
Computer Physics Communications 306 (2025) 109364

Available online 5 September 2024
0010-4655/© 2024 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).

Contents lists available at ScienceDirect

Computer Physics Communications
journal homepage: www.elsevier.com/locate/cpc

Computational Physics

GPU-enabled extreme-scale turbulence simulations: Fourier
pseudo-spectral algorithms at the exascale using OpenMP offloading✩,✩✩

P.K. Yeung a,b,∗, Kiran Ravikumar a,1, Stephen Nichols c, Rohini Uma-Vaideswaran a

a School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
b School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
c Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA

A R T I C L E I N F O A B S T R A C T
Keywords:
Exascale
Turbulence
Direct numerical simulations
OpenMP offloading
3D fast Fourier transform
GPU-aware MPI

Fourier pseudo-spectral methods for nonlinear partial differential equations are of wide interest in many areas
of advanced computational science, including direct numerical simulation of three-dimensional (3-D) turbulence
governed by the Navier-Stokes equations in fluid dynamics. This paper presents a new capability for simulating
turbulence at a new record resolution up to 35 trillion grid points, on the world’s first exascale computer, Frontier,
comprising AMD MI250x GPUs with HPE’s Slingshot interconnect and operated by the US Department of Energy’s
Oak Ridge Leadership Computing Facility (OLCF). Key programming strategies designed to take maximum
advantage of the machine architecture involve performing almost all computations on the GPU which has the
same memory capacity as the CPU, performing all-to-all communication among sets of parallel processes directly
on the GPU, and targeting GPUs efficiently using OpenMP offloading for intensive number-crunching including
1-D Fast Fourier Transforms (FFT) performed using AMD ROCm library calls. With 99% of computing power on
Frontier being on the GPU, leaving the CPU idle leads to a net performance gain via avoiding the overhead of
data movement between host and device except when needed for some I/O purposes. Memory footprint including
the size of communication buffers for MPI_ALLTOALL is managed carefully to maximize the largest problem size
possible for a given node count.
Detailed performance data including separate contributions from different categories of operations to the elapsed
wall time per step are reported for five grid resolutions, from 20483 on a single node to 327683 on 4096 or 8192
nodes out of 9408 on the system. Both 1D and 2D domain decompositions which divide a 3D periodic domain
into slabs and pencils respectively are implemented. The present code suite (labeled by the acronym GESTS,
GPUs for Extreme Scale Turbulence Simulations) achieves a figure of merit (in grid points per second) exceeding
goals set in the Center for Accelerated Application Readiness (CAAR) program for Frontier. The performance
attained is highly favorable in both weak scaling and strong scaling, with notable departures only for 20483
where communication is entirely intra-node, and for 327683, where a challenge due to small message sizes does
arise. Communication performance is addressed further using a lightweight test code that performs all-to-all
communication in a manner matching the full turbulence simulation code. Performance at large problem sizes is
affected by both small message size due to high node counts as well as dragonfly network topology features on
the machine, but is consistent with official expectations of sustained performance on Frontier. Overall, although
not perfect, the scalability achieved at the extreme problem size of 327683 (and up to 8192 nodes — which
corresponds to hardware rated at just under 1 exaflop/sec of theoretical peak computational performance) is
arguably better than the scalability observed using prior state-of-the-art algorithms on Frontier’s predecessor
machine (Summit) at OLCF. New science results for the study of intermittency in turbulence enabled by this code
and its extensions are to be reported separately in the near future.

✩ This manuscript has been authored in part by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the US Department of Energy (DOE). The publisher
acknowledges the US government license to provide public access under the DOE Public Access Plan (http://energy .gov /downloads /doe -public -access -plan).
✩✩ The review of this paper was arranged by Prof. David W. Walker.
* Corresponding author at: School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
E-mail addresses: pk.yeung@ae.gatech.edu (P.K. Yeung), kiran.ravikumar@nasa.gov (K. Ravikumar).

1 Current address: Science and Technology Corporation, NASA Ames Research Center, Moffett Field, CA 94035.

https://doi.org/10.1016/j.cpc.2024.109364
Received 30 April 2024; Received in revised form 1 August 2024; Accepted 2 September 2024

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/cpc
http://energy.gov/downloads/doe-public-access-plan
mailto:pk.yeung@ae.gatech.edu
mailto:kiran.ravikumar@nasa.gov
https://doi.org/10.1016/j.cpc.2024.109364
https://doi.org/10.1016/j.cpc.2024.109364
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cpc.2024.109364&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Computer Physics Communications 306 (2025) 109364

2

P.K. Yeung, K. Ravikumar, S. Nichols et al.

1. Introduction

Fluid turbulence with irregular fluctuations spanning a wide range
of scales in time and three-dimensional space is both a domain science
problem of great complexity [1–3] and a lasting grand challenge prob-
lem in leadership-class computing, even as technology has advanced
dramatically through the years [4–6]. The stochastic nature of turbu-
lence provides strong motivation for pursuing a fundamental under-
standing of the nature of the fluctuations, including the typical intensity
and likelihood of extreme events, which can have severe consequences
in engineering applications and natural phenomena. The computational
approach that is most helpful for physical understanding is direct numer-
ical simulation (DNS [7]), via the numerical solution of exact govern-
ing equations for conservation of mass and momentum for the velocity
fluctuations. However, DNS is inherently resource-intensive, especially
when high resolution and adequate sampling in both time and space are
necessary for accurate results. At the same time, advances in computing
power since the beginning of this century have enabled a long list of sim-
ulation efforts with increasingly high resolution, including Refs. 8–14
and others, if just counting incompressible and non-reacting flows alone.

In this paper, we report on the latest state-of-the-art developments,
at a resolution up to 35 trillion grid points, on the world’s first exas-
cale computer, named Frontier [15–17] at the Oak Ridge Leadership
Computing Facility (OLCF), comprising AMD CPUs and GPUs linked by
HPE’s Slingshot interconnect in a dragonfly network topology. It should
be noted that a simulation at 327683 resolution has 5.6x and 8x more
grid points than prior records at 184323 [14] and 163843 [12]. This
level of grid resolution is expected to provide excellent opportunities
to pursue fundamental advances in turbulence research previously lim-
ited by the computing powers available, such as by resolving the small
scales more accurately, representing a wider range of scales, or meeting
additional resource requirements when the turbulence is coupled with
mixing, chemical reaction, particulate flows, or magnetic fields.

Given the demands for accuracy and resources, it is not surprising
that DNS is usually applied only to flows in simplified, or canonical ge-
ometries amenable to high-fidelity yet efficient numerical methods. The
best-known example is perhaps the use of orthogonal Fourier represen-
tations which are, for a given count of grid points, demonstrably more
accurate than finite difference methods of any order [18]. The solution
domain is periodic in at least one Cartesian coordinate direction, but
often in all three, giving essentially a periodic cube. Although highly
simplified, this type of domain is, in view of the classical hypotheses
of Kolmogorov [19,20], actually ideal for studying aspects of the small
scales of turbulence, with results also relevant (via the hypothesis of
local isotropy) to more practical geometries provided the Reynolds num-
ber is sufficiently high, as is the case in most practical applications.

The principal mathematical operation in our work is the 3D discrete
Fast Fourier Transform (FFT) [21], which is itself an active subject of
high-performance computing research [22–25] relevant to many other
scientific disciplines such as materials science and medical imaging [26,
27]. A 3D Fourier representation for any real-valued flow variable 𝑓 (𝐱)
with Fourier coefficients 𝑓 (𝐤) can be written as

𝑓 (𝐱) =
∑
𝐤
𝑓 (𝐤) exp(𝑖𝐤 ⋅ 𝐱) (1)

where 𝑖 =
√
−1, symbols in boldface represent vectors throughout the

paper, 𝐱 and 𝐤 denote position and wavenumber vectors, and summa-
tion is taken over all Fourier modes represented on an 𝑁3 grid. Usually,
the domain size is chosen as 2𝜋 units in each direction, which allow
the components of the wavenumber vectors to take integer scales span-
ning from 1 −𝑁∕2, 2 −𝑁∕2, ... − 1, 0, 1,𝑁∕2. The reciprocal relation
𝑓 (𝐤) =∑

𝐱 𝑓 (𝐱) exp(−𝑖𝐤 ⋅ 𝐱) with summation over all grid points is also
well known. The essence of pseudo-spectral methods is that Fourier
transforms of nonlinear terms are obtained by multiplication in physical
space and subsequent transformation to wavenumber space, rather than
the much more costly convolution sums in fully-spectral approaches. As

a result, the success of high-resolution pseudo-spectral DNS on massively
parallel computers depends critically on the performance and scalabil-
ity of 3D FFTs — which for us also serves as the fundamental testbed
for any new programming models which may be required for efficient
use of a future machine. The need to alleviate high costs of data move-
ment is also a feature shared by high-order finite difference approaches
for multi-dimensional fluid flow problems, motivating somewhat uncon-
ventional techniques in some cases [28].

In the context of turbulence research, our primary objectives are to
perform a simulation as large as the memory on the most powerful sys-
tem available to us allows, and to produce a code that scales with both
problem size and node count as efficiently as possible. The memory-
intensive nature of DNS along with the multi-dimensional nature of the
Navier-Stokes equations imply that the solution domain must be subdi-
vided among a certain number (𝑃) of parallel processes that can operate
on a subset of the data locally on their own, but must also communicate
with each other as required by the algorithm. In particular 3D FFTs
are performed one direction at a time using highly optimized software
libraries if all data points along complete lines of data are available
in the local memory. For a complete FFT in three directions, the so-
lution domain must be transposed between partitions along different
directions at different stages of the calculation. It is very important that
this transpose, which requires collective inter-process communication
of the all-to-all variety, is performed efficiently and with as little mem-
ory overhead as possible. Indeed, in general, the cost of 3D FFTs, and
the turbulence simulation itself, is dominated by data movement, rather
than purely computational number crunching. This is also increasingly
true at large problem sizes and node counts, leading to limitations on
scalability typical of communication-intensive codes built upon the prin-
ciples of distributed-memory parallelism.

In recent years, the advent of Graphical Processing Units (GPUs) as a
form of heterogeneous accelerators, especially with associated advances
in memory and communication capabilities, has given new optimism for
high-resolution DNS. The three most recent US-based computers that re-
ceived No. 1 top-500 [29] ranking have all been machines where most of
the computing power lies in the GPUs tied to a relatively modest number
of large-memory CPU nodes. Each GPU is attached (as a “device”) to one
or more CPU cores (as “host”). The GPU provides a high degree of paral-
lelism by spawning a large number (typically thousands) of independent
execution threads. However, new challenges can arise, in the data move-
ment between the host and device, and in whether communication can
be handled efficiently by the GPUs. For instance, the best use of Summit,
an IBM-NVIDIA machine at OLCF which allowed us to reach 184323 res-
olution involved a batched asynchronism approach [6] since the GPU
memory could not hold the entire problem, and we needed to solve the
problem in batches. This approach [6] was very effective in minimizing
the overhead of both the batched data movement and the communica-
tion by overlapping the computation, data movement, and host-based
communication as much as possible. However, with 4x the device mem-
ory of Summit, Frontier has parity in the host and device memories, and
when combined with an efficient GPU-aware communication capability
through HPE Slingshot, we can employ a more straightforward strat-
egy where the complete problem always resides in device memory and
explicit copies between device and host are performed only when per-
forming I/O operations, leading to less overhead compared to Summit.

Our codes are written in Fortran 90/95, with Fortran-C interoper-
ability features that allow us to call GPU libraries provided in C, in-
cluding the AMD-supplied “ROCm” library that we use for 1D FFTs. For
other computational and data-copying operations, the design of Frontier
makes it relatively straightforward to target GPUs using OpenMP of-
floading [30], as per the OpenMP standard [31]. Since the OpenMP stan-
dard is vendor-independent, OpenMP is expected to provide a smooth
path for portability to the next generation of (multi-exaflop) machines
[32] as vendors implement the newer OpenMP features into their com-
pilers.

Computer Physics Communications 306 (2025) 109364

3

P.K. Yeung, K. Ravikumar, S. Nichols et al.

Fig. 1. Schematics of the 1D decomposition showing a cubic domain divided into 4 slabs identified by the color coding and process IDs 0,1,2,3. 𝑚𝑦 =𝑚𝑧 =𝑁∕𝑃
denote the sub-divided range of grid points present in the respective directions in each slab.

In the following sections, we provide a detailed description of the es-
sential algorithmic elements (Secs. 2, 3) and code performance (Secs. 4,
5) currently achieved via two variants of a new GPU-enabled code writ-
ten specifically for use on Frontier. These codes have been developed
under the auspices of the selective Center for Accelerated Application
Readiness (CAAR) program on Frontier operated by the OLCF; and are
collectively referred to as the GESTS (GPU-enabled Extreme Scale Tur-
bulence Simulations) suite of codes. Code performance data are pre-
sented for five problem sizes ranging from 20483 which fits on 1 node, to
327683 (35 trillion grid points) which requires a minimum of 4096 nodes
out of the 9408 available on Frontier. Indicators of high performance
include weak scaling from 40963 to 327683 (with node count in propor-
tion to memory requirements) at nearly 90% or greater, and essentially
100% strong scaling for 163843 with a 4x increase in node count from
512 to 2048. In our discussions we also identify remaining challenges
which inevitably arise at the extreme limits of current machine capac-
ity, but may potentially benefit from future enhancements in machine
hardware or improved exascale-ready software libraries. Our focus here
is on simulations of the Eulerian velocity field only. The GESTS suite
of codes is also capable of tracking fluid particles and computing the
transport of passive scalars, which are both very important aspects of
turbulence, but the associated coding developments in those areas will
be reported separately. Conclusions are summarized in Sec. 6.

2. 3D FFT and domain decomposition

While our work in this paper is driven by our needs to study turbu-
lence, we provide here a discussion on 3D FFTs, starting from a general
perspective that is hopefully of interest to readers in a wider commu-
nity outside our domain science specialty. Development or porting of a
code that performs only 3D FFTs is often our first task when exploring
the use of a new platform.

2.1. Distributed-memory parallelism for 3D FFTs

As a “tensor product” operation, a 3D FFT can be performed as
three 1D FFTs in each coordinate direction, sequentially. For instance
a forward transform from physical space to wavenumber space can be
written as:

𝑓 (𝑘𝑥,𝑘𝑦,𝑘𝑧)

=
∑
𝑦
exp(−𝑖𝑘𝑦𝑦)

{∑
𝑧
exp(−𝑖𝑘𝑧𝑧)

{∑
𝑥
exp(−𝑖𝑘𝑥𝑥)𝑓 (𝑥,𝑦,𝑧)

}}

(2)
where summations cover all grid points (at spacings 2𝜋∕𝑁 apart), and
a real-to-complex (R-C) transform (in 𝑥) is followed by two complex-to-
complex (C-C) transforms in 𝑧 and 𝑦. Likewise, for an inverse transform
we have

𝑓 (𝑥,𝑦,𝑧) =
∑
𝑘𝑥

exp(𝑖𝑘𝑥𝑥)
{∑

𝑘𝑧

exp(𝑖𝑘𝑧𝑧)
{∑

𝑘𝑦

exp(𝑖𝑘𝑦𝑦)𝑓 (𝑘𝑥,𝑘𝑦,𝑘𝑧)
}}

(3)
which indicates two C-C transforms followed by a complex-to-real (C-
R) transform. Fourier coefficients of derivatives are readily obtained
via multiplication in Fourier space: e.g. 𝜕𝑓∕𝜕𝑥 = 𝑖𝑘𝑥𝑓 . Since 𝑓 is real-
valued, the property of conjugate symmetry i.e. 𝑓 (−𝐤) = [𝑓 (𝐤)]∗ (where
the superscript ∗ denotes a complex conjugate) holds and implies that
Fourier coefficients with negative wavenumber in one specific direction
need not be stored. This direction has been chosen as 𝑥, which is the
first (innermost) transform direction in Eq. (2) but the last (outermost)
in Eq. (3).

Domain decomposition enables computations beyond the capacity of
a single CPU core by distributingthe work across multiple parallel pro-
cesses. As illustrated in Figs. 1 and 2, for a 3D FFT, the domain can be
divided into up to 𝑁 slabs (each consisting of 𝑁∕𝑃 planes); or up to
𝑁2 pencils (each of size equal to 𝑁 × (𝑁∕𝑃𝑟) ×𝑁∕𝑃𝑐 grid points) where
𝑃𝑟 ×𝑃𝑐 = 𝑃 gives the shape of a 2D (row and column) Cartesian proces-
sor grid. Large 3D FFTs are MPI communication-intensive because of the
transposes necessary to collect complete lines of data in the local mem-
ory before the transforms in the respective directions can be performed.
If the memory available to 𝑁 parallel processes is sufficient for an 𝑁3

problem then the slabs approach is preferable, since it requires fewer
MPI communication cycles and may give slightly shorter runtimes. How-
ever, the pencils approach provides greater flexibility where more than
𝑁 parallel processes are necessary to provide sufficient memory for the
problem, or to provide a clear strategy to distribute the problem over a
larger set of processes to decrease the runtime.

We consider the basic operations needed for a forward transform,
per Eq. (2), in the slabs code, starting with the domain divided in the
𝑦 direction into collections of 𝑥 − 𝑧 planes. Per standard practice, so-
called (batched)“FFT plans” are constructed to specify the manner in
which multiple lines of data can be transformed using a single kernel
call. Since array elements are stored in column-major order in Fortran,
a real-to-complex FFT in 𝑥 can be taken immediately, with numbers
forming each line of data residing contiguously in the memory. For FFT
in 𝑧 (as the second direction) there are two options. The first is to take a
strided transform, where successive elements in 𝑧 are stored 𝑁 memory
positions apart from each other. The second is to re-arrange the array
into 𝑧 − 𝑥 planes and then perform a non-strided transform in 𝑧. In
principle, non-strided transforms are faster because of more efficient
memory access, but the overhead of switching 𝑥 − 𝑧 planes into 𝑧 −
𝑥 planes can be substantial. A similar issue arises when data already
transformed in 𝑧 are packed into a contiguous buffer, passed through a
standard MPI_ALLTOALL library call, and then unpacked into intended
memory locations as 𝑥 − 𝑦 planes before a (strided) C-C FFT in 𝑦 is
performed.

Computer Physics Communications 306 (2025) 109364

4

P.K. Yeung, K. Ravikumar, S. Nichols et al.

Fig. 2. Schematics of the 2D decomposition of a cubic domain into 4 pencils in a 2 × 2 processor grid.

Table 1
Elapsed wall time (in seconds) of strided and non-strided complex-to-complex 1D for-
ward FFT for three variables using batched plans.

Size Strided Non-strided
Unpack FFT Pack Total Unpack FFT Pack Total

20483 0.0368 0.138 0.0336 0.209 0.0789 0.0174 0.0347 0.131
40963 0.0340 0.168 0.0336 0.235 0.0879 0.0248 0.0350 0.148
81923 0.0340 0.135 0.0336 0.202 0.133 0.0385 0.0873 0.259
163843 0.0340 0.221 0.0336 0.288 0.282 0.0366 0.173 0.492
327683 0.0340 0.306 0.0336 0.373 0.647 0.0505 0.249 0.947

Table 1 compares the performance of complex-to-complex forward
transforms, for three variables, in both strided and non-strided forms
using batched FFT plans. It is clear that FFT library calls for non-strided
transforms are faster than strided versions. However, the cost of packing
and unpacking needed for non-strided transforms is very substantial,
resulting in a lower overall cost for using strided transforms at problem
sizes 81923 or higher. Accordingly, we have used strided transforms in
𝑦 and 𝑧 directions in this work.

While in principle any positive integers satisfying 𝑃𝑟 ×𝑃𝑐 = 𝑃 can be
used to obtain correct results, it is usually best to set 𝑃𝑟 to be equal to or a
factor of the number of MPI processes per node, so that communications
in the row communicator can run faster by virtue of being on the same
node. The two GCDs of each MI250x are connected with each other
through a high bandwidth Infinity Fabric interconnect. Therefore, an
additional benefit arises if 𝑃𝑟 is as small as two, or even one (essentially
a slab decomposition). On the other hand, a small 𝑃𝑟 leads to a large
𝑃𝑐 , which may pose a challenge to scalability at extreme node counts,
because of a larger number of smaller messages being exchanged less
efficiently over a large number of nodes.

We note here that similar concepts on domain decompositions can
also be applied to problems on periodic domains of dimensionality dif-
ferent from three. This is relevant to, e.g. turbulence in two [33] or four
[34] dimensions, where (given the same memory available) 𝑁 is usu-
ally larger or smaller than typical values in 3D turbulence, respectively.
For 3D problems, the relative merits or utility of domain decomposi-
tions of different dimensionalities have been addressed by other authors
[22–24,35] as well. As noted already, for an 𝑁3 problem, a slabs code
can use only up to 𝑁 parallel processes. Thus, if 𝑁 parallel processes

cannot provide (i) enough memory for holding all the variables needed
for a given calculation, or (ii) sufficiently low wall clock time for given
purpose, a pencils code will be required. For instance, if we add particle
tracking and/or passive scalar fields then we need a pencils code that
can use twice as many nodes. In addition, a 1D decomposition would
not be natural if the number of grid points varies between different co-
ordinate directions, which would lead to slabs in different orientations
being unequal in size. A 3D block (sometimes called bricks) decompo-
sition does not seem appealing for FFTs, since if complete lines of data
are not available in the local memory we can only form (many) partial
sums (inside each summation sign in Eq. (2)), and these partial sums
will have to be collected together using MPI. Such a scheme will also
likely not benefit from highly optimized FFT libraries on the GPU. It is
not clear if the increase in code complexity required by a 3D decompo-
sition will pay off. On the other hand, 3D decomposition is useful for
visualization, which however does not directly involve FFTs and is not
part of regular time steps in our simulations.

2.2. GPU implementation: OpenMP offloading and GPU-aware MPI on
frontier

With the successful use of the batched asynchronous algorithm on
Summit [6], a natural starting point for code development on Fron-
tier was to adapt the CUDA Fortran implementation of the code using
OpenMP to target the AMD MI250x GPUs [36,37]. As mentioned ear-
lier, the significant difference in size between CPU and GPU memory
on Summit meant that we could not store the entire problem in the
GPU memory and had to perform our computations on the GPUs in

Computer Physics Communications 306 (2025) 109364

5

P.K. Yeung, K. Ravikumar, S. Nichols et al.

Fig. 3. Code fragment showing the difference between performing MPI_ALLTOALL on host (lines 3-6) vs device (lines 8-11), placed within an OpenMP TARGET
DATA region, assuming all computations before and after involving the buffer arrays are performed on the device. The communications are wrapped with calls to
MPI_WTIME to collect the timings.

batches. Moving the batches of data repeatedly between the host and
device memory resulted in additional runtime, although that was mit-
igated to some degree via the asynchronous algorithm [6]. However,
with 4x the device memory of Summit, the parity in the CPU and GPU
memory on Frontier allows the full problem to reside in the GPU mem-
ory and consequently avoids the excessive data movement between the
host and device that would be required if solving the problem in batches.
Additional improvements in technology provides Frontier with efficient
GPU-Aware MPI communications which further permits us to restrict
data movement between the host and device to I/O operations only.

With these improvements in mind, it is advantageous and convenient
to just copy initial data (often read by the CPU) to the GPU and allow
the GPU to handle almost all the work, with only minimal needs for
explicit host-device copies. A further simplification is to use a one-to-one
correspondence between the CPU cores and the GPU within the same
NUMA region on a node. Each Frontier node has four NUMA regions,
with each such region consisting of 2 banks of CPU cores and an MI250x
GPU which contains two Graphics Compute Dies (GCDs). Each bank
of cores is uniquely associated with one GCD, and for optimal use of
Frontier’s resources, we therefore use 8 MPI ranks per node with 1 CPU
core (i.e. “host”) and 1 GCD (i.e. “device”) per MPI rank.

The OpenMP programming model allows us to enclose almost the
entire calculation in a single, large so-called TARGET DATA REGION. A
DATA MAP construct defines the mapping between values of the same
variables in the host (i.e. CPU) and device (i.e. GCD) memory. A key-
word TOFROM instructs the compiler to copy the data to the device at the
start of the data region and back to the host at the end of the data region.
If and only when necessary, the UPDATE clause when combined with TO
or FROM can be used to explicitly force data to be copied from the host
to the device, or vice versa. Performing both computation and commu-
nication almost exclusively on the GPUs allows the code to avoid the
overhead of data movement almost completely. The CPU host is effec-
tively allowed to remain idle (except for some I/O), but with the official
information [16] that 99% of each node’s flops is on the GPUs, leaving
the CPU idle does not lead to a significant “waste” of resources. On this
machine, any attempt at overlapping operations on the CPU and GPU in
the computations would lead to only very minimal (if any) benefit that
would not justify the human effort or algorithmic complexity required
to make it happen. As to be detailed later in Sec. 5, communications
from the GPU are faster than those from the CPU, which is especially
true when the requisite host-device data transfers are included in the
cost of communicating from the CPU. The notion of performing FFT on
some (already transposed) batches of data while performing communi-
cation on next batch was successful on Summit [6] because operations
there could be profitably split and overlapped between the CPU and the
GPU. However, overlapping is not appealing if there is a drastic differ-
ence in timing between the processes being overlapped, which is the
case on Frontier.

Fig. 3 shows the essential lines of coding for a slabs code, focus-
ing on global all-to-all communications within an OpenMP parallel re-
gion. Since all computations (including packing of data into contiguous
buffers) are performed on the GPU, using host memory pointers with
MPI would require a data copy from device to host before communica-
tion and a data copy from the host to device afterwards. In contrast, if
MPI is performed with device memory pointers, these data exchanges
between host and device are unnecessary. Regardless of which memory
pointers are used, the arguments passed to the MPI_ALLTOALL are the
same. In this example, since the intention is to swap 𝑥 −𝑧 planes to 𝑥 −𝑦
planes, the message size is the product of the complete data length in 𝑥
and the sizes of partitions in 𝑦 and 𝑧.

The largest problem size feasible on a given machine (or nodes
thereof) is determined by the memory footprint of the code, which in-
cludes contributions from the number of variables stored and from mem-
ory allocated to intermediate arrays, such as communication buffers
needed for MPI calls on non-contiguous data. The coding in Fig. 3 as-
sumes the relevant physical variables are being transposed one at a
time. If multiple variables are to be transposed together the buffers will
be proportionately larger. In general, MPI communication involving a
smaller number of larger messages is faster than that with a larger num-
ber of smaller messages, which would be more sensitive to latency versus
bandwidth. However, the HPE Slingshot interconnect on Frontier offers
very low latency, which allows us to benefit from communicating one
variable at a time with reduced memory overhead, except at the most
extreme problem sizes (to be discussed further in Sec. 5).

A pencils code follows similar principles but with additional con-
siderations for row and column communicators. The forward transform
sequence starts with data in pencils aligned in 𝑥, ready for a R-C trans-
form in 𝑥. The data is then packed into a row buffer and transposed to
pencils in 𝑧, via the row communicator that includes 𝑃𝑟 MPI processes.
A C-C transform is performed, followed by a transpose to pencils in 𝑦
via the column communicator that includes 𝑃𝑐 MPI processes. The pen-
cils code requires two rounds of packing, all-to-all communications, and
unpacking, but in the form of smaller bodies of data and over fewer MPI
processes than in the slabs code.

Fig. 4 shows an example of OpenMP offloading implemented using
the OpenMP TARGET TEAMS DISTRIBUTE PARALLEL DO construct
which enables work-sharing via massive parallelism among multiple
threads on the GPU. For code robustness, all variables referenced in
the nested loop are declared as either PRIVATE to each thread which
may hold different values simultaneously, or SHARED among the threads
with values fixed throughout the loop. The OpenMP keyword COLLAPSE
here effectively combines the four-level nested loop to provide greater
opportunities for parallelization amongst the GCD’s threads.

In the coding shown in Fig. 4 each GPU thread is able to update
the elements of a destination array without conflict or duplication with
work performed by other GPU threads sharing the memory of the arrays

Computer Physics Communications 306 (2025) 109364

6

P.K. Yeung, K. Ravikumar, S. Nichols et al.

Fig. 4. Code fragment showing a nested loop performed on GPU using OpenMP constructs to pack pencils aligned in the 𝑦 direction into a contiguous array that
consists of “bricks” of data ready for an all-to-all exchange among MPI processes in the same column communicator. The variables 𝑥𝑖𝑠𝑧, 𝑦𝑗𝑠𝑧 and 𝑧𝑗𝑠𝑧 are equal to
(𝑁∕2)∕𝑃𝑟, 𝑁∕𝑃𝑐 and 𝑁∕𝑃𝑐 respectively.

Fig. 5. Code fragment demonstrating the use of USE_DEVICE_PTR to instruct the compiler to use the GPU version of the vxz pointer when performing in-place
real-to-complex FFTs on the GPUs.

Fig. 6. Code fragment demonstrating the use of hipfftExecR2C instead of cufftExecR2C and rocfft_execute.

concerned. In contrast, in the case of data reduction operations (such
as those that form partial sums on each MPI process), additional care
is needed to prevent multiple GPU threads from accessing and updating
the same elements of the destination array simultaneously (which would
result in unpredictable outcomes). Currently, this situation requires use
of the OpenMP ATOMIC construct, which ensures correct results by forc-
ing each thread to wait for one another but leads to lower efficiency.
However, by employing some additional intermediate buffers we can
alleviate the extent of contention by reducing the number of threads
simultaneously working on the same set of array memory positions. It
is possible that future HPE CCE and AMD ROCm software releases will
provide more elegant ways of performing OpenMP array reduction on
the GPU safely.

2.3. Performing the 3D FFTs

Fig. 5 provides an example of a typical FFT execution call in the
code. As in Fig. 3, the OpenMP directive USE_DEVICE_PTR instructs
the compiler to use the pointer associated with the copy of the array
in GPU memory when performing FFT computations. This code frag-
ment includes compile-time options for both NVIDIA and AMD GPUs
despite the fact that AMD’s ROCm software includes a HIP layer that
is designed to let the programmer use a single hipfft function call in-
stead of explicitly including options for both cufft and rocfft in the code.
The hipfft functions are simple pass-through functions (e.g. pass-through
layer) that properly switch between cufft and rocfft within the ROCm
library and allow developers to simplify their applications by using a
single function call instead of multiple compile-time logical conditions
to include the appropriate vendor-specific function call. The equivalent
code fragment using hipfft is provided in Fig. 6. Early development of

hipfft lagged slightly behind rocfft, and to make rapid progress during
the initial extension of the codes to AMD GPUs, the rocfft functions were
directly implemented into the GESTS family of codes. Future efforts on
the GESTS codes may make the switch to hipfft now that it’s robust and
once the current research goals have been met.

Performance data on 3D FFTs are reported in Secs 4 and 5 as part of
a performance analysis of the overall turbulence code, whose structure
and requirements are first discussed in Sec. 3.

2.4. Requirements to build the code

We note here a final requirement for using the DNS codes on Frontier
beyond the use of MPI, OpenMP Offloading, and an FFT package. Specif-
ically, we need Fortran interfaces to access the C/C++ ROCm libraries.
Instead of creating our own interfaces, we use the Fortran interfaces
provided by AMD’s ROCm HIPFORT package. Fortran is known to be
non-ABI (Application Binary Interface) compliant, and to ensure ABI
compliance between the GESTS codes and the Fortran interfaces in the
compiled HIPFORT libraries, we build HIPFORT with the HPE/Cray For-
tran compiler like we do for the GESTS codes.

3. The GESTS turbulence DNS code

3.1. Basic governing equations and numerical approach

While the governing Navier-Stokes equations for conservation of
mass and momentum are well known (see. e.g. Ref. 38), for complete-
ness we first summarize the main elements applicable to the instanta-
neous velocity field under the conditions of constant density and zero
mean velocity, as:

Computer Physics Communications 306 (2025) 109364

7

P.K. Yeung, K. Ravikumar, S. Nichols et al.

∇ ⋅ 𝐮 = 0 (4)
𝜕𝐮∕𝜕𝑡+ (𝐮 ⋅∇)𝐮 = −∇(𝑝∕𝜌) + 𝜈∇2𝐮+ 𝐟 (5)
where 𝑝 is the pressure fluctuation, 𝜌 is the density, 𝜈 is the kinematic
viscosity, and 𝐟 is a forcing term [39,40] (which mostly acts at the large
scales). The second term on the LHS represents convective effects, which
are nonlinear in nature. Per Eq. (4), the velocity field is solenoidal or
divergence-free, which in wavenumber space implies 𝐮 ⋅ 𝐤̂ = 0, i.e. the
velocity vector in Fourier space be orthogonal to the wavenumber vec-
tor. With this constraint, and assuming 𝐟 is also solenoidal, Eq. (5) can
be written as

𝜕𝐮̂∕𝜕𝑡 = −∇̂⋅(𝐮𝐮)⟂𝐤 − 𝜈𝑘2𝐮̂ (6)
where the subscript ⟂ 𝐤 denotes vectorial projection onto the plane per-
pendicular to 𝐤. A Cartesian tensor form is

(𝜕∕𝜕𝑡+ 𝜈𝑘2) 𝑢̂𝑗 = −𝑖𝑘𝑚𝑃𝑗𝑙(𝐤) 𝑢𝑙𝑢𝑚 (7)
which holds for 𝑗 = 1, 2, 3, and 𝑃𝑗𝑙(𝐤) = 𝛿𝑗𝑙 − 𝑘𝑗𝑘𝑙∕𝑘2 with 𝛿𝑗𝑙 being the
Kronecker delta tensor. We use the well-known pseudo-spectral algo-
rithm of Rogallo [41], which uses a modified pressure that allows the
number of independent nonlinear terms that need to be stored to re-
duce from 6 (in {𝑢𝑙𝑢𝑚}) to 5. Integration in time is implemented using
an exact integrating factor for linear terms on the LHS, and second-order
Runge-Kutta (predictor-corrector) for nonlinear terms on the RHS. Alias-
ing errors for the nonlinear terms are controlled by a combination of
phase shifting and truncation at wavenumbers beyond 𝑘𝑚𝑎𝑥 =

√
2𝑁∕3

in Fourier space [18]. Numerical stability requires the time step Δ𝑡 be
chosen such that the Courant number

𝐶 =Δ𝑡
[|𝑢|
Δ𝑥 + |𝑣|

Δ𝑦 + |𝑤|
Δ𝑧

]

𝑚𝑎𝑥
(8)

(where the maximum is taken over all grid points) is always below 1.0.

3.2. GPU implementation, memory and I/O

As noted earlier, in our code on Frontier the GPU performs almost
all of the work, with an OpenMP offload programming model, except
mainly for I/O operations including writing checkpoints and reading
data upon restarting. Each Runge-Kutta substep starts with velocity in
Fourier space. A phase shift is applied as part of aliasing error con-
trol, and all three velocity components are then transformed to phys-
ical space (in the order 𝑦, 𝑧, 𝑥 as described in Sec. 2) where nonlin-
ear terms are formed. The nonlinear products are then transformed
to wavenumber space, where differentiation operators and an inverse
phase shift are applied to obtain the desired convective terms on the
RHS of Eq. (7). The numerical solution is then advanced in time accord-
ing to the Runge-Kutta scheme chosen. At the predictor step we also
form (when the velocity field in the physical space) the maximum value
of the square bracket in Eq. (8), which is used to calculate Δ𝑡 conform-
ing to a user-specified value of the Courant number. Integrating factors
and numerical forcing are also applied in the predictor step only. When
the predictor-corrector cycle is complete some statistics are computed if
desired. Then the same process is repeated for the next time step.

A low memory footprint is essential to the feasibility of larger prob-
lem sizes on any given machine. The main memory requirements in
our DNS code include the memory to store Fourier coefficients of the
solution variables (i.e. the velocity components), the nonlinear terms
and any partial updates depending on the chosen Runge-Kutta scheme
in time, as well as contiguous sending and receiving communication
buffers based on the number of variables (say, 𝑄) processed in each
MPI all-to-all communication call. In Rogallo’s formulation, the second-
order Runge-Kutta integration in time requires only 8 memory positions
at each wavenumber mode, with 3 and 5 for the velocity vector and
the nonlinear terms, respectively. The MPI all-to-all library call requires

contiguous buffers for both sending and receiving data of size 2𝑄 vari-
ables per grid point or wavenumber mode. In the case of the pencils
decomposition, this requirement applies to both the row and column
communicator. However, since these row and column buffers are not
used at the same time, memory buffers for just the row communicator
can be allocated on the GPU and reused for the column communicator.
The shape of the send and receive buffers can be altered dynamically
using the Fortran intrinsic function, C_F_POINTER. Finally, a single real-
valued variable is used at each wavenumber mode to enforce truncation
beyond 𝑘𝑚𝑎𝑥.

Since the number of Fourier modes represented in the code is 𝑁3∕2,
at 8 bytes per single-precision complex number the total memory re-
quired per MPI process (hence each GCD on Frontier) is very close to

(8 + 2𝑄+ 0.5) × (𝑁3∕2𝑃) × 8∕(1024)3 (9)
if measured in units of 1 GiB. This is indeed verified (to within a small
fraction of 1 GiB) by our actual measurements. In particular, the choices
𝑄 = 1, 𝑁 = 2048 and 𝑃 = 8 give 42 GiB per GCD. With 𝑁 almost always
a pure power of 2 except for a possible factor of 3 or 9, this estimate
also establishes 20483 as the largest problem size that can fit into a single
node on Frontier, and that a 327683 problem will require at least 4096
nodes.

It is worth noting that, at the end of each time step, after the velocity
has been updated to 𝑡𝑛+1, the memory positions used for nonlinear terms
are freed up and can be exploited for additional calculations not required
for the time advance itself. For instance, for detailed studies of fine-scale
intermittency in turbulence, it is useful to obtain the fluctuating energy
dissipation rate and enstrophy, defined respectively as:

𝜖 = 2𝜈𝑠𝑖𝑗𝑠𝑖𝑗 ; Ω = 𝜔𝑖𝜔𝑖 (10)
where 𝑠𝑖𝑗 = (𝜕𝑢𝑖∕𝜕𝑥𝑗 + 𝜕𝑢𝑗∕𝜕𝑥𝑖)∕2 is the strain rate tensor and 𝜔𝑖 is the
𝑖th component of the vorticity vector 𝜔 = ∇ × 𝐮. While the definitions
of 𝜖 and Ω both involve summation over multiple terms, the summa-
tions can be applied incrementally without new memory requirements.
A small increase in memory, at 4 GiB per GCD, is needed for calculating
pressure fluctuations by solving the Poisson equation

∇2(𝑝∕𝜌) = −
𝜕2𝑢𝑖𝑢𝑗
𝜕𝑥𝑖𝜕𝑥𝑗

, (11)

which can be transformed to Fourier space as −𝑘2𝑝̂∕𝜌 = 𝑘𝑖𝑘𝑗𝑢𝑖𝑢𝑗 and
solved in a pseudo-spectral manner with aliasing error removal. Com-
puting the statistics of 𝜖, Ω and 𝑝 directly (as on-the-fly processing) in
the DNS code gives more information on a time-resolved basis [42] in
contrast to post-processing of a limited number of velocity fields saved
at time intervals many small-eddy time-scales apart.

Since our simulations are of a time-evolving nature that often re-
quires many tens of thousands of time steps, a flexible and space-friendly
approach for checkpointing and restarting is important. To save on disk
space, we write checkpoints in Fourier space, where Eq. (4) becomes
𝑘1𝑢̂1 + 𝑘2𝑢̂2 + 𝑘3𝑢̂3 = 0. This allows us to write mainly just two velocity
components and to recover the third if the corresponding wavenumber
is nonzero, as in

𝑢̂2 = −(𝑘1𝑢̂1 + 𝑘3𝑢̂3)∕𝑘2 (if 𝑘2 ≠ 0) . (12)
The total volume of data written on the disk per checkpoint is close

to 8𝑁3 bytes, which is 256 TiB (or 1/4 PiB) if 𝑁 = 32768. To avoid
causing adverse effects that such a large I/O data volume can have on
the performance of a large filesystem shared with other users, one ap-
proach is to collect data from 𝑃 parallel processes into a smaller number
(say 𝑀) of files, each associated with 𝑃∕𝑀 processes and placed into
a set of sub-directories. However, collecting data from multiple paral-
lel processes in the code requires an MPI_GATHER communication call,
which will need an extra buffer and hence use more memory. Instead,
on Frontier we use MPI-IO, in which each parallel process writes data

Computer Physics Communications 306 (2025) 109364

8

P.K. Yeung, K. Ravikumar, S. Nichols et al.

Table 2
Elapsed wall time per step (in seconds) observed for the slabs version of the full turbulence DNS
code, at minimum node counts meeting memory requirements at each problem size, with a break-
down into costs for several key operations in each case. 8 MPI ranks and 8 GPUs are used on each
node. P+U denotes packing and unpacking related to all-to-all communication. Weak scaling is
calculated with respect to 40963 on 8 nodes (denoted by WS1) or with respect to each smaller
problem size with 𝑁 halved (WS2). The first 5 data points in this table were obtained on a rela-
tively quiet system in April 2023. The last was from a more recent test in April 2024. A change in
library versions on the system may have contributed to the differences between numbers in the
last two rows.
𝑁3 #Nodes #MPI FFT P+U MPI Other Total WS1(%) WS2(%)
20483 1 8 1.360 0.243 1.846 0.643 4.09 – –
40963 8 64 1.409 0.246 7.762 0.685 10.11 – –
81923 64 512 1.580 0.255 8.152 0.764 10.75 101.8 101.8
163843 512 4096 2.196 0.268 8.360 0.700 11.53 102.2 100.4
327683 4096 32768 3.423 0.276 8.621 0.747 13.07 96.6 94.5
327683 4096 32768 2.708 0.246 8.482 0.633 12.07 104.6 98.9

segments of specified size starting at a prescribed location (known as the
“displacement”) in the file. Since MPI-IO does incur some cost for com-
munication (with details hidden from the user), the best performance
is expected if the underlying communication is wholly within the node.
This is achieved by choosing 𝑃∕𝑀 to be equal to the number of MPI
processes (8 for Frontier) on each node, giving 1 file per node. On Fron-
tier, MPI-IO can be executed either on the CPU or the GPU. Finally, at
extreme problem sizes, the load imposed on the filesystem by thousands
of files being open and simultaneously written by even more MPI pro-
cesses can also cause an I/O traffic jam that impairs performance. This
scenario can be avoided by a relay scheme that say, divides 𝑃 MPI pro-
cesses into two groups of size 𝑃∕2, and forcing the second group to wait
for a signal from the first before they are allowed to proceed.

As mentioned earlier, we have both slab and pencil implementations,
and for flexibility, it is highly desirable that these codes can take the
same input and write the same output, regardless of the shape of the
actual 𝑃𝑟 ×𝑃𝑐 process grid geometry when pencils are used. This goal is
achieved by having both codes write checkpoints in the form of either
one file per slab (for the MPI_GATHER method) or one file per node (for
the MPI-IO method). This approach also simplifies the coding necessary
for reading checkpoints, especially if using MPI-IO.

4. Performance data and analysis

In this section, we report on the performance of the code, includ-
ing timings per step, estimates of GPU speedup relative to a CPU-only
code of similar structure, and both weak scaling and strong scaling over
a range of problem sizes and node counts. Since we were granted ac-
cess to the machine earlier than others through the CAAR Program for
Frontier, we have collected, since February 2023, benchmarking data
associated with several releases of the CCE compilers, ROCm libraries,
and MPI libraries. All of the timings reported below correspond to the
CCE compiler 15.0.1, ROCm 5.4.3, and cray-mpich 8.1.23. For OpenMP
we use features at version 4.5 or higher. All MPI AlltoAll communica-
tions are performed on the GPU unless stated explicitly otherwise.

4.1. Data collection and assessment of scalability

For a critical evaluation of large user-production codes, it is impor-
tant that a set of rational measures of performance be adopted. We
describe and explain our practices as below.

The simplest measure of code performance in our application is the
elapsed wall time obtained readily from MPI_WTIME library calls at
the start and end of each time step. Although performance monitoring
tools available on most major systems can provide a variety of lower-
level performance data, strategic placements of MPI_WTIME calls in the
user code itself are very helpful in separating the costs of specific cat-
egories of operations in the code. We only use performance data from

regular time steps free of additional operations such as initialization,
on-the-fly statistical processing, and checkpointing, which all tend to be
time-consuming but are performed only at a small fraction of the total
number of time steps in long production simulations especially at high
grid resolutions. In principle, we take the longest timings over all MPI
ranks, but since our codes have no significant load imbalance, all MPI
processes report nearly the same timings for regular time steps.

Although variability among the MPI processes is minimal, commu-
nication traffic due to network contention with other jobs on the system
can still cause variations between different time steps. These runtime
variations are usually small in production conditions but may become
substantial in configurations dominated by communications involving
numerous small messages at large node counts. When this variability is
minimal, it is appropriate to report performance data using the average
of elapsed time over a certain number of time steps, with the expec-
tation that the average will converge with increasing number of steps.
However, when variability of an erratic nature arises due to network
contention, MPI communication timings may also behave like a random
variable characterized by substantial fluctuations above a lower bound.
The fluctuations can unpredictably alter the observed average runtime
over a finite number of steps, while the lower bound in communication
timings is directly associated with the true (if somewhat theoretical)
measure of performance capability attainable by the code. Most of the
data points in Table 2 were obtained in a restricted early-user period
when contention from other jobs was minimal. For these cases, the tim-
ings represent the average of the runtimes over 10 successive iterations.
In contrast, recent timings in other tables shown in this section were ob-
tained with Frontier subjected to very high loads and greater network
variability. Consequently, in these latter tables we have used timings
from the best out of roughly 10 time steps, which gives a more accurate
measure of the performance attainable by the present codes as discussed
above. We also report results from internal execution profiling in the
code that allow the wall time for these best time steps to be decom-
posed into contributions from major operations, such as 1-D FFT library
calls, all-to-all communication, packing and unpacking operations, and
all other computations (including forming nonlinear products and ad-
vancing solution variables in time).

From a scalability perspective, although the concepts of weak scal-
ing towards larger problem sizes and strong scaling towards shorter
runtimes are well known, different choices of reference problem size
or node count can give different results. In particular, it is possible to
assess weak scaling relative to the smallest problem size tested or con-
sidered appropriate for the hardware. For Frontier, the largest problem
size that can be simulated on one node is 20483. However, because of a
great contrast between communication speeds within the node or across
different nodes (absent in a single node problem), a more appropriate
reference point is actually 40963 on 8 nodes. At the same time, since
(perhaps unlike finite difference methods) changes in problem sizes are

Computer Physics Communications 306 (2025) 109364

9

P.K. Yeung, K. Ravikumar, S. Nichols et al.

Table 3
Elapsed wall time per step (in seconds) observed for the pencils version of the DNS code, presented in a manner similar
to that for the slabs version in Table 2, but including data for several shapes (𝑃𝑟×𝑃𝑐) of the 2D processor grid employed.
Timings are taken from the best time step in each case. Time spent on MPI_ALLTOALL is split into contributions from
row and column communicators. Weak scaling is assessed in the same manner as in Table 2, relative to case IDs enclosed
in square brackets, with the row communicator size held fixed.

𝑁3 #Nodes 𝑃𝑟 𝑃𝑐 FFT P+U R-MPI C-MPI Other Total WS1(%) WS2(%)
1 20483 1 2 4 1.81 1.08 0.74 1.27 0.58 5.48
2 20483 1 1 8 1.65 0.66 0.00 1.83 0.42 4.55
3 40963 8 8 8 2.03 1.09 2.08 5.97 0.82 11.98
4 40963 8 4 16 1.77 0.89 1.52 5.95 0.52 10.64
5 40963 8 2 32 1.89 0.74 0.74 6.86 0.45 10.68
6 40963 8 1 64 1.78 0.43 0.00 7.00 0.43 9.62
7 81923 64 8 64 1.55 0.76 2.09 8.15 0.48 13.03 99.6 [3] 99.6 [3]
8 81923 64 4 128 1.50 0.65 1.52 8.18 0.44 12.28 93.7[4] 93.7 [4]
9 81923 64 2 256 1.46 0.60 0.74 8.15 0.43 11.39 101.6 [5] 101.6 [5]
10 81923 64 1 512 1.56 0.40 0.00 8.14 0.43 10.52 99.1 [6] 99.1 [6]
11 163843 512 8 512 2.09 0.66 2.08 9.26 0.53 14.61 95.7 [3] 96.1 [7]
12 163843 512 4 1024 2.19 0.61 1.51 9.04 0.49 13.85 89.5 [4] 95.5 [8]
13 163843 512 2 2048 2.34 0.59 0.74 8.77 0.48 12.92 96.5 [5] 95.0 [9]
14 163843 512 1 4096 2.57 0.40 0.00 8.32 0.43 11.71 95.8 [6] 96.7 [10]
15 327683 4096 8 4096 3.09 0.67 2.08 9.36 1.03 16.21 92.1 [3] 96.2 [11]
16 327683 4096 4 8192 3.32 0.61 1.52 8.91 0.54 14.89 89.2 [4] 99.7 [12]
17 327683 4096 2 16384 3.41 0.60 0.74 9.72 0.49 14.95 88.9 [5] 92.1 [13]
18 327683 4096 1 32768 3.76 0.40 0.00 8.50 0.46 13.10 91.7 [6] 95.8 [14]

more discrete than continuous, it is also useful to measure weak scal-
ing by using the next smaller case (say a fixed factor of 2 smaller in 𝑁),
instead of the smallest case. A similar consideration applies to strong
scaling, relative either to the smallest node count that can accommo-
date a specific problem size, or to the closest smaller node count (i.e.
𝑃 versus 𝑃∕2). For both weak scaling and strong scaling, we provide
numbers from the two definitions as described here.

4.2. Slabs code and absolute performance

Table 2 shows overall performance and weak scaling for the slabs
code, which is slightly faster than the pencils version. Weak scaling is
calculated by assuming the computational workload is, through the use
of 1-D FFT calls, proportional to 𝑁3 log2𝑁 (based on 𝑁2 lines of length
𝑁 each) for a given 𝑁3 problem. It is clear that MPI communication
dominates the runtime, and that its scalability is low between 20483
on 1 node to 40963 on 8 nodes, but very good from 8 nodes onwards.
This is explained by communication within the code being much faster
than between different nodes on Frontier. Beyond 8 nodes, the commu-
nication cost becomes dominated by inter-node traffic, which, although
expensive, does scale quite well up to large node counts. The next most
costly operation is 1-D FFT performed using the AMD-provided ROCm
library. The cost of 1-D FFTs depends somewhat on whether the trans-
forms are performed on strided versus non-strided data, using in-place
or out-of-place storage, and certain properties of the ROCm library itself.
The computational cost of 1D FFTs per process scales as (𝑁3∕𝑃) log2𝑁 .
Under weak scaling conditions, where 𝑁3∕𝑃 remains constant, the cost
would scale as log2𝑁 . The table shows that this scalability holds for
problem sizes up to 81923. We do observe some degradation at prob-
lem sizes 163843 or higher, which is related to an existing artifact of
the AMD ROCm library affecting large transform lengths. Timings in-
curred by packing, unpacking, and various other operations performed
by user-written OpenMP offloading are seen to scale very well, while
usually accounting for only 5% or less of the total time per step.

Besides scalability on a given machine, an important consideration
for science is to what extent a new algorithm can enable larger simu-
lations to be performed in comparable or less time on a new machine,
versus an older but still powerful system with some similarities at least
in the type of hardware. For us, a comparison of slabs codes on Summit
(where slabs are favored) and Frontier is most appropriate since both are

leadership-class GPU machines albeit with different hardware and from
different, but sequential, technological generations. For a given elapsed
wall-clock time  , a convenient figure of merit, here denoted by 𝜒 , is
proportional to the volume of work performed per unit time, 𝑁3∕ ,
where the factor of log2𝑁 in typical FFT cost estimates is omitted in
view of the dominance of communication costs, which are nominally
proportional to the number of grid points. If weak scaling is 100% then
𝜒 ∝𝑁3 with 𝑃 ∝𝑁3. On Frontier, 12.07 secs for 𝑁 = 32768 using 4096
nodes in Table 2 above gives 𝜒 ≈ 2.91 × 1012, which is 6.6x higher than
4.40 × 1011 obtained from 14.24 secs for 𝑁 = 18432 using 3072 Summit
nodes in [6] (Table 3 therein). This factor of 6.6x also exceeds the 5.9x
differential in 𝜒 between our largest problem sizes on Frontier (327683)
and on Summit (184323) that is reported in [16] (Table 6 therein).

4.3. Weak scaling: pencils code and GPU speedup

Although the slabs code may be slightly faster in some cases, the
pencils code has the advantage of greater flexibility when an increase
in node count is necessary, either to accommodate additional science-
based memory requirements, or to achieve faster solution times for a
given problem. The pencils code is also the better choice for inferring
CPU-to-GPU speedup, since CPU codes running at high resolution often
require a very large number of MPI processes with 𝑃 >𝑁 and a pencils
decomposition.

Table 3 shows a detailed compilation of pencils code performance
data over a range of problem sizes for 𝑁 varied in powers of 2 from
2048 to 32768, and for several choices of the 𝑃𝑟 × 𝑃𝑐 row-and-column
processor grid geometry at the minimum node count needed to satisfy
the memory requirements (per Eq. (9)) in each case. For the code to run
with 1 MPI process per GCD, and to avoid splitting row communicators
between multiple nodes, we limit 𝑃𝑟 to a maximum of 8, while 𝑃𝑐 can be
up to 𝑁 . Similarly to the slabs code, the case of 20483 is extremely effi-
cient since it does not involve inter-node communication traffic, which
also causes weak scaling from 20483 to 40963 to be artificially low. In-
cidentally, the fact that such a single-node data point is entering the
discussion is a reflection of the power of individual nodes on modern
GPU machines such as Frontier.

It is clear that the shape of the processor grid geometry has signifi-
cant impact on performance. In particular, for each 𝑁 and 𝑃 combina-
tion in the table, the cost of row-communicator MPI decreases system-

Computer Physics Communications 306 (2025) 109364

10

P.K. Yeung, K. Ravikumar, S. Nichols et al.

Table 4
Selected timings (in seconds) obtained from a pencils CPU code with the same
overall structure as the GPU version.
Case 𝑁3 #Nodes 𝑃𝑟 𝑃𝑐 FFT P+U MPI Other Total
1 20483 1 2 32 23.1 37.5 16.3 27.4 104.3
2 20483 1 8 8 19.5 33.5 14.8 28.1 95.9
3 20483 1 64 1 19.5 36.1 18.0 29.5 103.1
4 40963 8 64 8 19.3 35.0 21.8 30.9 107.0
5 40963 8 8 64 22.1 36.9 21.0 30.9 109.7
6 81923 8 64 64 20.9 33.3 22.6 28.1 104.9

atically as 𝑃𝑟 is reduced through the sequence {8, 4, 2, 1}, by about 27%
from 𝑃𝑟 = 8 to 𝑃𝑟 = 4, and about 51% from 𝑃𝑟 = 4 to 𝑃𝑟 = 2. This reduc-
tion is a consequence of the design of the network hardware within each
Frontier node, that a slabs code cannot benefit from. In the case of 𝑃𝑟 = 1
further savings are possible since the row-communicator MPI can be
avoided altogether (with zero time taken) and the packing and unpack-
ing necessary for ensuring contiguous messages are likewise rendered
superfluous. Some differences between the pencils code with 𝑃𝑟 = 1 and
the slabs code do remain: in the use of in-place versus out-of-place trans-
forms for real-to-complex or complex-to-real FFTs in the 𝑥 direction, and
in the cost of packing and unpacking related to the use of strided FFTs.
Nevertheless, a comparison between Tables 2 and 3 shows that the best
overall performance obtained from the pencils code with (𝑃𝑟 = 1) at
40963 and 81923 is slightly faster than for the slabs code. It is also en-
couraging that at 163843 the pencils code timing with 𝑃𝑟 = 1 differs from
that of the slabs code by less than 2%, which is within the margins of
normal variability on the machine, while the total communication times
are essentially the same. Weak scaling calculated on the basis of com-
putational workload, i.e. in proportion to 𝑁3 log2𝑁 is seen to be very
high, being close to 90% for 327683 on 4096 nodes relative to 40963 on
8 nodes, and exceeding 95% for each 2x increase in 𝑁 beyond 4096 in
the table.

The cost of column-communicator MPI_ALLTOALL has a more com-
plicated behavior in contrast to the row-communicator, presumably be-
cause 𝑃𝑐 often spans a tremendous range as the problem size increases.
This cost is nearly independent of 𝑃𝑐 at 81923 but there is evidence
of variability at 163843 and 327683. Since this communication is the
most time-consuming operation, it is useful to consider the peer-to-peer
(P2P) message size involved, the number of communication calls per
time step, and the nature of variability potentially associated with net-
work contention on the system. For the column communicator, each
MPI process holding real-valued flow variables at 𝑁3∕𝑃 grid points (or
half as many complex-valued Fourier coefficients) has to send and re-
ceive messages, per variable, of size 4𝑁3∕𝑃𝑃𝑐 in bytes assuming single
precision. In weak scaling comparisons, the factor 𝑁3∕𝑃 is held con-
stant while 𝑃𝑐 ∝ 𝑁3∕𝑃𝑟. As a result, the message size becomes small
especially when a small value of 𝑃𝑟 (hence large 𝑃𝑐) is used at the
largest problem sizes: e.g. the message size per variable is 0.125 MiB
for Case 18, compared to 0.5 MiB for Case 16. The structure of our
pseudo-spectral algorithm is such that at each of two Runge Kutta sub-
steps in a single time step the number of flow variables passed through
the column communicator are 3 and 4 for inverse and forward trans-
forms respectively. The total number of column communicator all-to-all
calls per time step (if handling one variable per call) is thus 14. We are
able to check that, in cases that showed very good weak scaling, the total
column communicator time per step is indeed very close to 14 times the
cost of a single call, with minimal deviations. However, in some tests at
large node counts some communication calls have been observed to be
up to several times slower, in a manner which is random, and consistent
with variability typical of network contention.

It is worth noting that, a comparison of Tables 2 and 3 shows that at
327683 using 4096 nodes, the communication cost in the pencils code
with 𝑃𝑟 = 1 matches that in the slabs code quite closely, but the pencils
code takes up to 1 second longer in most cases because of a difference in

1-D FFT performance. A closer inspection shows, in fact, that the FFTs
in the pencils code with 𝑃𝑟 = 1 are slower than those in the slab code
for all but one of the five problem sizes; the exception being for 81923
on 64 nodes. While the vector strides used in the C-C transforms are a
potential factor, we first note that FFT library calls may, in general, be
classified as in-place (results stored in the same array as the input data)
or out-of-place (results stored in a new buffer which requires additional
memory). In our slab code (similar to that in [6]), we store Fourier co-
efficients for an 𝑁3 problem in arrays of shape (𝑁∕2 + 1, 𝑁 , 𝑁), with
all transforms taken in-place, and vector strides being 1 for C-R and R-C
transforms in 𝑥, but 𝑁∕2 + 1 for C-C transforms in 𝑦 and 𝑧. However,
the pencils code is built upon a more complex structure with Fourier co-
efficients in arrays of different shapes depending on whether the data
(e.g. pencils) are aligned in 𝑥, 𝑦 or 𝑧 directions at different points in
the code. These complexities are most readily accommodated by out-
of-place R-C and C-R transforms with stride 1 in 𝑥, and in-place C-C
transforms with stride 𝑁∕(2𝑃𝑟) in 𝑦 and 𝑧. We have found that R-C and
C-R transforms in the slab and pencil codes give essentially the same
performance (presumably because strides are 1 in both cases). It can be
seen that at 𝑁 = 16384 and higher, FFTs become slower as 𝑃𝑟 decreases
and vector stride increases. At the same time, at the limit of 𝑃𝑟 = 1, C-C
transforms in the pencil code are significantly slower than those in the
slab code although the pencils code uses a vector stride that is smaller
than the one used in the slab code (𝑁∕2 vs 𝑁∕2 +1). In our best under-
standing, this is the result of some intricacies of rocFFT library versions
presently available on Frontier. It is possible that the rocFFT software
is currently optimizing some transform sizes and configurations differ-
ently than others. Since rocFFT is still under active development, we
expect future ROCm releases to resolve this behavior.

Another measure of GPU code performance is the speedup obtained
from using the GPU as an accelerator to the CPU. CPU codes can, of
course, be written in pure MPI mode where every core available on
the CPU host operates as a distinct MPI process, or in a hybrid mode
where each core operates as an OpenMP thread, often with only so-
called master threads performing MPI calls while all threads share in
the computational workload. For inference of the CPU to GPU speedup,
we choose pure MPI for CPUs since a direct comparison is needed only at
modest problem sizes, where any benefit from OpenMP multi-threading
is likely to be limited. Table 4 shows the CPU performance data, where
the standard FFTW library is used for FFTs. Since each node on Frontier
consists of 64 cores, the overall processor count 𝑃 = 𝑃𝑟 × 𝑃𝑐 shown is
a multiple of 64 in each case. It appears that 𝑃𝑟 = 8 gives the best MPI
performance. Comparisons with the best GPU timings at 20483, 40963
and 81923 (Cases 2, 6, 10 in Table 3) give a GPU speedup factor on the
order of 20 at 20483 on a single node and on the order of 10 at larger
problem sizes run on multiple nodes. At 81923 resolution (Case 10 of
Table 3 to Case 6 of Table 4) the GPU speedup factors for FFT, Pack+Un-
pack, (total) MPI, and Other contributions to the cost are roughly 13x,
33x, 3x, and 65x respectively. Since the Pack+Unpack and Other contri-
butions are essentially all low-intensity compute-only operations, these
large speedup factors show that the user-written OpenMP offloading in
our GPU coding is highly efficient.

Computer Physics Communications 306 (2025) 109364

11

P.K. Yeung, K. Ravikumar, S. Nichols et al.

Table 5
Assessment of strong scaling for the pencils code, at grid resolution 81923 and node counts up to 8 times of that
required by memory, with 𝑃𝑟 varied from 8 to 1. Percentage strong scaling is calculated by referring to the smallest
node count for each case (shown as SS1) or node count smaller by a factor of 2 (shown as SS2).
Case 𝑁3 #Nodes 𝑃𝑟 𝑃𝑐 FFT P+U R-MPI C-MPI Other Total SS1(%) SS2(%)
1 81923 64 8 64 1.55 0.76 2.09 8.15 0.48 13.03 – –
2 81923 128 8 128 0.79 0.34 1.05 4.50 0.27 6.96 93.6 93.6
3 81923 256 8 256 0.40 0.17 0.53 2.24 0.13 3.46 94.1 100.6
4 81923 512 8 512 0.20 0.08 0.27 1.02 0.06 1.63 99.9 106.1
5 81923 64 4 128 1.50 0.65 1.52 8.18 0.44 12.28 – –
6 81923 128 4 256 0.76 0.31 0.76 4.52 0.23 6.59 93.2 93.2
7 81923 256 4 512 0.38 0.16 0.38 2.15 0.12 3.18 96.5 103.6
8 81923 512 4 1024 0.19 0.08 0.19 1.01 0.06 1.53 100.3 103.9
9 81923 64 2 256 1.46 0.60 0.74 8.15 0.43 11.39 – –
10 81923 128 2 512 0.73 0.30 0.37 4.46 0.23 6.09 93.5 93.5
11 81923 256 2 1024 0.37 0.15 0.19 2.12 0.11 2.94 96.9 103.6
12 81923 512 2 2048 0.18 0.08 0.09 1.13 0.06 1.55 91.9 94.8
13 81923 64 1 512 1.56 0.40 0.00 8.13 0.42 10.52 – –
14 81923 128 1 1024 0.78 0.20 0.00 4.27 0.21 5.47 96.2 96.2
15 81923 256 1 2048 0.39 0.11 0.00 2.03 0.11 2.64 99.6 103.6
16 81923 512 1 4096 0.20 0.05 0.00 0.93 0.05 1.24 106.1 106.5

Table 6
Similar to Table 5, but for resolution 163843 . Cases marked by asterisks were run with the parameter 𝑄 = 4 as discussed
in the text.
Case 𝑁3 #Nodes 𝑃𝑟 𝑃𝑐 FFT P+U R-MPI C-MPI Other Total SS1(%) SS2(%)
1 163843 512 8 512 2.09 0.66 2.08 9.26 0.53 14.61 –
2 163843 1024 8 1024 1.05 0.33 1.05 4.36 0.26 7.05 103.6 103.6
*3 163843 2048 8 2048 0.53 0.17 0.53 2.27 0.13 3.62 100.9 97.4
4 163843 512 4 1024 2.19 0.61 1.51 9.04 0.49 13.85 – –
5 163843 1024 4 2048 1.19 0.30 0.76 4.16 0.24 6.57 105.4 105.4
*6 163843 2048 4 4096 0.55 0.15 0.38 2.21 0.12 3.42 101.3 96.1
7 163843 512 2 2048 2.34 0.59 0.74 8.77 0.48 12.92 – –
8 163843 1024 2 4096 1.18 0.29 0.37 4.27 0.24 6.36 101.6 101.6
*9 163843 2048 2 8192 0.59 0.15 0.19 2.26 0.14 3.32 97.3 95.8
10 163843 512 1 4096 2.57 0.40 0.00 8.32 0.43 11.71 – –
11 163843 1024 1 8192 1.28 0.22 0.00 4.06 0.20 5.76 101.6 101.6
*12 163843 2048 1 16384 0.65 0.10 0.00 2.02 0.12 2.90 100.9 99.3

4.4. Strong scaling: pencils code

To investigate strong scaling for the pencils code with allowance for
the effects of the processor grid geometry, we performed tests with 𝑃𝑟
fixed but 𝑃𝑐 and 𝑃 increased by factors of 2, 4, and 8. We focus our at-
tention on the three largest problem sizes, namely 81923, 163843 and
327683, subject to the constraints that the largest allowable values of 𝑃𝑐
and 𝑃 in our work are equal to 𝑁 and 8192 respectively. In the strong
scaling study, as 𝑃𝑟 is held constant and 𝑃𝑐 is doubled for a given prob-
lem size, the problem is being distributed across twice the number of
MPI ranks (recall 𝑃 = 𝑃𝑟 × 𝑃𝑐) than the preceding case. This distribu-
tion leads to half the number of grid points per MPI rank and half the
volume of data per MPI rank to exchange during the MPI AlltoAll com-
munications. Likewise, the communication times are ideally expected to
decrease by half as the number of nodes are doubled for a given problem
size.

Table 5 shows strong scaling data for 81923 grid points with node
counts 64 to 512. Clearly, the strong scaling achieved is excellent, being
higher than 93% upon each doubling of node count for all four possi-
ble values of the row-communicator dimension tested. The scalability
is uniformly good in all types of operations, including 1-D FFT library
calls, pack and unpack, all-to-all in the row and column communicators,
and other user-written computational loops. Three out of four values of
𝑃𝑟 (except 2) actually show 100% strong scaling or better for an 8x in-
crease in node count. The fact that this excellent scalability is achieved
even as communication costs account for some 75% of the execution

time indicates HPE Slingshot indeed performs very well at least at the
scale of the problem size referenced in this table (although this does not
rule out limitations potentially arising at yet-larger problem sizes).

Table 6 shows results at 163843. The range of node counts accessible
is limited to a factor 4, as the result of the requirement 𝑃𝑐 ≤𝑁 . High
scalability similar to that for 81923 in Table 5 is readily obtained for a
2x increase of node count from 512 to 1024. However, a further increase
from 1024 to 2048 nodes for this problem size did pose some challenges,
in the form of substantial variability in timings between successive time
steps, which is (perhaps unsurprisingly) associated with communica-
tion across a large number of nodes. The variability is more significant
at smaller values of 𝑃𝑟, which in turn requires large 𝑃𝑐 . For a given 𝑁 ,
large 𝑃𝑐 also implies smaller message sizes, potentially falling outside
the bandwidth-limited regime of MPI performance (to be analyzed fur-
ther in Sec. 5).

To mitigate the MPI-related issue above, and to increase the likeli-
hood of sustained stable performance, we have implemented a feature in
the code to allow a smaller number of calls to the column-communicator
MPI_ALLTOALL with larger message sizes. Specifically, instead of the
standard choice 𝑄 = 1 in Eq. (9) we let 𝑄 be raised in connection to
the number of variables that must be transposed at specific locations in
the code. For simulations of the velocity field only, the number of flow
variables that require transpose via the column communicator is 3 as
part of a 3D FFT from wavenumber space to physical space, and 4 from
physical space to wavenumber space. Use of a larger 𝑄 is also subject
to memory constraints since the memory requirement will increase, in

Computer Physics Communications 306 (2025) 109364

12

P.K. Yeung, K. Ravikumar, S. Nichols et al.

Table 7
Strong scaling at 327683 grid resolution, shown in a format similar to Table 6, but for 327683 grid solution and
including a direct comparison between performance, obtained using 𝑄 = 1 versus 𝑄 = 4. At this resolution only
2 node counts (4096 and 8192) are feasible. The strong scaling percentage is reported for data obtained using
𝑄 = 4 versus the case number shown indicated in square brackets. All 8192-nodes timings in this table were
obtained from a single batch job using the same nodes for all cases listed.
Case 𝑁3 Nodes 𝑃𝑟 𝑃𝑐 Q FFT P+U R-MPI C-MPI Other Total SS(%)
1 327683 4096 8 4096 1 3.09 0.67 2.08 9.36 1.03 16.21
2 327683 8192 8 8192 1 1.55 0.33 1.05 7.33 0.29 10.55
3 327683 8192 8 8192 4 1.55 0.33 1.05 7.02 0.24 10.19 79.6 [1]
4 327683 4096 4 8192 1 3.32 0.61 1.52 8.91 0.54 14.89
5 327683 8192 4 16384 1 1.67 0.30 0.76 7.21 0.25 10.20
6 327683 8192 4 16384 4 1.67 0.30 0.76 7.34 0.29 10.36 71.8 [4]
7 327683 4096 2 16384 1 3.41 0.60 0.74 9.72 0.49 14.95
8 327683 8192 2 32768 1 1.73 0.30 0.37 7.32 0.27 9.98
9 327683 8192 2 32768 4 1.73 0.30 0.37 7.31 0.28 9.98 74.9 [7]

the order of 8(𝑄 −1)(𝑁3∕𝑃)∕(10243) in GiB per GCD. This means use of
𝑄 > 1 is both easier and more beneficial in runs that emphasize strong
scaling at larger problem sizes. The timings from runs with 2048 nodes
in Table 6 were obtained with 𝑄 = 4. It can be seen that the scalability
obtained in this manner is nearly ideal. However, variability in occa-
sional slow time steps is still present, especially at small 𝑃𝑟 and large
𝑃𝑐 . Although the 1 × 16384 case (# 12 in this table) is timed to be the
fastest, the best choice for production runs with stable performance is
actually 4 × 4096 (Case #6).

Table 7 shows strong scaling data for the most demanding test i.e.
327683 from 4096 to 8192 nodes. At this scale, since 𝑃𝑐 cannot exceed
32768, 𝑃𝑟 can only be 2, 4, or 8. The costs of FFT, packing/unpacking,
and row-communicator MPI are independent of 𝑄, and are scaling ide-
ally, taking half as long when the node count is doubled. The strong
scaling overall is in the range 70–80%, lower than that seen in Table 6
mainly because of imperfect strong scaling of the column communica-
tor MPI. This reduction of scalability occurring near the extreme limits
of machine capability is not unexpected, since a large increase in the
MPI process count causes both reduced message sizes and greater sus-
ceptibility to network contention on the system. At this problem size,
it seems that benefit from use of 𝑄 = 4 is only modest, at least if data
from all possible values of 𝑃𝑟 are considered. However, the increase in
message sizes (with a matching reduction in the number of MPI calls)
does lead to greater performance stability: although not shown in the
table, the elapsed wall-time variation among 8 time steps is up to 3 to 5
secs per step for cases with 𝑄 = 1, but is reduced to less than 0.1 sec. by
using 𝑄 = 4. The effect of message sizes is further investigated in Sec. 5.

For an overall assessment of the performance of our pencils produc-
tion code, we show in Fig. 7 the best timings obtained for each problem
size (𝑁3) and node count (𝑃∕8) combination that has been tested in de-
tail in this work. Essentially, for each problem size, we have varied the
node count over a factor of 8 provided 𝑃𝑐 does not exceed 𝑁 and the
number of nodes used does not exceed the number of nodes available
on the system. Timings are taken from the best processor grid 𝑃𝑟 × 𝑃𝑐
available, while also considering the effect of the maximum number of
variables exchanged via an MPI_ALLTOALL over 𝑃𝑐 parallel processes
forming the column communicator in our pencils DNS code. Strong scal-
ing can be assessed readily with reference to the smallest node count
necessary to provide sufficient memory, except for the case of 20483
where all work was performed on a single node with extremely fast
communication. It is remarkable that, unlike common experiences in
large-scale computing, as problem size increases from 20483 to 163843,
the strong scaling not only does not degrade but actually improves, al-
though at our extreme-scale problem size of 327683 strong scaling does
fall off appreciably between 4096 and 8192 nodes. Weak scaling be-
tween 163843 and 327683 is also impacted by two secondary factors:
namely (i) effects of striding on FFT performance at large problem sizes,
(ii) a tendency for an optimal 𝑃𝑟 shifting towards larger 𝑃𝑟 (say from 1

Fig. 7. Plot of overall scalability of the pencils code showing elapsed wall times
at different node counts for problem sizes 20483, 40963, 81923, 163843 and
327683 , in different colors. Open triangles show best timings obtained for each
combination of 𝑁 and 𝑃 . Bullets show theoretical 20483 timings if scaled per-
fectly from 20483 . Dashed lines of slope -1 on logarithmic scales indicate perfect
strong scaling, while perfect weak scaling based on computational workload is
represented by dotted lines showing log(𝑃 1∕3) behavior.

to 2, 4 or 8 instead) at problem sizes larger than 81923 . The first is a soft-
ware artifact which will likely see improvement from a future version
of the AMD ROCm library. The second is a consequence of cross-node
message sizes becoming small in the column communicator as 𝑃𝑟 de-
creases.

Although for strong scaling we have focused on the pencils code,
we also note that the slabs code does perform well in strong scaling.
For 81923 the wall times per step were 10.72, 5.49 and 2.73 seconds
using 64, 128 and 256 nodes respectively; and for 163843 they were
11.30, 5.57 and 2.89 seconds using 512, 1024, 2048 nodes respectively,
both giving 98% strong scaling for a 4x increase in node count. These
numbers are close to results reported for the pencils code in Tables 5 and
6. However, consistent with the limitations stated earlier, for the case
of 327683 the slabs code can only run at a single node count (4096), so
no slabs version of Table 7 is available.

Ultimately, communication across a large number of MPI processes is
the primary limiting factor where extreme-scale code performance data
are concerned. In fact, in GPU codes, communication may become even
more dominant than for CPU codes, as flop-rate increases by a large fac-
tor while communication performance may only improve modestly. In
the next section, we provide a deeper analysis of communication per-
formance, including the effect of message sizes below an optimal value
on the system.

Computer Physics Communications 306 (2025) 109364

13

P.K. Yeung, K. Ravikumar, S. Nichols et al.

Table 8
Theoretical peak bandwidths correspond-
ing to the possible communication pathways
on Frontier. The CPU and GPU Memory
Bandwidths are relevant for the self-
communication that occurs with each
MPI_AlltoAll communication, The band-
widths in the Peak Bandwidth column present
the CPU and GPU bandwidths in terms of
“send rate+ receive rate” to be consistent with
OLCF online documentation.
Communication Pathway Peak Bandwidth

GB/sec
CPU Memory Bandwidth 205
GPU Memory Bandwidth 1635
GCD-to-GCD on same GPU (200+ 200)
GPU-to-GPU in pairing (100+ 100)
GPU-to-GPU out of pairing (50+ 50)
CPU-to-CPU and GPU (36+ 36)
Node-to-Node per NIC (25+ 25)

5. Analyis of MPI AlltoAll communications performance

The pre-dominance of MPI all-to-all costs in wall clock timings pre-
sented in Sec. 4 merits a deeper discussion into how the actual com-
munication performance achieved in the present work compares with
the theoretical peak communication performance available on Frontier,
and where hopes for a future breakthrough may lie for codes which are
communication intensive in nature. We refer frequently below to Ref. 16
which can be regarded as an official reference on expectations for user
application performance given the system characteristics on Frontier.

Several features of the network design on Frontier are also relevant
in this discussion. Specifically, each node on Frontier contains 4 AMD
MI250x GPUs, each of which contains 2 Graphics Compute Dies (GCDs)
for a total of 8 GCDs per node. Per official system information [16], each
GCD effectively functions as a separate device. To best utilize Frontier,
we always use 8 MPI ranks per node, with one MPI rank per GCD and
2 MPI ranks per GPU. The AMD MI250x GPUs on Frontier are designed
with the network interface card (NIC) as an inherent part of the GPU,
such that all the MPI ranks and their associated GCDs and CPUs share the
NIC for their I/O and communications across the network. This design
reduces the number of buses between the device memory and the net-
work compared to host memory, thus lowering latency and potentially
increasing bandwidth. Our distribution of MPI ranks across the nodes
and GPUs results in 2 MPI ranks sharing each NIC and its available band-
width. Further, the GPU-Direct MPI communications also benefit from
exceedingly fast on-node communication pathways between the GPUs.
The benefit of these high-speed on-node connections is evident in the
timings for cases performed on a single node or when performed with
only a few MPI ranks in a specific MPI communicator (for instance, with
row-communicator timings improving with decreasing 𝑃𝑟 in the tables
shown in Sec. 4).

Frontier employs the Slingshot 11 interconnect in a dragonfly net-
work topology with 128 nodes assigned to each dragonfly group. Sling-
shot dynamically routes the traffic to reduce congestion with a max-
imum of 3 “hops” across the network between nodes. The potential
communication bandwidths are summarized in Table 8 in terms of “send
rate+ receive rate” to be consistent with Ref [16] and OLCF online doc-
umentation. For the purposes of our comparisons, we will consider only
the uni-directional, receive-side bandwidths to be consistent with cur-
rent literature and to avoid confusion in the comparisons. The four GPUs
on a node are arranged in two pairs. The GPUs within a pairing can
communicate at uni-directional rates up to 100 GB/sec (2 links at 50
GB/sec/link) while communications between GPUs in the other pair-
ing are limited to 50 GB/sec (1 link at 50 GB/sec). The GCDs within
a GPU have a theoretical peak communication rate of 200 GB/sec (4
links at 50 GB/sec/link) with each other. With the knowledge that each

MPI rank is performing the same volume of all-to-all communication,
we can safely assume that the available network bandwidth (B/W) is
evenly split between the 2 MPI ranks on each GPU for a theoretical
peak B/W of 12.5 GB/sec/rank. Further explanations of communication
at the systems level are available in Ref. [16].

As stated earlier (Sec. 2.2 and elsewhere) a key decision in our cod-
ing development is to store all major arrays on the GPU and effectively
perform all computations there. This strategy allows us to minimize data
movement between the host and device and provides a strong incentive
to communicate between the MPI processes directly from the GPUs. Per-
forming the communications from the CPUs would have required the
exchange of data between the host and device before and after the MPI
calls, which definitely increases overall runtime. It is interesting to quan-
tify the savings in cost achieved by performing MPI on GPUs instead of
on CPUs on Frontier.

Besides timings collected for all-to-all communication calls, another
important measure of MPI performance is the effective bandwidth for a
given message size and number of participating MPI ranks. When an MPI
all-to-all communication is performed between 𝑅 MPI ranks, each rank
completes 1 self-communication with itself, sends (𝑅 −1) point-to-point
(P2P) messages to the other (𝑅 − 1) ranks, while also receiving (𝑅 − 1)
P2P messages of the same size from all other (𝑅 −1) ranks. Although the
self-communication never crosses any of the communication pathways
between the ranks and is not a “communication” in the truest sense,
the data must be physically copied to the receive buffer to complete
the all-to-all communication, and this data copy must occur concur-
rently with the rest of the all-to-all operations that are being timed
(see Fig. 3). Therefore, as in [6], we include the self-communication
message in the calculations for an “effective” bandwidth, with the un-
derstanding that the self-communication becomes a very small portion
of the all-to-all operations when 𝑅 is large. However, we note that bi-
directional bandwidths were quoted in [6] for previous work on Summit.
Since we’re limiting our comparisons to uni-directional (i.e. receive-
side) bandwidths to be consistent with current literature, the effective
uni-directional bandwidths per MPI rank is then given by the formula

𝐵𝑊 = (𝑃2𝑃 x 𝑅)∕ 𝑡𝑀𝑃𝐼 (13)
where 𝑃2𝑃 represents the peer-to-peer message size, 𝑅 is the number
of MPI ranks in the communicator, and 𝑡𝑀𝑃𝐼 is the elapsed wall time
measured for the MPI_ALLTOALL call concerned.

Two issues addressed in Ref. [16] affect our bandwidth measure-
ments significantly. First, the efficiency of the MPI communications de-
grades as the size of the P2P messages decreases, which adversely affects
the performance of our larger runs. As explained earlier in Sec 4.3, as
the problem size increases, the overall communication volume per MPI
rank remains constant while the individual P2P message sizes decrease.
Not only does this decrease result in lower communication performance
due to an inability to saturate the MPI communications fully with data
to transfer, but it also renders the code more susceptible to communi-
cation variability and leads to a greater impact of the MPI latencies on
the collected timings. The second issue is the limitation on the usable
network bandwidth imposed by the dragonfly topology for communica-
tions between nodes in different dragonfly groups. Ref. [16] reports that
communications between nodes in the same dragonfly group achieved
a receive-side bandwidth of 17.5 GB/sec/NIC out of the possible 25
GB/sec/NIC, but communications between nodes in different dragon-
fly groups were limited to 3 to 8 GB/sec/NIC. Since 2 MPI ranks share
a single NIC in our cases, we halve these rates for the following dis-
cussions: 8.75 GB/sec/rank for in-group communications and 1.5 to
4 GB/sec/rank for out-of-group communications. With these issues in
mind, the effective bandwidths at larger problem sizes are not as high
compared to the theoretical peak rates (in Table 8) as we would like,
but they are on the higher end of the ranges discussed in Ref. [16].

To aid our discussions, the theoretical peak communication band-
widths for the various communication patterns used in the slab (1D) and
pencil (2D) decomposition codes are listed in Table 9. All five rows in

Computer Physics Communications 306 (2025) 109364

14

P.K. Yeung, K. Ravikumar, S. Nichols et al.

Table 9
Theoretical uni-directional band-
widths for communications
between GPUs with 𝑃 MPI ranks in
the communication. Communica-
tions for 𝑃 = 4 may occur between
GPUs not-in-pairing at 50 GB/sec
or between GPUs in-pairing at 100
GB/sec.
Number of Ranks Expected B/W
P GB/sec
1 1635
2 200
4 50 or 100
8 50
more than 8 12.5

the table are pertinent to our 2D decompositions on Frontier, while only
the last two rows apply to 1D decompositions. The first four rows give
bandwidths expected for on-node communications while the last row
gives bandwidth expected for node-to-node communications. In general,
many communication calls will involve transfers along different path-
ways of different speeds. Since MPI_ALLTOALL is a blocking call, the
timing measured by MPI_WTIME calls placed before and after MPI_ALL-
TOALL is determined by the slowest link involved in the communication.
This is relevant in our quest for a detailed explanation of the timings, as
below.

To collect MPI performance data needed for our purposes here, we
ran a lightweight MPI all-to-all program which uses communication pat-
terns identical to those in the fully-featured DNS codes but perform
strictly MPI_ALLTOALLs only, without any other operations. All of the
MPI timings presented below are the average of the timings of 5 separate
and complete communication cycles that were conducted sequentially.
It should be noted that timings associated with MPI on the CPU include
the extra cost of data transfer between the host and device, which would
be necessary since all computations will continue to be performed on the
GPUs. To minimize any contamination from network contention, we use
both CPU and GPU timings from the same executable and the same job
script. Timings extracted from our MPI program show very little vari-
ability, perhaps because MPI calls performed by this program are often
occurring within only a couple of seconds apart, in contrast to those
in full DNS codes where data from successive time steps span a longer
time window and may thus be more susceptible to unpredictable fluctu-
ations in the level of network activity on the machine. We present MPI
performance data on a per-variable basis for 1D and 2D decompositions
separately.

5.1. 1D decomposition: slabs

Table 10 shows data from the slabs code on MPI alltoall message
size, timings on both CPU and GPU, and effective bandwidth attained
on the GPU for a single variable at five problem sizes. The CPU timing
data includes time taken for data movement between the host and the
device. As expected, the actual MPI communications from the GPU are
faster than those from the CPU since the NIC is on the GPU, and the
data has a longer and slower pathway to the NIC, and the network be-
yond, compared to the GPU [16]. In addition to slower communications,
performing the MPI_ALLTOALL call from the CPUs is further burdened
by the requisite H2D and D2H data movement —which, as seen in the
table — costs more than the actual MPI communications themselves.
The overall cost of performing the communication on the CPUs is 2.4x
of communication on the GPU, for the largest problem size on 4096
nodes. This difference also becomes even more significant for smaller
problems ranging from 3.65x on 512 nodes to 13x on a single node.

As noted earlier, the single-node case benefits from the high-speed
on-node pathways that connect the GPUs while the majority of the com-

munication in cases using multiple nodes must go node-to-node across
the network at a much lower data transfer rate. Taking the single-node
cases as an example, the 8 MPI ranks communicate across multiple on-
node links: 1 self-communication, 1 GCD-to-GCD communication within
a GPU, 2 communications with GCDs with the other GPU in pairing, and
4 communications with GCDs in the other GPU-pairing which are the
slowest links in this communication. Hence, we expect a uni-directional
peak rate of 50 GB/sec for the single-node cases as shown in Table 9
(fourth row). In contrast, for the 8-node cases with 64 MPI ranks, we
have the aforementioned 8 communications as well as 56 additional
communications with GCDs in other nodes, and it’s these node-to-node
communications that limit the expected peak rate to 12.5 GB/sec (Ta-
ble 9). Indeed, the effective GPU-aware MPI bandwidth drops by roughly
a factor of 4 between the first two rows of Table 10, which is consistent
with the theoretical node-to-node bandwidth being 1/4 of the on-node
bandwidth for 8 MPI ranks.

For 𝑁 = 2048 on a single node, the effective bandwidth was mea-
sured to be 32.9 GB/sec. This rate is 65.8% of the expected 50 GB/sec,
and slightly lower than the 72% to 75% of theoretical peak achieved
by [16]. However, Ref. [16] is not clear on what kind of communica-
tions were used in their tests (i.e. individual P2P or collective), and 32.9
GB/sec may be reasonable for our collective communications.

As more and more of the MPI communications go across the network
as 𝑁 increases, the network bandwidth becomes increasingly dominant
in the performance of the communications. Reasonable weak scaling
is seen from 𝑁 = 4096 to 𝑁 = 16384, but a modest drop occurs at
𝑁 = 32768. As mentioned earlier, for a fixed volume of communica-
tion per MPI rank, increasing the number of MPI ranks as the problem
size grows necessarily decreases the P2P message sizes that must be
distributed across all the ranks. Eventually, the small P2P message sizes
degrade the communication performance (Ref. [16]), and this is particu-
larly true for our largest case, 𝑁 = 32768. For 𝑁 = 32768, the individual
P2P message size drops to 0.125 MiB, which when combined with a
large collective communication, results in a failure to saturate MPI fully
with data to transfer, leading to a slight reduction of performance. This
situation is not surprising, since although network hardware and MPI
implementation vary, most massively parallel codes scale less well at
the extreme limits of capacity on most large machines (e.g., [43]). This
situation is further complicated by the limitations in usable network
bandwidth imposed by the dragonfly topology. Reference [16] observed
a range of receive-side communication rates from 1.5 to 4 GB/sec/rank
on Frontier for communications that must go between dragonfly groups,
and we see that all effective bandwidths for multi-node cases in Table 10
exceed these rates. This is most important for the two largest cases on
512 nodes and 4096 nodes since they naturally have the smallest P2P
message sizes and these node counts necessarily span multiple dragon-
fly groups. Although cases using up to 128 nodes can be placed in a
single dragonfly group, this is not guaranteed when the system is highly
utilized, and even an 8-node case could be spread across multiple drag-
onfly groups. Our effective bandwidths for cases using 8 or more nodes
exceed the upper range of 4 GB/sec/rank that is presented in [16].

Although slower than communications from the GPU, the actual MPI
communications from the CPUs perform very consistently and, for the
most part, behave as expected as the problem size increases in Table 10.
The CPU MPI communication for 𝑁 = 16384 on 512 nodes appear to be
somewhat out of line, compared to both using CPUs for 𝑁 = 32768 on
4096 nodes and using GPUs for 𝑁 = 16384 on 512 nodes. This obser-
vation is repeatable and not an artifact of variability. However, this has
no impact on our work since all production simulations are performed
using GPU MPI communications which consistently provide better per-
formance.

5.2. 2D decomposition: pencils

For the 2D decomposition strategy, two communication cycles must
be completed for each forward and inverse 3D FFT computation. These

Computer Physics Communications 306 (2025) 109364

15

P.K. Yeung, K. Ravikumar, S. Nichols et al.

Table 10
A comparison between MPI using host memory pointers and MPI using device memory pointers, in terms
of communication timings (in seconds), message sizes and effective uni-directional bandwidth per MPI
rank on Frontier, for 1D decomposition for a single variable. Since the numbers of nodes and MPI ranks
are chosen in proportion to 𝑁3, the communication volume is fixed at 4 GiB (i.e. 4096 MiB) in all cases
shown.
𝑁3 Nodes Ranks P2P Msg H2D/D2H CPU MPI CPU Total GPU MPI GPU B/W

Size (MiB) Copy (sec) (sec) (sec) (sec) (GB/sec)
20483 1 8 512 1.256 0.450 1.706 0.131 32.90
40963 8 64 64 1.213 0.687 1.900 0.494 8.71
81923 64 512 8 1.204 0.744 1.948 0.530 8.10
163843 512 4096 1 1.187 0.966 2.152 0.590 7.28
327683 4096 32768 0.125 1.210 0.796 2.006 0.771 5.58

Table 11
A comparison between the row-communicator MPI on the CPU versus on the GPU with communi-
cation timings (in seconds), including information on message sizes, and effective uni-directional
bandwidth per MPI rank on Frontier for a single variable. Since the numbers of nodes and MPI ranks
are chosen in proportion to 𝑁3, the row communication volume is fixed at 4 GiB (i.e. 4096 MiB) in
all cases shown.
𝑁3 Nodes 𝑃𝑟 P2P Msg H2D/D2H CPU MPI CPU Total GPU MPI GPU B/W

Size (MiB) Copy (sec) (sec) (sec) (sec) (GB/sec)
20483 1 2 2048 1.239 0.393 1.632 0.046 92.98
40963 8 2 2048 1.184 0.392 1.576 0.046 92.97
81923 64 2 2048 1.192 0.392 1.584 0.046 93.05
163843 512 2 2048 1.181 0.392 1.573 0.046 93.13
327683 4096 2 2048 1.173 0.393 1.566 0.046 92.88

Table 12
Similar to Table 11, but for column communicators. The column communication volume is also fixed at
4 GiB (i.e. 4096 MiB) in all cases shown.
𝑁3 Nodes 𝑃𝑐 P2P Msg H2D/D2H CPU MPI CPU Total GPU MPI GPU B/W

Size (MiB) Copy (sec) (sec) (sec) (sec) (GB/sec)
20483 1 4 1024 1.241 0.444 1.685 0.092 46.93
40963 8 32 128 1.185 0.660 1.845 0.539 7.97
81923 64 256 16 1.224 0.689 1.913 0.580 7.41
163843 512 2048 2 1.223 0.826 2.049 0.626 6.87
327683 4096 16384 0.25 1.231 0.848 2.079 0.705 6.09

two cycles are identified as “row” and “column” communications in our
discussions. We compare the performance of MPI on the CPU and GPU
for a single variable for five problem sizes in the row and column com-
municators separately in the tables below. As with the 1D decomposition
timings, the timings given for MPI on the CPUs include a substantial
contribution from the device-to-host and host-to-device data movements
that occur respectively before and after an MPI_ALLTOALL on the CPUs.
In addition to assessing MPI performance at a basic level, the MPI tim-
ings also provide an interesting check on the communication costs cited
in Tables 4 to 7 if the number of MPI calls of each type performed per
DNS time step is taken into account. As discussed in Sec. 4, GPU per-
formance data for the pencils code are dependent on the shape of the
2D processor grid, as well as the number of variables passed per com-
munication call. For the sake of brevity and unless stated otherwise, we
consider only the case 𝑃𝑟 = 2 and 𝑄 = 1 here.

Table 11 shows row-communicator performance data. Because the
number of nodes is weak-scaled to the problem size, the P2P message
sizes sent or received are equal to 2 GiB in each case shown in the ta-
ble. For the CPU, The cost of H2D or D2H data movement is about 3x
that of the actual transfer. On the GPU, with 𝑃𝑟 = 2, the two MPI ranks
in each row communication are exchanging data between the GCDs on
a single GPU across the fastest on-node pathway available on Frontier.
As a result, the GPU MPI row communication is very fast — in fact,
over 30x faster than using the CPU. However, the effective bandwidth of
nearly 93 GB/sec can be a bit misleading since the self-communication
is included in our bandwidth computations, and for 𝑃𝑟 = 2, the self-
communication is half of the data being exchanged (at a theoretical peak
bandwidth of 1635 GB/sec). Unfortunately, our timing strategy (see
Fig. 3) does not allow us to analyze the performance of the individual
P2P operations generated by each MPI_ALLTOALL function call. Instead,

we can only evaluate the performance of the overall MPI_ALLTOALL
function, and therefore, we include the self-communication in the band-
width computations. With the knowledge that the GCD-to-GCD link is
the slowest pathway in the communication for 𝑃𝑟 = 2 (e.g. 200 GB/sec
vs 1635 GB/sec), we can make some additional observations. Since only
half of the data actually crosses the links between the two GCDs for
𝑃𝑟 = 2, the bandwidth of data actually being exchanged between the
GCDs is only 46.5 GB/sec which equates to 23.25% of the expected
uni-directional peak bandwidth of 200 GB/sec. Reference [44] explains
that Cray-MPICH cannot fully utilize the 4 links (50 GB/sec/link) be-
tween the two GCDs in a GPU due to limitations with the Direct Memory
Access (DMA) copy engine and reports a maximum receive-side (i.e. uni-
directional) bandwidth of 50 GB/sec in their tests. This rate is identical
to the System Direct Memory Access (SDMA) data transfers between
GCDs that are discussed in Ref. [16] which attributes the bandwidth lim-
itation to the inability to stride the SDMA transfers across multiple links.
With these limitations in mind, we are communicating at 93% of peak
bandwidth across a single link between the GCDs, and our communica-
tions are consistent with current literature. Additionally, since all these
row communications occur on-node, both the CPU and GPU commu-
nications experience low congestion and are completed with very high
consistency. The number of row communicator MPI calls that need to
be made during each time step is (if 𝑄 = 1) 16. It can be seen that multi-
plying the GPU timing of 0.046 secs by 16 gives a very close match with
0.74 seconds for 𝑃𝑟 = 2 in the pencils-code tables discussed in Sec. 4.

Table 12 presents the timings for the 2D decomposition column
communications. For the single-node case, each column communication
necessarily occurs between GCDs in all four GPUs in the node due to our
decomposition algorithm, and this limits the expected peak bandwidth
to 50 GB/sec. Our effective bandwidth of 46.93 GB/sec achieves 93.9%

Computer Physics Communications 306 (2025) 109364

16

P.K. Yeung, K. Ravikumar, S. Nichols et al.

Table 13
A comparison of the GPU MPI communication uni-directional bandwidths per MPI rank when passing 1
variable (𝑄 = 1) and 4 variables (𝑄 = 4) for 𝑁3 = 163843 on 2048 nodes and 𝑁3 = 327683 on 8192 nodes.

𝑁3 Nodes 𝑃𝑟 𝑃𝑐 Q
Row Column
P2P Msg MPI B/W P2P Msg MPI B/W
Sze (MiB) (sec) (GB/sec) Size (MiB) (sec) (GB/sec)

163843 2048

8 2048 1 128 0.0298 36.04 0.500 0.171 6.275
4 512 0.1175 36.57 2.000 0.652 6.590

4 4096 1 256 0.0225 47.64 0.250 0.167 6.450
4 1024 0.0896 47.94 1.000 0.660 6.505

2 8192 1 512 0.0115 93.04 0.125 0.275 3.901
4 2048 0.0462 92.91 0.500 0.684 6.275

327683 8192

8 8192 1 256 0.0592 36.27 0.250 0.536 4.006
4 1024 0.2339 36.72 1.000 1.959 4.385

4 16384 1 512 0.0450 47.73 0.125 0.491 4.371
4 2048 0.1789 48.03 0.500 1.848 4.648

2 32768 1 1024 0.0232 92.50 0.0625 0.725 2.960
4 4096 0.0924 92.94 0.250 2.212 3.884

of the peak rate. In addition to the excellent single-node performance,
the effective bandwidths of the other four cases, using 8 or more nodes,
exceed the upper range of 4 GB/sec/rank that is presented in [16]. Alto-
gether, these results demonstrate a very high level of efficiency for these
communications.

For the single-node case of 20483 the effective bandwidth is about
half of that seen for the row communicator. In contrast to the row com-
municator, the P2P message size drops by a factor of 8 for each doubling
of 𝑁 , which causes a reduction in effective bandwidth consistent with
the DNS timing trends examined earlier. Multiplication of GPU MPI
timings here by a factor of 14 gives a very close match with column-
communicator timings seen with 𝑃𝑟 = 2 in Sec. 4.2, provided variability
due to contention does not arise in DNS timings used for the comparison.

It may be noted that the timings in Table 12 also show behaviors
that are very similar to and slightly faster than the 1D decomposition
timings presented in Table 10. This similarity is expected since these
communications are performed in nearly identical manners with one key
difference: with 𝑃𝑟 = 2 and hence 𝑃𝑐 = 𝑃∕2, the column communicators
involve half the number of MPI ranks than the 1D decomposition com-
municators and this results in their P2P message sizes being twice the
size of their 1D decomposition counterparts. It is likely that the faster
performance and higher bandwidth of the 2D decomposition column
communications is related to the fact that their larger P2P message sizes
better saturate the communications with data to transfer.

We noted earlier (Sec 4) that increasing the message size by changing
the number of variables (𝑄) to be transposed through each MPI_ALL-
TOALL call from 1 to 4 leads to more consistent performance for 𝑁 =
16384 but has lesser impact on 𝑁 = 32768. A deeper investigation into
the differences in behaviors between these two problem sizes illustrates
the impacts of both the P2P message sizes and the dragonfly topology
on problems that are distributed across more nodes and consequently
more dragonfly groups. Table 13 presents the effect of message size on
the MPI communications and mimics the decomposition and commu-
nication patterns of the cases using 2048 nodes in Table 6 and 8192
nodes in Table 7. References [16] and [44] discuss a gradual degrada-
tion in MPI communication performance as the P2P message sizes fall
below 1 MB, and the column communications for 𝑄 = 1 (and smaller
P2P message sizes) are slower than those for 𝑄 = 4 for all choices of
𝑃𝑟. Further, 𝑃𝑟 = 2 with the smallest P2P message size for the column
communications are clearly slower than the other two choices for 𝑃𝑟 .
However, the column communications for 𝑃𝑟 = 4 are faster than those
for 𝑃𝑟 = 8 even though the P2P message sizes for 𝑃𝑟 = 4 are smaller
than those for 𝑃𝑟 = 8. This behavior is also seen between the respective
rows in Table 7 for 8192 nodes and also in Table 3 for 𝑁 = 32768 on
4096 nodes for 𝑃𝑟 = 2, 𝑃𝑟 = 4, 𝑃𝑟 = 8. The trend highlights a dependence
upon the choice of decomposition in addition to the P2P message size

and the dragonfly topology. This work is the first known demonstration
of this behavior. Regardless of the choice of 𝑃𝑟 , the column communi-
cation bandwidths either exceed or are in the upper half of the range
of usable network bandwidths (1.5 to 4 GB/sec/rank) for the dragonfly
group-to-group communications observed in Ref. [16].

All the row communications in Table 13 occur within a node, and
consequently demonstrate high bandwidths similar to other single-node
cases. The behavior of the row communications for 𝑃𝑟 = 2 is consis-
tent with that seen in Table 11 and no further discussion is needed.
The row communications with 𝑃𝑟 = 4 occur between GPUs in a pair-
ing with a uni-directional ceiling of 100 GB/sec while those for 𝑃𝑟 = 8
occur between GPUs both within and outside the pairing and there-
fore have a ceiling of 50 GB/sec. The row communications for 𝑃𝑟 = 8
achieve upwards of 72% of the theoretical peak which is consistent with
[16]. Although they have a theoretical peak of 100 GB/sec, we postulate
that the in-pairing communications for 𝑃𝑟 = 4 exhibit similar bandwidth
limitations (i.e. 50 GB/sec) as experienced by the GCD-to-GCD com-
munications for 𝑃𝑟 = 2 due to the current implementation of the copy
engines ([16] and [44]). However, the complexity in the connections
and in how the communications are managed by Slingshot make it dif-
ficult to explain fully at this point. Nevertheless, even at these larger
P2P message sizes, the communications do benefit slightly from larger
message sizes.

A cross-check between communication performance in the slabs and
pencils codes can be made by applying a 1D decomposition strategy
within the 2D decomposition MPI kernel. Table 14 presents timings for
the pencils code when used in a so-called “slabs mode”, with 𝑃𝑟 = 1.
While operating in slabs mode, the 2D decomposition code operates
much like the 1D decomposition code in that the domains are parti-
tioned in identical manners and only one MPI communication cycle is
needed. All MPI communications occur through the column communi-
cations, while the row communications are replaced with simple data
copies to place the data in the required format for the FFT calculations
in the second direction of the slab. As expected, these timings compare
well with those in Table 10.

6. Conclusions

The arrival of the world’s first exascale computer [15], which re-
mains the world’s fastest supercomputer at the time of preparation of
this paper, has generated much renewed optimism for the next frontier
of computational science in many technical disciplines. It is also clear
that substantial investments of algorithmic and software effort are essen-
tial for user applications to attain their fullest possible potential in fully
exploiting the advanced GPU and network technologies provided on the
most powerful system, Frontier, at Oak Ridge National Laboratory, USA.

Computer Physics Communications 306 (2025) 109364

17

P.K. Yeung, K. Ravikumar, S. Nichols et al.

Table 14
Similar to Table 12, but for configurations with 𝑃𝑟 = 1.
𝑁3 Nodes 𝑃𝑐 P2P Msg H2D/D2H CPU MPI CPU Total GPU MPI GPU B/W

Size (MiB) Copy (sec) (sec) (sec) (sec) (GB/sec)
20483 1 8 512 1.249 0.466 1.715 0.118 36.55
40963 8 64 64 1.216 0.667 1.883 0.494 8.695
81923 64 512 8 1.229 0.729 1.958 0.582 7.380
163843 512 4096 1 1.243 0.955 2.198 0.595 7.225
327683 4096 32768 0.125 1.244 0.851 2.095 0.651 6.595

This paper represents the outcome of such an effort, motivated primarily
by the complexity of fluid turbulence. However, we believe the lessons
learned will be relevant also to other user communities having an inter-
est in multi-dimensional distributed-memory Fast Fourier Transforms
(FFTs), or other numerical techniques whose scalability at the extreme
limits is ultimately constrained by communication costs in pursuit of
massive parallelism on either CPUs or GPUs.

Our direct objective is to develop a capability for simulating 3D
turbulence at the highest grid resolution that the memory capacity of
Frontier can support, which also exceeds the scale of prior efforts in
the field. For us, the most important characteristics of Frontier, com-
prised of AMD MI250x nodes, are that the CPU and GPU memory are
of the same size and the network cards are an integrated component of
the GPU itself. These features allow us to perform effectively the entire
computation, except perhaps for input and output, on the GPUs, while
simplifying the coding via a one-to-one correspondence between MPI
ranks and GCDs. We use OpenMP offloading on the GPU, with the entire
time-stepping loop enclosed within a giant OMP TARGET DATA MAP
construct, thus avoiding the cost of copying between the CPU (host) and
GPU (device) almost completely. All-to-all communication is performed
directly on the GPU, which is faster and also free of extra cost in host-
device copying that would be incurred if using CPUs. Our strategy here
is quite distinct from that previously used [6] on Summit, which has a
different GPU-to-CPU memory ratio. Although in our code the CPUs are
left largely idle, avoiding host-device copying on Frontier is much more
beneficial than distributing work to the CPUs which are of much lower
computational speed.

Several key programming principles adopted in this work are illus-
trated via code fragments in Fig. 3–6. The 3D solution domain with
𝑁3 grid points is divided among 𝑃 parallel processes, into slabs or pen-
cils using 1D and 2D domain decompositions respectively. In both cases,
careful management of the memory footprint is important (Eq. (9)). The
slabs code is simpler, and faster at some problem sizes. However, the
pencils code does provide comparable performance, and is more flexi-
ble in allowing 𝑃 >𝑁 if more memory is needed than when solving for
just the velocity field, or if an aggressive reduction in time-to-solution
is desired.

A systematic investigation of code performance has been conducted
at several problem sizes, ranging from 20483 (which fits on a single
node) to 327683 (which requires at least 4096 nodes). Weak scaling
tests are conducted by letting 𝑃 ∝𝑁3 while taking computational cost
to be proportional to 𝑁3 log2𝑁 based on 3D FFT operation counts. As
an artifact of MPI performance on the node being much faster than
across multiple nodes, weak scaling is low between 20483 on 1 node
and 40963 on 8 nodes, but consistently high at larger problem sizes and
node counts. The slabs code provides a factor of 6 advance in figure of
merit based on number of grid points per second for 327683 on 4096
nodes on Frontier compared to 184323 [6] on 3072 nodes on the IBM-
NVIDIA machine “Summit” at the OLCF. The pencils code is (Table 4)
also about 10x faster than a corresponding CPU-only version on Fron-
tier.

To understand the performance, we have used detailed internal pro-
filing to identify separate contributions to elapsed wall time per time
step, from 1-D FFTs (performed using the AMD ROCm library), packing
and unpacking operations before and after all-to-all communication, the
all-to-all calls themselves, and other operations (including forming non-
linear products, advance in time, etc). Most of the performance data in

the paper (Tables 3, 5, 6, 7) relate to the pencils code, whose perfor-
mance also depends on the shape of the 2D processor grid (𝑃𝑟 × 𝑃𝑐 , as
dimensions for row and column sub-communicators). We choose 𝑃𝑟 to
be an integer factor of the number of GCDs accessible on each node (8)
so that the MPI in the row-communicator can benefit from high on-node
bandwidth. In the case of 𝑃𝑟 = 1 further savings are obtained by avoiding
self-communication altogether. However, a challenge does arise at the
extreme problem size of 327683, where a small 𝑃𝑟 leads to a large 𝑃𝑐 and
hence smaller message sizes in the column communicator, which can
result in lower effective bandwidth and significant performance vari-
ability.

While weak scaling is closely related to the problem size and ultimate
science impact of the simulations, good strong scaling is also important
in attempts to shorten the time to solution at larger problem sizes. Ta-
ble 5 shows excellent strong scaling for 81923 up to 8x increase in node
count versus the minimum required for memory. Such excellent strong
scaling is contingent upon perfect scalability of MPI_ALLTOALL, which
is more difficult at larger problem sizes with higher node counts and
smaller message sizes. Table 6 shows timings at 163843 are still very
good up to 4x increase in node count, but only when the issue of small
message size in the column communicator is alleviated by making MPI
all-to-all communication calls with up to 4 variables at a time. However,
ultimately at 327683 (Table 7) the strategy of multi-variable all-to-all
produces only a lesser improvement.

The connections between MPI performance characteristics and the
Frontier machine architecture have been given more attention in Sec. 5.
It is shown explicitly that the overhead of host-device copying is a sig-
nificant contribution to MPI on the CPU being slower than MPI on the
GPU. We have verified that effective bandwidth is very high in com-
munications between a pair of GCDs, becomes slower if taken over the
entire node, and even slower if taken across multiple nodes on the sys-
tem. The difference in observed bandwidth between the row and column
communicators is also drastic, especially when the message sizes in the
latter drop as 𝑃𝑐 ∝𝑁3 with 𝑃𝑟 held fixed. In addition, the dragonfly net-
work topology on Frontier has the effect of making certain inter-node
communications travel along more complex pathways, leading to less ef-
ficiency even for the same message size as the node count increases. The
effective bandwidths measured in this code are consistent with official
expectations discussed in [16].

Taking all factors into account, we believe the overall picture of scal-
ability as illustrated in Fig. 7 is very favorable. There, the only data
points straying significantly off the asymptotes representing theoretical
limits of perfect weak or strong scaling, are those for 20483 at 1 or 2
nodes (an artifact of very fast intra-node communication), and those for
327683 pushing against the boundaries of what is possible on the ma-
chine. Considering that a large speedup of computational parts in GPU
codes actually makes the MPI more dominant which then often leads to
lower scalability, the present performance results are in fact arguably
better than could have been expected, with the strengths of the Slingshot
interconnect playing an important role. From our perspective, future im-
provements in interconnect performance, including raw bandwidth and
reduction of variability, are likely to be among the most desired features
for the next generation(s) of leadership-class supercomputers to come.

Finally, we note that the pencils code described in this paper has al-
ready been used for some production simulations focusing on the study
of intermittency in turbulence at Taylor-scale Reynolds number close
to 2500, at resolution up to 327683 to be addressed in an upcoming

Computer Physics Communications 306 (2025) 109364

18

P.K. Yeung, K. Ravikumar, S. Nichols et al.

paper. The same code is also used as the underlying framework for track-
ing fluid particles in the flow for investigations of turbulence from a
Lagrangian perspective [45] and of the turbulent transport of passive
scalars with different computational requirements for regimes of low
versus moderate molecular diffusivity [46,47]. Ultimately, the science
impact of 327683 simulation data enabled by the present work will be
amplified further when selected datasets are ingested into the Johns
Hopkins Turbulence database [48] for public access, and felt in a vari-
ety of important areas such as those typified by Refs. [49,50].

CRediT authorship contribution statement

P.K. Yeung: Writing – original draft, Supervision, Software, Re-
sources, Project administration, Methodology, Investigation, Fund-
ing acquisition, Conceptualization. Kiran Ravikumar: Writing – re-
view & editing, Software, Methodology, Formal analysis, Conceptu-
alization. Stephen Nichols: Writing – original draft, Software, Re-
sources, Methodology, Formal analysis, Conceptualization. Rohini
Uma-Vaideswaran: Writing – review & editing, Methodology, Inves-
tigation, Data curation.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgements

The authors gratefully acknowledge support from the OLCF CAAR
program from 2020 to 2023 and DOE INCITE Awards in years 2023 and
2024. This research used resources of the Oak Ridge Leadership Com-
puting Facility, which is a DOE Office of Science User Facility supported
under Contract DE-AC05-00OR22725.

The work at Georgia Tech is sustained by a subaward from NSF via
CSSI Grant 2103874 led by C. Meneveau of The Johns Hopkins Univer-
sity. For strong encouragement and valuable technical advice we are
indebted to many current or former members of OLCF, HPE and AMD
staff, including (in alphabetical order) Steve Abbott, Alessandro Fanfar-
illo, Oscar Hernandez, John Levesque, Nick Malaya, Bronson Messer,
Mark Stock, Matthew Turner, and Jack Wells. PKY also acknowledges
the impetus for work on turbulence from enduring science collabora-
tions with Toshiyuki Gotoh, Charles Meneveau, Stephen B. Pope, and
Katepalli R. Sreenivasan. Finally, we thank two anonymous reviewers
for their constructive comments.

References

[1] S.B. Pope, Turbulent Flows, Cambridge University Press, Cambridge, U.K, 2000.
[2] K.R. Sreenivasan, Fluid turbulence, Rev. Mod. Phys. 71 (1999) s383–s395.
[3] Y. Zhou, Turbulence theories and statistical closure approaches, Phys. Rep. 935

(2021) 1–117.
[4] M. Yokokawa, T. Itakura, A. Uno, T. Ishihara, Y. Kaneda, 16.4-Tflops direct numer-

ical simulation of turbulence by a Fourier spectral method on the Earth simulator,
in: Proceedings of the Supercomputing Conference, Baltimore, 2002.

[5] M. Lee, N. Malaya, R.D. Moser, Petascale direct numerical simulation of turbulent
channel flow on up to 786 K cores, in: Proceedings of the International Conference
on High Performance Computing, Networking, Storage and Analysis, ACM, Denver,
Colorado, USA, 2013, pp. 61:1–61:11.

[6] K. Ravikumar, D. Appelhans, P.K. Yeung, GPU acceleration of extreme scale pseudo-
spectral simulations of turbulence using asynchronism, in: Proceedings of the In-
ternational Conference for High Performance Computing, Networking and Storage
Analysis (SC’19), Denver, CO, USA, ACM, New York, NY, USA, 2019.

[7] P. Moin, K. Mahesh, Direct numerical simulation: a tool in turbulence research,
Annu. Rev. Fluid Mech. 30 (1998) 539–578.

[8] S. Hoyas, J. Jimenez, Scaling of the velocity fluctuations in turbulent channels up to
𝑅𝑒𝜏 = 2003, Phys. Fluids 18 (2006) 011702.

[9] T. Ishihara, T. Gotoh, Y. Kaneda, Study of high-Reynolds number isotropic turbu-
lence by direct numerical simulation, Annu. Rev. Fluid Mech. 41 (2009) 165–180.

[10] M. Lee, R.D. Moser, Direct numerical simulation of turbulent channel flow up to
𝑅𝑒𝜏 ≈ 5200, J. Fluid Mech. 774 (2015) 395–415.

[11] P.K. Yeung, X.M. Zhai, K.R. Sreenivasan, Extreme events in computational turbu-
lence, Proc. Natl. Acad. Sci. 112 (41) (2015) 12633–12638.

[12] T. Ishihara, K. Morishita, M. Yokokawa, A. Uno, Y. Kaneda, Energy spectrum in
high-resolution direct numerical simulation of turbulence, Phys. Rev. Fluids 1 (2016)
082403.

[13] T. Watanabe, J.J. Riley, S.M. de Bruyn Kops, P.J. Diamessis, Q. Zhou, Turbulent/non-
turbulent interfaces in wakes in stably stratified fluids, J. Fluid Mech. 797 (2016)
R1.

[14] P.K. Yeung, K. Ravikumar, Advancing understanding of turbulence through extreme-
scale computation: intermittency and simulations at large problem sizes, Phys. Rev.
Fluids 5 (2020) 110517.

[15] R. Budiardja, M. Berrill, M. Eisenbach, G. Jansen, W. Joubert, D.S. Nichols, D. Rogers,
A. Tharrington, B. Messer, Ready for the frontier: preparing applications for the
world’s first exascale system, https://doi .org /10 .1007 /978 -3 -031 -32041 -5, 2023,
pp. 182–201.

[16] S. Atchley, C. Zimmer, J. Lange, D. Bernholdt, G. Dicha, T. Beck, M.J. Brim, R.D.
Budiardja, S. Chandrasekaran, M. Eisenbach, T. Evans, M. Ezell, N. Frontiere, A.
Georgiadou, J. Glenski, P. Grete, S. Hamilton, J. Holmen, A. Huebl, D. Jacobson,
W. Joubert, K. Mcmahon, A. Merzari, S. Moore, A. Myers, D.S. Nichols, S. Oral, T.
Papatheodore, D. Perez, D.M. Rogers, E. Schneider, J.-L. Vay, P. Yeung, Frontier:
exploring exascale, in: SC ’23: Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, Article 52, Denver, CO,
USA, ACM, New York, NY, USA, 2023, pp. 1–16.

[17] N. Malaya, B. Messer, J. Glenski, A. Georgiadou, J. Lietz, K. Gottiparthi, M. Day, J.
Chen, J. Rood, L. Esclapez, J. White, G. Jansen, N. Curtis, D.S. Nichols, J. Kurzak,
N. Chalmers, C. Freitag, P. Bauman, A. Fanfarillo, R.D. Budiardja, T. Papatheodore,
N. Frontiere, D. Mcdougall, M. Norman, S. Sreepathi, P. Roth, D. Bykov, N. Wolfe,
P. Mullowney, M. Eisenbach, M. Frahan, W. Joubert, Experiences readying applica-
tions for exascale, in: SC ’23: Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, Article 53, Denver, CO,
USA, ACM, New York, NY, USA, 2023, pp. 1–13.

[18] C. Canuto, M.Y. Hussaini, A. Quarteroni, T.A. Zang, Spectral Methods in Fluid Dy-
namics, Springer-Verlag, 1988.

[19] A.N. Kolmogorov, The local structure of turbulence in an incompressible fluid with
very large Reynolds numbers, Dokl. Akad. Nauk SSSR 30 (1941) 301–305, see also in:
J.C.R. Hunt, O.M. Phillips, D. Williams (Eds.), Turbulence and Stochastic Processes:
Kolmogorov’s Ideas 50 Years on, Royal Society, London, 1991.

[20] A.N. Kolmogorov, A refinement of previous hypotheses concerning the local struc-
ture of a viscous incompressible fluid, J. Fluid Mech. 13 (1962) 82–85.

[21] R.N. Bracewell, The Fourier Transform and Its Applications, 3rd edition, McGraw
Hill, 2000.

[22] D. Pekurovsky, P3dfft: a framework for parallel computations of Fourier transforms
in three dimensions, SIAM J. Sci. Comput. 34 (4) (2012) C192–C209.

[23] P.D. Mininni, D. Rosenberg, R. Reddy, A. Pouquet, A hybrid MPI–OpenMP scheme for
scalable parallel pseudospectral computations for fluid turbulence, Parallel Comput.
37 (6–7) (2011) 316–326.

[24] A.G. Chatterjee, M.K. Verma, A. Kumar, R. Samtaney, B. Hadri, R. Khurram, Scaling
of a fast Fourier transform and a pseudo-spectral fluid solver up to 196608 cores, J.
Parallel Distrib. Comput. 113 (2018) 77–91.

[25] A. Ayala, S. Tomov, A. Haidar, J. Dongarra, Heffte: highly efficient fft for exascale,
in: International Conference on Computational Science (ICCS 2020), Amsterdam,
Netherlands, 2020.

[26] J.A. Turner, J. Belak, N. Barton, M. Bement, N. Carlson, R. Carson, S. DeWitt, J.-L.
Fattebert, N. Hodge, Z. Jibben, W. King, L. Levine, C. Newman, A. Plotkowski, B.
Radhakrishnan, S.T. Reeve, M. Rolchigo, A. Sabau, S. Slattery, B. Stump, Exaam:
metal additive manufacturing simulation at the fidelity of the microstructure, Int. J.
High Perform. Comput. Appl. 36 (1) (2022) 13–39.

[27] M. Pharr, R. Fernando, GPU Gems 2: Programming Techniques for High-Performance
Graphics and General-Purpose Computation (Gpu Gems), Addison-Wesley Profes-
sional, 2005.

[28] K. Kumari, E. Cleary, D. Desai, D.A. Donzis, J.H. Chen, A. Aditya, Evaluation of
finite difference based asynchronous partial differential equations solver for reacting
flows, J. Comput. Phys. 477 (2023) 111906.

[29] H.W. Muer, E. Strohmaier, J. Dongarra, H. Simon, M. Meuer, Top500 list, TOP 500,
The List. 228.

[30] R. van der Pas, E. Stotzer, C. Terboven, Using OpenMP — The Next Step. Affinity,
Accelerators, Tasking, and SIMD, MIT Press, 2017.

[31] M. Klemm, B.R. de Supinski, OpenMP Application Programming Interface Specifica-
tion Version 5.0, OpenMP Architecture Review Board, 2018.

[32] S. Bak, C. Bertoni, S. Boehm, R. Budiardja, B.M. Chapman, J. Doerfert, M. Eisenbach,
H. Finkel, O. Hernandez, J. Huber, S. Iwasaki, V. Kale, P.R. Kent, J. Kwack, M. Lin,
P. Luszczek, Y. Luo, B. Pham, S. Pophale, K. Ravikumar, V. Sarkar, T. Scogland,
S. Tian, P. Yeung, OpenMP application experiences: porting to accelerated nodes,
Parallel Comput. 109 (2022) 102856.

http://refhub.elsevier.com/S0010-4655(24)00287-X/bibDF7D9C216FFC2449DD3EB9F895D8C818s1
http://refhub.elsevier.com/S0010-4655(24)00287-X/bib16D43B9A6512BC49EC906DC7442B0DD7s1
http://refhub.elsevier.com/S0010-4655(24)00287-X/bib60D8EF40B877A4905E5744A05A709328s1
http://refhub.elsevier.com/S0010-4655(24)00287-X/bib60D8EF40B877A4905E5744A05A709328s1
http://refhub.elsevier.com/S0010-4655(24)00287-X/bib6046D3398DFF60DC0B6A8354E0F4C757s1
http://refhub.elsevier.com/S0010-4655(24)00287-X/bib6046D3398DFF60DC0B6A8354E0F4C757s1
http://refhub.elsevier.com/S0010-4655(24)00287-X/bib6046D3398DFF60DC0B6A8354E0F4C757s1
http://refhub.elsevier.com/S0010-4655(24)00287-X/bib24497E1EB3C3472D1CF190DA7F8331DDs1
http://refhub.elsevier.com/S0010-4655(24)00287-X/bib24497E1EB3C3472D1CF190DA7F8331DDs1
http://refhub.elsevier.com/S0010-4655(24)00287-X/bib24497E1EB3C3472D1CF190DA7F8331DDs1
http://refhub.elsevier.com/S0010-4655(24)00287-X/bib24497E1EB3C3472D1CF190DA7F8331DDs1
http://refhub.elsevier.com/S0010-4655(24)00287-X/bibCE05E283E4BB03F894712B41B30FFF10s1
http://refhub.elsevier.com/S0010-4655(24)00287-X/bibCE05E283E4BB03F894712B41B30FFF10s1
http://refhub.elsevier.com/S0010-4655(24)00287-X/bibCE05E283E4BB03F894712B41B30FFF10s1
http://refhub.elsevier.com/S0010-4655(24)00287-X/bibCE05E283E4BB03F894712B41B30FFF10s1
http://refhub.elsevier.com/S0010-4655(24)00287-X/bibA8A537223FA5A7A2DC7E6F9F9F74B54Ds1
http://refhub.elsevier.com/S0010-4655(24)00287-X/bibA8A537223FA5A7A2DC7E6F9F9F74B54Ds1
http://refhub.elsevier.com/S0010-4655(24)00287-X/bib30B6825AAC1559F69E04B7A44891F0A0s1
http://refhub.elsevier.com/S0010-4655(24)00287-X/bib30B6825AAC1559F69E04B7A44891F0A0s1
http://refhub.elsevier.com/S0010-4655(24)00287-X/bibC2B104A4D1CED68E2B6AF509E4A3311Es1
http://refhub.elsevier.com/S0010-4655(24)00287-X/bibC2B104A4D1CED68E2B6AF509E4A3311Es1
http://refhub.elsevier.com/S0010-4655(24)00287-X/bibADD041FE08E2CD918AFE7ABE0C267C33s1
http://refhub.elsevier.com/S0010-4655(24)00287-X/bibADD041FE08E2CD918AFE7ABE0C267C33s1
http://refhub.elsevier.com/S0010-4655(24)00287-X/bib16CCDB224652AB2FB92BC60279059992s1
http://refhub.elsevier.com/S0010-4655(24)00287-X/bib16CCDB224652AB2FB92BC60279059992s1
http://refhub.elsevier.com/S0010-4655(24)00287-X/bib6D7F8DF68D75AEE4230A660074C14A50s1
http://refhub.elsevier.com/S0010-4655(24)00287-X/bib6D7F8DF68D75AEE4230A660074C14A50s1
http://refhub.elsevier.com/S0010-4655(24)00287-X/bib6D7F8DF68D75AEE4230A660074C14A50s1
http://refhub.elsevier.com/S0010-4655(24)00287-X/bib5BBCE4C54EC256D0609EEA4970D05780s1
http://refhub.elsevier.com/S0010-4655(24)00287-X/bib5BBCE4C54EC256D0609EEA4970D05780s1
http://refhub.elsevier.com/S0010-4655(24)00287-X/bib5BBCE4C54EC256D0609EEA4970D05780s1
http://refhub.elsevier.com/S0010-4655(24)00287-X/bib651BE4F88F3500B11DAD40B8EE724218s1
http://refhub.elsevier.com/S0010-4655(24)00287-X/bib651BE4F88F3500B11DAD40B8EE724218s1
http://refhub.elsevier.com/S0010-4655(24)00287-X/bib651BE4F88F3500B11DAD40B8EE724218s1
https://doi.org/10.1007/978-3-031-32041-5
http://refhub.elsevier.com/S0010-4655(24)00287-X/bibADB735BEA5F84C9523BD6019691EE3E6s1
http://refhub.elsevier.com/S0010-4655(24)00287-X/bibADB735BEA5F84C9523BD6019691EE3E6s1
http://refhub.elsevier.com/S0010-4655(24)00287-X/bibADB735BEA5F84C9523BD6019691EE3E6s1
http://refhub.elsevier.com/S0010-4655(24)00287-X/bibADB735BEA5F84C9523BD6019691EE3E6s1
http://refhub.elsevier.com/S0010-4655(24)00287-X/bibADB735BEA5F84C9523BD6019691EE3E6s1
http://refhub.elsevier.com/S0010-4655(24)00287-X/bibADB735BEA5F84C9523BD6019691EE3E6s1
http://refhub.elsevier.com/S0010-4655(24)00287-X/bibADB735BEA5F84C9523BD6019691EE3E6s1
http://refhub.elsevier.com/S0010-4655(24)00287-X/bibADB735BEA5F84C9523BD6019691EE3E6s1
http://refhub.elsevier.com/S0010-4655(24)00287-X/bib3FD7870634AF47D6F2F30C113FE33EAEs1
http://refhub.elsevier.com/S0010-4655(24)00287-X/bib3FD7870634AF47D6F2F30C113FE33EAEs1
http://refhub.elsevier.com/S0010-4655(24)00287-X/bib3FD7870634AF47D6F2F30C113FE33EAEs1
http://refhub.elsevier.com/S0010-4655(24)00287-X/bib3FD7870634AF47D6F2F30C113FE33EAEs1
http://refhub.elsevier.com/S0010-4655(24)00287-X/bib3FD7870634AF47D6F2F30C113FE33EAEs1
http://refhub.elsevier.com/S0010-4655(24)00287-X/bib3FD7870634AF47D6F2F30C113FE33EAEs1
http://refhub.elsevier.com/S0010-4655(24)00287-X/bib3FD7870634AF47D6F2F30C113FE33EAEs1
http://refhub.elsevier.com/S0010-4655(24)00287-X/bib3FD7870634AF47D6F2F30C113FE33EAEs1
http://refhub.elsevier.com/S0010-4655(24)00287-X/bib78D6D61B36AAE0C49B9F44824FE3EC16s1
http://refhub.elsevier.com/S0010-4655(24)00287-X/bib78D6D61B36AAE0C49B9F44824FE3EC16s1
http://refhub.elsevier.com/S0010-4655(24)00287-X/bib3E3F37E3C09721F92CCF775580109AECs1
http://refhub.elsevier.com/S0010-4655(24)00287-X/bib3E3F37E3C09721F92CCF775580109AECs1
http://refhub.elsevier.com/S0010-4655(24)00287-X/bib3E3F37E3C09721F92CCF775580109AECs1
http://refhub.elsevier.com/S0010-4655(24)00287-X/bib3E3F37E3C09721F92CCF775580109AECs1
http://refhub.elsevier.com/S0010-4655(24)00287-X/bib934F68AC3CBBD2CFFB76770EEF434F5Cs1
http://refhub.elsevier.com/S0010-4655(24)00287-X/bib934F68AC3CBBD2CFFB76770EEF434F5Cs1
http://refhub.elsevier.com/S0010-4655(24)00287-X/bibB053923CFD99A73EACED0399567DF7B4s1
http://refhub.elsevier.com/S0010-4655(24)00287-X/bibB053923CFD99A73EACED0399567DF7B4s1
http://refhub.elsevier.com/S0010-4655(24)00287-X/bib2606AED4572500FBD94579DF1D8B10AFs1
http://refhub.elsevier.com/S0010-4655(24)00287-X/bib2606AED4572500FBD94579DF1D8B10AFs1
http://refhub.elsevier.com/S0010-4655(24)00287-X/bibE6A4959C18B07B7DF2C0890EE7782B02s1
http://refhub.elsevier.com/S0010-4655(24)00287-X/bibE6A4959C18B07B7DF2C0890EE7782B02s1
http://refhub.elsevier.com/S0010-4655(24)00287-X/bibE6A4959C18B07B7DF2C0890EE7782B02s1
http://refhub.elsevier.com/S0010-4655(24)00287-X/bib8CEC2FC8EFED0167AE49468C7D896109s1
http://refhub.elsevier.com/S0010-4655(24)00287-X/bib8CEC2FC8EFED0167AE49468C7D896109s1
http://refhub.elsevier.com/S0010-4655(24)00287-X/bib8CEC2FC8EFED0167AE49468C7D896109s1
http://refhub.elsevier.com/S0010-4655(24)00287-X/bib179E719FF0F58D73469CA1B0DBDA3E63s1
http://refhub.elsevier.com/S0010-4655(24)00287-X/bib179E719FF0F58D73469CA1B0DBDA3E63s1
http://refhub.elsevier.com/S0010-4655(24)00287-X/bib179E719FF0F58D73469CA1B0DBDA3E63s1
http://refhub.elsevier.com/S0010-4655(24)00287-X/bibED0B0D89905AA6E56E0795A1DBEBB83Fs1
http://refhub.elsevier.com/S0010-4655(24)00287-X/bibED0B0D89905AA6E56E0795A1DBEBB83Fs1
http://refhub.elsevier.com/S0010-4655(24)00287-X/bibED0B0D89905AA6E56E0795A1DBEBB83Fs1
http://refhub.elsevier.com/S0010-4655(24)00287-X/bibED0B0D89905AA6E56E0795A1DBEBB83Fs1
http://refhub.elsevier.com/S0010-4655(24)00287-X/bibED0B0D89905AA6E56E0795A1DBEBB83Fs1
http://refhub.elsevier.com/S0010-4655(24)00287-X/bib8C957AD57BC5C50D62407F2A5C3C15F3s1
http://refhub.elsevier.com/S0010-4655(24)00287-X/bib8C957AD57BC5C50D62407F2A5C3C15F3s1
http://refhub.elsevier.com/S0010-4655(24)00287-X/bib8C957AD57BC5C50D62407F2A5C3C15F3s1
http://refhub.elsevier.com/S0010-4655(24)00287-X/bib1EBE0C88032FCDAE88810580A3E98503s1
http://refhub.elsevier.com/S0010-4655(24)00287-X/bib1EBE0C88032FCDAE88810580A3E98503s1
http://refhub.elsevier.com/S0010-4655(24)00287-X/bib1EBE0C88032FCDAE88810580A3E98503s1
http://refhub.elsevier.com/S0010-4655(24)00287-X/bib9E63B118643C2051EFA6D7110D755049s1
http://refhub.elsevier.com/S0010-4655(24)00287-X/bib9E63B118643C2051EFA6D7110D755049s1
http://refhub.elsevier.com/S0010-4655(24)00287-X/bib79CFECC13254EA610F321465166588CBs1
http://refhub.elsevier.com/S0010-4655(24)00287-X/bib79CFECC13254EA610F321465166588CBs1
http://refhub.elsevier.com/S0010-4655(24)00287-X/bib0273663E451C94707129E88CF497A602s1
http://refhub.elsevier.com/S0010-4655(24)00287-X/bib0273663E451C94707129E88CF497A602s1
http://refhub.elsevier.com/S0010-4655(24)00287-X/bib0273663E451C94707129E88CF497A602s1
http://refhub.elsevier.com/S0010-4655(24)00287-X/bib0273663E451C94707129E88CF497A602s1
http://refhub.elsevier.com/S0010-4655(24)00287-X/bib0273663E451C94707129E88CF497A602s1

Computer Physics Communications 306 (2025) 109364

19

P.K. Yeung, K. Ravikumar, S. Nichols et al.

[33] G. Boffetta, Two-dimensional turbulence, Annu. Rev. Fluid Mech. 44 (2012)
427–451.

[34] T. Gotoh, Y. Watanabe, Y. Shiga, T. Nakano, E. Suzuki, Statistical properties of four-
dimensional turbulence, Phys. Rev. Fluids 75 (2007) 016310.

[35] O. Ayala, L.-P. Wang, Parallel implementation and scalability analysis of 3d fast
Fourier transform using 2d domain decomposition, Parallel Comput. 39 (1) (2013)
58–77.

[36] B. Chapman, B. Pham, C. Yang, C. Daley, C. Bertoni, D. Kulkarni, D. Oryspayev,
E. D’Azevedo, J. Doerfert, K. Zhou, K. Ravikumar, M. Gordon, M.D. Ben, M. Lin,
M. Alkan, M. Kruse, O. Hernandez, P.K. Yeung, P. Lin, P. Xu, S. Pophale, T. Sat-
tasathuchana, V. Kale, W. Huhn, Y.H. He, Outcomes of OpenMP Hackathon: OpenMP
application experiences with the offloading model (Part I), in: S. McIntosh-Smith,
B.R. de Supinski, J. Klinkenberg (Eds.), OpenMP: Enabling Massive Node-Level Par-
allelism, Springer International Publishing, Cham, 2021, pp. 67–80.

[37] B. Chapman, B. Pham, C. Yang, C. Daley, C. Bertoni, D. Kulkarni, D. Oryspayev,
E. D’Azevedo, J. Doerfert, K. Zhou, K. Ravikumar, M. Gordon, M. Ben Del, M. Lin,
M. Alkan, M. Kruse, O. Hernandez, P.K. Yeung, P. Lin, P. Xu, S. Pophale, T. Sat-
tasathuchana, V. Kale, W. Huhn, Y.H. He, Outcomes of OpenMP Hackathon: OpenMP
application experiences with the offloading model (Part II), in: S. McIntosh-Smith,
B.R. de Supinski, J. Klinkenberg (Eds.), OpenMP: Enabling Massive Node-Level Par-
allelism, Springer International Publishing, Cham, 2021, pp. 81–95.

[38] D.A. Davidson, Turbulence: An Introduction for Scientists and Engineers, Oxford
University Press, Oxford, U.K, 2004.

[39] V. Eswaran, S.B. Pope, An examination of forcing in direct numerical simulations of
turbulence, Comput. Fluids 16 (1988) 257–278.

[40] D.A. Donzis, P.K. Yeung, Resolution effects and scaling in numerical simulations of
passive scalar mixing in turbulence, Physica D 239 (2010) 1278–1287.

[41] R.S. Rogallo, Numerical experiments in homogeneous turbulence, NASA Technical
Memo 81315, NASA Ames Research Center, 1981.

[42] P.K. Yeung, K.R. Sreenivasan, S.B. Pope, Effects of finite spatial and temporal reso-
lution on extreme events in direct numerical simulations of incompressible isotropic
turbulence, Phys. Rev. Fluids 3 (2018) 064603.

[43] M. Lee, R. Ulerich, N. Malaya, R.D. Moser, Experiences from leadership computing
in simulations of turbulent channel flows, IEEE Comput. Sci. Eng. 16 (2014) 24–31.

[44] K. Kandalla, K. McMahon, N. Ravi, T. White, L. Kaplan, M. Pagel, Designing the
hpe cray message passing toolkit software stack for hpe cray ex supercomputers, in:
Cray User Group 2023 Proceedings, 2023, https://cug .org /proceedings /cug2023 _
proceedings /at _a _glance .html.

[45] P.K. Yeung, Lagrangian investigations of turbulence, Annu. Rev. Fluid Mech. 34
(2002) 115–142.

[46] T. Gotoh, P.K. Yeung, Passive scalar transport in turbulence: a computational perp-
sective, in: P.A. Davidson, Y. Kaneda, K.R. Sreenivasan (Eds.), Ten Chapters in Tur-
bulence, Cambridge University Press, 2013.

[47] M.P. Clay, D. Buaria, P.K. Yeung, T. Gotoh, GPU acceleration of a petascale applica-
tion for turbulent mixing at high Schmidt number using OpenMP 4.5, Comput. Phys.
Commun. 228 (2018) 100–114.

[48] Y. Li, E. Perlman, M. Wan, Y. Yang, C. Meneveau, R. Burns, S. Chen, A. Szalay, G.
Eyink, A public turbulence database cluster and applications to study Lagrangian
evolution of velocity increments in turbulence, J. Turbul. 9 (2008) 1–29.

[49] H. Yao, P.K. Yeung, T.A. Zaki, C. Meneveau, Forward and inverse energy cascade
in fluid turbulence adhere to Kolmogorov’s refined similarity hypothesis, Phys. Rev.
Lett. 132 (2024) 164001.

[50] Y. Tian, M. Woodward, M.G. Stepanov, C. Fryer, C. Hyett, D. Livescu, M. Chertkov,
Lagrangian large eddy simulations via physics-informed machine learning, Proc.
Natl. Acad. Sci. USA 120 (2023) 34.

http://refhub.elsevier.com/S0010-4655(24)00287-X/bib646A6733A54F2382113F6F7D10E0164Fs1
http://refhub.elsevier.com/S0010-4655(24)00287-X/bib646A6733A54F2382113F6F7D10E0164Fs1
http://refhub.elsevier.com/S0010-4655(24)00287-X/bib83528BF470F491B7136A79E406B828E6s1
http://refhub.elsevier.com/S0010-4655(24)00287-X/bib83528BF470F491B7136A79E406B828E6s1
http://refhub.elsevier.com/S0010-4655(24)00287-X/bib8D7C926BCA4828F3C16A89EA74744FF9s1
http://refhub.elsevier.com/S0010-4655(24)00287-X/bib8D7C926BCA4828F3C16A89EA74744FF9s1
http://refhub.elsevier.com/S0010-4655(24)00287-X/bib8D7C926BCA4828F3C16A89EA74744FF9s1
http://refhub.elsevier.com/S0010-4655(24)00287-X/bib349D5C4A456256D4254D13AC9481240Es1
http://refhub.elsevier.com/S0010-4655(24)00287-X/bib349D5C4A456256D4254D13AC9481240Es1
http://refhub.elsevier.com/S0010-4655(24)00287-X/bib349D5C4A456256D4254D13AC9481240Es1
http://refhub.elsevier.com/S0010-4655(24)00287-X/bib349D5C4A456256D4254D13AC9481240Es1
http://refhub.elsevier.com/S0010-4655(24)00287-X/bib349D5C4A456256D4254D13AC9481240Es1
http://refhub.elsevier.com/S0010-4655(24)00287-X/bib349D5C4A456256D4254D13AC9481240Es1
http://refhub.elsevier.com/S0010-4655(24)00287-X/bib349D5C4A456256D4254D13AC9481240Es1
http://refhub.elsevier.com/S0010-4655(24)00287-X/bib071B75A7C6E67B610B4FF83C52E71D18s1
http://refhub.elsevier.com/S0010-4655(24)00287-X/bib071B75A7C6E67B610B4FF83C52E71D18s1
http://refhub.elsevier.com/S0010-4655(24)00287-X/bib071B75A7C6E67B610B4FF83C52E71D18s1
http://refhub.elsevier.com/S0010-4655(24)00287-X/bib071B75A7C6E67B610B4FF83C52E71D18s1
http://refhub.elsevier.com/S0010-4655(24)00287-X/bib071B75A7C6E67B610B4FF83C52E71D18s1
http://refhub.elsevier.com/S0010-4655(24)00287-X/bib071B75A7C6E67B610B4FF83C52E71D18s1
http://refhub.elsevier.com/S0010-4655(24)00287-X/bib071B75A7C6E67B610B4FF83C52E71D18s1
http://refhub.elsevier.com/S0010-4655(24)00287-X/bibFC039F778C60ABD020753E5BD5D92AFCs1
http://refhub.elsevier.com/S0010-4655(24)00287-X/bibFC039F778C60ABD020753E5BD5D92AFCs1
http://refhub.elsevier.com/S0010-4655(24)00287-X/bib5C5050627B844069F28C9C4B85CA182As1
http://refhub.elsevier.com/S0010-4655(24)00287-X/bib5C5050627B844069F28C9C4B85CA182As1
http://refhub.elsevier.com/S0010-4655(24)00287-X/bib63087E23D2B271E9A3046F23AFFFD777s1
http://refhub.elsevier.com/S0010-4655(24)00287-X/bib63087E23D2B271E9A3046F23AFFFD777s1
http://refhub.elsevier.com/S0010-4655(24)00287-X/bib7C54343578162FE198C31AA68B96FF42s1
http://refhub.elsevier.com/S0010-4655(24)00287-X/bib7C54343578162FE198C31AA68B96FF42s1
http://refhub.elsevier.com/S0010-4655(24)00287-X/bib9CB04A9DBD0AD4F6E384C5CB3134EF7Fs1
http://refhub.elsevier.com/S0010-4655(24)00287-X/bib9CB04A9DBD0AD4F6E384C5CB3134EF7Fs1
http://refhub.elsevier.com/S0010-4655(24)00287-X/bib9CB04A9DBD0AD4F6E384C5CB3134EF7Fs1
http://refhub.elsevier.com/S0010-4655(24)00287-X/bib35F135A4FEF00B26F0D1979172027857s1
http://refhub.elsevier.com/S0010-4655(24)00287-X/bib35F135A4FEF00B26F0D1979172027857s1
https://cug.org/proceedings/cug2023_proceedings/at_a_glance.html
https://cug.org/proceedings/cug2023_proceedings/at_a_glance.html
http://refhub.elsevier.com/S0010-4655(24)00287-X/bib10EBDFBCF2D79FDBC7A434BAF77DFDF1s1
http://refhub.elsevier.com/S0010-4655(24)00287-X/bib10EBDFBCF2D79FDBC7A434BAF77DFDF1s1
http://refhub.elsevier.com/S0010-4655(24)00287-X/bib1D0279702D3672AC81F0F8186389E033s1
http://refhub.elsevier.com/S0010-4655(24)00287-X/bib1D0279702D3672AC81F0F8186389E033s1
http://refhub.elsevier.com/S0010-4655(24)00287-X/bib1D0279702D3672AC81F0F8186389E033s1
http://refhub.elsevier.com/S0010-4655(24)00287-X/bib53E02DE9F1300B8E86AEC581DC1CB29Fs1
http://refhub.elsevier.com/S0010-4655(24)00287-X/bib53E02DE9F1300B8E86AEC581DC1CB29Fs1
http://refhub.elsevier.com/S0010-4655(24)00287-X/bib53E02DE9F1300B8E86AEC581DC1CB29Fs1
http://refhub.elsevier.com/S0010-4655(24)00287-X/bibD4F10D7616A25B4486B463972416E234s1
http://refhub.elsevier.com/S0010-4655(24)00287-X/bibD4F10D7616A25B4486B463972416E234s1
http://refhub.elsevier.com/S0010-4655(24)00287-X/bibD4F10D7616A25B4486B463972416E234s1
http://refhub.elsevier.com/S0010-4655(24)00287-X/bib74B9759011D9A6C55A59884C18857B84s1
http://refhub.elsevier.com/S0010-4655(24)00287-X/bib74B9759011D9A6C55A59884C18857B84s1
http://refhub.elsevier.com/S0010-4655(24)00287-X/bib74B9759011D9A6C55A59884C18857B84s1
http://refhub.elsevier.com/S0010-4655(24)00287-X/bibF50C3AF6FBDFA1E7DD093BB333409B4Bs1
http://refhub.elsevier.com/S0010-4655(24)00287-X/bibF50C3AF6FBDFA1E7DD093BB333409B4Bs1
http://refhub.elsevier.com/S0010-4655(24)00287-X/bibF50C3AF6FBDFA1E7DD093BB333409B4Bs1

	GPU-enabled extreme-scale turbulence simulations: Fourier pseudo-spectral algorithms at the exascale using OpenMP offloading
	1 Introduction
	2 3D FFT and domain decomposition
	2.1 Distributed-memory parallelism for 3D FFTs
	2.2 GPU implementation: OpenMP offloading and GPU-aware MPI on frontier
	2.3 Performing the 3D FFTs
	2.4 Requirements to build the code

	3 The GESTS turbulence DNS code
	3.1 Basic governing equations and numerical approach
	3.2 GPU implementation, memory and I/O

	4 Performance data and analysis
	4.1 Data collection and assessment of scalability
	4.2 Slabs code and absolute performance
	4.3 Weak scaling: pencils code and GPU speedup
	4.4 Strong scaling: pencils code

	5 Analyis of MPI AlltoAll communications performance
	5.1 1D decomposition: slabs
	5.2 2D decomposition: pencils

	6 Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgements
	References

