSNR↑

2D U-Net [63] 31.0365 1.3577 0.7795 30.0893 0.4674 0.7083 24.6722

3D RAD-Net [23] 56.4639 2.1679 0.7215 28.5328 0.6001 0.6915 24.9197

1D
SR-SPECNet

1.1205
0.4026 0.8560 31.4797 0.2724 0.7535 25.7391

SR-SPECNet+ 0.1543 0.9149 36.6608 0.1697 0.7746 28.2755

Table III: Performance metrics of deep learning models for super-resolution RA heatmap generation.

across different radar conditions.
The proposed SR-SPECNet demonstrates consistent perfor-

mance across both datasets, as reflected in NMSE, SSIM, and
PSNR metrics, highlighting its robustness in handling varia-
tions in radar configurations and driving scenarios. The key
advantage of SR-SPECNet lies in its 1D spectral estimation
approach, which extracts signal features that remain invariant
across different radar setups and environments. In contrast,
2D and 3D methods depend on spatial features that are
significantly affected by variations in radar configuration, such
as range resolution (determined by radar bandwidth), Doppler
resolution, maximum detectable range, and other system-
dependent factors, as well as changes in target distribution
due to different driving scenarios. These dependencies can
lead to feature shifts in the 2D and 3D domains, reducing
their generalizability across datasets. SR-SPECNet, however,
maintains stable spectral features, avoiding these challenges
and ensuring consistent performance. It consistently outper-
forms the 2D U-Net on both our dataset and the Radartron
dataset, demonstrating superior generalizability. This under-
scores the advantage of generating RA heatmaps through 1D
spectral estimation, as well as the impact of domain-specific
enhancements in SR-SPECNet+, which further strengthen its
performance. By incorporating an SNR-guided loss function,
SR-SPECNet+ effectively fine-tunes the training process to
emphasize signals with higher SNR, leading to improved
spectral estimation. As a result, SR-SPECNet+ emerges as
the leading model, outperforming both the 2D U-Net and
3D RAD-Net benchmarks, as well as SR-SPECNet, on both
datasets, achieving the lowest NMSE and the highest SSIM
and PSNR scores.

5) Scalability: Unlike the 2D U-Net and 3D RAD-Net
models that require inputs of fixed dimensions, the 2D U-Net
processes low-resolution RA heatmaps and the 3D RAD-Net
handles low-resolution RAD data, our SR-SPECNet model is
designed for adaptability by accepting 1D beam vectors as
input. This flexibility grants SR-SPECNet superior scalability
across varying NRange and NDoppler values.

Figure 5 illustrates the performance of SR-SPECNet and
SR-SPECNet+ with varying input dimensions. In the first row,
the original Range-Doppler-Channel data IRDC has dimen-
sions NRange = 200 and NDoppler = 64, as used for training (see
Section IV-C). Under these settings, both networks generate
high-resolution RA maps with PSNR values of 27.56 dB and
29.57 dB, respectively. In the second row of Figure 5, the di-
mensions of IRDC are reduced to NRange = 100 and NDoppler =
50. Remarkably, both SR-SPECNet and SR-SPECNet+ adapt

seamlessly to these new sizes without significant loss in PSNR,
demonstrating their robustness and flexibility to accommodate
different NRange and NDoppler values.

Moreover, as 4D automotive radars, which encompass
range, Doppler, azimuth, and elevation dimensions, gain in-
creasing attention from both industry and academia, the scal-
ability of our approach becomes even more valuable. Tradi-
tional methods like employing a 4D U-Net to enhance radar
resolution significantly increase the number of parameters and
computational complexity. In contrast, SR-SPECNet and SR-
SPECNet+ efficiently handle higher-dimensional data without
a substantial rise in complexity, making them more practical
for advancing 4D radar technologies.

6) Dynamic Range: In automotive radar sensing, reflections
vary in intensity, with strong targets producing returns with
high amplitudes and weak targets exhibiting lower amplitudes.
A key concern is whether SNR-guided loss, which prioritizes
high-SNR regions, impacts weak target imaging. To assess
this, we evaluate model performance across different dynamic
ranges.

We define dynamic range as the ratio (in dB) between the
peak amplitude of the entire image and the peak amplitude
within a selected small region in the far field, where the target
reflections are typically weaker. This metric quantifies the
disparity between strong and weak scatterers, providing insight
into a model’s ability to preserve weaker target information in
varying scenarios.

The results, summarized in Table IV, show that SR-
SPECNet+ demonstrates strong performance across most met-
rics and dynamic range categories due to its strong ability
to suppress target sidelobes, particularly excelling in NMSE
and PSNR. For low dynamic range images, SR-SPECNet+
achieves the best results in all metrics, effectively preserving
weak target imaging. In medium and high dynamic ranges,
it maintains superior NMSE and PSNR performance, show-
casing robustness in handling significant power variations.
While SR-SPECNet achieves slightly higher SSIM scores in
medium and high dynamic ranges, SR-SPECNet+ strikes a
better overall balance across all metrics, ensuring reliable
reconstruction of both strong and weak targets.

7) Ablation Study: To better evaluate the performance im-
pact of data augmentation and the SNR-guided loss function,
we conduct a systematic ablation study on SR-SPECNet and
two baseline models. These experiments aim to assess the
independent contributions of these components and validate
their generalization capability across different network archi-
tectures.
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LR SR-SPECNet+ LiDAR Camera

Figure 9: BEV heatmap quality comparison. Low-resolution radar BEVs alongside high-resolution radar BEVs generated by
SR-SPECNet+. Corresponding LiDAR point clouds and camera images are included for reference, demonstrating the enhanced
resolution achieved by our method.

Models
Low Medium High

NMSE↓ SSIM↑ PSNR↑ NMSE↓ SSIM↑ PSNR↑ NMSE↓ SSIM↑ PSNR↑

2D U-Net [63] 0.4145 0.4936 16.3978 0.4191 0.4953 16.4779 0.4433 0.5003 16.4683

3D RAD-Net [23] 0.3423 0.5229 17.8972 0.4241 0.5261 17.5499 0.4278 0.5278 17.4540

1D
SR-SPECNet 0.1881 0.5835 19.3013 0.2031 0.6001 19.3316 0.1938 0.5971 19.1722

SR-SPECNet+ 0.1272 0.5923 21.1618 0.1118 0.5827 20.7491 0.0941 0.5180 19.5597

Table IV: Model performance across different dynamic ranges. The test dataset is divided into three groups: low dynamic range
(2 dB - 10 dB, 790 images), medium dynamic range (10 dB - 20 dB, 821 images), and high dynamic range (> 20 dB, 544
images). While a 20 dB dynamic range may not seem high, it represents the peak value within the test image. These images
still contain smaller-magnitude scatterers, making it a relevant benchmark for assessing weak target imaging performance.
NMSE, SSIM, and PSNR are evaluated to measure each model’s ability to reconstruct weak targets.
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Models
Ablation Settings

NMSE↓ SSIM↑ PSNR↑
SA SGL

SR-SPECNet

: : 0.3123 0.7291 26.9376

6 : 0.2867 0.7648 26.3695

: 6 0.2625 0.7738 27.3694

6 6 0.1680 0.7901 29.1963

DeepFreq [37]

: : 3.9894 0.4955 16.6768

6 : 2.8625 0.5448 19.8862

: 6 0.5766 0.6956 24.1084

6 6 0.3388 0.7318 26.1257

SDOA-Net [36]

: : 2.7024 0.5340 18.9596

6 : 1.7460 0.5967 21.1684

: 6 0.5218 0.7031 24.8092

6 6 0.3144 0.7545 26.6423

Table V: Ablation study results evaluating the impact of signal
level augmentation (SA) and the SNR-guided loss (SGL)
on SR-SPECNet and two benchmark models. The results
show improvements in NMSE, SSIM, and PSNR when both
components are included, demonstrating their effectiveness
and generalization capability.

The ablation study results in Table V demonstrate the
significant impact of signal augmentation and the SNR-guided
loss (SGL) function on spectral reconstruction performance.
Removing both components results in higher NMSE, lower
SSIM, and reduced PSNR across all models, indicating de-
graded performance. Applying SA improves generalization by
introducing signal variations, while SGL enhances spectral
estimation by prioritizing high-SNR signals during training.
When both techniques are applied together, the largest gains
are observed, with SR-SPECNet achieving the best perfor-
mance, reducing NMSE from 0.3123 to 0.1680 and improving
SSIM and PSNR to 0.7901 and 29.1963 dB, respectively.
Similar trends in DeepFreq and SDOA-Net confirm that these
enhancements generalize beyond SR-SPECNet. This study
validates the effectiveness of the proposed methods in improv-
ing spectral estimation, robustness, and generalization across
different network architectures.

8) Complexity: To evaluate the complexity of the proposed
SR-SPECNet compared to benchmark networks and IAA, we
use three key metrics: the number of trainable parameters,
peak memory usage, and inference time. The inference time
is measured as the average time required to generate one radar
range-angle (RA) map. It is worth noting that faster variations
of IAA, such as fast IAA (FIAA) [65] and super fast IAA
(SFIAA) [66], replace the covariance matrix inversion with
matrix factorization to reduce computational cost. However,
their speed advantage is minimal for small arrays (e.g., a 10-
element array, as in our setup). Consequently, they do not
significantly impact inference time in our experiments and are
omitted from the comparative table.

The computational complexity of SR-SPECNet is evalu-
ated against other benchmark networks, including IAA. SR-
SPECNet achieves a balanced trade-off between efficiency

and performance, with 1.1205 million trainable parameters,
418.33 MB peak memory usage, and a 5.75 ms inference
time. Compared to deep learning methods, SR-SPECNet is
significantly more efficient than U-Net (31.0365M parameters,
468.09 MB, 5.41 ms) and RAD-Net (56.4639M parameters,
1, 809.48 MB, 6.87 ms). While DeepFreq is lightweight
(0.0232M parameters, 151.82 MB, 1.22 ms), its limited model
capacity may hinder performance on complex tasks.

In contrast, IAA, while capable of generating super-
resolution spectra for a 10-element ULA, is impractical due
to its excessive memory usage (1, 0261.84 MB) and slow
inference time (356.79 ms). It is important to note that all
deep learning networks, including SR-SPECNet, are trained
to generate spectra for a 20-element ULA, providing higher
resolution. This highlights the advantage of deep learning over
traditional methods like IAA.

E. Visualization of RA maps

To evaluate the quality of the high resolution RA heatmaps
produced by SR-SPECNet and SR-SPECNet+, we visually
compare their outputs against those from baseline models,
namely 2D U-Net and 3D RAD-Net, as depicted in Figure
6. The low resolution (LR) heatmaps are generated using
FFT with a 10-element antenna arrays, while the ground truth
heatmaps are generated using the IAA method with a 20-
element antenna arrays. Due to the larger antenna aperture
size and the application of super-resolution algorithm, these
ground truth heatmaps have much better resolution than the
LR heatmap. Furthermore, IAA suppresses sidelobes, yielding
much clearer heatmaps. This underscores the benefits of using
IAA derived heatmaps as ground truth for learning, rather
than relying on FFT-generated heatmaps with a larger antenna
aperture, which may not always be practically available due
to hardware costs and the complexities involved in MIMO
technology implementations.

Fig. 6 demonstrates that the RA heatmaps that are respec-
tively produced by SR-SPECNet and SR-SPECNet+ with a
SNR-guided loss function, exhibit a noticeable improvement
over the heatmaps generated by baseline models, aligning
with the quantitative metrics presented in Tables III. These
results collectively affirm the effectiveness of our proposed
1D methodologies over the 2D and 3D methods.

To further demonstrate the efficacy of our approach in en-
hancing RA heatmap resolution, we convert the RA heatmaps
from polar to Cartesian coordinates, resulting in bird’s eye
views (BEVs). Figure 9 displays low-resolution BEVs and
high-resolution BEVs generated by SR-SPECNet+, alongside
their corresponding LiDAR point clouds and camera images.
The results clearly show that our method significantly en-
hances the resolution.

V. CONCLUSION

In this paper, we tackled the limitations of mmWave radar
imaging for autonomous vehicle perception, specifically ad-
dressing the issue of insufficient spatial resolution for precise
semantic scene interpretation. Recognizing that traditional
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Models P (M) Memory Usage (MB) Inference Time (ms)

2D U-Net [63] 31.0365 468.09 5.41

3D RAD-Net [23] 56.4639 1809.48 6.87

1D

DeepFreq [37] 0.0232 151.82 1.22

SDOA-Net [36] 5.3050 6522.57 1.83

SR-SPECNet 1.1205 418.33 5.75

IAA [19] - 10261.84 356.79

Table VI: Comparison of model complexity metrics, including the number of trainable parameters (P), peak memory usage,
and inference time for processing one radar frame.

super-resolution techniques from optical imaging do not ad-
equately capture the unique characteristics of radar signal
data, we redefined radar imaging super-resolution as a one-
dimensional signal super-resolution spectra estimation prob-
lem. By leveraging radar signal processing domain knowledge,
we introduced innovative methods such as data normaliza-
tion, signal-level augmentation, and a domain-informed SNR-
guided loss function. Our proposed deep learning network,
SR-SPECNet, is specifically tailored for automotive radar
imaging and demonstrates remarkable scalability, parameter
efficiency. Extensive testing confirms that SR-SPECNet sets
a new benchmark in producing high-resolution radar range-
azimuth images, significantly enhancing radar imaging quality
and resolution compared to existing methods.

Additionally, we presented a novel real-world radar dataset
that is crucial for advancing radar imaging techniques and
refining super-resolution spectra estimation methods. This
dataset, along with our source code, will be made publicly
available to foster further research in this domain. In summary,
our work offers a comprehensive solution to enhance mmWave
radar imaging for autonomous vehicles, effectively bridging
the gap between radar signal processing and deep learning.
By redefining the super-resolution problem and introducing
domain-specific innovations, we provide a pathway towards
more accurate and reliable perception systems in autonomous
vehicles. Future work may explore extending these method-
ologies to other radar modalities and further optimizing the
network for real-time applications.
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