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Abstract—Automotive radar systems require high resolution in four di-

mensions: range, Doppler, elevation and azimuth. The angular resolution

of an automotive radar are determined by the antenna array aperture.

Two-dimensional (2D) antenna arrays are necessary for angle estimation

in both elevation and azimuth for automotive radar systems to enable

drive-over and drive-under functions. Sparse arrays offer advantages

such as reduced mutual coupling and lower hardware costs. The sparse

array configurations like coprime and nested arrays, which require a

large number of array snapshots, may not be suitable for highly dynamic

automotive scenarios. Multiple-input and multiple-output (MIMO) radars

are widely adopted in automotive radar applications due to their ability

to synthesize a large virtual array. In this paper, our objective is to

optimize the geometry of 2D MIMO sparse arrays while considering

fabrication constraints, i.e., minimal spacing between antennas. This

optimization aims to minimize the peak sidelobe level and half-power

beam width (HPBW), thus enabling high-resolution imaging with single

snapshot. Angle finding is accomplished through a 2D compressive sensing

approach. Through extensive numerical experiments, we demonstrate

that the proposed workflow offers a practical solution for 2D MIMO

sparse arrays, ensuring high angular resolution in automotive radar

systems.

Index Terms—Automotive radar, Constrained optimization, Sparse

array optimization

I. INTRODUCTION

Radar technology has emerged as a crucial component in au-

tonomous driving systems, primarily due to its robustness in adverse

weather conditions [1, 2]. For an automotive radar system to meet

the demands of autonomous driving, it must provide high-resolution

information in four dimensions (4D), encompassing range, Doppler,

azimuth and elevation angles, while maintaining cost-effectiveness

for mass production [3]. The range and Doppler resolution of an

automotive radar are determined by the bandwidth of the radar

waveform and the coherent processing interval (CPI), respectively.

State-of-the-art automotive frequency-modulated continuous wave

(FMCW) radar systems typically operate within the frequency band

of 76-81 GHz. This frequency range allows for the use of relatively

compact antennas that can be discreetly installed behind the vehicle’s

bumper. Additionally, the broad available bandwidth enables high-

resolution target-range measurements.

The range and Doppler parameters of targets can be estimated using

a single receive antenna. However, to estimate the angle parameters of

targets, a receive antenna array is needed. The angular resolution de-

pends on the antenna array’s aperture size. To achieve high-resolution

4D radar imaging for autonomous driving applications, automotive

radars need to occupy a substantial bandwidth, employ a sufficiently

long CPI, and feature a sizable antenna aperture in both horizontal

and vertical directions. However, meeting these requirements presents

significant challenges, particularly when using a filled array approach,

which often requires a high number of antennas to achieve the

desired aperture. To address this issue, sparse arrays have gained

attention as an effective and economical solution for automotive radar

systems [3–6]. Sparse arrays achieve a larger aperture and improved

angular resolution with the same number of elements, making them a

promising alternative to filled arrays. Furthermore, the large element

spacing in sparse arrays can also reduce mutual coupling [7].

An overview of the two-dimensional (2D) sparse arrays and

corresponding direction of arrival (DOA) estimation algorithms was

given in [8]. The 2D sparse planar arrays generally fall into two

categories. The first category involves additional DOA estimation

steps, such as coprime planar arrays (CPA) [9] or general coprime

planar arrays (GCPA) [10] which interleave two uniform planar arrays

with coprime inter-element spacing. Target pairing and dealiasing be-

tween ambiguous peaks observed within each subarray are necessary

to provide the final DOA estimation. These steps can significantly

increase the computational burden. The second category embraces

the concept of the difference coarray, exemplified by nested planar

arrays (NPA) [11, 12], which synthesize a virtual array by considering

the cross correlation between two physical sensors in the array.

However, the effective application of difference coarrays relies on

precise covariance matrix estimation, which, in turn, requires multiple

snapshots and the sources to be non-coherent. Consequently, these 2D

sparse planar arrays may not be suitable for automotive radars, which

often operate in highly dynamic scenarios with limited snapshots.

Alternatively, 2D sparse array geometries for automotive radar

systems can be optimized such that the peak sidelobe level (PSL)

is minimized, while maintaining a narrow half power beam width

(HPBW). Rather than relying on exhaustive search methods, re-

searchers have explored various approaches in the literature to derive

these desired sparse array geometries. These approaches often utilize

heuristic algorithms such as genetic algorithms (GA) [13], simulated

annealing (SA) [14], and particle swarm optimization (PSO) [15],

with a primary focus on reducing PSL and achieving a narrow HPBW.

It should be noted that automotive radar can have different coverage

in range and field of view (FOV). For instance, short-range radars

(SRR) with an azimuth FOV of [−75
◦
, 75

◦
] and a detection range of

45 meters are commonly positioned at the vehicle’s corners for tasks

like blind-spot detection and cross-traffic alerts. Mid-range radars

(MRR), with an azimuth FOV of [−40
◦
, 40

◦
] and a detection range

of 100 meters, are installed on the vehicle’s front and rear sides to

assist in lane-change maneuvers and automatic emergency braking.

Long-range radars (LRR) with an azimuth FOV of [−15
◦
, 15

◦
] and

a detection range of 250 meters are typically placed at the vehicle’s

front to support adaptive cruise control. Thus, when optimizing array

geometry, the focus should be on minimizing PSL within the specific

FOV, while high PSL or even grating lobes outside the FOV can be

addressed through antenna element design [1].

High-resolution direction-of-arrival (DOA) estimation algorithms

are desired to achieve high angular resolution for automotive radar

to enable environmental perception for autonomous vehicles [16].

Subspace-based high-resolution DOA estimation methods, such as
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MUSIC [17–19], ESPRIT [20–22], matrix pencil methods [23, 24],

requires multiple snapshots to estimate the signal and noise subspace.

High-resolution DOA estimation algorithms that work under a single

snapshot, such as compressive sensing [25], are highly desired for

automotive radars. The compressive sensing algorithm demands that

the dictionary matrix adheres to the restricted isometry property

(RIP), or low mutual coherence for the dictionary matrix.

In the realm of automotive radar applications, multiple-input and

multiple-output (MIMO) radar [26, 27] has gained increasing popu-

larity due to its cost-efficient ability to synthesize large virtual arrays,

thereby providing high angular resolution with low hardware cost [1].

Moreover, the missing antenna information from a sparse MIMO

radar signal can be estimated using a 2D variant of the missing-

data iterative adaptive approach (MIAA) and subsequently detecting

objects and their locations within the radar array’s field of view

through multi-dimensional folding (MDF) [28].

In this paper, we introduce a novel workflow for designing 2D

MIMO sparse arrays tailored for automotive radar applications.

Our approach begins with formulating sparse array optimization as

a constrained optimization problem, with a primary objective of

minimizing the PSL and the beam width of the main lobe within

a defined FOV. Additionally, we account for real-world fabrication

constraints, such as the minimum required distance between anten-

nas, ensuring the practical manufacturability of our optimized array

geometry. Furthermore, we propose the incorporation of a 2D sparse

super-resolution algorithm, such as compressive sensing [25], which

effectively enhances angular resolution even when a limited number

of array snapshots are available, thereby further improving the angle

finding performance. Our contribution lies in offering a practical

solution for 2D MIMO sparse array design within automotive radar

systems, enabling high angular resolution with a restricted number

of snapshots and antennas.

II. SYSTEM MODEL

In this section, we introduce the signal model of the 2D MIMO

array, followed by the definition of the concept of the 2D array

response, PSL, and HPBW. Additionally, we describe the physical

constraints associated with the antenna elements.

A. Signal Model

Consider a planar array of a MIMO radar system situated on the x-y

plane with Mt transmitting antennas and Mr receiving antennas. The

x- and y-coordinates of transmitting antenna and receiving antennas

are defined as:

xt =











xt1
xt2

...

xtM
t
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
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(1)

A virtual array of size Mt × Mr can be synthesized using Mt

transmitting antennas and Mr receiving antennas. The x- and y-

coordinates of these virtual antennas corresponding to the n-th

transmitting antenna can be expressed as follows:

xvn =
[

xtn + xr1, xtn + xr2, · · · , xtn + xrM
r

]T
,

yvn =
[

ytn + yr1, ytn + yr2, · · · , ytn + yrM
r

]T
.

(2)

Then, the x- and y-coordinates of virtual arrays correspond-

ing to all transmitting antennas can be expressed as xv =
[x

T
v1,x

T
v2, · · · ,x

T
vM

t
]
T

and yv = [y
T
v1,y

T
v2, · · · ,y

T
vM

t
]
T

, respec-

tively. Furthermore, we define the MIMO process as [xv,yv] =
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Fig. 1: A MIMO radar with 3 transmit antennas and 4 receive

antennas. The transmit and receive antennas are randomly deployed

in an area of [0, 11](¼/2)× [0, 11](¼/2) to synthesize a MIMO 2D

virtual array of 12 elements. The reference position is fixed at the

origin for both the first transmit and receive antennas.

MIMO(xt,yt,xr,yr). Fig. 1 shows a MIMO radar with 3 transmit

antennas and 4 receive antennas that are obtained from a single

automotive radar transceiver, and the transmit and receive antennas

are randomly deployed in an area of [0, 11](¼/2) × [0, 11](¼/2)
to synthesize a MIMO 2D virtual sparse array of 12 elements.

Subsequently, we can express the steering vectors associated with

the synthesized virtual array as follows:

a(Èx, Èy) = exp(j
2Ã

¼
(xvÈx + yvÈy)), (3)

where,
Èx = sin(¹)cos(ϕ),

Èy = sin(¹)sin(ϕ).
(4)

Here, ¹ and ϕ denote the azimuth and elevation angle, respectively.

B. 2D Ambiguity Function

The characteristics of array geometry can be effectively described

using the ambiguity function (AF). In this context, we define the 2D

AF as:
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Fig. 2: The AF of the randomly generated sparse array shown in

Fig. 1, with the region inside the red box representing the FOV of

interest.

AF (¹, ϕ, ¹t, ϕt) =
∣

∣

∣
a(¹, ϕ)

H
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∣

∣
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M
t
M

r
∑
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an(¹ − ¹t, ϕ− ϕt)

∣

∣

∣

∣

∣

∣

.
(5)

In this equation, ¹ and ϕ denote the scan azimuth and elevation

angles, respectively, while ¹t and ϕt correspond to the target’s

azimuth and elevation angles. It’s important to note that the AF

primarily relates to the array geometry rather than the target’s angles.

For simplicity, we set ¹t = 0
◦

and ϕt = 0
◦
. The AF of the virtual

array depicted in Fig. 1 with [−30
◦
, 30

◦
] FOV in both azimuth and

elevation is illustrated in Fig. 2.

C. PSL & HPBW

In this paper, we aim to design the 2D MIMO sparse arrays such

that the PSL and HPBW within narrow down FOV are optimized.

In Fig. 3, we present a zoomed-in view of the AF for the randomly

generated sparse array. The red cross represents the main lobe, while

the black dots denote the side lobes. Therefore, the PSL of the AF

is defined as

fPSL(xt, yt, xr, yr) = max{P1, P2, · · · , Pn}, (6)

where Pn represents the magnitude of the n-th side lobe.

In Fig. 4, we plot the the zoomed-in main lobe, and the -3 dB

magnitude contour whose magnitude is half of the main lobe peak

value, equivalent to a decrease of -3 dB in normalized magnitude. We

sample n points along the -3 dB magnitude contour in all directions

to ensure uniform resolution. The main lobe HPBW is defined as

fHPBW(xt, yt, xr, yr) = max{d1, d2, · · · , dn}, (7)

where dn is the distance between the n-th sampling point, Sn, and

the location of the main lobe peak.

D. Physical Constraints

The optimized array geometry should exhibit low PSL and a

narrow HPBW while remaining feasible for real-world fabrication,

considering the physical size of radar antennas. Notably, mutual

coupling is inversely proportional to the spacing between antenna

elements and decreases significantly when the inter-element spacing

P1
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P8

P3

P5

P7

P2

P6

P9

Fig. 3: The zoomed-in AF of the randomly generated sparse array,

where the red cross denotes the main lobe, while the black dots

represent the side lobes. For simplicity, we only show markers for 9

side lobes.

S1

S2

S3

S4

Sn

d1
d2

d3

d4

dn

Fig. 4: The zoomed-in main lobe in the AF of the randomly generated

sparse array.

exceeds half a wavelength, thereby reducing the burden of array

calibration [29]. Additionally, we must define the maximum array

aperture in both the x- and y-coordinates.

The physical constraints on the x- and y-coordinates of the trans-

mitting antennas are defined as follows:

max{xt1, xt2, · · · , xtM
t
} ≤ Xtmax,

|xti − xt(i−1)| ≥ ∆Xt, i = 1, · · · ,Mt,

max{yt1, yt2, · · · , ytM
t
} ≤ Ytmax,

|yti − yt(i−1)| ≥ ∆Yt, i = 1, · · · ,Mt.

(8)

Here, Xtmax is the maximum allowable x-coordinate, and Ytmax is

the maximum allowable y-coordinate. ∆Xt is the minimum allowed

spacing between two antenna elements along the x-direction, and

∆Yt is the minimum allowed spacing between two transmitting

antenna elements along the y-direction.

The physical constraints on the x- and y-coordinates of the receiv-

ing antennas are defined as follows:
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Fig. 5: The performance evaluation of TI AWR2243 and optimized Array via PSO. TI AWR2243: (a) physical array, (b) virtual array, (c)

AF, (d) CS detection results; The optimized array via PSO: (e) physical array, (f) virtual array, (g) AF, (h) CS detection results.

max{xr1, xr2, · · · , xrM
r
} ≤ Xrmax,

|xri − xr(i−1)| ≥ ∆Xr, i = 1, · · · ,Mr,

max{yr1, yr2, · · · , yrM
r
} ≤ Yrmax,

|yri − yr(i−1)| ≥ ∆Yr, i = 1, · · · ,Mr.

(9)

Here, Xrmax is the maximum allowable x-coordinate, and Yrmax is

the maximum allowable y-coordinate. ∆Xr is the minimum allowed

spacing between two antenna elements along the x-direction, and

∆Yr is the minimum allowed spacing between two receiving antenna

elements along the y-direction.

III. OPTIMIZATION PROBLEM FORMULATION

When working with a limited number of antenna elements, a

trade-off inevitably arises between achieving a lower PSL and a

narrower HPBW. To strike this balance effectively, we establish a

PSL threshold. In essence, our objective becomes optimizing the

antenna geometry in a way that allows us to attain the narrowest

possible HPBW while ensuring that the PSL remains below the

defined threshold. Hence, the PSL with a specified threshold, ϵ, is

defined as follows:

fPSL(xt, yt, xr, yr, ϵ) =

{

PSL if PSL ≥ ϵ,

ϵ Otherwise.
(10)

The cost function J(xt, yt, xr, yr, ϵ) is defined as the summation

of PSL and HPBW with weighting coefficient 0 < ³ < 1.

J(xt, yt, xr, yr, ϵ) =³fPSL(xt, yt, xr, yr, ϵ)

+ (1− ³)fHPBW(xt, yt, xr, yr).
(11)

Combining the cost function and the aforementioned antenna phys-

ical constraints, the 2D MIMO sparse array geometry optimization

problem can be formulated as follows:

min
x
t
,y

t
,x

r
,y

r

J(xt, yt, xr, yr, ϵ)

s.t. ϵ < 0

max{xt1, xt2, · · · , xtM
t
} ≤ Xtmax,

|xti − xt(i−1)| ≥ ∆Xt, i = 1, · · · ,Mt,

max{yt1, yt2, · · · , ytM
t
} ≤ Ytmax,

|yti − yt(i−1)| ≥ ∆Yt, i = 1, · · · ,Mt,

max{xr1, xr2, · · · , xrM
r
} ≤ Xrmax,

|xri − xr(i−1)| ≥ ∆Xr, i = 1, · · · ,Mr,

max{yr1, yr2, · · · , yrM
r
} ≤ Yrmax,

|yri − yr(i−1)| ≥ ∆Yr, i = 1, · · · ,Mr.

(12)

The constrained optimization problem can be addressed through

heuristic algorithms like GA, SA, and PSO. In this study, we have

opted for PSO to perform this optimization.

IV. PERFORMANCE EVALUATION

The Texas Instruments (TI) AWR2243 is a single-chip 76-81 GHz

FMCW transceiver with 3 transmitting antennas and 4 receiving an-

tennas. Each TX/RX antenna element is implemented as a series-fed

microstrip patch array. The wavelength, ¼, in free space at 78.5 GHz

corresponds to 3.8 mm, and the antenna size measures approximately

1.4mm× 10mm. In alignment with the TI AWR2243 configuration,

we set Mt = 3 for the transmitting antennas and Mr = 4 for the

receiving antennas. The minimum allowed interelement spacing along

both the x and y directions is specified as ∆Xt = ∆Xr = 0.5¼
and ∆Yt = ∆Yr = 3¼. Assuming the deployment of Tx and Rx

antennas within an area of [0, 11](¼/2) × [0, 11](¼/2), we define

Xtmax = Xrmax = 5.5¼ and Ytmax = Yrmax = 5.5¼.
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Furthermore, we establish the reference point at the origin for both

transmitting and receiving antennas. We set ϵ = −6 dB, and define

the specific FOV for both azimuth and elevation as [−30
◦
, 30

◦
]. Thus,

the optimization variables are continuous and are represented as:

xt =





0
xt2
xt3



 , yt =





0
yt2
yt3



 , xr =









0
xr2
xr3
xr4









, yr =









0
yr2
yr3
yr4









. (13)

The physical and virtual arrays of the TI AWR2243 are depicted in

Fig. 5(a) and Fig. 5(b), respectively. As illustrated, the synthesized

virtual array exhibits a horizontal aperture of 3.5¼ and a vertical

aperture of 0.5¼. Due to this small aperture size, the AF of the TI

AWR2243, shown in Fig. 5(c), possesses a wide azimuth HPBW and

an even wider elevation HPBW. Consequently, it exhibits relatively

low angular resolution. Assume there are two targets, one at [0
◦
, 0

◦
]

and another at [8
◦
, 8

◦
], both with a 40 dB signal-to-noise ratio (SNR).

As seen in Fig. 5(d), the TI AWR2243 struggles to detect both targets

using 2D compressive sensing (CS). In contrast, the physical and

virtual arrays of the PSO-optimized array geometry are presented in

Fig. 5(e) and Fig. 5(f), respectively. The optimized array boasts a

horizontal aperture of 9¼ and a vertical aperture of 10¼. As shown

in Fig. 5(g), the AF of the optimized array features a much narrower

HPBW in all directions, leading to significantly improved angular

resolution. Consequently, as depicted in Fig. 5(h), the optimized array

successfully resolves both targets using 2D CS.

V. CONCLUSION

In this paper, we has proposed an innovative approach to design

2D array geometry for 4D automotive radar systems. Instead of

carrying out exhaustive search to determine the desired array layout,

we formulated the array geometry design challenge as a constrained

optimization problem. We aim to minimize both the PSL within

a specific narrow FOV and the beam width of the main lobe in

the sparse arrays ambiguity function, by considering the fabrication

constraints to ensure that the optimized solution is feasible for

implementation. The PSO heuristic algorithm has been applied to

tackle this constrained optimization problem. To benchmark our

approach, we utilize the TI AWR2243 as the baseline geometry. Upon

comparing our optimized array geometry with the TI AWR2243, we

demonstrate that the optimized sparse array configuration provides

superior angular resolution with the same number of antenna ele-

ments.
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