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Abstract—We introduce an interpretable deep-learning
(DL) approach for direction-of-arrival (DOA) estimation with
a single snapshot. Classical subspace-based methods, such
as multiple signal classification (MUSIC) and estimation
of parameters by rotational invariant technique (ESPRIT),
use spatial smoothing on uniform linear arrays (ULAs)
for single-snapshot DOA estimation but face drawbacks in
reduced array aperture and inapplicability to sparse arrays.
Single-snapshot methods, such as compressive sensing
(CS) and iterative adaptive approach (IAA), encounter chal-
lenges with high-computational costs and slow convergence,
hampering real-time use. Recent DL DOA methods offer
promising accuracy and speed. However, the practical
deployment of deep networks is hindered by their black-box nature. To address this, we propose a deep-minimum
power distortionless response (MPDR) network translating MPDR-type beamformer into DL, enhancing generalization
and efficiency. Comprehensive experiments conducted using both simulated and real-world datasets substantiate its
dominance in terms of inference time and accuracy in comparison with conventional methods. Moreover, it excels in
terms of efficiency, generalizability, and interpretability when contrasted with other DL DOA estimation networks.

Index Terms— Array signal processing, automotive radar, deep learning (DL), interpretability, single-snapshot
direction-of-arrival (DOA) estimation.

I. INTRODUCTION

D
IRECTION-OF-ARRIVAL (DOA) estimation, com-

monly referred to as direction finding, is a pivotal process

in sensor array signal processing and various engineering

fields, such as radar, radio astronomy, sonar, navigation,

remote sensing, wireless communications, biomedical engi-

neering, and speech processing. Despite extensive study in

the literature, where many algorithms have been proposed

and their performances thoroughly analyzed, most of these

efforts focus on the asymptotic scenario of a large number of
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snapshots. However, in dynamically changing scenarios, such

as those encountered in practical automotive radar applica-

tions, the available DOA estimation data are often constrained

to only a limited number of radar sensor array snapshots or,

in the most challenging situations, even a single snapshot [1],

[2], [3], [4], [5], [6].

The exploration of DOA estimation methods spans a signifi-

cant historical trajectory [7]. The conventional (Bartlett) beam-

former, dating back to World War II, utilizes Fourier-based

spectral analysis on spatiotemporally sampled data, but it

suffered from high sidelobe levels and limitations due to

the Rayleigh resolution. Subsequently, the minimum power

distortionless response (MPDR) beamformer and the minimum

variance distortionless response (MVDR) beamformer, often

referred to as the Capon beamformer, were introduced [8],

[9]. These techniques aim to enhance source estimation in

scenarios with closely spaced sources. The MPDR minimizes

its output power under the constraint that the target signal is

distortionless in the output, while the MVDR prioritizes signal

power in the specified direction and simultaneously suppresses

interference and noise from other angles.

Beyond beamforming methods, parametric subspace-based

approaches, including techniques, such as multiple signal
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classification (MUSIC) [10] and the estimation of parameters

by rotational invariant techniques (ESPRITs) [11], along with

their respective variants [12], [13], retrieve DOA from data

second-order statistics [14]. DOA estimation can also be

achieved using the nonlinear least squares (NLS) method,

often referred to as the deterministic maximum likelihood

(DML) estimation. DML typically requires a multidimensional

grid search across the parameter space to determine the global

minimum. Evidently, the computational complexity of this

exhaustive multidimensional search strategy escalates expo-

nentially with the number of sources [7].

To mitigate the computational burden associated with NLS

optimization, convex approximation methods rooted in sparse

regularization have been proposed. Techniques based on

compressive sensing (CS) [15], which exploit the sparse

nature of targets in the angular domain, have demonstrated

super-resolution performance [16] and work effectively with

single snapshot. For CS-based DOA estimation algorithms,

the dictionary must satisfy the restricted isometry property

(RIP) condition [17], which demands an optimized design

of antenna arrays to maintain low peak sidelobe levels [4].

Another notable DOA estimation algorithm compatible with

single snapshot is the iterative adaptive approach (IAA) [18],

[19], employing an iterative and nonparametric approach. IAA

has shown robustness in DOA estimation in comparison with

CS-based methods.

However, these methods are subject to well-known lim-

itations. Subspace-based techniques and the NLS method

require prior knowledge of the source number, which might

be challenging to obtain. Covariance-based methods, such

as Capon’s beamformer, MUSIC, and ESPRIT, rely on a

sufficient number of data snapshots to accurately estimate

the data covariance matrix and can be affected by source

correlations that lead to a rank deficiency in the sample data

covariance matrix. Although spatial smoothing can alleviate

some of these challenges by generating a smaller averaged

covariance matrix, it is important to note that this technique

is applicable only to uniform linear arrays (ULAs) and is

not suitable for sparse arrays. In addition, spatial smooth-

ing results in a reduction of the effective aperture size of

the array. In addition to these considerations, it is worth

noting that super-resolution methods often entail substantial

computational expense, requiring procedures, such as singular

value decomposition (SVD), eigenvalue decomposition, matrix

inversions on covariance matrices, or angle scanning.

In recent times, data-driven deep-learning (DL) approaches

for DOA estimation have gained significant traction [20],

[21], [22], [23], [24]. In general, DL-based methods offer

several noteworthy advantages over traditional approaches,

including rapid inference times and improved super-resolution

capabilities [20]. However, it is important to acknowledge that

DL techniques are predominantly data-driven and often lack

interpretability. On the other hand, model-based DL methods

[25], [26] aim to bridge this gap by combining the strengths

of traditional mathematical models with data-driven systems.

These approaches harness domain knowledge and mathe-

matical structures tailored to specific problems, providing a

more principled and interpretable framework while benefiting

from limited data. Some model-based DL techniques proposed

in earlier research [27], [28] introduce a new category of

robust DOA estimation solutions that effectively integrate

available domain expertise. Nonetheless, their interpretability

and performance with unseen array structures and an unknown

number of sources are still constrained by their DL nature.

Consequently, the quest for interpretable, generalizable, and

high-performance deep architectures in the realm of signal

processing remains a crucial and ongoing challenge.

In this article, we present an interpretable and efficient

DL network called deep MPDR, which maps MPDR beam-

former principles to a DL framework. MPDR beamformer

is inherently interpretable, as it leverages domain knowledge

to model physical processes. Our approach enhances inter-

pretability compared with conventional deep neural networks

by emulating MPDR beamformer characteristics. Through

comprehensive experiments utilizing simulated and real-world

datasets across diverse signal-to-noise ratio (SNR) scenarios,

we illustrate the superiority of deep MPDR over traditional

algorithms in both inference time and DOA estimation accu-

racy. Furthermore, deep MPDR surpasses data-driven DL

methods in terms of parameter efficiency and generalization

capability. These findings underscore the considerable poten-

tial of deep MPDR as a promising solution for DOA estimation

challenges, offering enhanced performance and interpretability

compared with the existing techniques.

II. SYSTEM MODEL

In this section, we present the formulation of the DOA

estimation problem. In addition, we introduce the MPDR

beamformer and, in conjunction, present the IAA algorithm.

A. Signal Model

Consider a scenario with K narrowband far-field source

signals sk for k = 1, . . . , K , impinging on a general linear

omnidirectional antenna array comprised of N elements from

direction ¹k for k = 1, . . . , K . The temporal differences among

the sensors can be accurately captured through simple phase

shifts, resulting in the following data model:

y(t) =

K
∑

k=1

a(¹k)sk(t) + n(t)

= A(¹)s(t) + n(t), t = 1, . . . , T (1)

where t indexes the snapshot, T is the number of snapshots, n

represents a complex N × 1 white Gaussian noise vector, and

A(¹) = [a(¹1), a(¹2), . . . , a(¹K )] is the N × K array manifold

matrix, where

a(¹) =
[

1, e
2Ãd2

λ
sin ¹ , . . . , e

2ÃdN
λ

sin ¹
]T

. (2)

Here, dn is the element spacing between the nth element and

the first element, and s(t) = [s1(t), s2(t), . . . , sK (t)]T is the

source vector. In this article, we are interested in estimating

the parameter ¹ , i.e., the target DOAs, using a single snapshot

of the array response y. Accordingly, with T equating to 1, the

signal snapshot model can be rephrased as y = A(¹)s + n.

B. MPDR and IAA

The MPDR beamformer is obtained through the minimiza-

tion of power at the beamformer’s output while ensuring that
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the signal from the intended direction remains undistorted.

This can be formulated mathematically as follows:

wMPDR = arg min
w

wH R w (3)

subjects to the constraint

wH a(¹) = 1. (4)

Here, wH denotes the Hermitian transpose of MPDR beam-

former weights, and R corresponds to the covariance matrix,

which can be acquired using R = E[yyH ]. Incorporating

the constraint into the objective function using a Lagrange

multiplier and subsequently taking the complex gradient with

respect to w, then setting the result to zero, lead to the solution

for (3) as follows:

wMPDR(¹) =
R−1a(¹)

aH (¹)R−1a(¹)
. (5)

The calculation of MPDR beamformer weights involves

inverting the covariance matrix. However, accurately estimat-

ing the covariance matrix from a single snapshot presents

challenges and results in performance degradation for the

MPDR beamformer.

IAA is a data-dependent, nonparametric algorithm [18].

It discretizes the DOA space into an L point grid, defining

the array manifold as A(¹) = [a(¹1), . . . , a(¹L)]. The fictitious

covariance matrix of y is represented as R f = A(¹)PAH (¹),

where P is an L × L diagonal matrix with the lth diagonal

element being Pl = (1/T )
∑T

t=1 |ŝl(t)|
2, and ŝl is the source

reflection coefficient corresponding to direction ¹l .

IAA iteratively estimates the reflection coefficient ŝ and

updates the fictitious covariance matrix by minimizing the

weighted least-square (WLS) cost function ∥y−sla(¹l)∥
2

Q−1(¹l )
,

where ∥X∥2

Q−1(¹l )

1
= XH Q−1(¹l)X and Q(¹l) = R f −

Pla(¹l)a
H (¹l). The solution to this optimization problem is

ŝl =
aH (¹l)R

−1
f

aH (¹l)R
−1
f a(¹l)

y. (6)

From (6), each iteration of the IAA essentially involves

performing MPDR type of beamforming. In IAA, new beam-

former weights are iteratively calculated, coupled with the

application of diagonal loading techniques [29], [30] to the

fictitious covariance matrix before matrix inversion, which

enhances the algorithm’s robustness and stability. Inspired by

IAA, we can reformulate the calculation of MPDR-type beam-

former weights for the single-snapshot scenarios as follows:

wH (¹) =
aH (¹)R−1

f

aH (¹)R−1
f a(¹)

=
aH (¹)

(

APAH
)−1

aH (¹)
(

APAH
)−1

a(¹)
. (7)

If A and P are invertible, we can write that

wH (¹) =
aH (¹)

(

(

AH
)−1

P−1A−1
)

aH (¹)

(

(

AH
)−1

P−1A−1

)

a(¹)
. (8)

Furthermore, the beamformer weight for all ¹ can be written

as follows:

WH = T(S) »
1

b(S)
(9)

where

T(S) = AH
(

(

AH
)−1

diag(S)A−1
)

(10)

b(S) = Diag
(

AH
(

(

AH
)−1

diag(S)A−1
)

A
)

. (11)

Here, S = [1/|s̄1|
2
, 1/|s̄2|

2
, . . . , 1/|s̄l |

2
], and s̄ = AH y. The

notation diag(·) denotes the operation of creating a diagonal

matrix using a vector, and Diag(·) signifies extracting the

diagonal elements of a matrix. T(S) is an L × N complex-

valued matrix, and b(S) is an L × 1 complex-valued vector.

The symbol » denotes rowwise matrix-vector multiplication.

Specifically, the i th row of WH is computed by multiplying

the i th row of T(S) by the i th element of 1/b(S). However,

in most cases, L k N , which results in A being a fat matrix,

and A−1 may not exist. Equations (8)–(11) are deliberately for-

mulated in their current state to improve understanding of the

mapping process that connects the MPDR-type beamformer,

similar to a single iteration of IAA, with the architecture of

DL networks, as explained in Section III. Henceforth, we use

the term “MPDR” to refer to our custom-defined MPDR-type

beamformer for simplicity.

III. DEEP-MPDR NETWORK FOR DOA ESTIMATION

In this section, we introduce the innovative deep-MPDR

network, which integrates the conventional MPDR beam-

former with deep networks. The deep MPDR generates a

pseudo-spectrum, containing estimated reflection power, which

enables us to formulate the DOA estimation as a spectrum

estimation problem, rather than a multilabel classification task.

A. Deep-MPDR Architecture

We provide a comprehensive overview of the deep-MPDR

architecture, highlighting its key components and innovative

features. The fundamental concept driving deep MPDR is the

transformation of (9) into a matrix multiplication involving

multiple learnable parameter matrices with s̄. The procedure

of mapping the MPDR beamformer to deep networks can be

expressed as follows:

WH
deepMPDR

(

s̄
)

= T̂
(

s̄
)

» b̂
(

s̄
)

(12)

where

T̂
(

s̄
)

= 8182diag
(

s̄
)

83 (13)

b̂
(

s̄
)

= Diag
(

84diag
(

s̄
)

85

)

. (14)

Here, 8 represents the learnable parameters matrix of our cus-

tomized DL layer. This layer conducts matrix multiplication

between 8 and the input matrix.

The mapping between the deep-MPDR architecture and (9)

is illustrated in Fig. 1. Here, T̂(s̄) and b̂(s̄) correspond to

the numerator and denominator of the MPDR beamformer,

respectively, with the reciprocal of b(S) being replaced by

b̂(s̄). In other words, the i th row of WH is obtained by the

product of the i th row of T̂(s̄) and the i th element of b̂(s̄).
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Fig. 1. Top section illustrates the MPDR-type beamformer, with WH representing beamformer weights ∈ C
L×N and A the array manifold matrix

∈ C
N×L. In the bottom section, we depict the deep-MPDR architecture. The symbol 8 denotes a matrix of complex, learnable parameters within our

custom DL layer, performing matrix multiplication with the input. Specifically, 81 and 83 ∈ C
L×N correspond to the first and third layers, while 82

∈ C
N×L represents the second layer. In addition, 84 and 85 ∈ C

L×L correspond to the fourth and fifth layers.

In addition, 81 maps to the dictionary matrix, denoted as A.

For simplicity, instead of taking S as input, we directly use s̄ as

input and utilize 82 and 83 to perform operations akin to the

inversion of the covariance matrix. Meanwhile, 84 and 85 are

associated with diagonal-dominant matrices, with 84 related

to AH (AH )−1 and 85 linked to A−1A.

Similar to the conventional MPDR beamformer, the spec-

trum estimation of the deep MPDR, s̃, is achieved as follows:

s̃ = WH
deepMPDRy. (15)

The obtained s̃ is subsequently processed through a normal-

ization layer followed by a soft threshold layer, resulting in

the final estimation, s̄. The normalization layer ensures that the

input is scaled within the range of 0–1. On the other hand, the

soft threshold layer incorporates two learnable parameters, ³

and ´, defining the operation of soft thresholding as follows:

ŝ = s̃ ∗ Sigmoid
(

³
(

s̃ − ´(1)
))

(16)

where 1 is a vector containing all 1 entries and ∗ stands for

elementwise multiplication. Transforming the classical beam-

former into a DL network represents a fusion of the strengths

inherent in both paradigms. By harnessing the advantages of

DL networks, such as exceptional performance in complex

tasks, and integrating them with the interpretability offered by

classical model-based approaches, we arrive at an efficient and

accessible solution for DOA estimation. This unique synthesis

yields superior performance and empowers us with a highly

explainable and effective solution.

B. Data Generation and Labeling

1) Simulated Dataset: We deploy a ULA consisting of

N = 64 elements with an interelement spacing equivalent

to half a wavelength. This configuration forms the basis for

generating simulated beam vectors that depict three targets,

each identified by its DOA denoted as ¹k , and maintaining

a minimum separation of 1Æ = 1◦. The radar’s field of

view (FOV), encompassing ÆFOV = [−90◦, 90◦], undergoes

discretization in steps of 1◦. The outcome is a grid g =

[g1, . . . , gM ]T ∈ R
M×1, where M = 181 potential DOA

angles emerge. Each DOA source’s reflection coefficients sk

materialize as randomly generated complex numbers.

The label assigned to the beam vector is denoted as ĝ =

[ĝ1, . . . , ĝM ]T ∈ R
M×1, and its form can be represented as

follows:

ĝm =

{

|sk |, if ¹k = gm

0, else.
(17)

To fabricate these beam vectors, we amalgamate an array

of diverse angles with randomly chosen reflection coefficients.

The outcome is a set of 10 00 000 beam vectors, each generated

to maintain an SNR of 15 dB, and all simulated targets

are positioned on the angle grid. We opt for three targets

when creating the simulated dataset due to the characteristics

of automotive radars equipped with mmWave technology.

These radars leverage a wide bandwidth, leading to high-range

resolution. Consequently, only a limited number of targets fall

within the same range-Doppler bin [4], making three targets

sufficient in such scenarios.

2) Real-World Dataset: Our field experiments utilized three

multimodal sensors: a Texas Instruments (TIs) imaging radar,

Teledyne FLIR Blackfly S stereo cameras, and Velodyne

Ultra Puck VLP-32C light detection and ranging (LiDAR),

as depicted in Fig. 2. The camera and LiDAR measurements

served for experiment recording and provided the ground truth

used to label the radar data. The TI cascaded imaging radar

[33] has the capability to synthesize an 86-element virtual

ULA with half-wavelength spacing along the horizontal direc-

tion. This is accomplished by employing multiple-input and

multiple-output (MIMO) radar technology with nine transmit

and 16 receive antennas.

The experiment was designed by parking a vehicle in an

open parking lot, where a person holding a corner reflector

walked slowly around the vehicle at a distance of approx-

imately 15 m. A total of 195 beam vectors were selected

from various angles to compose our real-world dataset. The

angles of these beam vectors were estimated using fast Fourier

transform (FFT), as illustrated in Fig. 3. Notably, each beam

vector exclusively contained a single target.
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Fig. 2. Data acquisition vehicle platform of Lexus RX450 Hybrid with
high-resolution imaging radar, LiDAR, and stereo cameras is used to
carry out field experiments at The University of Alabama [31], [32].

Fig. 3. FFT spectrum of 195 beam vectors, where the peak of the
spectrum corresponds to the direction of targets. The color bar indicates
the normalized magnitude in decibels (dB).

These individual beam vectors can serve as foundational

components. To generate beam vectors with multiple targets,

it is possible to superimpose beam vectors with different

angles. Moreover, each beam vector comprised 86 elements.

To align with our simulated data, a consecutive set of 64 ran-

dom elements was chosen.

However, it is important to note that the SNR of this dataset

remains constant. Due to constraints inherent to real-world

conditions, this dataset is primarily employed here to showcase

the illustrative performance of deep MPDR, rather than for

comprehensive statistical analysis.

C. Training Approach
The proposed deep-MPDR model underwent end-to-end

training for 100 epochs, employing a batch size of 1024.

The training process utilized the Adam optimizer with a

learning rate set at 0.00001, and the loss function selected

was the mean-squared error (MSE). The experiment itself was

conducted within a Python 3.8 environment, utilizing PyTorch

1.10 and CUDA 11.1, all executed on four NVIDIA RTX

A6000 GPUs.

Fig. 4. Training and validation loss of deep MPDR.

To counteract the risk of overfitting, a distinct validation set

was created, mirroring the methodology of the training set but

with distinct random reflection coefficients. Throughout the

process, close attention was given to both the training and val-

idation loss, as depicted in Fig. 4. The weight corresponding

to the minimum validation loss was chosen as the foundation

for all performance assessment tasks detailed in Section IV.

IV. PERFORMANCE EVALUATION

We assess the deep-MPDR model across four critical

dimensions of DOA estimation: accuracy, separability, gener-

alizability, and complexity. For a comprehensive comparison,

we benchmark the deep-MPDR model against conventional

DOA estimation techniques, including the IAA and Bartlett

beamformers. We opt for the Bartlett beamformer in place of

the MPDR beamformer due to an inherent dimensional mis-

match between the covariance matrix after spatial smoothing

and the signal.

In our evaluation, we also include a convolutional neural

network (CNN) [20] and a multilayer perceptron (MLP)

[23], [24]. These models are specifically designed for DOA

estimation and framed as a multilabel classification task on a

discrete grid. The CNN takes the covariance matrix as input

and is structured with four 2-D convolutional layers followed

by four dense layers. The original CNN architecture is tailored

for a 16-element ULA. When attempting to scale it up to

a 64-element ULA while maintaining the same architecture,

the parameter count increases significantly to 83 53 41 237.

In response, we introduce max-pooling layers between the

convolutional layers to reduce the number of trainable parame-

ters. The MLP includes an input layer that directly takes in the

signal receive vector. This is succeeded by three hidden layers,

each containing 256, 512, and 1024 nodes, correspondingly.

The activation function for the output layer has been switched

to sigmoid. Both the CNN and MLP models are optimized

using binary cross-entropy loss.

Furthermore, to ensure consistency, all grid-based algo-

rithms and DL models employ the same angle grid, discretiz-

ing the FOV from −90◦ to 90◦ into 181 equidistant points.

To establish robustness, we conduct all experiments with 5000

Monte Carlo trials.

This comprehensive comparison aims to illuminate both the

merits and limitations of the deep-MPDR model in contrast to
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Fig. 5. Logarithmic scale RMSE versus SNR in the DOA estimation of a
single, randomly generated off-grid target. The dark dashed line on the
chart corresponds to the grid-induced error, which is computed as the
RMSE between the source DOA and the nearest angle on the grid.

Fig. 6. Performance evaluation of IAA, Bartlett beamformer, deep
MPDR, CNN, and MLP: hit rate versus ∆θ.

these well-established methods. It also highlights the distinct

advantages of the deep-MPDR model in single-snapshot DOA

estimation.

A. Accuracy

We have opted for the root MSE (RMSE) as the pri-

mary performance metric to assess the accuracy of our DOA

estimation methods. Our approach closely aligns with the stan-

dard grid-based DOA estimation methodology. This involves

conducting a peak search to extract DOA estimates from

the spectrum estimated by the deep-MPDR model. In each

iteration of the Monte Carlo trial, a source off the grid is

generated with a direction randomly selected from the range

of [−90◦, 90◦], along with an associated SNR.

As illustrated in Fig. 5, the RMSE versus SNR chart reveals

that the deep-MPDR algorithm consistently outperforms both

CNN and MLP models across all SNR scenarios. It delivers a

comparable level of DOA estimation accuracy to that of IAA

and Bartlett beamformer when the SNR is higher than 0 dB.

However, when the SNR falls below 0 dB, indicating that the

Fig. 7. K + 1 targets: comparative performance evaluation of IAA,
Bartlett beamformer, deep MPDR, CNN, and MLP in terms of hit rate
versus SNR.

Fig. 8. Sparse arrays: comparative performance evaluation of IAA,
Bartlett beamformer, deep MPDR, CNN, and MLP in terms of hit rate
versus SNR.

noise power exceeds the signal power, the performance of all

DL models experiences a significant drop.

The observed phenomenon can be explained by the fact that

all models were trained using a dataset with an SNR of 15 dB

and had no exposure to low SNR data. Incorporating low

SNR data into the training dataset has the potential to improve

model performance in noisy conditions. However, an excessive

amount of noise in the dataset can introduce difficulties during

model training and lead to decreased performance.

Unlike scenarios with multiple snapshots, where accurate

covariance matrix estimation can still be achieved with mul-

tiple low SNR snapshots, in the case of a single snapshot,

lower SNR primarily leads to a distorted beam pattern. Even

with algorithms, such as IAA, its performance significantly

deteriorates. When the RMSE exceeds a certain threshold,

such as 5◦, it becomes reasonable to consider the DOA

estimation as inaccurate, and differing RMSE values do not

necessarily reflect model performance. Moreover, in real-world

scenarios, the SNR of single-snapshot data typically exceeds

0 dB. For instance, in the case of automotive radar, the received
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Fig. 9. FFT spectra and magnitude spectra of learnable parameters. All figures are plotted with normalized magnitude. (a) Φ1. (b) Φ2. (c) Φ3.
(d) Φ4. (e) Φ5.

signal benefits from a signal processing gain through the

application of range-Doppler 2-D FFTs [34].

B. Separability
To evaluate the effectiveness of DOA estimation in resolving

closely situated targets, we conducted an experiment featuring

two targets positioned at −1¹/2 and 1¹/2, respectively, with

1¹ representing the angular gap between them. A trial was

considered successful when the deviation between estimated

DOAs and actual values was within ±1◦. Hit rate calculation

involved assessing the proportion of successful “hit” trials out

of 5000 Monte Carlo trials conducted at an SNR of 15 dB.

In Fig. 6, all methods successfully resolve both targets

when the separation is greater than 4◦. Specifically, in the

case of a 2◦ separation between two targets, IAA achieves

super-resolution and successfully detects both targets. The

Bartlett beamformer’s theoretical resolution is approximately

1.6◦, determined by its 3-dB beamwidth for a 64-element

ULA. However, the Bartlett beamformer’s actual resolution is

affected by the presence of noise, resulting in a 56% hit rate

for resolving both targets. Notably, all DL models demonstrate

strong separability performance, with deep MPDR slightly

trailing the others when 1¹ is 2◦.

C. Generalizability
1) K + 1 Targets: In order to extend the evaluation of

the applicability of all DL models, an experiment was

undertaken involving four off-grid targets positioned at

[−62.2◦, −21.9◦, 5.3◦, 45.1◦]. Given that our training dataset

is composed of scenarios only involving K = 3 targets, testing

the models using data containing K + 1 targets with diverse

SNRs and randomly assigned reflection coefficients provides

insight into the models’ generalization capabilities.

2) Sparse Arrays: In the practical implementation of DL

models for DOA estimation tasks, the capability to handle

sparse array structures holds significant importance. Sparse

arrays can serve the purpose of deliberate cost reduction

and mitigation of mutual coupling effects. Alternatively, they

might emerge due to antenna element failures within a ULA.

Retraining models each time for different array structures is

impractical. Therefore, as part of our generalizability exper-

iment, we assess model performance on randomly created

sparse arrays. In each trial, 50 elements are randomly selected

out of the 64-element ULA, while maintaining a consistent

aperture setup, where the first element is positioned at location

1 and the last element at location 64. The signal at unselected

elements is set to zero to align with the input layer of DL

models. Apart from this adjustment, all other experimental

conditions remain unchanged.

The results of the generalizability experiment are depicted in

Figs. 7 and 8, where the performance of IAA, Bartlett beam-

former, and three DL models was compared. Deep MPDR

achieves a similar high hit rate to model-based algorithms

when SNR is greater than 0 dB. However, under low SNR

scenarios, all three DL models perform worse than model-

based algorithms, which is consistent with the results shown

in Section IV-A.

On the other hand, deep MPDR demonstrates a better hit

rate in both the K +1 targets test and sparse arrays test across

all SNR scenarios due to its model-based nature, providing

better generalizability than conventional DL methods. CNN

outperforms MLP in both tests because of its larger number

of parameters, nearly three times that of MLP. Overall, deep

MPDR exhibits good generalizability compared with other DL

models, highlighting its potential for broader applications and

real-world usage.
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Fig. 10. Detection results of DL models on real-world data for three scenarios. Blue lines represent spectra generated by the Bartlett beamformer,
red lines represent spectra generated by corresponding DL models, and the black dashed line represents the ground truth DOA generated by IAA
on an 86-element signal. (a), (d), and (g) MPDR. (b), (e), and (h) CNN. (c), (f), and (i) MLP.

D. Complexity

We conducted a comprehensive assessment of the compu-

tational complexity of the deep-MPDR model by analyzing

its inference time and the number of trainable parameters.

To ensure fairness, all DOA methods were executed in Python

3.8 using PyTorch 1.10 and CUDA 11.1 on a single NVIDIA

RTX A6000 GPU, and the inference time was determined

by averaging over 5000 trials. For the DL-based methods,

a batch size of 1 was employed. The results, as presented

in Table I, highlight that the Bartlett beamformer exhibits

the fastest inference time, primarily because it requires only

a single matrix multiplication operation. In contrast, IAA

has the longest inference time due to its iterative matrix

inversion process, rendering it unsuitable for real-time imple-

mentation. Among the DL models, the CNN method has a

larger number of trainable parameters, because it incorporates

2-D convolutional layers specifically designed for processing

the 2-D covariance matrix input. Meanwhile, MLP proves

slightly faster than deep MPDR, mainly because it consists of

only three fully connected layers. Remarkably, deep MPDR

employs the fewest parameters among the three DL models,

highlighting its parameter efficiency.

TABLE I

INFERENCE TIME COMPARISON OF DOA METHODS

E. Interpretability
Beyond performance, interpretability is a critical aspect

of DL models. Unlike CNN and MLP models, which can

be challenging to understand solely by examining the net-

work parameters, we can establish the interpretability of the

deep-MPDR model through a comprehensive analysis of its

parameters.

From Section III-A, we know that 81, 82, and 83 are linked

to the dictionary matrix A. Through FFT operations on each

scan grid, FFT spectra are generated. Fig. 9(a) displays the

FFT spectrum of 81, revealing similarities to a dictionary

matrix A. Furthermore, Fig. 9(b) and (c) shows the FFT

spectra of 82 and 83, respectively, both indicating struc-

tural characteristics in the frequency domain. Furthermore,
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Fig. 9(d) and (e) displays the magnitude spectra, obtained

by taking the absolute values of the complex components,

of 84 and 85, respectively, demonstrating that both parameters

predominantly resemble diagonal-dominant matrices.

F. Real-World Data Examples

In this section, we show some detection examples of DL

models on real-world data. The ground truth of the real-world

data is generated using IAA on 86-element ULA, and a

consecutive 64-element ULA is extracted from the original

86-element ULA to serve as the input for the DL models.

Fig. 10(a)–(c) depicts scenarios with two closely placed

targets at directions of −3◦ and −1◦. Upon closer examination

of these zoomed-in figures, it becomes evident that the Bartlett

beamformer is incapable of resolving these two targets. On the

other hand, all DL models successfully resolve the two tar-

gets, with our deep-MPDR model producing sharper detection

peaks compared with other DL models.

Fig. 10(d)–(f) depicts scenarios with K + 1 targets placed

at the directions of −36◦, −20◦, 13◦, and 46◦, respectively.

Leveraging the advantages of the large aperture offered by

the 64-element ULA, the Bartlett beamformer successfully

detects all four targets, albeit with notable high sidelobe levels.

Among the DL models, our deep MPDR demonstrates its

superior generalizability by effectively detecting all four tar-

gets with prominent peaks. However, the CNN model fails to

detect one target at 13◦, and while the MLP model successfully

identifies all four targets, the peak at 13◦ is relatively subdued.

Fig. 10(g)–(i) illustrates scenarios with K + 1 targets

positioned at the directions of −53◦, −9◦, 50◦, and 55◦,

respectively, utilizing a sparse array. The sparse array is gener-

ated using the same procedure as described in Section IV-C2.

While the Bartlett beamformer can detect all four targets, the

sidelobe levels are elevated due to the sparse configuration.

Our deep-MPDR model demonstrates its remarkable gener-

alizability by successfully detecting all four targets, although

there is a slight drop in the peak at 55◦. In contrast, both CNN

and MLP models struggle to detect all the targets, with CNN

failing to detect the target at −9◦, and MLP only detecting

one target at 55◦.

V. CONCLUSION

By harnessing the strengths of both the MPDR beam-

former and recent DL-based DOA estimation techniques, our

deep-MPDR network transforms the MPDR beamformer into a

DL framework. Through the integration of domain knowledge,

our deep-MPDR model utilizes fewer parameters while provid-

ing an interpretable and efficient solution for high-resolution

angle finding in single-snapshot scenarios. It achieves fast

inference times by circumventing the high-computational cost

associated with large matrix inversions and exhibits superior

generalization capabilities compared with purely data-driven

DL approaches. We demonstrate the superior performance

of our deep-MPDR network through extensive numerical

experiments on both simulated and real-world datasets. This

innovative approach demonstrates strong performance in

controlled settings and holds promise for real-time DOA

estimation applications in automotive radar scenarios.
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