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Pathogen spillover between different host species is the trigger for many infec-
tious disease outbreaks and emergence events, and ecosystem boundary areas
have been suggested as spatial hotspots of spillover. This hypothesis is largely
based on suspected higher rates of zoonotic disease spillover and emergence
in fragmented landscapes and other areas where humans live in close vicinity
to wildlife. For example, Ebola virus outbreaks have been linked to contacts
between humans and infected wildlife at the rural-forest border, and spillover
of yellow fever via mosquito vectors happens at the interface between forest
and human settlements. Because spillover involves complex interactions
between multiple species and is difficult to observe directly, empirical studies
are scarce, particularly those that quantify underlying mechanisms. In this
review, we identify and explore potential ecological mechanisms affecting
spillover of pathogens (and parasites in general) at ecosystem boundaries.
We borrow the concept of ‘permeability” from animal movement ecology as
a measure of the likelihood that hosts and parasites are present in an ecosys-
tem boundary region. We then discuss how different mechanisms operating
at the levels of organisms and ecosystems might affect permeability and
spillover. This review is a step towards developing a general theory of
cross-species parasite spillover across ecosystem boundaries with the eventual
aim of improving predictions of spillover risk in heterogeneous landscapes.

This article is part of the theme issue ‘Dynamic and integrative approaches
to understanding pathogen spillover’.

1. Introduction

Zoonotic infectious disease outbreaks in humans are triggered by the spillover
of pathogens from animals, and locations where humans and animals meet fre-
quently are potential spillover hotspots [1]. Alongside factors such as human
population density, living conditions and environment characteristics, proxi-
mity to ecosystem boundaries is suspected to mediate rates and risks of
infectious disease spillover events [2,3]. Many past outbreaks of Ebola virus,
for example, have been traced back to contacts with infected bushmeat carcasses
near the edges of tropical evergreen forest or following perturbation caused by
recent deforestation [4—6], while multiple vector-borne diseases such as zoonotic
malaria, yellow fever, chikungunya and Zika are caused by parasite spillover from
a primate-driven sylvatic cycle to humans and other animals at the boundary
between rural and natural ecosystems [7-10].

Despite the speculation that ecosystem boundaries act as potential hotspots
of parasite spillover between species [2], there has been relatively little effort
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Box 1. Definitions.

Bridge host: a host species that acts as a bridge or link in an interspecies transmission chain, meaning they act as recipient
host for one spillover event, and consequently as source host for another onwards spillover event [15]. Bridge vectors fulfil an
analogous functional role by transmitting between two different host species.

Ecosystem interior: the part of the ecosystem that is not under the influence of edge effects. We acknowledge that this is a
highly simplified definition and that this will be species-specific, but it should be appropriate for the broad purposes of the
description of mechanisms and theory relating to spillover.

Ecosystem boundary: the divide between adjacent ecosystems, also called ‘edge’ [16].

Parasite: throughout the text, we use the term parasite to describe all organisms that infect, and are transmitted between,
hosts. This includes pathogenic as well as non-pathogenic microparasites and macroparasites. This encompasses a wide
range of characteristics, and the mechanisms described in this article are likely to affect different parasites in different ways.

Permeability: a concept used in movement and landscape ecology, where it is defined as the degree to which an organism
is able or willing to cross a given habitat [17]. Applied to spillover across ecosystem boundaries, it can be used to represent
how likely a host species is to enter or cross the boundary. Permeability also applies to the parasite, in which case it is deter-
mined by permeability for the source and recipient hosts, as well as by the parasite’s ability to survive outside a host and to
passively or actively move into/across the boundary.

Recipient host: a species that is infected by a parasite originating from a different host species.

Source host: a species responsible for shedding the parasite and causing a spillover exposure event, either by shedding the
parasite into the environment or through direct contact with the recipient host.

Spillover: the transmission of a parasite from one host species to another, regardless of whether onwards transmission in
the recipient host is successful. This definition forces a focus on spillover only, although we acknowledge that onwards trans-
mission is a crucial component of pathogen persistence and outbreaks, especially in the case of emerging infectious diseases
in humans [1]. In this article, a distinction has been made between spillover rate (the total number of spillover events for a

given host-parasite system) and spillover diversity (the total number of parasite species spilling over).

directed towards determining whether this is a general bio-
logical pattern, or when and where we might expect it to
hold true (but see [2,11,12]). Should we expect to see higher
rates of cross-species spillover near ecosystem boundaries
than in ecosystem interiors? A compelling reason to expect
this is that ecosystem boundaries form the occurrence limits
of many species, which implies that contacts between species
occupying adjacent ecosystems should occur within these
transition zones. Furthermore, the ecological theory of edge
effects predicts increased biodiversity at ecosystem bound-
aries, including the existence of boundary-specific species
[13]. Both of these factors should correspond to an increase
in spillover risk [1,14], owing simply to greater opportunities
for cross-species contacts, yet empirical evidence about
their precise effects on spillover risk remain sparse and
context-dependent. Additionally, several other interacting
mechanisms could influence spillover rates near ecosystem
boundaries. A first step towards understanding the role of
ecosystem boundaries in shaping spillover risk is to identify
and describe potential underlying mechanisms.

In this article, we critically explore the biological mechanisms
that could alter spillover at ecosystem boundaries. Our goal is to
address three questions: (i) are ecosystem boundaries likely to be
spillover hotspots? (ii) which mechanisms are expected to
contribute to spillover near ecosystem boundaries? and (iii) can
we borrow from existing ecological theory to develop a better
understanding of spillover near ecosystem boundaries?

Section 2 of the paper describes the application of an
existing ecological concept (permeability) to spillover across
ecosystem boundaries, as a way to integrate distinct mechan-
isms driving host and parasite presence. Sections 3 and 4
describe the most important of these mechanisms, divided
into mechanisms operating at the organism level (§3) and
the ecosystem level (§4). Section 5 goes into existing concepts
and theories from different fields that might be useful for

advancing our understanding of spillover across ecosystem
boundaries. The article will not be restricted to zoonotic
spillover to humans, but will rather address mechanisms
that might drive spillover between any host species, with
the aim of advancing general ecological theory on parasite
spillover. Note also that this review focuses on ecological
mechanisms only, and does not address other crucial factors
such as immune defence, host competence or host/parasite
phylogeny that determine host—parasite compatibility.

Throughout our discussion of drivers of spillover, we dis-
tinguish between spillover rate (the number of spillover events
for a single host—parasite system) and spillover diversity (the
number of parasite species spilling over). Certain drivers
such as host species richness will be more important for
spillover diversity, while other drivers such as population
abundance are expected to be more important for the
number of spillover events. Definitions of these and other
key concepts used in this article are provided in box 1.

The rate of spillover across ecosystem boundaries depends on
the likelihood that source and recipient hosts, as well as the
parasite (box 1), are present in or near a boundary region.
This likelihood can be represented by a boundary’s per-
meability (box 1), a concept used in landscape and
movement ecology to describe an organism’s ability or will-
ingness to move through a certain habitat [17]. Applied to
spillover, this concept can be used to characterize how
likely a parasite is to spill over across ecosystem boundaries
(figure 1). Spillover of a parasite across an ecosystem bound-
ary requires boundary permeability for at least one of the
three actors involved in spillover, i.e. source host(s), recipient
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Figure 1. Conceptual model of how host and parasite characteristics affect boundary permeability to spillover. Non-exhaustive list of different ways in which general
ecological mechanisms can affect parasite spillover across ecosystem boundaries. Purple and yellow background colours represent adjacent ecosystems, and the region
of overlap represents their boundary. Red lines illustrate spillover rate at the different locations (ecosystem interiors and boundary). Grey boxes indicate the spatial
extent of source, bridge/vector, and recipient hosts, as well as the parasite. (Online version in colour.)

host(s) or parasite. The interactions between the levels of
boundary permeability for each of these components will
determine spillover rate for a given system.

Permeability for hosts will depend on host traits, and all fac-
tors that influence behaviour and abundance near the boundary.
For example, boundaries will have high permeability for species
whose home ranges extend into both ecosystems [23] (figure 1).
Some animals cross the aquatic-terrestrial boundary on a daily
basis for foraging, such as the American mink (Mustela vison)
or the Eurasian otter (Lutra lutra) [24]. On the other hand,
highly habitat-specialized species such as the bamboo lemur
(Hapalemur sp.) will be more likely to remain in their ecosystem
interior, and experience low boundary permeability [25-27].
Permeability for parasites will depend on permeability for
their hosts and vectors, as well as their abilities to persist inde-
pendently outside the host on either side of the boundary, and
possible physical transport in the environment (figure 1). Section
3 (below) reviews how host, vector and parasite characteristics
might affect permeability.

For many host and parasite species, permeability will relate
to the contrast between adjacent ecosystems [28]. Ecosystems
that share many characteristics are more likely to facilitate
cross-boundary movement, while boundaries dividing distinct
ecosystems sharing few characteristics will more likely have
low permeability for most species [29]. Ecosystem contrast
can also influence the directionality of permeability, where
organism movement occurs more easily from one type of eco-
system to another than vice versa. Water-borne organisms, for
example, often follow the flow of water in the landscape, which
means that both hosts and parasites can more easily cross from
a terrestrial to an aquatic ecosystem than in the opposite direc-
tion, as is the case for Toxoplasma gondii transmission from
terrestrial felids to sea otters [19]. Such directional permeability
is also a well-known phenomenon for agricultural pest species,
where cultivated areas near natural ecosystems tend to attract

arthropod pests when productive [30,31]. This has direct conse-
quences for pathogen spillover across ecosystem boundaries,
as pest species can carry parasites across boundaries [32]. An
important question that is relevant for the risk of spillover to
humans is whether anthropogenic boundaries are less
permeable to host and parasite movement than natural bound-
aries, owing to the stark ecosystem contrasts often created by
anthropogenic boundaries. Section 4 expands on this, detailing
ecosystem and boundary characteristics that can influence per-
meability for hosts and parasites.

3. Hosts, vectors and parasites near ecosystem
boundaries

(a) Hosts and vectors near ecosystem boundaries

Host traits that increase the probability of occupying or cross-
ing ecosystem boundaries may lead to such host species
functioning as bridge hosts (box 1) that link different host
species occupying distinct ecosystems [15]. Bridge host
traits can include being a generalist consumer, having high
tolerance to different habitats, or being an edge-habitat
specialist. The presence of bridge hosts can be particularly
important for spillover between two other host species for
which the boundary has low permeability [33]. This may,
for example, be the case for small mammals that transport
Ixodes ricinus ticks between pasture and woodlands, thereby
enabling them to feed on hosts that are unlikely to cross the
ecosystem boundary, and hence potentially to vector infec-
tions across the boundary [34]. In turn, arthropod vectors
themselves can often act as crucial bridge species (figure 1).
For example, arthropod vectors are known to be responsible
for spillover of important zoonoses such as Chagas disease,
transmitted by Rhodnius pallescens kissing bugs that move
readily between habitats and feed on multiple host species
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[35], or the transmission of West Nile virus between wild
birds and humans across the forest-settlement boundary [36].

Hosts with broad environmental tolerance and generalist
resource use are more likely to be able to cross ecosystem
boundaries than specialists [37]. Examples of generalists occu-
pying a wider range of ecosystems than specialists are
plentiful (e.g. dung beetles along forest-plantation boundaries
[28], small mammals in a grassland-forest matrix [38]). Ecosys-
tem boundary areas may, therefore, support a larger proportion
of generalist species than ecosystem interiors. Additionally, as
generalists will tend to move through a more diverse range
of ecosystems than specialists, they may be more likely to
encounter, and become infected with, a wider range of para-
sites [39], thereby elevating both spillover diversity and
spillover rate near boundaries [12]. Alternatively, some host
species specialize in edge habitat [13], and the presence of
such edge-specific hosts might make them disproportionately
more likely to be involved in spillover near ecosystem bound-
aries [33] (figure 1). For example, pinnipeds such as seals,
whose life-history entails spending roughly half their time
hauled out on land, can carry canine distemper virus from
terrestrial to marine mammals [40].

(b) Parasites near ecosystem boundaries

The mode of transmission of a parasite is likely to affect
which host traits and ecosystem conditions will be important
for boundary permeability. Directly transmitted parasites
require individuals of two different host species to come
into close contact, which means that the conditions determin-
ing host movement and presence in the boundary will drive
permeability for the parasite (figure 1). Parasites with a free-
living stage or ectothermic host will be more sensitive to
abiotic conditions, and spillover risk in the boundary will
depend on conditions affecting parasite survival as well as
those affecting host presence; furthermore, passive transport
in the environment can lead to spillover even between
host species that have no overlap in habitat use (figure 1).
Permeability for vector-borne parasites depends on the pres-
ence of suitable vectors and may be less dependent on factors
determining host abundance because of the movement and
host-seeking behaviour of vectors.

Parasite host-specificity and tolerance to environmental
conditions are probably linked to the probability of being pre-
sent near ecosystem boundaries. Generalist parasites are able
to infect a wider range of host species, thereby increasing the
chances of infecting a host that is able to enter or cross the
ecosystem boundary. Similarly, broad tolerance to environ-
mental conditions will allow a parasite to survive in a
wider range of ecosystems, which can increase the opportu-
nities for encountering new host species in adjacent
ecosystems or boundaries. This may, for example, be the
case for parasites that can form stable environmental persist-
ence stages such as spores (e.g. Bacillus anthracis [41]) or
biofilms (e.g. Vibrio cholerae [42]). Generalist parasites may
be particularly gregarious with respect to host breadth near
ecosystem boundaries. For example, in a host—parasitoid
system, generalist parasitoids infected a wider variety of
host species than would have been expected at random,
creating a disproportionately hyperconnected food-web
specific to the boundary between natural and managed
forests [26,37].

4. Properties of ecosystem boundaries
(a) Edge effects

Ecological edge effects shape host species richness and popu-
lation densities [43], both of which can influence the
prevalence and environmental availability of parasites to
infect other host species, or ‘pathogen pressure’ as defined
in Plowright et al. [1]. Host species richness at ecosystem
boundaries tends to be higher than in the adjacent ecosystem
interiors [44-47], although some systems exhibit the opposite
pattern [48] (table 1). Higher species richness may result in
more direct or indirect contacts between different species,
thereby increasing spillover opportunities and spillover
diversity [55]. Although the complex interplay between
species diversity and parasite transmission within a given
host species has been studied in some depth, and can be
negative or positive depending on the context [56,57], less
is known about how species diversity affects transmission
between species [14]. All else being equal, a positive relation-
ship between biodiversity and spillover diversity has been
proposed [3,14,49,53,58], as parasite diversity is expected to
increase with host diversity [59].

Host population densities are also expected to change near
ecosystem boundaries, but whether they increase or decrease
is species- and context-specific [16]. Certain species are
known to exhibit increased densities near low-permeability
edges as a result of animal movement being forced alongside
the boundary, which can result in disproportionately high fre-
quencies of interspecific contacts, both with other resident
species and species from the other ecosystem for which the
boundary is permeable [16,50].

(b) Ecosystem dimensions

Ecosystem patch size and shape will determine the pro-
portions and sizes of ecosystem boundary and interior,
which can have significant ecological consequences. While
total ecosystem patch area (i.e. interior plus boundary) can
drive host population size, density and parasite prevalence,
boundary area can drive contacts between species in different
ecosystems [1].

The perimeter-to-area ratio (PAR; ratio of ecosystem patch
perimeter length to total patch area) is a key concept in island
biogeography theory [60] (figure 2), and is used in research
on the ecological effects of habitat fragmentation [3,32]. In
particular, the concept has been applied extensively in the
context of marine resource subsidies onto islands, which
can be crucial for island ecosystem productivity [61]. In a dis-
ease ecology context, PAR is expected to correlate positively
with rates of spillover across ecosystems, at least for plant
pathogens [52] but likely also for animal parasites [2]. A
strong indication that PAR is important for animal parasite
spillover can be found in habitat fragmentation research,
where spillover rate is expected to increase with the degree
of fragmentation (and therefore with PAR) [2,11]. This is
driven by an increase in exposure opportunities between
organisms present in the two ecosystems (figure 2).

(c) Temporal variability near ecosystem boundaries

The presence of parasites near ecosystem boundaries is not
static, and should be expected to vary over time owing to
source host dynamics impacting pathogen release,
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increasing perimeter-to-area-ratio
increasing opportunities for cross-boundary spillover

Figure 2. For a given ecosystem patch area, a higher perimeter-to-area-ratio
corresponds with increased boundary length. This corresponds with increased
potential for spillover across ecosystem boundaries. (Online version in colour.)

microclimate effects on parasite survival and spread, and
recipient host dynamics on exposure [1]. Here, we will
focus on mechanisms that can cause temporal variation in
parasite pressure near ecosystem boundaries, while noting
that this variability can also be affected by multiple mechan-
isms that are not boundary-specific, such as host population
size or the presence of other host species in the ecosystem
interior.

Host movement near or across boundaries can vary regu-
larly at short (e.g. daily foraging) or long (e.g. seasonal
migration) time intervals [62,63]. For example, human move-
ment across ecosystem boundaries often varies regularly, as
in daily hunting forays from villages into forests [64] or sea-
sonal ecotourism [65], both of which are known risk factors
for spillover of zoonoses [66,67]. Alternatively, movement
can be triggered by changes in both ecosystem edge and
interior areas. Deciduous plants in edge habitat, for example,
can start to lose leaves earlier than those in the interior owing
to microclimatic differences [68], with potential consequences
for the transmission of parasites (e.g. earlier air-borne spread
of fungal plant pathogens) [69]. Seasonal changes in the eco-
system interior can have direct effects on host and parasite
movement across ecosystem boundaries [70].

Environmental conditions near boundaries can vary more
strongly than conditions in the ecosystem interior, and this
can have important consequences for both host and parasite
species. For example, relative humidity and ultraviolet
exposure are important determinants of the survival of
many parasites, and can vary dramatically at ecosystem
boundaries [16,71]. Environmentally mediated movement of
parasites across ecosystem boundaries can also vary regularly
or irregularly. Seasonal rainfall, for example, can result in
seasonal transport of parasites across ecosystems [72].

In conclusion, it is clear that hosts and parasites are affected
by multiple sources of variation specific to the boundary area,
on top of the ‘mormal’ boundary-independent variation.
Increased variation in factors known to affect spillover is likely
to result in contact opportunities between a higher diversity of
hosts and parasites, thereby increasing the overall diversity of
potential spillover events near ecosystem boundaries.

5. Parallels with existing ecological theory

Boundary permeability is a key determinant of spillover near
ecosystem boundaries, as it is the integration of different mech-
anisms driving spillover dynamics. It relates closely to theory on

ecological resource flow across ecosystems, particularly the con-
cept of resource subsidies in island biogeography theory [51,61].
Parasite flow shares conceptual similarities with resource flow,
while resource subsidy theory focuses specifically on the move-
ment of resources (typically nutrients and microorganisms)
across ecosystem boundaries, with a historic focus on marine-
terrestrial subsidies [61]. Despite known limitations to applying
island biogeography theory to terrestrial-only habitat islands
(ecosystem patches) owing to the ‘softer’” boundaries [60],
lessons might be learned that are relevant for spillover across
ecosystem boundaries. For example, research on the PAR of
literal as well as conceptual ecological islands provides an excel-
lent context for developing hypotheses on the effect of the PAR
on the number and diversity of spillover events near ecosystem
boundaries, as discussed above.

Other opportunities to borrow theory relevant to cross-
boundary spillover arise in the fields of movement ecology
and landscape ecology, which both provide theory on how ani-
mals move across ecosystems [73]. Movement ecology focuses
on individuals, and provides a well-developed conceptual and
mathematical framework for studying why, how, when and
where organisms move [74]. Landscape ecology is a broader
field that focuses on a larger spatio-temporal scale than the
individual level. At its core is a patch-corridor-matrix approach
that is particularly relevant for understanding mechanisms
behind spillover near ecosystem boundaries, connectivity of
host populations, and biodiversity patterns at larger scales
[75]. As landscape-level connectivity of different host popu-
lations will be a strong determinant of transmission and
spillover, landscape ecology provides a solid theoretical and
methodological foundation for advancing our understanding
of spillover across ecosystem boundaries.

Landscape genetics offers crucial concepts and tools for
understanding parasite transmission in general, and provides
methods that could help quantify boundary permeability
through formal testing of the existence of landscape resistance
against host and parasite gene flow [76]. Similarly, phylogeo-
graphy and phylodynamics have been used successfully for
estimating cross-species transmission, and can easily be repur-
posed to cross-boundary systems [77]. Invasion biology has
previously been proposed as a source of theory for under-
standing pathogen emergence [78], and can provide theory
on directional permeability, as it by definition focuses on the
spread of an organism from a source to a target ecosystem [79].

6. Discussion

This review explores and synthesizes potentially important
mechanisms affecting cross-species spillover of parasites
across ecosystem boundaries, as a step towards developing
a general theory of spillover associated with ecosystem
boundaries. Developing theory on spillover is particularly
relevant for the spillover of zoonotic pathogens, and directly
addresses the longstanding but untested hypothesis that
areas where ecosystems meet are hotspots for the emergence
of zoonotic pathogens [2].

Table 1 summarizes the most important mechanisms and
how they are expected to affect spillover near boundaries.
While all of these mechanisms are important in shaping spil-
lover dynamics, many are not well suited for making robust
generalizations about when cross-boundary spillover is
expected to be higher or lower than in ecosystem interiors.
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A few general predictions do emerge, however. For example,
higher biodiversity tends to be observed in edges [74], which
is expected to increase spillover risk through an increased
diversity of host and parasite species available for potential
spillover events [2,3]. Another factor that could consistently
increase spillover opportunities near boundaries is the expec-
tation of increased ecological variability at edges, which
should result in increased contact opportunities between a
wider range of different host and parasite species, thus
increasing spillover diversity.

Despite the complexity and scarcity of empirical data on
this topic, it is possible to make a number of further predic-
tions that can be the focus of future empirical work.
Spillover near ecosystem boundaries is expected to increase
relative to ecosystem interiors when bridge hosts/vectors
and edge specialists are present or abundant, when the pro-
portion of generalist hosts and parasites is high, or when
there are high levels of biodiversity, host density, and species
interactions. We have argued that these factors can be inte-
grated into an overall measure of boundary permeability,
which governs spillover risk. It is less clear how temporal
variability in ecological conditions and host/parasite pres-
ence should affect spillover rates; while increased variability
is expected to result in a higher spillover diversity, it may sim-
ultaneously lower the total number of spillover events of
focal host-parasite systems. At this point, we believe it is
not yet possible to make more refined predictions on general-
izable patterns of spillover at ecosystem boundaries. Key
factors in this determination are that (i) edge effect research
has revealed a high variety in responses to different con-
ditions, as a result of general ecological complexity and

stochasticity, and (ii) there is little to no empirical research

that focuses specifically on comparing cross-species spillover
near ecosystem boundaries with spillover in ecosystem
interiors, especially in animal hosts.

While the theoretical framework for spillover is maturing,
this exists in stark contrast with the relative scarcity of field
studies and data on the determinants of spillover [1], especially
across diverse ecosystems. There is a pressing need for funda-
mental research on spillover in multi-host, multi-parasite
systems, and this review highlights that it might be worthwhile
for some of that research to focus on spillover across ecosystem
boundaries. Ideally, this is done in a model-driven synergistic
context where conceptual and mathematical models of
spillover inform, and are in turn informed by, field and exper-
imental work [80], aided by the recent technological leaps in
genetic sequencing and movement tracking.
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