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Automotive Radar Sensing with Sparse Linear

Arrays Using One-Bit Hankel Matrix Completion
Arian Eamaz, Farhang Yeganegi, Yunqiao Hu, Shunqiao Sun, and Mojtaba Soltanalian

Abstract—The design of sparse linear arrays has proven
instrumental in the implementation of cost-effective and efficient
automotive radar systems for high-resolution imaging. This paper
investigates the impact of coarse quantization on measurements
obtained from such arrays. To recover azimuth angles from
quantized measurements, we leverage the low-rank properties
of the constructed Hankel matrix. In particular, by address-
ing the one-bit Hankel matrix completion problem through a
developed singular value thresholding algorithm, our proposed
approach accurately estimates the azimuth angles of interest.
We provide comprehensive insights into recovery performance
and the required number of one-bit samples. The effectiveness
of our proposed scheme is underscored by numerical results,
demonstrating successful reconstruction using only one-bit data.

Index Terms—Coarse quantization, dithered one-bit sensing,
one-bit Hankel matrix completion, sparse linear array, singular
value thresholding.

I. INTRODUCTION

Millimeter wave (mmWave) automotive radars are highly

reliable in various weather environments, with antennas that

can be fit into a small area to provide high angular resolution.

Benefiting from multiple-input multiple-output (MIMO) radar

technology, mmWave radars can synthesize virtual arrays with

large aperture sizes using a small number of transmit and

receive antennas [1]. To further reduce hardware cost, sparse

arrays synthesized by MIMO radar technology have been

widely adopted in automotive radar [2, 3]. Investigating single-

snapshot Direction-of-Arrival (DoA) estimation with sparse

arrays is crucial, particularly in dynamic automotive contexts

where, often, only limited or single radar snapshots are avail-

able. The challenges associated with single-snapshot DoA with

sparse arrays are the high sidelobes and the reduction of

signal-to-noise ratio (SNR), both of which may cause errors

and ambiguity in estimation [2]. One potential solution is

interpolating the missing elements in the sparse array using

techniques such as matrix completion [2, 4, 5], followed by

standard DoA estimation algorithms like MUSIC and ESPRIT.

Matrix completion approach exploits the low-rank property of

the Hankel matrix formulated by array received signals, and

completes the missing elements using iterative algorithms [6,

7].

Quantization, a crucial step in digital signal processing,

transforms continuous signals into discrete representations.

Traditional high-resolution quantization often requires numer-

ous quantization levels, leading to higher power consumption,
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increased manufacturing costs, and reduced analog-to-digital

converter (ADC) sampling rates. In the pursuit of alternative

systems, researchers have explored reduced quantization bits,

including one-bit quantization, where signals are compared

with a fixed threshold at ADCs, yielding binary outputs [8].

This one-bit approach enables high-rate sampling while reduc-

ing implementation costs and energy consumption compared

to multi-bit ADCs. One-bit ADCs find valuable applications

in MIMO systems [9–11], channel estimation [12], target

detection [13, 14], and array signal processing [15].

Scalar quantization with a dithering scheme involves adding

random dither to an input signal before quantization. This

well-established technique is recognized for enhancing reso-

lution and signal reconstructions in practical applications and

significantly reducing quantization noise in theoretical contexts

[16–18]. Unlike sigma-delta quantization, scalar quantization

operates as a memoryless scheme, requiring no feedback or

update process, a characteristic widely acknowledged and

referenced in the literature [19–21].

In this paper, we employ coarse quantization on the non-

missing entries of the acquired Hankel matrix from a sparse

linear array. Subsequently, we fill the missing parts of the

matrix using the well-established iterative approach known

as singular value thresholding (SVT). This process results in

utilizing exclusively one-bit data for the subsequent recon-

struction algorithm. It has been demonstrated that when the

scalar parameter of uniform dithers is designed to dominate the

dynamic range of measurements, multi-bit scalar quantization

simplifies to a one-bit comparator [22, 23]. Leveraging this

observation along with the properties of uniform dithering,

particularly in canceling quantization effects in the expecta-

tion, we aim to establish theoretical guarantees for quantized

matrix completion.

In the numerical results, we demonstrate that employing

one-bit quantization with an appropriate dithering scheme

allows the generated one-bit dither samples to be effectively

utilized in the reconstruction step. This approach yields mean-

ingful results, such as accurately detecting the two azimuth

locations of targets with high resolution.

Notation: Throughout this paper, we use bold lowercase and

bold uppercase letters for vectors and matrices, respectively.

We represent a vector x and a matrix X in terms of their

elements as x = [xi] and X = [Xi,j ], respectively. C

represents the set of complex numbers. (·)¦ denotes the

vector/matrix transpose. Given a scalar x, we define the

operator (x)+ as max {x, 0}. The nuclear norm of a matrix

X ∈ Cn1×n2 is denoted by ∥X∥⋆ =
∑r

i=1 Ãi where r and

{Ãi}ri=1 are the rank and singular values of X, respectively.

The Frobenius norm of a matrix X ∈ Cn1×n2 is defined as

∥X∥F=
√

∑n1

r=1

∑n2

s=1 |xrs|2, where xrs is the (r, s)-th entry
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of X. In the real case, we also define ∥X∥max= supi,j |Xi,j |.
The ℓp-norm of a vector x is ∥x∥p= (

∑

i x
p
i )

1/p
. The operator

diag {b} denotes a diagonal matrix with {bi} as its diagonal

elements. The Hadamard (element-wise) product is ». The

notation x ∼ U[a,b] means a random variable drawn from the

uniform distribution over the interval [a, b]. If there exists a

c > 0 such that a f cb (resp. a g cb) for two quantities a and

b, we have a ≲ b (resp. a ≳ b). The uniform quantizer applied

to a fixed value x is defined as Q
∆
(x) = ∆

(⌊

x+Ä
∆

⌋

+ 1
2

)

with Ä ∼ U[−∆
2 ,∆2 ]

.

II. HIGH-RESOLUTION IMAGING RADAR SYSTEM WITH

ONE-BIT MEASUREMENTS

In this section, we begin by introducing the Hankel matrix

completion problem tailored for the sparse linear array system.

Subsequently, we delve into the application of dithered one-

bit quantization to the resulting Hankel matrix and proceed

to recover the signal by addressing the one-bit Hankel matrix

completion problem. A refined version of the SVT algorithm is

presented for recovering the matrix from incomplete observed

one-bit data, and the theoretical guarantees of the problem are

discussed.

A. Radar Sensing With Sparse Linear Array

A sparse linear array’s antenna positions can be considered

a subset of a uniform linear array (ULA) antenna positions.

Without loss of generality, let the antenna positions of an M -

element ULA be {kd}, k = 0, 1, · · · ,M − 1, where d = ¼
2

is the element spacing with wavelength ¼. Assume there

are P uncorrelated far-field target sources in the same range

Doppler bin. The impinging signals on the ULA antennas are

corrupted by additive white Gaussian Noise with variance of

Ã2. For the single-snapshot case, only the data collected from

a single instance in time is available, resulting in the discrete

representation of the received signal from a ULA as

x = As+ n, (1)

where
x = [x1, x2, . . . , xM ]

¦
,

A = [a (¹1) ,a (¹2) . . . ,a (¹P )]
¦
,

(2)

with

a (¹k) =

[

1, ej2Ã
d sin(¹k)

¼ , . . . , ej2Ã
(M−1)d sin(¹k)

¼

]¦

, (3)

for k = 1, · · · , P and n = [n1, n2, . . . , nM ]
¦

. Then, a Hankel

matrix denoted as H (x) ∈ Cn1×n2 where n1 + n2 = M + 1,

can be constructed from x [24]. The Hankel matrix H (x)
admits a Vandermonde decomposition structure [4, 25, 26],

i.e.,

H (x) = V1ΣV¦

2 , (4)

where V1 = [v1 (¹1) , · · · ,v1 (¹P )], V2 =
[v2 (¹1) , · · · ,v2 (¹P )] with

v1 (¹k) =

[

1, ej2Ã
d sin(¹k)

¼ , · · · , ej2Ã
(n1−1)d sin(¹k)

¼

]¦

, (5)

v2 (¹k) =

[

1, ej2Ã
d sin(¹k)

¼ , · · · , ej2Ã
(n2−1)d sin(¹k)

¼

]¦

, (6)

Figure 1. Example of an automotive radar with virtual sparse array of 48

elements and aperture of 76λ.

and Σ = diag ([Ã1, Ã2, · · · , ÃP ]). Assuming that P f
min (n1, n2), and both V1 and V2 are full rank matrices,

the rank of the Hankel matrix H (x) is indeed P , thereby

indicating that H (x) has low-rank property [26]. It is worth

noting that a good choice for Hankel matrix size is n1 ≈ n2

[6]. This ensures that the resulting matrix H (x) is either a

square matrix or an approximate square matrix. Specifically,

in this paper, we adopt n1 = n2 =
(

M+1
2

)

if M is odd, and

n1 = n2 − 1 =
(

M
2

)

if M is even.

We utilize a 1D virtual SLA synthesized by MIMO radar

techniques [1] with Mt transmit antennas and Mr receive

antennas. The SLA has MtMr < M elements while re-

taining the same aperture as ULA. Denote the array element

indices of ULA as the complete set {1, 2, · · · ,M}, the array

element indices of SLA can be expressed as a subset Ω′ ¢
{1, 2, · · · ,M}. Thus, the signals received by the SLA can be

viewed as partial observations of x, and can be expressed

as xs = mΩ′ » x, where mΩ′ = [m1,m2, · · · ,mM ]
¦

is

a masking vector with mj = 1, if j ∈ Ω′ or mj = 0 if

j /∈ Ω′. Fig. 1 shows an example of the array configuration

of an automotive radar which is a synthesized virtual sparse

array with 48 elements of 1 MIMO transceiver featuring 14

physical antennas, where all transmit and receive antennas are

clock synchronized. For the sake of simplicity in notation,

hereafter, we denote the Hankel matrix of virtual sparse array

response as X.

B. One-Bit Hankel Matrix Completion

Assume Ω denotes the set of observed entries in X denoted

by PΩ (X), which is obtained by the array element indices

of SLA Ω′. In one-bit sampled Hankel matrix completion,

we solely observe the partial matrix through the m′ one-

bit samples, where m′ j n1n2. The one-bit samples are

generated by the following comparison between corresponding

entries in PΩ (X) and dither matrix T = [Äi,j ] ∈ Cn1×n2 with

Äi,j = Ä
(R)
i,j + jÄ

(I)
i,j and both real and imaginary parts follow

Authorized licensed use limited to: The University of Alabama. Downloaded on May 12,2025 at 19:02:24 UTC from IEEE Xplore.  Restrictions apply. 
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U[−∆
2 ,∆2 ]

:

r
(R)
i,j =

{

+1 Re (Xi,j) > Ä
(R)
i,j ,

−1 Re (Xi,j) < Ä
(R)
i,j ,

(i, j) ∈ Ω, (7)

and

r
(I)
i,j =

{

+1 Im (Xi,j) > Ä
(I)
i,j ,

−1 Im (Xi,j) < Ä
(I)
i,j ,

(i, j) ∈ Ω. (8)

Therefore, the complex one-bit data is given by ri,j =

r
(R)
i,j + jr

(I)
i,j . The acquired one-bit data forms the matrix

R ∈ {−1, 0, 1}n1×n2+j {−1, 0, 1}n1×n2 , where at the indices

(i, j) ∈ Ω, we have one-bit data, and the rest of the elements

are zero. In the work presented by the authors in [27],

noisy matrix completion is formulated as a nuclear norm

minimization problem. Consider the noisy measurements as

follows:

X
(n)
i,j = Xi,j + Zi,j , (i, j) ∈ Ω, (9)

where Zi,j is a bounded additive noise.

Extensive investigations conducted in [27, 28] have demon-

strated that matrix completion with noise can be formulated

as a nuclear norm minimization problem as follows:

minimize
X

∥X∥⋆
subject to

∥

∥

∥
PΩ(X−X(n))

∥

∥

∥

F
f ¶,

(10)

where X(n) is the noisy matrix and ¶ presents the distortion

effect. Let us assume that Q∆(·) is the uniform quantizer with

resolution parameter ∆ g 0 and Q = Q∆ (Re (PΩ (X))) +
jQ

∆
(Im (PΩ (X))) represents the uniform quantization of

known entries of low-rank matrix X. Note that the quantizer

is only applied to non-zero elements. Consequently, the quan-

tized measurements can be expressed as follows:

Q = PΩ (X) +N, (11)

where the matrix N ∈ Cn1×n2 presents the effect of quantiza-

tion as the additive noise matrix. Therefore, the nuclear norm

minimization problem associated with the quantized MC is

given by

minimize
X

∥X∥⋆
subject to ∥PΩ(X)−Q∥F f ¶,

(12)

where the parameter ¶ denotes the impact of the quantization

process.

In the literature [22], it is well-known that the uniform quan-

tizer effectively becomes a one-bit quantizer by limiting the

measurement’s dynamic range to half of the scale parameter

of uniform dither. In other words, in matrix completion for

both real and imaginary parts, we have

Q∆ (PΩ (X)) =
∆

2
sgn (PΩ (X)− PΩ (T )) , ∥X∥maxf

∆

2
.

(13)

Hence, by fulfilling the dynamic range condition and employ-

ing the uniform dithering scheme, the quantized measurements

Q can be substituted with ∆
2 R. It is worth noting that in

numerous applications, the upper bound of the dynamic range

of measurements is known [29, 30]. Therefore, we can easily

design the scale parameter of uniform dithers based on this

information.

Denote a linear transformation A : Cn1×n2 → Cm′
and

A⋆ : Cm′ → Cn1×n2 as its adjoint operator. To address the

nuclear norm minimization problem in one-bit Hankel matrix

completion, we employ the SVT algorithm. If we consider the

singular value decomposition (SVD) of X as X = UΣV¦

and {Ãi} as its singular values, the SVT use the singular

value shrinkage operator comprehensively investigated in [28,

31] which applies the partial SVD to achieve the low-rank

matrix structure as DÄ (X) = UDÄ (Σ)V¦, DÄ (Σ) =

diag
(

(Ãi − Ä)
+
)

, where Ä g 0 is the predefined threshold.

The key distinction lies in our approach: rather than utilizing

high-resolution partial measurements at each iteration, we

employ one-bit data in the following manner:
{

X(k) = DÄ

(

A⋆
(

y
(k−1)

))

,
y
(k) = y

(k−1) + ¶k
(

b−A
(

X(k)
))

,
(14)

where {¶k} are step sizes and b = vec
(

∆
2 [ri,j ](i,j)∈Ω

)

∈
{

−∆
2 ,

∆
2

}m′

+ j
{

−∆
2 ,

∆
2

}m′

.

C. Theoretical Guarantees for Recovery Performance

As the norm-2 can be constrained by the norm-1, the one-

bit matrix completion constraint in (12) can be alternatively

expressed as
∥

∥vec
(

PΩ (X)− ∆
2 R
)
∥

∥

1
f q′. In the rest of this

section, our aim is to theoretically investigate the parameter q′

and establish its upper bound. Define the following operator:

Definition 1. For a matrix X = [Xi,j ] ∈ Rn1×n2 and the

one-bit matrix R ∈ {−1, 0, 1}n1×n2 , we denote the average

of distortions by

Tave(X) =
1

m′

∥

∥

∥

∥

vec

(

PΩ (X)− ∆

2
R

)
∥

∥

∥

∥

1

,

=
1

m′

∑

(i,j)∈Ω

∣

∣

∣

∣

Xi,j −
∆

2
Ri,j

∣

∣

∣

∣

,
(15)

where m′ = |Ω|.
It is important to note that the guarantee is obtained under

the uniform dithering scheme. In the following definition, we

state the consistent reconstruction property which will be our

assumption in the provided theorem:

Definition 2. Define a low-rank matrix X = [Xi,j ] ∈ Rn1×n2 .

The consistency property of uniform quantization over the pair

X,Y ∈ Kr, is given by

Q∆ (PΩ (X)) = Q∆ (PΩ (Y)) . (16)

When we frame the one-bit matrix completion problem as a

nuclear norm minimization problem with the one-bit data ma-

trix R ∈ {−1, 0, 1}n1×n2+j {−1, 0, 1}n1×n2 representing our

observation, we can derive an upper bound for the recovery,

as presented in the following theorem:

Theorem 1. Define the set Kr as

Kr =
{

X′ ∈ C
n1×n2 | rank(X′) f r, ´ f ³

}

¢ C
n1×n2 ,

(17)

where ´ = max (∥Re (X′) ∥max, ∥Im (X′) ∥max). Consider a

matrix X ∈ Kr. Now, let’s assume that m′ entries of X,

randomly selected using uniform sampling, undergo dithered

one-bit quantization with uniform thresholds generated as

Authorized licensed use limited to: The University of Alabama. Downloaded on May 12,2025 at 19:02:24 UTC from IEEE Xplore.  Restrictions apply. 
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Äi,j ∼ U[−∆
2 ,∆2 ]

where 2³ f ∆, leading to the observed

one-bit data matrix R. Then, with a probability exceeding

1 − 4e−
ε2m′

∆2 , we can assert that the recovery error between

X and the estimated matrix X̄ satisfying the consistency in

Definition 2 is bounded as follows:

∥X− X̄∥Ff 2
√
8ϵ³n1n2, (18)

as long as m′ ≳ ε−
5
2 rmax (n1, n2).

The complete proof of Theorem 1 can be found in Ap-

pendix A. According to Theorem 1, the recovery performance

of dithered one-bit matrix completion depends on the dimen-

sion of signal and the distortion of uniform quantized values.

III. NUMERICAL INVESTIGATION

In this section, we undertake numerical investigations to

assess the performance of the one-dimensional sparse array

completion that jointly utilizes sparse spectrum and sparse

arrays with one-bit dither measurements for radar sensing in

automotive applications.

To attain high azimuth angular resolution, we cascade

multiple automotive radar transceivers to synthesize a large

sparse array in azimuth. We focus on the same physical array

illustrated in Fig. 1, where there are Mt = 6 transmit antennas

and Mr = 8 receive antennas arranged in an interleaved

manner along the horizontal direction at:

lTX = [1, 19, 37, 55, 79, 91]¼/2,

lRX = [12, 22, 25, 39, 58, 62, 70, 73]¼/2.
(19)

A virtual array with total 48 elements is synthesized. The

transmit and receive antennas as well as the virtual array

are plotted in Fig. 1. Two targets are positioned at the same

range R = 100 m with velocities of v = −10 m/s. Their

respective azimuth angles are ¹1 = −57◦ and ¹2 = −34◦.

The SNR is set as 20dB in our simulations. Initially, the two

targets can be first separated in range-Doppler. The complex

peak values in the range-Doppler spectrum, corresponding

to each virtual sparse array, constitute an array snapshot for

azimuth angle determination. We apply the one-bit quantizer

with uniform dithering following Äi,j ∼ U[−∆
2 ,∆2 ]

, to a Hankel

matrix X ∈ C76×76, which is constructed based on the array

response of a ULA with 152 elements and sampled by the SLA

shown in Fig. 1. The array response of the SLA is normalized

by its first element. The scale parameter of uniform dithers

is designed in such a way to dominate the dynamic range of

measurements. Using the partial one-bit data R, the rank-2
Hankel matrix X is completed via the proposed algorithm in

(14). Let X̄ denote the completed Hankel matrix. The full

ULA response can be reconstructed by taking the average of

the anti-diagonal elements of matrix X̄. The completed full

array has an aperture size of 76¼.

In Fig. 2, we depict the angle spectrum for the two targets.

The azimuth angle spectra are derived by applying FFT to the

original SLA with the holes filled with zeros and to the full

array completed via one-bit matrix completion, respectively.

The FFT of the SLA produces two peaks corresponding to the

correct azimuth directions but with high sidelobes, making it

challenging to detect the two targets accurately in azimuth.

Figure 2. The spectrum of two targets with azimuth angles of θ1 = −57
◦

and θ2 = −34
◦ under MIMO sparse array and fully completed array.

In contrast, the completed full array from one-bit samples ex-

hibits two distinct peaks corresponding to the correct azimuth

locations in the angle spectrum, with significantly suppressed

sidelobes.

IV. DISCUSSION

We employed the memoryless scalar quantization to

coarsely quantize measurements from a sparse linear array

system used in the high-resolution imaging radar. By utiliz-

ing a uniform dithering scheme and recording only one-bit

data for reconstruction, we accurately detected two targets

in azimuth with significantly suppressed spectrum sidelobes.

The quantized Hankel matrix completion problem was solved,

and we extensively discussed theoretical guarantees and re-

covery performance. This paper specifically addressed the

two-dimensional scenario, and future work would aim to

extend the scope to three-dimensional targets, incorporating

enriched Hankel matrix completion techniques for a more

comprehensive analysis.

APPENDIX A

PROOF OF THEOREM 1

Without loss of generality, we assume ³ = ∆
2 . We begin

the proof by presenting the following lemma:

Lemma 1. In the settings of Definition 1, we have

Pr

(

sup
X∈Kr

∣

∣

∣

∣

Tave(X)− ³+
∥X∥2F
³n1n2

∣

∣

∣

∣

g ϵ

)

f 2e−
ϵ2m′

4³2 , (20)

where ϵ is a positive value.

Proof: For simplicity of notation, denote di,j =
|Xi,j − ³Ri,j |. Then, we can write

Eτ {di,j} =
1

2³

∫ α

−α

|Xi,j − ³Ri,j | dÄ

=
1

2³

[
∫ X

−α

³−Xi,j dÄ +

∫ α

X

³+Xi,j dÄ

]

= ³−
X

2

i,j

³
.

(21)

Authorized licensed use limited to: The University of Alabama. Downloaded on May 12,2025 at 19:02:24 UTC from IEEE Xplore.  Restrictions apply. 



5

Therefore, we have

EÄ {Tave(X)} =
1

m′

∑

(i,j)∈Ω

(

³−
X2

i,j

³

)

= ³− ∥PΩ (X) ∥2F
³m′

.

(22)

Computing the expected value of (22) respect to the random-

ness of (i, j) leads to

EÄ,(i,j) {Tave(X)} = ³− ∥X∥2F
³n1n2

. (23)

In the following lemma, we present the Hoeffding’s inequality

for bounded random variables:

Lemma 2. [32, Theroem 2.2.5] Let {Xi}ni=1 be independent,

bounded random variables satisfying Xi ∈ [ai, bi], then for

any t > 0 it holds that

Pr

(
∣

∣

∣

∣

∣

1

n

n
∑

i=1

(Xi − E {Xi})
∣

∣

∣

∣

∣

g t

)

f 2e
− 2n2t2

∑n
i=1(bi−ai)

2
. (24)

Note that for each random variable di,j , we have 0 f di,j f
2³. Then, following Lemma 2, we can write

Pr

(∣

∣

∣

∣

Tave(X)− ³+
∥X∥2F
³n1n2

∣

∣

∣

∣

g ϵ

)

f 2e−
ϵ2m′

2³2 . (25)

As we consider the supremum over all X ∈ Kr, it is necessary

to multiply the resulting probability by the covering number

of the defined set. It is straightforward to verify that the

covering number of Ä-balls required to cover the set Kr is

upper bounded by

N (Kr, ∥·∥F , Ä) f
(

1 +
2³

√
n1n2

Ä

)(n1+n2)r

, (26)

which can be further upper bounded by

N (Kr, ∥·∥F , Ä) f e
(n1+n2)r log

(

1+
2³

√
n1n2
Ä

)

f e
2³(n1+n2)r

√
n1n2

Ä .
(27)

Based on (27), the Kolmogorov Ä-entropy of the set Kr is

upper bounded by

H (Kr, Ä) f
2³(n1 + n2)r

√
n1n2

Ä
. (28)

To achieve the probability at least 1−2e−
ϵ2m′

4³2 , it is sufficient

to write

e
2³(n1+n2)r

√
n1n2

Ä f e
ϵ2m′

4³2 , (29)

or equivalently,

m′ g 8³3(n1 + n2)r
√
n1n2

ϵ2Ä
, (30)

which proves the lemma.

Define Z = 1
2 (X + X̄). We can write Zi,j − ³Ri,j =

1
2

(

Xi,j − ³Ri,j + X̄i,j − ³Ri,j

)

. The triangle inequality im-

plies

|Zi,j − ³Ri,j | f
1

2

(

|Xi,j − ³Ri,j |+
∣

∣X̄i,j − ³Ri,j

∣

∣

)

. (31)

Based on (31), for all (i, j) ∈ Ω, we can write

Tave(Z) f
1

2

[

Tave(X) + Tave(X̄)
]

. (32)

Under the consistent reconstruction assumption in Definition 2,

with a failure probability at most 2e−
ϵ2m′

4³2 , Lemma 1 implies
∣

∣

∣

∣

Tave(X̄)− ³+
∥X̄∥2F
³n1n2

∣

∣

∣

∣

f ϵ. (33)

Similarly, with a failure probability at most 2e−
ϵ2m′

4³2 , we have

∥Z∥2F
³n1n2

g ³− ϵ− Tave(Z), (34)

which together with (32) and (33), we can write
∥Z∥2F
³n1n2

g ³− ϵ−
1

2

[

Tave(X) + Tave(X̄)
]

g ³− ϵ−
1

2

[

−
∥X∥2F
³n1n2

+ ³+ ϵ−
∥X̄∥2F
³n1n2

+ ³+ ϵ

]

=
1

2³n1n2

[

∥X∥2F+∥X̄∥2F
]

− 2ϵ.

(35)

Based on the definition of Z, we can rewrite (35) in terms of

X and X̄ as follows

∥X+ X̄∥2Fg 2
(

∥X∥2F+∥X̄∥2F
)

− 8³n1n2ϵ. (36)

By the parallelogram law, we conclude that

∥X− X̄∥2F = 2
[

∥X∥2F+∥X̄∥2F
]

− ∥X+ X̄∥2F
f 8³n1n2ϵ.

(37)

Denote Ä =
√
8ϵ³n1n2. Then, according to Lemma 1, with a

failure probability at most 2e−
ϵ2m′

4³2 , we have ∥X − X̄∥Ff Ä
as long as

m′ ≳ ϵ−
5
2 rmax (n1, n2) . (38)

To finalize the proof, we now take into account both real and

imaginary parts. It is noteworthy that the error of a complex

value can be upper bounded by its real part and imaginary

part, based on the triangle inequality, as follows:

∥X− X̄∥Ff ∥Re (X)− Re
(

X̄
)

∥F+∥Im (X)− Im
(

X̄
)

∥F,
(39)

where both parts are upper bounded by (37) leading to have

∥X− X̄∥Ff 2Ä, (40)

which completes the proof. Note that the factor of 4 in the

probability arises from the fact that both real and imaginary

parts have the same probability. According to the union bound,

this results in the overall probability being twice as large.
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