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Abstract—Recent advancements in Deep Learning (DL) for Direction of
Arrival (DOA) estimation have highlighted its superiority over traditional
methods, offering faster inference, enhanced super-resolution, and robust
performance in low Signal-to-Noise Ratio (SNR) environments. Despite
these advancements, existing research predominantly focuses on multi-
snapshot scenarios, a limitation in the context of automotive radar
systems which demand high angular resolution and often rely on limited
snapshots, sometimes as scarce as a single snapshot. Furthermore, the
increasing interest in sparse arrays for automotive radar, owing to
their cost-effectiveness and reduced antenna element coupling, presents
additional challenges including susceptibility to random sensor failures.
This paper introduces a pioneering DL framework featuring a sparse
signal augmentation layer, meticulously crafted to bolster single snapshot
DOA estimation across diverse sparse array setups and amidst antenna
failures. To our best knowledge, this is the first work to tackle this issue.
Our approach improves the adaptability of deep learning techniques
to overcome the unique difficulties posed by sparse arrays with single
snapshot. We conduct thorough evaluations of our network’s performance
using simulated and real-world data, showcasing the efficacy and real-
world viability of our proposed solution. The code and the real-world
dataset are available at https://github.com/ruxinzh/Deep RSA DOA.

Index Terms—Automotive radar, sparse arrays, DOA estimation, single
snapshot, antenna failure

I. INTRODUCTION

Radar technology has become an essential component in the

advancement of autonomous driving systems, particularly due to its

robust performance in adverse weather conditions [1–3]. Automotive

radar systems, supporting the complex demands of autonomous

vehicles, must provide high-resolution, four-dimensional (4D) data

encompassing range, Doppler shifts, azimuth, and elevation angles,

all while remaining cost-effective for mass production [4]. Although

foundational aspects like the radar’s range and Doppler resolution are

determined by the waveform’s bandwidth and the coherent processing

interval respectively, a pivotal advancement lies in enhancing angular

resolution for precise localization and tracking. MIMO (Multiple

Input, Multiple Output) radar, which has become the industry stan-

dard for automotive applications, significantly contributes to this

improvement. The angular resolution in MIMO radar is determined

by the virtual array aperture size, which effectively enlarges the

aperture beyond the physical dimensions of the receive antenna

array. This capability can be further enhanced using super-resolution

Direction of Arrival (DOA) estimation methods.

Confronting the obstacle of attaining substantial antenna aperture

sizes for enhanced angular resolution, particularly in the context of

filled arrays which require a significant number of antennas, sparse

arrays have risen as an efficient and economical solution within the
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realm of automotive radar systems [4–7]. Sparse arrays facilitate

larger apertures and superior angular resolution with fewer elements

and mitigate mutual coupling owing to their expansive element spac-

ing, thereby offering a compelling alternative. Nonetheless, the design

of optimal sparse arrays continues to be a formidable challenge, as the

ideal configuration is intricately tied to specific, diverse requirements,

indicating the absence of a one-size-fits-all solution for sparse array

design [8, 9]. Furthermore, the occurrence of random sensor failures

can lead to unpredictably sparse array geometries, complicating the

scenario further.

DOA estimation, a critical element in sensor array signal pro-

cessing, finds extensive use across diverse fields including radar,

sonar, navigation, and wireless communications, underscoring its

universal applicability and importance [10–12]. Despite extensive

research and the development of numerous algorithms, most studies

have traditionally focused on conditions with plentiful snapshots.

This approach does not align well with the fast-paced and dynamic

automotive environments, where the availability of radar sensor array

snapshots is typically limited to a few or, in the most challenging

situations, even a single snapshot.

Considering the snapshot limitations typical of automotive radar

systems, traditional DOA estimation algorithms, reliant on accurate

covariance matrix estimations, encounter notable challenges. This

category encompasses parametric subspace-based methods such as

the Multiple Signal Classification (MUSIC) [13] and the Estimation

of Signal Parameters via Rotational Invariant Techniques (ESPRIT)

[14], along with beamforming techniques like the Minimum Power

Distortionless Response (MPDR) beamformer and the Minimum

Variance Distortionless Response (MVDR) beamformer, commonly

known as the Capon beamformer [15, 16]. These methods depend

heavily on an accurate estimation of the signal covariance ma-

trix, which in turn requires a sufficient number of snapshots to

achieve. Consequently, their effectiveness is considerably diminished

in single-snapshot scenarios, which are prevalent in the dynamic

conditions of automotive radar applications.

In the realm of single-snapshot super-resolution DOA estimation,

Compressive Sensing (CS) [17] and IAA [18, 19], an iterative,

nonparametric, and robust method, have emerged as notable method-

ologies. CS, exploiting the sparse representation of targets in the

angular domain, and IAA, with its iterative, nonparametric method,

both demonstrate exceptional enhancement capabilities. However,

these techniques entail significant computational efforts which may

restrict their utility in real-time applications due to the intensive

processing involved.

Recently, deep learning (DL) strategies for DOA estimation have

surged in popularity [20–26], offering rapid inference, enhanced

super-resolution, and efficacy in low signal-to-noise ratio (SNR) envi-
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ronments [20]. Despite the advantages, the predominantly data-driven

nature of DL methods raises issues regarding their interpretability.

In response, model-based deep learning approaches [27–31] seek to

merge the robustness of traditional mathematical models with the

versatility of data-driven techniques, utilizing domain knowledge and

mathematical frameworks to create interpretable, problem-specific

solutions. Yet, the performance of such model-based techniques,

when faced with unfamiliar sparse array configurations and an

indeterminate number of sources, remains a challenge due to their

reliance on deep learning principles. Consequently, the quest for

developing resilient, high-efficiency deep learning frameworks that

can seamlessly adapt to a range of sparse array configurations,

without necessitating retraining for each unique arrangement, is of

paramount importance. Additionally, the capability of these models to

accommodate random sensor failures [32–35] is crucial for preserving

the reliability and integrity of automotive radar systems.

In this paper, we introduce a novel deep learning framework for

DOA estimation that features a sparse signal augmentation model

with a unique augmentation layer, which randomly masks input

signals to simulate various sparse array structures. This model is

enhanced by incorporating domain-specific features such as sparse

signal frequency embedding and active antenna position encoding,

significantly advancing sparse array DOA estimation. Our compre-

hensive experiments with both simulated and real-world data demon-

strate the framework’s adaptability to different array configurations

and its ability to handle the consequences of sensor failures, offering

a robust and reliable solution for automotive radar systems. This

approach not only improves generalizability and robustness but also

addresses the unique challenges of sparse array DOA estimation,

contributing a novel aspect to the field.

II. SYSTEM MODEL

Consider a scenario involving K narrowband, far-field source

signals, denoted as sk for k = 1, . . . ,K, arriving at a linear,

omnidirectional antenna array with N elements from directions θk.

The temporal differences among the sensor outputs are represented

by phase shifts, yielding the data model:

y(t) =
K
∑

k=1

a(θk)sk(t) + n(t)

= A(θ)s(t) + n(t), t = 1, . . . , T,

(1)

where t indexes the time snapshot, n denotes the complex N × 1
white Gaussian noise vector, and A(θ) = [a(θ1),a(θ2), . . . ,a(θK)]
represents the N ×K array manifold matrix. Each element of a(θ)
is given by:

a(θ) =

[

1, e
2πd

2

λ
sin θ

, . . . , e
2πd

N

λ
sin θ

]T

, (2)

where dn specifies the spacing between the n-th element and the first

element, and s = [s1, s2, . . . , sK ]
T

is the vector of source signals.

This paper focuses on estimating the directions of arrival (DOAs), θ,

using a single snapshot y of the array’s response. Thus, with T set

to 1, the model simplifies to:

y = A(θ)s+ n. (3)

Depending on performance and cost considerations, a Sparse

Linear Array (SLA) can be employed for direction finding. Sparse

arrays not only reduce hardware expenses but also diminish mutual

coupling effects among antennas. This is because the spacing between

elements in the receiver arrays is sufficiently large. Figure 1 illustrates
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Fig. 1: Example of ULA and SLA. The SLA has a 0.3 sparsity.

the configurations of a 10-element Uniform Linear Array (ULA)

and a 7-element SLA. Let λ represent the wavelength of the carrier

frequency. In the ULA, antennas are placed at grid points spaced

at intervals of 9.5λ, with each interelement spacing being half a

wavelength. The SLA, which maintains the same antenna aperture

size as the ULA, can be conceptualized as a ULA modified by a

binary mask. The sparsity of the SLA, defined as:

Sparsity = 1−
NSLA

NULA

, (4)

the ratio of the number of missing antenna elements in the SLA to

those in the corresponding ULA, is 0.3 in this case.

III. DEEP-LEARNING FRAMEWORK FOR DOA ESTIMATION

A. Network Architecture

1) Sparse Augmentation Layer: The technique of data augmenta-

tion [36], is employed in training deep learning networks to enhance

the robustness of the model and prevent overfitting. This is achieved

by artificially expanding the dataset through various transformations.

Common data augmentation techniques for computer vision tasks

include flipping, rotation, and translation.

In the context of signal processing, the sparse augmentation layer is

specifically designed to introduce controlled sparsity into the dataset.

This layer generates a random binary mask that aligns with the size of

the input signal. It includes a configurable parameter: the maximum

allowed sparsity level, as detailed in Section II. This parameter

governs the extent of sparsity by setting a cap on the number of

elements in the input signal that can be zeroed. For example, consider

a 10-element ULA. Setting the maximum sparsity to 0.3 allows the

sparse augmentation layer to randomly zero out between zero and

three elements of this array, thereby forming a sparse representation

of the original signal. Additionally, this layer outputs the count of

activated antenna elements, which is utilized for normalization. It

is important to note that during the training phase, the number of

activated antennas is determined by the sparse augmentation layer,

while in the evaluation phase, it is decided through thresholding

algorithms.

The sparsed signal is subsequently processed through a fully

connected (FC) layer, followed by a ReLU activation layer. The

function of the FC layer is mathematically defined as:

output = W × input + b, (5)
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Fig. 2: Network design featuring sparse signal augmentation model coupled with DOA Estimation framework.

where W represents the weight matrix, input is the incoming sparsed

signal, and b is the bias vector. Given the variability in sparsity across

input signals, a normalization layer is essential to stabilize the output

features. We define the function of the normalization layer as:

output =
input

NSLA

, (6)

where NSLA is the count of non-zero elements in the sparse signal.

This normalization approach ensures that the output features are

adjusted relative to the number of active inputs, thereby accommo-

dating the inconsistent sparsity of the input signals and enhancing

the model’s reliability in feature representation.

2) Domain Knowledge Crafted Features: Incorporating domain

knowledge through hand-crafted features is crucial in the training of

deep learning networks, significantly enhancing model performance

by directly injecting expert insights and established heuristics, espe-

cially beneficial in complex or poorly understood domains. In this

study, we employ two specifically crafted features: Sparse Signal

Frequency Embedding and Active Antenna Position Encoding. These

features involve transforming the sparse signal and the position of

active antenna elements into the frequency domain, respectively. The

embedding process is mathematically defined as:

output =
A

H
× input

NSLA

, (7)

where A
H

represents the Hermitian transpose of the array manifold

matrix, and NSLA denotes the number of activate antenna. Figure 3

provides an illustrative example of these embeddings for a 10 dB SNR

signal targeting a single object at a angle of 10 degrees, utilizing both

the ULA and SLA configurations. The array setups are depicted in

Figure 1. Different array geometries yield distinct features, evidenced

by the variations in peak side lobe level and main lobe beamwidth

across the frequency domain spectra.

3) DOA Estimation Network: DOA estimation can be achieved

using various types of deep learning networks. In this paper, we

specifically focus on developing a framework for sparse array DOA

estimation and, therefore, choose an MLP due to its simplicity.

However, this DOA estimation network could be replaced with

other types of networks such as RNNs (Recurrent Neural Networks)

or CNNs (Convolutional Neural Networks). The DOA estimation

network we employ consists of six FC layers. The output sizes for the

first five FC layers are 2048, 1024, 512, 256, and 128, respectively,

each followed by a ReLU activation layer. The final FC layer, which

serves as our output layer, has an output size determined by the

desired angle scanning grid size and is followed by a Sigmoid

activation layer.
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Fig. 3: Example of crafted features of ULA and SLA.

B. Data Generation and Labeling

We utilize a ULA consisting of 10 elements with half-wavelength

interelement spacing to simulate signals for maximal 3 targets with

a minimum separation of ∆φ = 1
◦
. The radar field of view (FOV)

is set as φFOV = [−30
◦
, 30

◦
], which is discretized with a step size

of 1
◦
, resulting in a grid G ∈ R

1×M
with M = 61 possible DOA

angles. Reflection coefficients s for each DOA source are generated

as random complex numbers. Signals are labeled according to

GTn =

{

|sk|, if θk = Gn

0, else
for n = 1, 2, · · · ,M. (8)

For simulation, we randomly select a number of targets ranging

from 1 to 3 and generate 100, 000 at various SNR levels from 0
dB to 30 dB, in increments of 5 dB, for the training dataset. For the

validation set, we employ the same configuration and generate 1, 000
signals for each SNR levels.

C. Training Approach

The proposed network was trained in 200 epochs with a batch size

of 1024, using the Adam optimizer at a learning rate of 0.0001 and

employing a Binary Cross-Entropy (BCE) loss function. The model

was trained end-to-end, which involved direct training from input

to output without any intermediate pre-processing or post-processing

steps. The primary objective of this training regimen was to minimize

BCE loss and improve prediction accuracy. This experiment was

conducted using Google Colab. To mitigate overfitting, a validation
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set was used and the model configuration that yielded the lowest

validation loss was selected for subsequent performance evaluations,

as detailed in Section IV.

D. Real World Dataset

Currently, there is no publicly available real-world dataset for DOA

estimation; existing models are trained and evaluated using simulated

datasets. To address this gap, we developed a DOA estimation dataset

in a parking lot scenario. A stationary vehicle equipped with a TI

cascade imaging radar [37] collected data from a corner reflector

positioned 15 meters away, capturing signals from all possible

directions. This process generated 195 high-SNR signals from various

angles, each representing a single target. By superimposing these

vectors, we simulate scenarios with multiple targets. Notably, this

real-world dataset was not used for training purposes, but solely to

demonstrate our network’s performance during testing.

IV. PERFORMANCE EVALUATION

We evaluated our proposed model based on three critical aspects

of DOA estimation: precision, separability, and complexity. The

evaluations for accuracy and separability are conducted under two

scenarios: using ULA and SLA, with the latter’s sparsity set at

0.3, and randomly generated in each Monte Carlo trial. To ensure

a thorough comparison, our model’s performance is benchmarked

against traditional DOA estimation methods such as IAA and digital

beamforming (DBF) implemented via Fast Fourier Transform (FFT).

Furthermore, an MLP sharing the same network structure as described

in Section III-A3, but with adjustments for different input sizes,

is also compared. The scanning angle grid for IAA and DBF,

ranging from −30
◦

to 30
◦
, is discretized into a 61-point grid to

match the output resolution of the deep learning networks. The

maximum number of iterations for IAA is capped at 15, beyond

which performance gains are minimal [18]. All tests are performed

in Monte Carlo trials 5, 000.

A. Accuracy

We adopt the mean squared error (MSE) as a performance metric to

evaluate the accuracy of the DOA estimation methods. Our approach

utilizes a conventional grid-based method where the DOA estimates

are derived from the estimated spectrum via peak search. The grid-

induced error, depicted by the dark dashed line in the accompanying

charts, is quantified by the MSE between the source DOA and the

nearest grid angle. This error represents a fundamental lower bound

for this metric.

1) Single Target: In each Monte Carlo trial, a single off-grid

source is simulated with a direction randomly chosen from the

interval [−30
◦
, 30

◦
], accompanied by its corresponding SNR. As

depicted in Figure 4, all DOA estimation methods exhibit a similar

performance for the ULA configuration. However, for the SLA,

the IAA and the MLP show significant performance degradation,

highlighting their sensitivity to data sparsity. In contrast, DBF and

our proposed network demonstrate robustness against SLA-induced

sparsity.

2) Two Targets: Each Monte Carlo trial involves simulating two

off-grid sources with directions randomly drawn from the intervals

[−0.6
◦
, 0.4

◦
] and [9.6

◦
, 10.4

◦
], each with its respective SNR.

As shown in Figure 5, for the ULA configuration, DBF exhibits

high MSE, struggling to resolve two closely spaced targets due to its

limited resolution capability. Deep learning approaches outperform

IAA, underscoring the potential of deep neural networks in DOA

estimation. For the SLA, while DBF continues to show high MSE,
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Fig. 4: Logarithmic scale MSE versus SNR in the DOA estimation

of a single, randomly generated off-grid target.
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Fig. 5: Logarithmic scale MSE versus SNR for DOA estimation of

two randomly generated off-grid targets, with the first target drawn

from the interval [−0.6
◦
, 0.4

◦
] and the second from [9.6

◦
, 10.4

◦
].

IAA and MLP suffer substantially from the array’s missing elements.

Our proposed method not only performs optimally in the SLA

but also demonstrates superior robustness under these challenging

conditions.

B. Separability

To assess the ability of our DOA estimation methods to resolve

closely located targets, we conducted an experiment featuring two

targets symmetrically positioned around the origin, at angles −∆θ/2
and +∆θ/2, respectively. Here, ∆θ denotes the angular separation

between the targets. A trial is classified as a “hit” if the deviation

between the estimated DOAs and the actual positions is within ±1
◦
.

We computed the hit rate as the proportion of hits in 5, 000 Monte

Carlo trials, each with an SNR of 40 dB.

Figure 6 illustrates the performance results. In the ULA configura-

tion, the deep learning methods significantly outperform the model-

based algorithms in terms of separability, with DBF exhibiting the

poorest performance. For SLA, both MLP and IAA experience a

notable decrease in hit rate, while our proposed method maintains

superior separability compared to all other evaluated techniques.
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Fig. 7: Real world data examples.
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Fig. 6: Hit rate as a function of angular separation ∆θ.

C. Complexity Evaluation

We conducted a comprehensive evaluation of the complexity of

our proposed method by analyzing its inference time and the number

of trainable parameters. For consistency and fairness in comparison,

all DOA estimation methods were implemented on Google Compute

Engine. The inference time for each method was averaged over 5, 000
trials. For deep learning-based approaches, we utilized a batch size

of one. As detailed in Table I, the DBF method exhibited the shortest

inference time, while both deep learning approaches, MLP and our

proposed network, were more than ten times faster than the IAA. Our

method utilizes 1.3 million more trainable parameters than MLP and

requires only an additional 0.8 milliseconds of inference time per trial

relative to MLP. These results suggest that our approach enhances

robustness and improves performance in SLA without significantly

increasing complexity or sacrificing performance in ULA.

Methods Inference Time (ms) # Trainable Parameters

DBF 0.3 –
IAA 32.8 –
MLP 2.3 2, 848, 829

Ours 3.1 4, 106, 301

TABLE I: Inference time comparison of DOA methods

D. Qualitative Analysis

To better demonstrate the efficacy of our proposed networks,

we employed real-world data by superimposing two signals: one

containing a target at 0
◦

and another at 7
◦
, thus creating a composite

signal with two distinct targets. The true DOAs are marked on Figure

7 using black dashed lines. The first row presents the spectral outputs

for a ULA configuration, where the DBF method fails to differentiate

the two targets, whereas all other methods successfully resolve them.

The second, third, and fourth rows display the results for various

SLA configurations. In these setups, DBF consistently fails to resolve

the two targets, a limitation also observed with the IAA and the MLP

across all SLA configurations. In contrast, our proposed method ef-

fectively resolves the targets in all SLA configurations, demonstrating

its robustness and superior performance across diverse sparse array

geometries. This underlines the significant capabilities of our network

in handling complex signal environments.
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V. CONCLUSION

This paper has introduced a novel DL framework designed to

advance the field of DOA estimation, specifically tailored for au-

tomotive radar systems which often operate under the constraints

of single snapshot scenarios and sparse array configurations. Our

proposed method incorporates a unique sparse signal augmentation

model, enabling robust DOA estimation under challenging conditions

such as single snapshot, antenna failure, various sparse array geome-

tries. Comprehensive evaluations using simulated data, along with

qualitative analyses of real-world data, confirm that our approach con-

sistently outperforms traditional methods. It delivers faster inference

times, enhanced super-resolution capabilities, and robust performance

in low SNR environments. These attributes make our framework

particularly well-suited to the dynamic and demanding requirements

of automotive radar systems, which necessitate both high angular

resolution and exceptional reliability.
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