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Abstract—We introduce an interpretable deep-learning
(DL) approach for direction-of-arrival (DOA) estimation with
a single snapshot. Classical subspace-based methods, such
as multiple signal classification (MUSIC) and estimation
of parameters by rotational invariant technique (ESPRIT),
use spatial smoothing on uniform linear arrays (ULAs)
for single-snapshot DOA estimation but face drawbacks in
reduced array aperture and inapplicability to sparse arrays.
Single-snapshot methods, such as compressive sensing
(CS) and iterative adaptive approach (IAA), encounter chal-
lenges with high-computational costs and slow convergence,
hampering real-time use. Recent DL DOA methods offer
promising accuracy and speed. However, the practical
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deployment of deep networks is hindered by their black-box nature. To address this, we propose a deep-minimum
power distortionless response (MPDR) network translating MPDR-type beamformer into DL, enhancing generalization
and efficiency. Comprehensive experiments conducted using both simulated and real-world datasets substantiate its
dominance in terms of inference time and accuracy in comparison with conventional methods. Moreover, it excels in

terms of efficiency, generalizability, and interpretability when

contrasted with other DL DOA estimation networks.

Index Terms— Array signal processing, automotive radar, deep learning (DL), interpretability, single-snapshot

direction-of-arrival (DOA) estimation.

I. INTRODUCTION
IRECTION-OF-ARRIVAL (DOA) estimation, com-
monly referred to as direction finding, is a pivotal process

in sensor array signal processing and various engineering
fields, such as radar, radio astronomy, sonar, navigation,
remote sensing, wireless communications, biomedical engi-
neering, and speech processing. Despite extensive study in
the literature, where many algorithms have been proposed
and their performances thoroughly analyzed, most of these
efforts focus on the asymptotic scenario of a large number of
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snapshots. However, in dynamically changing scenarios, such
as those encountered in practical automotive radar applica-
tions, the available DOA estimation data are often constrained
to only a limited number of radar sensor array snapshots or,
in the most challenging situations, even a single snapshot [1],
(21, [3], [4], [5], [6].

The exploration of DOA estimation methods spans a signifi-
cant historical trajectory [7]. The conventional (Bartlett) beam-
former, dating back to World War II, utilizes Fourier-based
spectral analysis on spatiotemporally sampled data, but it
suffered from high sidelobe levels and limitations due to
the Rayleigh resolution. Subsequently, the minimum power
distortionless response (MPDR) beamformer and the minimum
variance distortionless response (MVDR) beamformer, often
referred to as the Capon beamformer, were introduced [8],
[9]. These techniques aim to enhance source estimation in
scenarios with closely spaced sources. The MPDR minimizes
its output power under the constraint that the target signal is
distortionless in the output, while the MVDR prioritizes signal
power in the specified direction and simultaneously suppresses
interference and noise from other angles.

Beyond beamforming methods, parametric subspace-based
approaches, including techniques, such as multiple signal
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classification (MUSIC) [10] and the estimation of parameters
by rotational invariant techniques (ESPRITs) [11], along with
their respective variants [12], [13], retrieve DOA from data
second-order statistics [14]. DOA estimation can also be
achieved using the nonlinear least squares (NLS) method,
often referred to as the deterministic maximum likelihood
(DML) estimation. DML typically requires a multidimensional
grid search across the parameter space to determine the global
minimum. Evidently, the computational complexity of this
exhaustive multidimensional search strategy escalates expo-
nentially with the number of sources [7].

To mitigate the computational burden associated with NLS
optimization, convex approximation methods rooted in sparse
regularization have been proposed. Techniques based on
compressive sensing (CS) [15], which exploit the sparse
nature of targets in the angular domain, have demonstrated
super-resolution performance [16] and work effectively with
single snapshot. For CS-based DOA estimation algorithms,
the dictionary must satisfy the restricted isometry property
(RIP) condition [17], which demands an optimized design
of antenna arrays to maintain low peak sidelobe levels [4].
Another notable DOA estimation algorithm compatible with
single snapshot is the iterative adaptive approach (IAA) [18],
[19], employing an iterative and nonparametric approach. IAA
has shown robustness in DOA estimation in comparison with
CS-based methods.

However, these methods are subject to well-known lim-
itations. Subspace-based techniques and the NLS method
require prior knowledge of the source number, which might
be challenging to obtain. Covariance-based methods, such
as Capon’s beamformer, MUSIC, and ESPRIT, rely on a
sufficient number of data snapshots to accurately estimate
the data covariance matrix and can be affected by source
correlations that lead to a rank deficiency in the sample data
covariance matrix. Although spatial smoothing can alleviate
some of these challenges by generating a smaller averaged
covariance matrix, it is important to note that this technique
is applicable only to uniform linear arrays (ULAs) and is
not suitable for sparse arrays. In addition, spatial smooth-
ing results in a reduction of the effective aperture size of
the array. In addition to these considerations, it is worth
noting that super-resolution methods often entail substantial
computational expense, requiring procedures, such as singular
value decomposition (SVD), eigenvalue decomposition, matrix
inversions on covariance matrices, or angle scanning.

In recent times, data-driven deep-learning (DL) approaches
for DOA estimation have gained significant traction [20],
[21], [22], [23], [24]. In general, DL-based methods offer
several noteworthy advantages over traditional approaches,
including rapid inference times and improved super-resolution
capabilities [20]. However, it is important to acknowledge that
DL techniques are predominantly data-driven and often lack
interpretability. On the other hand, model-based DL methods
[25], [26] aim to bridge this gap by combining the strengths
of traditional mathematical models with data-driven systems.
These approaches harness domain knowledge and mathe-
matical structures tailored to specific problems, providing a
more principled and interpretable framework while benefiting
from limited data. Some model-based DL techniques proposed
in earlier research [27], [28] introduce a new category of

robust DOA estimation solutions that effectively integrate
available domain expertise. Nonetheless, their interpretability
and performance with unseen array structures and an unknown
number of sources are still constrained by their DL nature.
Consequently, the quest for interpretable, generalizable, and
high-performance deep architectures in the realm of signal
processing remains a crucial and ongoing challenge.

In this article, we present an interpretable and efficient
DL network called deep MPDR, which maps MPDR beam-
former principles to a DL framework. MPDR beamformer
is inherently interpretable, as it leverages domain knowledge
to model physical processes. Our approach enhances inter-
pretability compared with conventional deep neural networks
by emulating MPDR beamformer characteristics. Through
comprehensive experiments utilizing simulated and real-world
datasets across diverse signal-to-noise ratio (SNR) scenarios,
we illustrate the superiority of deep MPDR over traditional
algorithms in both inference time and DOA estimation accu-
racy. Furthermore, deep MPDR surpasses data-driven DL
methods in terms of parameter efficiency and generalization
capability. These findings underscore the considerable poten-
tial of deep MPDR as a promising solution for DOA estimation
challenges, offering enhanced performance and interpretability
compared with the existing techniques.

1. SYSTEM MODEL

In this section, we present the formulation of the DOA
estimation problem. In addition, we introduce the MPDR
beamformer and, in conjunction, present the IAA algorithm.

A. Signal Model

Consider a scenario with K narrowband far-field source

signals s; for k = 1,..., K, impinging on a general linear
omnidirectional antenna array comprised of N elements from
direction 6, for k = 1, ..., K. The temporal differences among

the sensors can be accurately captured through simple phase
shifts, resulting in the following data model:

K
() = D a@)sc(t) +n()
k=1

=A@)s@)+n@), t=1,...,T (1)

where ¢ indexes the snapshot, 7' is the number of snapshots, n
represents a complex N x 1 white Gaussian noise vector, and
A(0) = [a(6)), a(b), ...,a(fk)] is the N x K array manifold
matrix, where

2rdy

a(h) = [l,e 3

sinﬁ’”.’e%sine]]ﬂ‘ (2)
Here, d, is the element spacing between the nth element and
the first element, and s(z) = [s1(?), $2(?), ..., sx(®)]T is the
source vector. In this article, we are interested in estimating
the parameter 6, i.e., the target DOAs, using a single snapshot
of the array response y. Accordingly, with T equating to 1, the
signal snapshot model can be rephrased as y = A(#)s + n.

B. MPDR and IAA

The MPDR beamformer is obtained through the minimiza-
tion of power at the beamformer’s output while ensuring that
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the signal from the intended direction remains undistorted.
This can be formulated mathematically as follows:

WypppR = arg min wiR w 3)
w
subjects to the constraint
wia(9) = 1. 4)

Here, w” denotes the Hermitian transpose of MPDR beam-
former weights, and R corresponds to the covariance matrix,
which can be acquired using R = E[yy”]. Incorporating
the constraint into the objective function using a Lagrange
multiplier and subsequently taking the complex gradient with
respect to w, then setting the result to zero, lead to the solution
for (3) as follows:

R 'a(9)

af (@R 'a@®) ©)

wnvipDR (0) =

The calculation of MPDR beamformer weights involves
inverting the covariance matrix. However, accurately estimat-
ing the covariance matrix from a single snapshot presents
challenges and results in performance degradation for the
MPDR beamformer.

IAA is a data-dependent, nonparametric algorithm [18].
It discretizes the DOA space into an L point grid, defining
the array manifold as A(@) = [a(6,), ..., a(8.)]. The fictitious
covariance matrix of y is represented as Ry = A(0)PAH ),
where P is an L x L diagonal matrix with the /th diagonal
element being P, = (1/T) Zthl 15,()]?, and §; is the source
reflection coefficient corresponding to direction 6.

TAA iteratively estimates the reflection coefficient § and
updates the fictitious covariance matrix by minimizing the
weighted least-square (WLS) cost function ||y —s;a(6;) ||é

A

)’
where X2, 2 X7Q7'@)X and Q@) = Ry —

Pa(6,)a’ (6). The solution to this optimization problem is
a (6)R;'
—'y'
al (6)R'a(6)

5= (6)
From (6), each iteration of the IAA essentially involves
performing MPDR type of beamforming. In IAA, new beam-
former weights are iteratively calculated, coupled with the
application of diagonal loading techniques [29], [30] to the
fictitious covariance matrix before matrix inversion, which
enhances the algorithm’s robustness and stability. Inspired by
TIAA, we can reformulate the calculation of MPDR-type beam-
former weights for the single-snapshot scenarios as follows:

af (O)R;!
al (0)R;'a(6)
a (6)(APA®) ™!

wi () =

= . ()
a (0) (APAT) " a(0)
If A and P are invertible, we can write that
a 0)((a")"'P1A"")
wi (@) = ®)

aH(e)((AH)“P—lA—')a(e)'

Furthermore, the beamformer weight for all 6 can be written
as follows:

1
H _ I
w _T(S)Qb(s) ©)
where
T(S) = AH((AH)_ldiag(&A*l) (10)
b(S) = Diag (A" (") 'diag($)A~)A).  (1D)

Here, S = [1/|5:°, 1/I521%, ..., 1/I5:/’], and § = Af'y. The
notation diag(-) denotes the operation of creating a diagonal
matrix using a vector, and Diag(-) signifies extracting the
diagonal elements of a matrix. T(S) is an L x N complex-
valued matrix, and b(S) is an L x 1 complex-valued vector.
The symbol © denotes rowwise matrix-vector multiplication.
Specifically, the ith row of W# is computed by multiplying
the ith row of T(S) by the ith element of 1/b(S). However,
in most cases, L > N, which results in A being a fat matrix,
and A~! may not exist. Equations (8)—(11) are deliberately for-
mulated in their current state to improve understanding of the
mapping process that connects the MPDR-type beamformer,
similar to a single iteration of TAA, with the architecture of
DL networks, as explained in Section III. Henceforth, we use
the term “MPDR” to refer to our custom-defined MPDR-type
beamformer for simplicity.

[1l. DEEP-MPDR NETWORK FOR DOA ESTIMATION

In this section, we introduce the innovative deep-MPDR
network, which integrates the conventional MPDR beam-
former with deep networks. The deep MPDR generates a
pseudo-spectrum, containing estimated reflection power, which
enables us to formulate the DOA estimation as a spectrum
estimation problem, rather than a multilabel classification task.

A. Deep-MPDR Architecture

We provide a comprehensive overview of the deep-MPDR
architecture, highlighting its key components and innovative
features. The fundamental concept driving deep MPDR is the
transformation of (9) into a matrix multiplication involving
multiple learnable parameter matrices with S. The procedure
of mapping the MPDR beamformer to deep networks can be
expressed as follows:

A

Wil omeor (8) = T(5) © b(s) (12)

where
T(5) = @ ®,diag(s) @3 (13)
b(s) = Diag(®.diag(s) ®s). (14)

Here, ® represents the learnable parameters matrix of our cus-
tomized DL layer. This layer conducts matrix multiplication
between ® and the input matrix.

The mapping between the deep-MPDR architecture and (9)
is illustrated in Fig. 1. Here, T(S) and b(s) correspond to
the numerator and denominator of the MPDR beamformer,
respectively, with the reciprocal of b(S) being replaced by
b(s). In other words, the ith row of W1 is obtained by the
product of the ith row of T(S) and the ith element of b(s).
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Top section illustrates the MPDR-type beamformer, with W* representing beamformer weights € C-N and A the array manifold matrix

€ CN<L_ In the bottom section, we depict the deep-MPDR architecture. The symbol @ denotes a matrix of complex, learnable parameters within our
custom DL layer, performing matrix multiplication with the input. Specifically, ®; and ®3 € C-*N correspond to the first and third layers, while @,
e CN*L represents the second layer. In addition, ®4 and ®5 € CL*L correspond to the fourth and fifth layers.

In addition, ®; maps to the dictionary matrix, denoted as A.
For simplicity, instead of taking S as input, we directly use § as
input and utilize ®, and ®;3 to perform operations akin to the
inversion of the covariance matrix. Meanwhile, ®, and ®5 are
associated with diagonal-dominant matrices, with ®, related
to A(A)~! and ®; linked to A™'A.

Similar to the conventional MPDR beamformer, the spec-
trum estimation of the deep MPDR, §, is achieved as follows:

§ = Wi MpDRY- (15)

The obtained s is subsequently processed through a normal-
ization layer followed by a soft threshold layer, resulting in
the final estimation, S. The normalization layer ensures that the
input is scaled within the range of O—1. On the other hand, the
soft threshold layer incorporates two learnable parameters, o
and B, defining the operation of soft thresholding as follows:

§ = § * Sigmoid(a (5 — A(D))) (16)

where 1 is a vector containing all 1 entries and * stands for
elementwise multiplication. Transforming the classical beam-
former into a DL network represents a fusion of the strengths
inherent in both paradigms. By harnessing the advantages of
DL networks, such as exceptional performance in complex
tasks, and integrating them with the interpretability offered by
classical model-based approaches, we arrive at an efficient and
accessible solution for DOA estimation. This unique synthesis
yields superior performance and empowers us with a highly
explainable and effective solution.

B. Data Generation and Labeling

1) Simulated Dataset: We deploy a ULA consisting of
N = 64 elements with an interelement spacing equivalent
to half a wavelength. This configuration forms the basis for
generating simulated beam vectors that depict three targets,
each identified by its DOA denoted as 6, and maintaining
a minimum separation of A¢ = 1°. The radar’s field of
view (FOV), encompassing ¢poy = [—90°, 90°], undergoes
discretization in steps of 1°. The outcome is a grid g =
[g1,...,8m]" € RM*! where M = 181 potential DOA

angles emerge. Each DOA source’s reflection coefficients sy
materialize as randomly generated complex numbers.
The label assigned to the beam vector is denoted as g =

[81,...,8m]" € RM*! and its form can be represented as
follows:
~ |Sk|7 if 91( = 8&m
m = 17
§ ’ 0, else. (17

To fabricate these beam vectors, we amalgamate an array
of diverse angles with randomly chosen reflection coefficients.
The outcome is a set of 10 00 000 beam vectors, each generated
to maintain an SNR of 15 dB, and all simulated targets
are positioned on the angle grid. We opt for three targets
when creating the simulated dataset due to the characteristics
of automotive radars equipped with mmWave technology.
These radars leverage a wide bandwidth, leading to high-range
resolution. Consequently, only a limited number of targets fall
within the same range-Doppler bin [4], making three targets
sufficient in such scenarios.

2) Real-World Dataset: Our field experiments utilized three
multimodal sensors: a Texas Instruments (TIs) imaging radar,
Teledyne FLIR Blackfly S stereo cameras, and Velodyne
Ultra Puck VLP-32C light detection and ranging (LiDAR),
as depicted in Fig. 2. The camera and LiDAR measurements
served for experiment recording and provided the ground truth
used to label the radar data. The TI cascaded imaging radar
[33] has the capability to synthesize an 86-element virtual
ULA with half-wavelength spacing along the horizontal direc-
tion. This is accomplished by employing multiple-input and
multiple-output (MIMO) radar technology with nine transmit
and 16 receive antennas.

The experiment was designed by parking a vehicle in an
open parking lot, where a person holding a corner reflector
walked slowly around the vehicle at a distance of approx-
imately 15 m. A total of 195 beam vectors were selected
from various angles to compose our real-world dataset. The
angles of these beam vectors were estimated using fast Fourier
transform (FFT), as illustrated in Fig. 3. Notably, each beam
vector exclusively contained a single target.
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mmMWave Radar

Fig. 2. Data acquisition vehicle platform of Lexus RX450 Hybrid with
high-resolution imaging radar, LiDAR, and stereo cameras is used to
carry out field experiments at The University of Alabama [31], [32].

Real-World Dataset

Frame Index

POEOCESE PP OO PR PR S® P
Angle(degrees)

Fig. 3. FFT spectrum of 195 beam vectors, where the peak of the
spectrum corresponds to the direction of targets. The color bar indicates
the normalized magnitude in decibels (dB).

These individual beam vectors can serve as foundational
components. To generate beam vectors with multiple targets,
it is possible to superimpose beam vectors with different
angles. Moreover, each beam vector comprised 86 elements.
To align with our simulated data, a consecutive set of 64 ran-
dom elements was chosen.

However, it is important to note that the SNR of this dataset
remains constant. Due to constraints inherent to real-world
conditions, this dataset is primarily employed here to showcase
the illustrative performance of deep MPDR, rather than for
comprehensive statistical analysis.

C. Training Approach

The proposed deep-MPDR model underwent end-to-end
training for 100 epochs, employing a batch size of 1024.
The training process utilized the Adam optimizer with a
learning rate set at 0.00001, and the loss function selected
was the mean-squared error (MSE). The experiment itself was
conducted within a Python 3.8 environment, utilizing PyTorch
1.10 and CUDA 11.1, all executed on four NVIDIA RTX
A6000 GPUs.

Loss vs Iteration

— Training Loss
— Validation Loss

-

<
N
I

MSE Loss

103 . | . . | . I | |
1 2 3 4 5 6 7 8 9

Iterations x10%

Fig. 4. Training and validation loss of deep MPDR.

To counteract the risk of overfitting, a distinct validation set
was created, mirroring the methodology of the training set but
with distinct random reflection coefficients. Throughout the
process, close attention was given to both the training and val-
idation loss, as depicted in Fig. 4. The weight corresponding
to the minimum validation loss was chosen as the foundation
for all performance assessment tasks detailed in Section IV.

IV. PERFORMANCE EVALUATION

We assess the deep-MPDR model across four critical
dimensions of DOA estimation: accuracy, separability, gener-
alizability, and complexity. For a comprehensive comparison,
we benchmark the deep-MPDR model against conventional
DOA estimation techniques, including the IAA and Bartlett
beamformers. We opt for the Bartlett beamformer in place of
the MPDR beamformer due to an inherent dimensional mis-
match between the covariance matrix after spatial smoothing
and the signal.

In our evaluation, we also include a convolutional neural
network (CNN) [20] and a multilayer perceptron (MLP)
[23], [24]. These models are specifically designed for DOA
estimation and framed as a multilabel classification task on a
discrete grid. The CNN takes the covariance matrix as input
and is structured with four 2-D convolutional layers followed
by four dense layers. The original CNN architecture is tailored
for a 16-element ULA. When attempting to scale it up to
a 64-element ULA while maintaining the same architecture,
the parameter count increases significantly to 835341 237.
In response, we introduce max-pooling layers between the
convolutional layers to reduce the number of trainable parame-
ters. The MLP includes an input layer that directly takes in the
signal receive vector. This is succeeded by three hidden layers,
each containing 256, 512, and 1024 nodes, correspondingly.
The activation function for the output layer has been switched
to sigmoid. Both the CNN and MLP models are optimized
using binary cross-entropy loss.

Furthermore, to ensure consistency, all grid-based algo-
rithms and DL models employ the same angle grid, discretiz-
ing the FOV from —90° to 90° into 181 equidistant points.
To establish robustness, we conduct all experiments with 5000
Monte Carlo trials.

This comprehensive comparison aims to illuminate both the
merits and limitations of the deep-MPDR model in contrast to
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Fig. 5. Logarithmic scale RMSE versus SNR in the DOA estimation of a
single, randomly generated off-grid target. The dark dashed line on the
chart corresponds to the grid-induced error, which is computed as the
RMSE between the source DOA and the nearest angle on the grid.
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Fig. 6.  Performance evaluation of IAA, Bartlett beamformer, deep

MPDR, CNN, and MLP: hit rate versus Af.

these well-established methods. It also highlights the distinct
advantages of the deep-MPDR model in single-snapshot DOA
estimation.

A. Accuracy

We have opted for the root MSE (RMSE) as the pri-
mary performance metric to assess the accuracy of our DOA
estimation methods. Our approach closely aligns with the stan-
dard grid-based DOA estimation methodology. This involves
conducting a peak search to extract DOA estimates from
the spectrum estimated by the deep-MPDR model. In each
iteration of the Monte Carlo trial, a source off the grid is
generated with a direction randomly selected from the range
of [—90°, 90°], along with an associated SNR.

As illustrated in Fig. 5, the RMSE versus SNR chart reveals
that the deep-MPDR algorithm consistently outperforms both
CNN and MLP models across all SNR scenarios. It delivers a
comparable level of DOA estimation accuracy to that of TAA
and Bartlett beamformer when the SNR is higher than 0 dB.
However, when the SNR falls below 0 dB, indicating that the

Generalizability on ULA
1 ; =ttt
/ / ¢ 7
/ t
0.8+ / ! ;! ]
* é /
II ! I,
06| 1 ]
o] I | 1
= l I
T 04r I' I ’, — = |AA 1
, [ o - Bartlett
A 14 Deep-MPDR
0.2 i I‘ — -CNN 1
» 1'/ —a -MLP
0o s macd . .0
-10 -5 0 5 10 15 20
SNR(dB)
Fig. 7. K+ 1 targets: comparative performance evaluation of IAA,

Bartlett beamformer, deep MPDR, CNN, and MLP in terms of hit rate
versus SNR.
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Fig. 8. Sparse arrays: comparative performance evaluation of 1AA,
Bartlett beamformer, deep MPDR, CNN, and MLP in terms of hit rate

versus SNR.

noise power exceeds the signal power, the performance of all
DL models experiences a significant drop.

The observed phenomenon can be explained by the fact that
all models were trained using a dataset with an SNR of 15 dB
and had no exposure to low SNR data. Incorporating low
SNR data into the training dataset has the potential to improve
model performance in noisy conditions. However, an excessive
amount of noise in the dataset can introduce difficulties during
model training and lead to decreased performance.

Unlike scenarios with multiple snapshots, where accurate
covariance matrix estimation can still be achieved with mul-
tiple low SNR snapshots, in the case of a single snapshot,
lower SNR primarily leads to a distorted beam pattern. Even
with algorithms, such as TAA, its performance significantly
deteriorates. When the RMSE exceeds a certain threshold,
such as 5°, it becomes reasonable to consider the DOA
estimation as inaccurate, and differing RMSE values do not
necessarily reflect model performance. Moreover, in real-world
scenarios, the SNR of single-snapshot data typically exceeds
0 dB. For instance, in the case of automotive radar, the received
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signal benefits from a signal processing gain through the
application of range-Doppler 2-D FFTs [34].

B. Separability

To evaluate the effectiveness of DOA estimation in resolving
closely situated targets, we conducted an experiment featuring
two targets positioned at —A6/2 and A6 /2, respectively, with
A#@ representing the angular gap between them. A trial was
considered successful when the deviation between estimated
DOAs and actual values was within +1°. Hit rate calculation
involved assessing the proportion of successful “hit” trials out
of 5000 Monte Carlo trials conducted at an SNR of 15 dB.

In Fig. 6, all methods successfully resolve both targets
when the separation is greater than 4°. Specifically, in the
case of a 2° separation between two targets, IAA achieves
super-resolution and successfully detects both targets. The
Bartlett beamformer’s theoretical resolution is approximately
1.6°, determined by its 3-dB beamwidth for a 64-element
ULA. However, the Bartlett beamformer’s actual resolution is
affected by the presence of noise, resulting in a 56% hit rate
for resolving both targets. Notably, all DL models demonstrate
strong separability performance, with deep MPDR slightly
trailing the others when A6 is 2°.

C. Generalizability

1) K+ 1 Targets: In order to extend the evaluation of
the applicability of all DL models, an experiment was
undertaken involving four off-grid targets positioned at
[—62.2°, —21.9°,5.3°,45.1°]. Given that our training dataset
is composed of scenarios only involving K = 3 targets, testing
the models using data containing K + 1 targets with diverse
SNRs and randomly assigned reflection coefficients provides
insight into the models’ generalization capabilities.
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FFT spectra and magnitude spectra of learnable parameters. All figures are plotted with normalized magnitude. (a) ®1. (b) ®z. (c) 3.

2) Sparse Arrays: In the practical implementation of DL
models for DOA estimation tasks, the capability to handle
sparse array structures holds significant importance. Sparse
arrays can serve the purpose of deliberate cost reduction
and mitigation of mutual coupling effects. Alternatively, they
might emerge due to antenna element failures within a ULA.
Retraining models each time for different array structures is
impractical. Therefore, as part of our generalizability exper-
iment, we assess model performance on randomly created
sparse arrays. In each trial, 50 elements are randomly selected
out of the 64-element ULA, while maintaining a consistent
aperture setup, where the first element is positioned at location
1 and the last element at location 64. The signal at unselected
elements is set to zero to align with the input layer of DL
models. Apart from this adjustment, all other experimental
conditions remain unchanged.

The results of the generalizability experiment are depicted in
Figs. 7 and 8, where the performance of IAA, Bartlett beam-
former, and three DL models was compared. Deep MPDR
achieves a similar high hit rate to model-based algorithms
when SNR is greater than 0 dB. However, under low SNR
scenarios, all three DL models perform worse than model-
based algorithms, which is consistent with the results shown
in Section IV-A.

On the other hand, deep MPDR demonstrates a better hit
rate in both the K + 1 targets test and sparse arrays test across
all SNR scenarios due to its model-based nature, providing
better generalizability than conventional DL methods. CNN
outperforms MLP in both tests because of its larger number
of parameters, nearly three times that of MLP. Overall, deep
MPDR exhibits good generalizability compared with other DL
models, highlighting its potential for broader applications and
real-world usage.
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Fig. 10. Detection results of DL models on real-world data for three scenarios. Blue lines represent spectra generated by the Bartlett beamformer,
red lines represent spectra generated by corresponding DL models, and the black dashed line represents the ground truth DOA generated by IAA
on an 86-element signal. (a), (d), and (g) MPDR. (b), (e), and (h) CNN. (c), (f), and (i) MLP.

D. Complexity

We conducted a comprehensive assessment of the compu-
tational complexity of the deep-MPDR model by analyzing
its inference time and the number of trainable parameters.
To ensure fairness, all DOA methods were executed in Python
3.8 using PyTorch 1.10 and CUDA 11.1 on a single NVIDIA
RTX A6000 GPU, and the inference time was determined
by averaging over 5000 trials. For the DL-based methods,
a batch size of 1 was employed. The results, as presented
in Table I, highlight that the Bartlett beamformer exhibits
the fastest inference time, primarily because it requires only
a single matrix multiplication operation. In contrast, IAA
has the longest inference time due to its iterative matrix
inversion process, rendering it unsuitable for real-time imple-
mentation. Among the DL models, the CNN method has a
larger number of trainable parameters, because it incorporates
2-D convolutional layers specifically designed for processing
the 2-D covariance matrix input. Meanwhile, MLP proves
slightly faster than deep MPDR, mainly because it consists of
only three fully connected layers. Remarkably, deep MPDR
employs the fewest parameters among the three DL models,
highlighting its parameter efficiency.

TABLE |

INFERENCE TIME COMPARISON OF DOA METHODS

Methods Inference Time (ms) | # Trainable Parameters
Bartlett 0.014 -

IAA 686.20 -

CNN 1.26 2,109,877

MLP 0.63 875,445
Deep-MPDR 0.89 223,718

E. Interpretability

Beyond performance, interpretability is a critical aspect
of DL models. Unlike CNN and MLP models, which can
be challenging to understand solely by examining the net-
work parameters, we can establish the interpretability of the
deep-MPDR model through a comprehensive analysis of its
parameters.

From Section III-A, we know that ®;, ®,, and ®5 are linked
to the dictionary matrix A. Through FFT operations on each
scan grid, FFT spectra are generated. Fig. 9(a) displays the
FFT spectrum of @, revealing similarities to a dictionary
matrix A. Furthermore, Fig. 9(b) and (c) shows the FFT
spectra of @, and @3, respectively, both indicating struc-
tural characteristics in the frequency domain. Furthermore,
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Fig. 9(d) and (e) displays the magnitude spectra, obtained
by taking the absolute values of the complex components,
of @, and ®s, respectively, demonstrating that both parameters
predominantly resemble diagonal-dominant matrices.

F. Real-World Data Examples

In this section, we show some detection examples of DL
models on real-world data. The ground truth of the real-world
data is generated using IAA on 86-element ULA, and a
consecutive 64-element ULA is extracted from the original
86-element ULA to serve as the input for the DL models.

Fig. 10(a)—(c) depicts scenarios with two closely placed
targets at directions of —3° and —1°. Upon closer examination
of these zoomed-in figures, it becomes evident that the Bartlett
beamformer is incapable of resolving these two targets. On the
other hand, all DL models successfully resolve the two tar-
gets, with our deep-MPDR model producing sharper detection
peaks compared with other DL models.

Fig. 10(d)—(f) depicts scenarios with K + 1 targets placed
at the directions of —36°, —20°, 13°, and 46°, respectively.
Leveraging the advantages of the large aperture offered by
the 64-element ULA, the Bartlett beamformer successfully
detects all four targets, albeit with notable high sidelobe levels.
Among the DL models, our deep MPDR demonstrates its
superior generalizability by effectively detecting all four tar-
gets with prominent peaks. However, the CNN model fails to
detect one target at 13°, and while the MLP model successfully
identifies all four targets, the peak at 13° is relatively subdued.

Fig. 10(g)-(i) illustrates scenarios with K + 1 targets
positioned at the directions of —53°, —9°, 50°, and 55°,
respectively, utilizing a sparse array. The sparse array is gener-
ated using the same procedure as described in Section IV-C2.
While the Bartlett beamformer can detect all four targets, the
sidelobe levels are elevated due to the sparse configuration.
Our deep-MPDR model demonstrates its remarkable gener-
alizability by successfully detecting all four targets, although
there is a slight drop in the peak at 55°. In contrast, both CNN
and MLP models struggle to detect all the targets, with CNN
failing to detect the target at —9°, and MLP only detecting
one target at 55°.

V. CONCLUSION

By harnessing the strengths of both the MPDR beam-
former and recent DL-based DOA estimation techniques, our
deep-MPDR network transforms the MPDR beamformer into a
DL framework. Through the integration of domain knowledge,
our deep-MPDR model utilizes fewer parameters while provid-
ing an interpretable and efficient solution for high-resolution
angle finding in single-snapshot scenarios. It achieves fast
inference times by circumventing the high-computational cost
associated with large matrix inversions and exhibits superior
generalization capabilities compared with purely data-driven
DL approaches. We demonstrate the superior performance
of our deep-MPDR network through extensive numerical
experiments on both simulated and real-world datasets. This
innovative approach demonstrates strong performance in
controlled settings and holds promise for real-time DOA
estimation applications in automotive radar scenarios.
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