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Automotive Radar Sensing with Sparse Linear
Arrays Using One-Bit Hankel Matrix Completion

Arian Eamaz, Farhang Yeganegi, Yunqiao Hu, Shungiao Sun, and Mojtaba Soltanalian

Abstract—The design of sparse linear arrays has proven
instrumental in the implementation of cost-effective and efficient
automotive radar systems for high-resolution imaging. This paper
investigates the impact of coarse quantization on measurements
obtained from such arrays. To recover azimuth angles from
quantized measurements, we leverage the low-rank properties
of the constructed Hankel matrix. In particular, by address-
ing the one-bit Hankel matrix completion problem through a
developed singular value thresholding algorithm, our proposed
approach accurately estimates the azimuth angles of interest.
We provide comprehensive insights into recovery performance
and the required number of one-bit samples. The effectiveness
of our proposed scheme is underscored by numerical results,
demonstrating successful reconstruction using only one-bit data.

Index Terms—Coarse quantization, dithered one-bit sensing,
one-bit Hankel matrix completion, sparse linear array, singular
value thresholding.

I. INTRODUCTION

Millimeter wave (mmWave) automotive radars are highly
reliable in various weather environments, with antennas that
can be fit into a small area to provide high angular resolution.
Benefiting from multiple-input multiple-output (MIMO) radar
technology, mmWave radars can synthesize virtual arrays with
large aperture sizes using a small number of transmit and
receive antennas [1]. To further reduce hardware cost, sparse
arrays synthesized by MIMO radar technology have been
widely adopted in automotive radar [2, 3]. Investigating single-
snapshot Direction-of-Arrival (DoA) estimation with sparse
arrays is crucial, particularly in dynamic automotive contexts
where, often, only limited or single radar snapshots are avail-
able. The challenges associated with single-snapshot DoA with
sparse arrays are the high sidelobes and the reduction of
signal-to-noise ratio (SNR), both of which may cause errors
and ambiguity in estimation [2]. One potential solution is
interpolating the missing elements in the sparse array using
techniques such as matrix completion [2, 4, 5], followed by
standard DoA estimation algorithms like MUSIC and ESPRIT.
Matrix completion approach exploits the low-rank property of
the Hankel matrix formulated by array received signals, and
completes the missing elements using iterative algorithms [6,
71.

Quantization, a crucial step in digital signal processing,
transforms continuous signals into discrete representations.
Traditional high-resolution quantization often requires numer-
ous quantization levels, leading to higher power consumption,
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increased manufacturing costs, and reduced analog-to-digital
converter (ADC) sampling rates. In the pursuit of alternative
systems, researchers have explored reduced quantization bits,
including one-bit quantization, where signals are compared
with a fixed threshold at ADCs, yielding binary outputs [8].
This one-bit approach enables high-rate sampling while reduc-
ing implementation costs and energy consumption compared
to multi-bit ADCs. One-bit ADCs find valuable applications
in MIMO systems [9-11], channel estimation [12], target
detection [13, 14], and array signal processing [15].

Scalar quantization with a dithering scheme involves adding
random dither to an input signal before quantization. This
well-established technique is recognized for enhancing reso-
lution and signal reconstructions in practical applications and
significantly reducing quantization noise in theoretical contexts
[16-18]. Unlike sigma-delta quantization, scalar quantization
operates as a memoryless scheme, requiring no feedback or
update process, a characteristic widely acknowledged and
referenced in the literature [19-21].

In this paper, we employ coarse quantization on the non-
missing entries of the acquired Hankel matrix from a sparse
linear array. Subsequently, we fill the missing parts of the
matrix using the well-established iterative approach known
as singular value thresholding (SVT). This process results in
utilizing exclusively one-bit data for the subsequent recon-
struction algorithm. It has been demonstrated that when the
scalar parameter of uniform dithers is designed to dominate the
dynamic range of measurements, multi-bit scalar quantization
simplifies to a one-bit comparator [22, 23]. Leveraging this
observation along with the properties of uniform dithering,
particularly in canceling quantization effects in the expecta-
tion, we aim to establish theoretical guarantees for quantized
matrix completion.

In the numerical results, we demonstrate that employing
one-bit quantization with an appropriate dithering scheme
allows the generated one-bit dither samples to be effectively
utilized in the reconstruction step. This approach yields mean-
ingful results, such as accurately detecting the two azimuth
locations of targets with high resolution.

Notation: Throughout this paper, we use bold lowercase and
bold uppercase letters for vectors and matrices, respectively.
We represent a vector x and a matrix X in terms of their
elements as x = [z;] and X = [X,;], respectively. C
represents the set of complex numbers. (-)"T denotes the
vector/matrix transpose. Given a scalar x, we define the
operator (z)* as max{z,0}. The nuclear norm of a matrix
X € C™*n2 s denoted by ||X||, = >.i_, 0; where 7 and
{cri}zzl are the rank and singular values of X, respectively.
The Frobenius norm of a matrix X € C™*™2 is defined as

IXp= /S0, T2, fas

?, where z,, is the (r, s)-th entry
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of X. In the real case, we also define ||X||max= sup; ;| X ;|-
The £,-norm of a vector x is ||x||,= (3, xf)l/p. The operator
diag {b} denotes a diagonal matrix with {b;} as its diagonal
elements. The Hadamard (element-wise) product is ©. The
notation x ~ U, means a random variable drawn from the
uniform distribution over the interval [a,b]. If there exists a
¢ > 0 such that a < ¢b (resp. a > ¢b) for two quantities a and
b, we have a < b (resp. a 2 b). The uniform quantizer applied
to a fixed value x is defined as Q, (z) = A (|Z7] + 1)

with TNU[_A A]-
272

II. HIGH-RESOLUTION IMAGING RADAR SYSTEM WITH
ONE-BIT MEASUREMENTS

In this section, we begin by introducing the Hankel matrix
completion problem tailored for the sparse linear array system.
Subsequently, we delve into the application of dithered one-
bit quantization to the resulting Hankel matrix and proceed
to recover the signal by addressing the one-bit Hankel matrix
completion problem. A refined version of the SVT algorithm is
presented for recovering the matrix from incomplete observed
one-bit data, and the theoretical guarantees of the problem are
discussed.

A. Radar Sensing With Sparse Linear Array

A sparse linear array’s antenna positions can be considered
a subset of a uniform linear array (ULA) antenna positions.
Without loss of generality, let the antenna positions of an M-
element ULA be {kd}, k = 0,1,---, M — 1, where d = %
is the element spacing with wavelength A. Assume there
are P uncorrelated far-field target sources in the same range
Doppler bin. The impinging signals on the ULA antennas are
corrupted by additive white Gaussian Noise with variance of
o2. For the single-snapshot case, only the data collected from
a single instance in time is available, resulting in the discrete
representation of the received signal from a ULA as

x =As+n, (1)
where
.
X = [x1,2,...,20M]
T (2)
A=Ja(bh),a(d)...,a(0p)] ,
with
-
. dsin(6 o (M—1)dsin(0
a(fy) = [1,e2n 5 g
fork=1,---,Pand n = [ny,no,... ,nM}T. Then, a Hankel

matrix denoted as H (x) € C™"**™2 where n; +ng = M + 1,
can be constructed from x [24]. The Hankel matrix H (x)
admits a Vandermonde decomposition structure [4, 25, 26],
ie.,

H(x)=V,ZV,, 4)
where 'V = [vi(01),---,vi(0p)], V2 =
[V2 (91) , o, Vo (Qp)] with

dsin(Gk)

vy (0g) = |:1,€j27r )

T
. (n1—1)dsin(6y)
QA JCETR)

3Ty el =" o :| ) (5)

T

)

dsin(Gk) . (nzfl)dsin(ek)
Py , J2m X

vy (0;) = |:1,€j27r Lo, e

Physical Array
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Figure 1. Example of an automotive radar with virtual sparse array of 48
elements and aperture of 76\.

and ¥ = diag([o1,09, - ,0p]). Assuming that P <
min (n1,n2), and both V; and V, are full rank matrices,
the rank of the Hankel matrix H (x) is indeed P, thereby
indicating that H (x) has low-rank property [26]. It is worth
noting that a good choice for Hankel matrix size is n; ~ no
[6]. This ensures that the resulting matrix # (x) is either a
square matrix or an approximate square matrix. Specifically,
in this paper, we adopt n; = ny = (2£) if M is odd, and
ny=ng —1= (%) if M is even.

We utilize a 1D virtual SLA synthesized by MIMO radar
techniques [1] with M, transmit antennas and M, receive
antennas. The SLA has M;M, < M elements while re-
taining the same aperture as ULA. Denote the array element
indices of ULA as the complete set {1,2,---, M}, the array
element indices of SLA can be expressed as a subset ' C
{1,2,---, M}. Thus, the signals received by the SLA can be
viewed as partial observations of x, and can be expressed
as X, = mq O X, where mg = [ml,mg,---,mM]T is
a masking vector with m; = 1, if j € @ or m; = 0 if
j ¢ . Fig. 1 shows an example of the array configuration
of an automotive radar which is a synthesized virtual sparse
array with 48 elements of 1 MIMO transceiver featuring 14
physical antennas, where all transmit and receive antennas are
clock synchronized. For the sake of simplicity in notation,
hereafter, we denote the Hankel matrix of virtual sparse array
response as X.

B. One-Bit Hankel Matrix Completion

Assume () denotes the set of observed entries in X denoted
by Pgq (X), which is obtained by the array element indices
of SLA €. In one-bit sampled Hankel matrix completion,
we solely observe the partial matrix through the m’ one-
bit samples, where m’ < nino. The one-bit samples are
generated by the following comparison between corresponding
entries in Pq (X) and dither matrix 7 = [r; ;] € C™*"2 with

Tij = 7By ij and both real and imaginary parts follow

(2] (2]
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U[_%7%]Z
(R)
(R) +1 Re(Xij)>7", . .
r = ) 1,7) € Q, 7
%7 {1 Re(Xi7j)<Ti(7_Ij{), ( J) ()
and

= i,7) € L. 8
0,3 -1 Im(X;;) < Ti(,§)7 (1,) (3
Therefore, the complex one-bit data is given by r;; =
rg’?) + jrgj). The acquired one-bit data forms the matrix
R € {-1,0,1}" " 45 {~1,0,1}" "2, where at the indices
(i,4) € €, we have one-bit data, and the rest of the elements
are zero. In the work presented by the authors in [27],
noisy matrix completion is formulated as a nuclear norm
minimization problem. Consider the noisy measurements as
follows:

I
’r'(I,) o {+1 Im (Xi,j) > Ti(,j)’

X" =X+ Zij, (i) €9, ©)
where Z; ; is a bounded additive noise.

Extensive investigations conducted in [27, 28] have demon-
strated that matrix completion with noise can be formulated
as a nuclear norm minimization problem as follows:

minimize ||X]|,
* (10)
subject to HPQ(X - X("))H <4,
F

where X (") is the noisy matrix and & presents the distortion
effect. Let us assume that Q,, (+) is the uniform quantizer with
resolution parameter A > 0 and Q = Q, (Re (P (X))) +
jQ, (Im (Pq (X))) represents the uniform quantization of
known entries of low-rank matrix X. Note that the quantizer
is only applied to non-zero elements. Consequently, the quan-
tized measurements can be expressed as follows:

Q ="Pq(X)+N, (1)
where the matrix N € C™ *"2 presents the effect of quantiza-
tion as the additive noise matrix. Therefore, the nuclear norm
minimization problem associated with the quantized MC is
given by
X,

[Pa(X) = Qllp <6,

where the parameter § denotes the impact of the quantization
process.

In the literature [22], it is well-known that the uniform quan-
tizer effectively becomes a one-bit quantizer by limiting the
measurement’s dynamic range to half of the scale parameter
of uniform dither. In other words, in matrix completion for
both real and imaginary parts, we have

Q. (Po (X)) = 5 50 (Pa (X) = Po (T)), XS

minimize
X (12)
subject to

A

(3)
Hence, by fulfilling the dynamic range condition and employ-
ing the uniform dithering scheme, the quantized measurements
Q can be substituted with %R. It is worth noting that in
numerous applications, the upper bound of the dynamic range
of measurements is known [29, 30]. Therefore, we can easily

design the scale parameter of uniform dithers based on this
information.

Denote a linear transformation A : C™*"2 — C™ and
A* . €™ — C™*m2 4 its adjoint operator. To address the
nuclear norm minimization problem in one-bit Hankel matrix
completion, we employ the SVT algorithm. If we consider the
singular value decomposition (SVD) of X as X = UXV'T
and {o;} as its singular values, the SVT use the singular
value shrinkage operator comprehensively investigated in [28,
31] which applies the partial SVD to achieve the low-rank
matrix structure as D, (X) = UD(Z)V', D () =
diag ((ai — 7')Jr , where 7 > 0 is the predefined threshold.
The key distinction lies in our approach: rather than utilizing
high-resolution partial measurements at each iteration, we
employ one-bit data in the following manner:

)
{ y® =y*=b 45, (b— A(XR)),
where {5k}/are step sizes Z}Ild b = vec(5[rijlijea) €

2
{=2.9}" +i{-2.2}"

(14)

C. Theoretical Guarantees for Recovery Performance

As the norm-2 can be constrained by the norm-1, the one-
bit matrix completion constraint in (12) can be alternatively
expressed as Hvec (PS) (X) - %R) Hl < ¢'. In the rest of this
section, our aim is to theoretically investigate the parameter ¢
and establish its upper bound. Define the following operator:

Definition 1. For a matrix X = [X, ;] € R™*”> and the
one-bit matrix R € {—1,0,1}"**"?, we denote the average
of distortions by

1 A
Tove(X) = —; [|vec (PQ (X) - 2R) ,
" L)
1 A
= > | Xii- 5 Bl
(1,7)€Q

where m’ = |Q|.

It is important to note that the guarantee is obtained under
the uniform dithering scheme. In the following definition, we
state the consistent reconstruction property which will be our
assumption in the provided theorem:

Definition 2. Define a low-rank matrix X = [X; ;| € R™*"2,
The consistency property of uniform quantization over the pair
X,Y € K,, is given by

QA (Pa (X)) = Qa (Pa (Y)).

When we frame the one-bit matrix completion problem as a
nuclear norm minimization problem with the one-bit data ma-
trix R € {=1,0,1}"*" +j{~1,0,1}""""* representing our
observation, we can derive an upper bound for the recovery,
as presented in the following theorem:

(16)

Theorem 1. Define the set IC,. as
’Cr _ {X/ c Cn1><n2 |rank(X’) g 7',ﬂ S a} C Cn1><n2’
a7
where = max (||Re (X') ||max, [[Im (X') ||max). Consider a
matrix X € K,. Now, let’s assume that m' entries of X,
randomly selected using uniform sampling, undergo dithered
one-bit quantization with uniform thresholds generated as
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Tij ~ Ui_a a1 where 2a < A, leading to the observed
272
one-bit dglta matrix R. Then, with a probability exceeding

m

1 — de™ a2 , we can assert that the recovery error between
X and the estimated matrix X satisfying the consistency in
Definition 2 is bounded as follows:

X — X|[p< 2v/8canina,

/ _5
as long as m’ 2 €~ 2r max (ny, na).

(18)

The complete proof of Theorem 1 can be found in Ap-
pendix A. According to Theorem 1, the recovery performance
of dithered one-bit matrix completion depends on the dimen-
sion of signal and the distortion of uniform quantized values.

III. NUMERICAL INVESTIGATION

In this section, we undertake numerical investigations to
assess the performance of the one-dimensional sparse array
completion that jointly utilizes sparse spectrum and sparse
arrays with one-bit dither measurements for radar sensing in
automotive applications.

To attain high azimuth angular resolution, we cascade
multiple automotive radar transceivers to synthesize a large
sparse array in azimuth. We focus on the same physical array
illustrated in Fig. 1, where there are M; = 6 transmit antennas
and M, 8 receive antennas arranged in an interleaved
manner along the horizontal direction at:

Irx =[1,19,37,55,79,91]\/2,

Irx = [12,22,25, 39, 58,62, 70, 73] \/2.
A virtual array with total 48 elements is synthesized. The
transmit and receive antennas as well as the virtual array
are plotted in Fig. 1. Two targets are positioned at the same
range R = 100 m with velocities of v = —10 m/s. Their
respective azimuth angles are 6, —57° and 6, —34°.
The SNR is set as 20dB in our simulations. Initially, the two
targets can be first separated in range-Doppler. The complex
peak values in the range-Doppler spectrum, corresponding
to each virtual sparse array, constitute an array snapshot for
azimuth angle determination. We apply the one-bit quantizer
with uniform dithering following 7; ; ~ Z/{[_ 23] to a Hankel

19)

matrix X € C"6%76_ which is constructed based on the array
response of a ULA with 152 elements and sampled by the SLA
shown in Fig. 1. The array response of the SLA is normalized
by its first element. The scale parameter of uniform dithers
is designed in such a way to dominate the dynamic range of
measurements. Using the partial one-bit data R, the rank-2
Hankel matrix X is completed via the proposed algorithm in
(14). Let X denote the completed Hankel matrix. The full
ULA response can be reconstructed by taking the average of
the anti-diagonal elements of matrix X. The completed full
array has an aperture size of 76\.

In Fig. 2, we depict the angle spectrum for the two targets.
The azimuth angle spectra are derived by applying FFT to the
original SLA with the holes filled with zeros and to the full
array completed via one-bit matrix completion, respectively.
The FFT of the SLA produces two peaks corresponding to the
correct azimuth directions but with high sidelobes, making it
challenging to detect the two targets accurately in azimuth.

FFT of MIMO Sparse Array
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Figure 2. The spectrum of two targets with azimuth angles of 6; = —57°
and 03 = —34° under MIMO sparse array and fully completed array.

In contrast, the completed full array from one-bit samples ex-
hibits two distinct peaks corresponding to the correct azimuth
locations in the angle spectrum, with significantly suppressed
sidelobes.

IV. DISCUSSION

We employed the memoryless scalar quantization to
coarsely quantize measurements from a sparse linear array
system used in the high-resolution imaging radar. By utiliz-
ing a uniform dithering scheme and recording only one-bit
data for reconstruction, we accurately detected two targets
in azimuth with significantly suppressed spectrum sidelobes.
The quantized Hankel matrix completion problem was solved,
and we extensively discussed theoretical guarantees and re-
covery performance. This paper specifically addressed the
two-dimensional scenario, and future work would aim to
extend the scope to three-dimensional targets, incorporating
enriched Hankel matrix completion techniques for a more
comprehensive analysis.

APPENDIX A
PROOF OF THEOREM 1

Without loss of generality, we assume o« = %. We begin
the proof by presenting the following lemma:

Lemma 1. In the settings of Definition 1, we have

X[ _
Pr( sup |Toe(X) —a+ =15 | > c] <2755, (20)
Xel, aning
where € is a positive value.
Proof: For simplicity of notation, denote d;; =
|X; ; — aR; ;|. Then, we can write
1 [e3
Er{di;} = %/ |Xij — aRi ;| dr
1 X e
:7|:/ a—X¢7de+/ Oé+Xi,de:| (21)
pAe —a X
=a-— —ij .
«
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Therefore, we have

1 X2,
Er {Toe(X)} — S (o=
(i,5)€Q

_ P (X) 1§

am’

Computing the expected value of (22) respect to the random-
ness of (¢, 7) leads to

X

Er i) (Tave(X)} = aning’

In the following lemma, we present the Hoeffding’s inequality
for bounded random variables:

(22)

(23)

Lemma 2. [32, Theroem 2.2.5] Let {Xi}?zl be independent,
bounded random variables satisfying X; € [a;,b;], then for
any t > 0 it holds that

1 n _ o242 ,
P — Xi —[E Xi <2 2t (bi—ai) .
(A -y 2] <20 T

i=1

(24)

Note that for each random variable d; ;, we have 0 < d; ; <
2c. Then, following Lemma 2, we can write
Tave(X) H HF

62771,
Pr ( ) < 2e” 27,
Oz’anlQ

As we consider the supremum over all X € K, it is necessary
to multiply the resulting probability by the covering number
of the defined set. It is straightforward to verify that the
covering number of p-balls required to cover the set I, is

upper bounded by
2a/mrng | MR
N o) < (14 22222 ) T

which can be further upper bounded by

N(Kr, ||||F’p) < e(n1+n2)rlog(1+

2a(ny +ny)ry/ATAE
<e P

Based on (27), the Kolmogorov p-entropy of the set KC, is
upper bounded by

H(Kop) < 2a(ny +n2)r‘/n1n2.

(25)

M@) 27

< P (28)
EQ’HLI
To achieve the probability at least 1 —2e™ 422 , it is sufficient
to write
a(ny+ng)rymin 2!
TR <oy 29)
or equivalently,
8a® (ny + na)ry/
' > 2 E’;;”“ =, (30)
which proves the lemma. ]
Define Z = %()S + X). We can write Z; ; — aR;; =
1 (X;; — aR;; + Xi; — aR; ;). The triangle inequality im-
plies
[ Zij — aRi ] < 5 (‘Xw aR; ;| + |Xi,j - O‘RMD - 3D

Based on (31), for all (i,74) € Q, we can write
1 _
Tave(z) é 5 [Tave(x) + Tave(X)] . (32)

Under the consistent reconstruction assumption in Definition 2,

2m/ . .
with a failure probability at most 2¢~ 422, Lemma 1 implies

_ X2
Tove(X) —a + bsi) <e (33)
anine
62,’”/
Similarly, with a failure probability at most 2e™ 4«2 , we have
7 2
N2 > o — € — Tave(2Z), (34)
aning
which together with (32) and (33), we can write
I1Z]% 1 <
_— 2 - — a Tuve X T‘ave X
omlng_a ¢ 2[(()—1— ()]
2 v |12
Zoz—e—1 —&—Fa—&-e—m—&-a—!—e
2 aning aning
1 _
= Somima [IXE+XE] — 2e.
1Mn2
(35)

Based on the definition of Z, we can rewrite (35) in terms of
X and X as follows

X+ X[[E> 2 (IX]F+IX]F) - 8aninze.  (36)
By the parallelogram law, we conclude that
X = X[ = 2 [IXE+IXE] - 11X+ X 37)

< 8aninge.
Denote p = +/8eaninsy. Then, accordlng to Lemma 1, with a

failure probability at most 2e™ s , we have || X — X|p< p
as long as

m' > e Frmax (ny,n).

~

(38)

To finalize the proof, we now take into account both real and
imaginary parts. It is noteworthy that the error of a complex
value can be upper bounded by its real part and imaginary
part, based on the triangle inequality, as follows:

IX = X|lp< [[Re (X) = Re (X) [|lp+]/Im (X) — Im (X) ||r,

(39
where both parts are upper bounded by (37) leading to have
IX = X]lp< 2p, (40)

which completes the proof. Note that the factor of 4 in the
probability arises from the fact that both real and imaginary
parts have the same probability. According to the union bound,
this results in the overall probability being twice as large.
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