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ABSTRACT

Fine direction of arrival (DOA) estimations are required

for accurate target detections in automotive radar systems.

To address this issue, most spectral estimation methods

assume many snapshots of measurements. However, due

to the dynamic nature of automotive scenarios, methods

using multiple snapshots are impractical for DOA estimation

in automotive radars. Furthermore, to relax the hardware

requirements on modern automotive radar systems, mixed-

analog-to-digital converter (ADC) allocations, i.e., the

coexistence of 1-bit and high-resolution ADCs, have gained

more attention recently. In this work, we introduce a

high-resolution DOA estimation approach based on single-

snapshot multiple signal classification (MUSIC) estimation

and evaluate the performance with various ADC allocations.

The results show that mixed-ADC allocations can perform

comparably to high-resolution ADC allocations.
Index Terms—automotive radar, direction of arrival

estimation, mixed ADCs, single-snapshot MUSIC

I. INTRODUCTION

Automotive radar operating at millimeter-wave frequency,

i.e., 76-81GHz, plays an important role in autonomous

driving systems due to its robustness in environment

perception under all weather conditions [1], [2]. Existing

automotive radar transceivers, such as NXP Semiconductors

MR3003 and Texas Instruments AWR1243 [3], support up

to 3 transmit and 4 receive antennas, yielding an angular

resolution of around 10ç, which is not capable for Level 4

and Level 5 autonomous driving where a vehicle drives itself

in all conditions without any human interaction.

Recent advances in waveform design, particularly the

integration of digital modulation schemes like phase-

modulated continuous wave (PMCW) [4], have paved

the way for innovative solutions. Among them, the

adoption of massive multiple input multiple output (MIMO)

technology has been proposed, complemented by high-

resolution direction of arrival (DOA) algorithms. This

approach aims to enhance angular resolution and separability

The work of L. Xu and S. Sun was supported in part by U.S. National
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in intricate automotive scenarios. Estimating the DOA is

a crucial task in automotive radar systems. Traditional

subspace-based algorithms for DOA estimation, like multiple

signal classification (MUSIC) [5] and estimation of signal

parameters via rotational invariant techniques (ESPRIT)

[6], depend on multiple snapshots to achieve precise

DOA estimates. However, the rapidly changing nature

of automotive environments often allows for only a

limited number of radar snapshots, or in some cases,

just a single snapshot for DOA estimation. It is of great

importance to develop single-snapshot DOA estimation

methods for automotive radars. Recent advances in high-

resolution single-snapshot DOA estimation include iterative

adaptive approach (IAA) [7], [8], compressive sensing [9]–

[12], single-snapshot MUSIC [13], data-driven deep neural

networks [14], and model-based unrolling neural networks

[15], [16]. Moreover, the stringent demands on analog-

to-digital converters (ADCs) and the storage in digital

modulation with broad bandwidth have sparked interest

in incorporating low-resolution ADCs, including extreme

cases like 1-bit ADCs [17], into the system design. This

strategic integration will render the system viable for

widespread civil deployment in massive autonomous driving

applications. The application of the arcsine law
(
refer to

page 396 in [18]
)

facilitates the estimation of the covariance

matrix, a prerequisite for high-resolution algorithms such as

those discussed in [19]. Nevertheless, the dynamic nature

of automotive scenarios introduces significant challenges,

making estimating the covariance matrix over multiple

snapshots nearly impractical [1].

In this work, we introduce a novel high-resolution DOA

estimation approach involving a uniform linear array (ULA)

with a mixed-ADC solution based on a single snapshot.

This entails the coexistence of both high-resolution and 1-

bit ADCs within the system. We present a single-snapshot-

based MUSIC technique utilizing the Hankel matrix and

singular value decomposition (SVD) [13]. This innovative

method is developed to address and resolve the DOA in

radar systems with mixed-ADC allocations. In addition,

we evaluate the performance of different allocations with

extensive simulations.
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II. SYSTEM MODEL

Consider a ULA consisting of M antenna elements

with half-wavelength, i.e., »/2, inter-element spacing. These

elements receive narrowband far-field signals from K
different directions »k with k * {1, . . . ,K}. Then, the

sampled signal in the single snapshot case can be expressed

by

x = A
M (θ) s+ n, (1)

where the vector x = [x1, . . . , xM ]
º *

C
M×1

contains the sampled array measurements,

A
M (θ) = [a(»1), . . . ,a(»K)] * C

M×K
is the

steering matrix with steering vectors a
M (»k) =

[
1, exp

(
7Ã sin(»k)

)
, . . . , exp

(
7Ã(M 2 1) sin(»k)

)]º *
C

M×1
and angles θ = [»1, . . . , »K ] * R

K×1
, s =

[s1, s2, . . . , sK ]º * C
K×1

is the source signal vector,

n = [n1, n2, . . . , nM ]º * C
M×1

is a noise vector with

complex-valued white Gaussian distributed values, (·)º is

the transpose operation, 7 =
:
21 is the imaginary unit, and

bold lowercase symbols indicate vectors and bold uppercase

symbols matrices. For the sake of simplicity, in the following

A and a are used instead of A(») and a(») without losing

generality.

II-A. Mixed-ADC allocation

Further, we assume that the signals in the M = M0 +
M1 elements are sampled by high-resolution or 1-bit ADCs,

where M0 * N0 denotes the number of high-resolution and

M1 * N0 the number of 1-bit ADCs in the system. When a

1-bit ADC is used at the m th antenna element, the quantized

signal at the output of the ADC can be expressed as

zm = Q(xm 2 h) = sgn
(
=(xm 2 h)

)
+ 7 sgn

(
1(xm 2 h)

)
,

(2)

where Q(·) = sgn
(
=(·)

)
+ 7 sgn

(
1(·)

)
is the complex

quantization operation, =(·) and 1(·) are the real- and

imaginary parts, respectively, h is a time-varying known

threshold, and sgn(·) is the signum function, that is defined

as

sgn(x) =

{

21 if x < 0

1 if x g 0.
(3)

Then, in a mixed-ADC system, i.e., the coexistence of

high-resolution and 1-bit ADCs, the sampled signal can be

expressed by

y = x ç δ + z ç δ̄, (4)

where y = [y1, . . . , yM ]º * C
M×1

with ym * {xm, zm},

δ = [·1, . . . , ·M ]º * C
M×1

with ·m * {0, 1} defines

the allocation of high-resolution and 1-bit ADCs to the M
antenna elements, and ç denotes the Hadamard product, i.e.,

the element-wise product. ·m = 0 indicates the allocation of

a 1-bit ADC at the mth antenna element, and ·m = 1 the

allocation of a high-resolution ADC. Further δ̄ is defined as

δ̄ = 1M 2δ with 1M = [1, 1, . . . , 1]º * R
M×1

, and it holds

that 1º
M
δ = M0 and 1

º

M
δ̄ = M1.

II-B. Single-Snapshot MUSIC

Like other spectral estimation decomposition methods,

MUSIC typically requires multiple snapshots to calculate

the covariance matrix. However, the dynamic nature of

automotive scenarios makes collecting multiple snapshots

impractical. To address this issue, we consider a single

snapshot spectral estimation approach based on the Hankel

matrix introduced in [13]. This method can be viewed as a

spatial smoothing technique specifically designed for ULA.

Based on the sampled mixed-ADC output in (4), the Hankel

matrix H * C
(L+1)×(M2L)

can be expressed as

H = Hankel(y) =

þ

ÿ
ÿ
ÿ
ø

y1 y2 · · · yM2L

y2 y3 · · · yM2L+1
...

...
. . .

...

yL+1 yL+2 · · · yM

ù

ú
ú
ú
û
, (5)

where 1 f L < M . The SVD of H results in

H = [Us,Un]
︸ ︷︷ ︸

U

diag(Ã1, Ã2, . . . , Ãs, Ãs+1, . . . )
︸ ︷︷ ︸

Σ

[V1,V2]
H

︸ ︷︷ ︸

V
H

,

(6)

where the columns of the square matrix U * C
(L+1)×(L+1)

with Us * C
(L+1)×s

and Un * C
(L+1)×(L+12s)

are the

signal and noise spaces, respectively, the diagonal matrix

Σ * C
(L+1)×(M2L)

contains the eigenvalues with Ã1 g
Ã2 g Ã3 g . . . , the columns of V * C

(M2L)×(M2L)
with

V1 * C
(M2L)×s

and V2 * C
(M2L)×(M2L2s)

are the right

singular vectors, s is the number of potential target angles,

and (·)H denotes the Hermitian transpose. The parameter L
defines can be selected between 1 and M . The choice of L
is discussed in Section III.

To estimate the DOAs, the steering vectors a
L+1(»k) that

are orthogonal to the noise subspace must be identified, i.e.,

U
H

na
L+1(»k) = 0, where 0 = [0, . . . , 0]º * R

(L+12s)×1
.

The DOAs can be identified with »k corresponding to the s
largest local maxima of the pseudospectrum

P(θ) =

∥
∥
∥a

L+1
∥
∥
∥
2∥

∥
∥U

H

na
L+1

∥
∥
∥
2

, (7)

where '·'2 is the 2-norm, and a
L+1(»k) =

[
1, exp

(
7Ã sin(»k)

)
, . . . , exp

(
7ÃL sin(»k)

)]º * C
(L+1)×1

is the steering vector at the angle »k.

II-C. CRB for Mixed-ADC Data

The authors in [20] derived the Cramer-Rao bound (CRB)

for ULAs employing mixed-ADC allocations. For a single-

snapshot single-target scenario, the CRB for »k can be

calculated as

CRB(»k) =
M0 +

2
π
M1

2Ã2S

1

SNRcos2(»k)
, (8)
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where SNR = p/Ã2
is the signal-to-noise ratio (SNR) with

the signal power p, and noise variance Ã2
. The factor S is

calculated as

S =

M∑

i=1

gi(i2 1)2
M∑

i=1

gi 2
[

M∑

i=1

gi(i2 1)

]2

, (9)

where
M∑

i=1

gi = M0 + 2
π
M1 with gi *

{
1, 2

π

}
. While the

SNR and the target parameters are fixed, the only value that

can be optimized is S. The greater S, the lower becomes

the CRB. S depends on the allocation of high and 1-bit

ADCs to the antenna elements. Therefore, the CRB varies

depending on the chosen ADC allocation and selecting the

mixed-ADC allocation that minimizes CRB is desired.

II-D. MUSIC Error Variance

According to equation (7.5a) in [21], the MUSIC error

variance is a function of Ã2
, Rss, and »k and can be

calculated as

var
(

»̂k

)

=
Ã2

2N

{[

R
21
ss

]

kk

+ Ã2
[

R
21
ss

(

A
H
A)21

R
21
ss

]

kk

} 1

h(»k)
, (10)

where Ã2
is the noise variance according to the definition

in [21], Rss = E[ss7] is the signal covariance matrix, [·]kk
denotes the (k, k)th element of the corresponding matrix, »̂k
is the estimated angle of the kth target, N = M 2L for the

single-snapshot case, and

h(») = d
H

θ

[

I2A(AH
A)21

A
H

]

dθ. (11)

In (11), dθ = da(»)/d» is the derivative of a and I is the

identity matrix. For uncorrelated signals, Rss is diagonal,

and (10) simplifies to

var
(

»̂k

)

=
1

2N SNRk

û

ü
ü
ý
1 +

[(

A
H
A
)
21

]

kk

SNRk

þ

ÿ
ÿ
ø

1

h(»k)
,

(12)

where SNRk = [Rss]kk /Ã
2
. This closed-form error estimate

in (12) provides a performance benchmark for the Hankel-

matrix-based single-snapshot MUSIC.

III. NUMERICAL RESULTS

We consider M = M0 +M1 = 40 antenna elements in a

ULA configuration. M0 = 20 high-resolution and M1 = 20
1-bit ADCs are used for mixed-ADC allocations. The inter-

element spacing equals »/2. Creating the Hankel matrix

involves segmenting the original MUSIC, overlapping and

dividing it into multiple segments, each of length L + 1,

corresponding to the snapshots in the classical MUSIC

algorithm. The choice of L becomes a trade-off between

effective resolution, separability of the snapshot-MUSIC,

and the reliability of subspace vectors. In our empirical

approach, following the insights of [22], we opt for a

parameter L that transforms the Hankel matrix into a quasi-

square form, resulting in superior performance. For our

specific study, we set L to 20, creating a Hankel matrix

H * C
21×20

that closely approximates a square matrix, and

s, i.e., the number of potential sources, is set to 10.

We consider six different ADC allocations. The first two

allocations are exclusive high-resolution and 1-bit ADCs

cases,

(1) only high-resolution ADCs: ·m = 1 for m *
{1, . . . ,M}

(2) only 1-bit ADCs: ·m = 0 for m * {1, . . . ,M}
and the remaining ones are mixed-ADC allocations

(3) left-edge-assigned 1-bit ADCs: ·m = 0 for m *
{1, . . . , 20} and ·m = 1 else

(4) right-edge-assigned 1-bit ADCs: ·m = 0 for m *
{21, . . . , 40} and ·m = 1 else.

(5) edge-assigned 1-bit ADCs: ·m = 0 for m *
{1, . . . , 10} * {31, . . . , 40} and ·m = 1 else

(6) center-assigned 1-bit ADCs: ·m = 0 for m *
{11, . . . , 30} and ·m = 1 else,

where the 1-bit ADCs are located at the right or left edges

exclusively, or the half of the ADCs at each edge, or in the

center of the array.

III-A. RMSE, CRB, and MUSIC Error Variance

First, the performance of the single-snapshot MUSIC

algorithm in a single target scenario is investigated using the

theoretical CRB, Monte Carlo simulations, and an analytical

approach for the MUSIC error variance. Fig. 1 illustrates

the root mean square error (RMSE) in degrees for four

mixed-ADC allocations and the exclusive cases of high-

resolution or 1-bit ADCs across various SNRs. The RMSE is

calculated based on the difference between the estimated and

true DOAs. The simulations are based on 200 Monte Carlo

runs spanning SNRs from 210 to 30 dB with a 5 dB interval.

The horizontal axis denotes the SNR, while the vertical axis

represents the RMSE in degrees. The angle searching grid

has a width of 1024
deg and » * [290, 90]. The designated

target DOA, »target, is set at 10 deg.

All allocations result in a similar CRB, but the exclusive

high-resolution ADC allocation results in the lowest CRB,

and the exclusive 1-bit ADC allocation results in the highest

CRB. The simulations show that the high-resolution ADC

allocation achieves the best performance for the RMSE,

followed by the allocation using the 1-bit ADCs at the

left edge of the antenna array, especially for high SNRs.

The remaining allocations perform similarly for high SNRs.

The performance of the 1-bit allocation varies with the

SNR. The worst RMSE is achieved by the allocation

where the 1-bit ADCs are used at the edges of the

array. As outlined in Section II-B, we present a closed-
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CRB high (1) CRB 1-bit (2) CRB left (3)

CRB right (4) CRB edge (5) CRB center (6)

√

var high (1)

Fig. 1: RMSEs, CRBs, and error variance for different SNRs

and ADC allocations using single-snapshot MUSIC.

form theoretical performance benchmark, i.e.,

√

var
(

»̂i

)

,

for MUSIC. Compared to the CRB, the Hankel-matrix-

based snapshot MUSIC estimator generally exhibits a higher

error magnitude. Notably, the RMSE of the high-resolution

allocation closely approaches the theoretical lower error

bound under conditions of sufficiently high SNR. This

phenomenon arises from the inherent presence of certain

errors within the estimated noise space, as specified in (7)

of our single-snapshot MUSIC methodology. Further, the

impact of quantization errors introduced by 1-bit ADCs is

illustrated in Fig. 1, showcasing a noteworthy increase in

angle estimation errors, particularly in good SNR scenarios.

III-B. Angular Resolution

Second, the angular resolution capability of single

snapshot MUSIC is evaluated in a two-target scenario. Fig. 2

depicts the target separability performance for the allocations

across different SNRs. The horizontal axis denotes the SNR

in the 210 to 30 dB range with 5 dB spacing. The vertical

axis shows the angular resolution in degrees. In the scenario,

two targets with equal power are closely spaced, and their

separability is assessed. The angle of the first target »1 is

fixed to 10 deg, while the angle »2 of the second target

varies. The search grid width in single snapshot-MUSIC for

the separability is 0.1 deg. The native angular resolution (i.e.

3 dB beamwidth) is ∆» = 0.89»/D, where D = M d is

the virtual aperture length. The resolution is the minimum

angle difference at which two targets are distinguishable by

two peaks in the pseudospectrum P(θ). With d = »/2, the

native angular resolution ∆» is approximately 2.55 deg for

40 antenna elements.

In the ULA with mixed ADCs, the target separability

strongly depends on the 1-bit-ADC allocation and decreases

with an increasing SNR. The allocations (1), (3), and (5)

210 25 0 5 10 15 20 25 30
1

2

3

4

5

6

7

8

SNR (dB)

A
n

g
u

la
r

re
so

lu
ti

o
n

(d
eg

)

High (1) 1-bit (2)

Left (3) Right (4)

Edge (5) Center (6)

Native resolution

Fig. 2: Angular resolution for different SNRs and ADC

allocations using single-snapshot MUSIC.

achieve a resolution below 2 deg for SNR values greater

than 5 dB. The high-resolution ADCs allocation performs

best, especially for SNRs greater than 25 dB. Allocation (3)

has the second-best performance for an SNR greater than

10 dB. This result is comparable to the RMSE, where the

left-edge-assigned ADCs also achieved the best performance

of the mixed-ADCs for large SNRs. Allocations (2), (4), and

(6) achieve a resolution that is approximately equal to the

native resolution of approximately 2.5 deg. In this scenario,

the 1-bit ADC allocation achieves a resolution similar to the

right-edge and center allocations.

IV. CONCLUSIONS

This paper presents a novel approach for high-resolution

DOA estimation in automotive radar systems using single

snapshot MUSIC with mixed ADC configurations. By

leveraging the Hankel matrix and SVD, we derive a

pseudospectrum to identify DOAs of targets. Extensive

simulations compare the RMSE of various mixed-ADC

setups with the theoretical CRB and closed-form MUSIC

performance benchmark. We also assess target separability

across different ADC allocations. Notably, simulations

favor an assignment placing 1-bit ADCs at the array’s

left edge. However, high-resolution ADCs consistently

outperform other configurations. While our study uses fixed

ADC allocations, future research could explore methods to

optimize them for single snapshot MUSIC DOA estimation.

Additionally, analytical performance analysis is planned to

corroborate our simulated findings.
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