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Abstract—We introduce a computationally efficient approach
for direction-of-arrival (DOA) estimation in automotive radar
systems using a single-snapshot. Classical subspace-based meth-
ods like MUSIC and ESPRIT may apply spatial smoothing on
uniform linear array to create multiple snapshots for accurate
DOA estimation. However, spatial smoothing has the drawback
of reducing the array aperture and it is not feasible for sparse
linear arrays. The existing single-snapshot-based methods like
compressive sensing and iterative adaptation approach (IAA)
have high computational costs and slow convergence times, which
poses challenges for real-time implementations. While strides
in optimization algorithms and hardware acceleration strategies
propose plausible remedies to alleviate these constraints, enhanc-
ing their appropriateness for real-time use, the computational
cost remains notably high. The recent deep learning-based DOA
estimation methods have shown good performance in terms of
inference time and estimation accuracy, but lack interpretability
and generalization. To address these limitations, we propose an
unrolling iterative adaptive approach (UAA) that unrolls the
IAA algorithm into multiple deep neural network layers. The
UAA network has better generalization and avoids the high
computational costs associated with matrix inversions. Extensive
numerical experiments show that the UAA network outperforms
IAA in terms of inference time and estimation accuracy under
different signal-to-noise ratio (SNR) scenarios.

Index Terms—Automotive Radar, DOA estimation, Iterative
Adaptive Approach, Algorithm Unrolling, Array Signal Process-
ing, Deep Learning

I. INTRODUCTION

Automotive multiple-input multiple-output (MIMO) radars

are an essential part of advanced driver assistance systems and

self-driving cars, mainly because they are low cost, capable

of sensing in bad weather, and unaffected by poor visibil-

ity conditions [1]–[6]. Frequency-modulated continuous-wave

(FMCW) is commonly used in automotive radar systems with

low-cost analog-to-digital converters (ADCs). The targets are

separated in range-Doppler domains using two-dimensional

fast Fourier transform (FFT), and a constant false alarm rate

(CFAR) detector is used to select a subset of range-Doppler

bins for direction-of-arrival (DOA) estimation through a third

FFT. As a result, current automotive radar only provides sparse

point clouds. To improve the angular resolution and generate

high-resolution radar images, automotive radar can perform

high-resolution DOA estimation for each range-Doppler bin
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to produce range-azimuth spectra imaging in bird’s-eye view

format [7]–[10].

The DOA estimation problem has been extensively stud-

ied in the literature. The parametric subspace-based high-

resolution approaches, such as multiple signal classification

(MUSIC) [11] and the estimation of signal parameters via

rotational invariance techniques (ESPRIT) [12], [13], require

multiple snapshots to obtain an accurate estimation of the array

covariance matrix. However, in a highly dynamic automotive

environment, it is challenging to have multiple snapshots, and

usually only a single-snapshot in available [4]. The single-

snapshot MUSIC algorithm was introduced in [14]. It cal-

culates the MUSIC pseudo spectrum using a Hankel matrix

constructed from a single-snapshot array response. However,

subspace-based approaches suffer from high computational

cost, due to singular value decomposition and angle scanning.

Compressive sensing (CS) [15] based sparse sensing tech-

niques have been shown to have super-resolution performance

[16] and work well for automotive radar DOA estimation with

single-snapshot by exploiting the sparse nature of targets in the

angular domain. For CS-based DOA estimation algorithms, it

is required that a dictionary satisfies the restricted isometry

property (RIP) condition [17], which requires an optimal

design of antenna arrays such that the peak sidelobe level is

low [4]. Another well-known DOA estimation algorithm that

works for single-snapshot is the iterative adaptive approach

(IAA) [18], [19] which is an iterative and nonparametric

method. IAA has been shown to be robust in DOA estimation

compared with CS approach. However, the main challenge of

implementation CS and IAA is their high computational costs.

Recently, data-driven deep learning (DL) for DOA estima-

tion has received increasing attention [20]–[22]. In general,

DL-based methods have several important advantages over

traditional methods, such as fast inference time, enhanced

super-resolution capabilities, and performing well at low SNR

[20]. Deep learning techniques are mostly data-driven and

lack interpretability, while traditional iterative algorithms are

more interpretable because they model the physical processes

with domain knowledge. Consequently, a technique called

algorithm unrolling has recently been proposed and is gaining

popularity due to its ability to provide a concrete and sys-

tematic link between traditional iterative algorithms and deep

neural networks [23]. One of such unrolling network example

for sparse signal recovery is the learned iterative shrinkage
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thresholding algorithm (ISTA) [24].

In this paper, we present a novel unrolling iterative adaptive

approach network (UAA) for single-snapshot DOA estimation.

The proposed approach is designed to provide better inter-

pretability compared to conventional deep neural networks by

mimicking IAA in an unrolled manner. Through extensive nu-

merical experiments under various signal-to-noise ratio (SNR)

scenarios, we demonstrate that UAA outperforms IAA in terms

of inference time and DOA estimation accuracy. Additionally,

UAA outperforms data-driven DL approaches in terms of its

ability to generalize and estimate DOAs that have not been

seen before. These results highlight the potential of the UAA

as a promising solution to DOA estimation problems with

superiority over existing methods in terms of performance and

interpretability.

II. SYSTEM MODEL

Consider a general linear antenna array of N elements and

there are K far-field point targets with angles θk for k =
1, · · · ,K. The array response can be written as

y = A(θ)s+ n, (1)

where n represents a complex N × 1 white Gaussian noise

vector, and A(θ) = [a(θ1),a(θ2), · · · ,a(θK)] is the N × K
array manifold matrix, where

a(θ) =
[

1, e
2πd2

λ
sin θ, · · · , e

2πdN

λ
sin θ

]T

. (2)

Here, dn is the element spacing between the n-th element

and the first element, and s = [s1, s2, · · · , sK ]T is the source

vector. In this paper, we are interested in estimating the

parameter θ, i.e., the target DOAs, using a single-snapshot

of the array response y.

IAA is a data-dependent, nonparametric algorithm [18]. The

DOA space is discretized into a grid of L points, and the array

manifold is defined as A(θ) = [a(θ1), · · · ,a(θL)]. The covari-

ance matrix of y can be represented by R = A(θ)PAH(θ),
where P is a L × L diagonal matrix with the l-th diagonal

element being Pl = |ŝl|
2. Here, ŝl is the estimate of the source

reflection coefficient corresponding to direction θl.
IAA iteratively estimates the reflection coefficient ŝ and

updates the covariance matrix by minimizing the weighted

least-square (WLS) cost function ∥y−sla(θl)∥
2
Q−1(θl)

, where

∥X∥2
Q−1(θl)

∆
= XHQ−1(θl)X and the interference and noise

covariance matrix Q(θl) = R− Pla(θl)a
H(θl). The solution

to this optimization problem is

ŝl =
aH(θl)R

−1y

aH(θl)R−1a(θl)
. (3)

The computational cost of each IAA iteration is 2LM2 +
LM + M3, where M is the number of array snapshots and

L is the number of discretized grids. Fast IAA algorithms

[25]–[27] have been proposed, exploiting the FFT operation

and Gohberg-Semencul (GS) representation of the inverse

of R. The computational cost of each fast IAA iteration is

M2 +12ζ (2M) + 3ζ (L), where ζ (L) stands for the compu-

tational cost of performing FFT of size L, i.e., O (L logL)
[26]. The superfast IAA uses a conjugate gradient (CG)

algorithm to approximate the inverse of R to further reduce

the computational cost. Still, the high computational cost of

IAA and the fast IAA algorithms is a bottleneck that prevents

their real-time implementation in automotive radar systems.

III. AN UNROLLING ITERATIVE ADAPTIVE APPROACH

NETWORK FOR DOA ESTIMATION

In this section, we introduce the unrolling iterative adaptive

approach (UAA) network, a novel approach that combines

the classical IAA with unrolled deep networks. The UAA

generates a pseudo-spectrum, containing estimated reflection

coefficients, by scanning a grid. This enables us to formulate

the DOA estimation as a spectrum estimation problem, rather

than a multi-label classification task.

A. The UAA Architecture

We provide a comprehensive overview of the UAA architec-

ture, highlighting its key components and innovative features.

The choice of using a recurrent neural network (RNN), specif-

ically a gated recurrent unit (GRU) [28], is motivated by its

ability to efficiently process sequential data, which makes it an

ideal choice for array signal processing. The core idea behind

UAA is to take the iterative process of IAA and truncate it into

discrete steps, which are then mapped to GRU blocks. Each

GRU block is composed of two GRUs, GRU-T and GRU-B,

which respectively emulates the numerator and denominator of

the fraction,
AH(θ)R−1y

diag(AH(θ)R−1A(θ))
, in IAA. The outputs of the

GRUs are passed through ReLU and dense layers, which are

then concatenated and fed into a final dense layer that performs

the division operation to generate the spectrum estimation, ŝ.

This estimation is then used to update the covariance matrix,

R, for the next GRU block.

Turning the iterative solver into a deep neural network

with multiple layers results in faster inference compared to

traditional model-based optimization. The end-to-end learning

of iteration-specific parameters in deep unrolling networks

allows for fewer layers to be used to achieve comparable

performance [29]. In our implementation, four GRU blocks

are employed. The UAA architecture is shown in Fig. 1.

B. Data Generation and Labeling

We use a uniform linear array (ULA) consisting of N =
20 elements with inter-element spacing of half-wavelength to

generate the simulated beam vectors for maximal 3 targets

with DOAs of {θk} and a minimum separation of ∆φ = 6◦.

The radar field of view (FOV) is set as φFOV = [−30◦, 30◦],
which is discretized with a step size of 1◦, resulting in a grid

g = [g1, · · · , gM ]
T

∈ R
M×1 with M = 61 possible DOA

angles. The reflection coefficients sk for each DOA source

are randomly generated complex numbers. The label of the
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Fig. 1. The illustration of the IAA algorithm (top), and the architecture of UAA (bottom).

beam vector is denoted by ĝ = [ĝ1, · · · , ĝM ]
T
∈ R

M×1, and

it can be expressed as

ĝm =

{

|sk|, if θk = gm

0, else
(4)

To create the beam vectors, we use a combination of

various angles and random reflection coefficients and repeat

the process three times. We also add varying levels of noise

by sampling the signal-to-noise ratio (SNR) uniformly from a

range of 0 dB to 30 dB with increments of 5 dB. The resulting

training set consists of 470, 946 beam vectors.

C. Training Approach

The proposed UAA model was trained for 200 epochs

with a batch size of 256, using the Adam optimizer with

a learning rate of 0.001 and a mean squared error (MSE)

loss function. The model was trained end-to-end without any

additional pre-processing or post-processing steps. The goal

of this training was to minimize the MSE loss and achieve

accurate predictions. The experiment was carried out in Python

3.8 using PyTorch 1.10 and CUDA 11.1 on four Nvidia RTX

A6000 GPUs. To prevent overfitting, a separate validation

set was generated in the same way as the training set, but

with different random reflection coefficients. The training and

validation loss were carefully monitored and are plotted in Fig.

2. The weight with the lowest validation loss was selected for

all performance evaluation tasks in Section IV.

IV. PERFORMANCE EVALUATION

We evaluate the UAA model in four crucial aspects of

DOA estimation: accuracy, separability, generalizability, and

complexity. To provide a comprehensive comparison, the per-

formance of the UAA model is benchmarked against tradi-

tional DOA estimation methods, including IAA and digital

beamforming (DBF) implemented via FFT, as well as a

convolutional neural network (CNN) that has been specifically

trained for DOA estimation as a multi-label classification

problem on a discrete grid [20]. The CNN proposed in [20]
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Fig. 2. The training and validation loss of UAA.

consisted of four two-dimensional (2D) convolution layers

and four dense layers. It was originally designed for Ns

snapshot, with Ns ∈ [100, 10000], but it has been adjusted

for single-snapshot scenarios in this evaluation. According to

[30], IAA exhibits superior performance compared to other

prominent sparse signal representation techniques like Sparse

Bayesian Learning (SBL). As a result, we have chosen to

exclusively employ IAA as our benchmark algorithm for the

purpose of our research. The maximum number of iterations

for IAA is set to 15, as the performance improvement becomes

negligible after around 15 iterations [18]. In addition, under

IAA, the FOV [−30◦, 30◦] has been discretized into the same

61 points as the UAA model for angle scanning. For DBF, the

FFT length is set to NDBF = 2, 048 to ensure the accuracy

of the frequency-domain representation. All experiments are

conducted using 5, 000 Monte Carlo trials.

The comparison will provide insights into the strengths and

weaknesses of the UAA model in comparison to these widely-

used methods, and demonstrate the unique capabilities of the

UAA model in single-snapshot DOA estimation.
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A. Accuracy

We have selected the root mean squared error (RMSE) as

our performance metric to evaluate the accuracy of DOA es-

timation methods. Our methodology follows the conventional

grid-based DOA estimation approach, where a peak search

is performed to extract the DOA estimates from the UAA

estimated spectrum. For each Monte Carlo trial, an off-grid

source with a direction randomly drawn from the interval

[−30◦, 30◦] is generated, along with its corresponding SNR.

As demonstrated in Figure 3, the RMSE vs SNR chart shows

that the UAA algorithm outperforms CNN across all SNR sce-

narios, providing comparable high DOA estimation accuracy

to IAA for higher SNR (greater than 5dB) and even greater

accuracy for lower SNR. The dark dashed line in the chart

represents the grid-induced error, which is calculated as the

RMSE between the source DOA and its closest angle on the

grid. This error serves as a lower bound for this performance

metric. It is important to highlight, with fairness in mind, that

the DBF method utilized in this particular subsection follows

the same grid implementation as the IAA. Moreover, the SNR

is defined as the ratio between the power of the signal and the

power of the accompanying noise.
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Fig. 3. The logarithmic scale RMSE versus SNR in the DOA estimation of
a single, randomly generated off-grid target.

B. Separability

To evaluate the DOA estimation performance in resolving

closely located targets, we design an experiment with two

targets situated at −∆θ/2 and ∆θ/2, respectively. The ∆θ
represents the angular distance between the targets. The trial

is considered a “hit” if the difference between the estimated

DOAs and ground truth falls within ±1◦. The hit rate is

calculated as the fraction of successful “hit” trials out of 5, 000
Monte Carlo trials under SNR of 40 dB.

As illustrated in Fig. 4, the IAA demonstrates the ability

to resolve targets with an angular separation of 2◦. A com-

parison between the CNN and UAA reveals that the former

slightly outperforms the latter when the target separation is

less than 4◦. However, it’s important to note that both CNN
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Fig. 4. Performance evaluation of UAA, CNN, DBF, and IAA algorithms:
hit rate vs ∆θ.

and UAA were trained on data that only contained targets

with a minimum angular separation of 6◦. As a result, their

resolution capabilities are limited by the quality of the training

data. The 3-dB beamwidth of the tested array’s beampattern

is around 5.1◦. Therefore, the hit rate of the DBF method

increases significantly when the separation between two targets

surpasses 6◦.

C. Generalizability

To further assess the generalizability of both the CNN and

the UAA methods, an experiment was conducted using four

off-grid targets located at [−25.2◦,−10.6◦, 5.3◦, 15.1◦]. The

test data is generated with varying SNRs and random reflection

coefficients, to serve as unseen data.
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Fig. 5. Performance evaluation of UAA, CNN, DBF, and IAA algorithms:
hit rate vs SNR.

The results of the generalizability experiment are depicted

in Fig. 5, where the performance of various DOA methods

were compared. The hit rate analysis suggests that UAA

outperforms all other DOA methods across all SNR levels.

This superiority is particularly evident when comparing UAA

to the CNN method, as the hit rate of UAA is consistently

higher. The superior performance of UAA across different

SNRs and target locations highlights its potential for wider

applications and real-world use.
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D. Complexity

We thoroughly evaluated the complexity of the UAA

method by analyzing its inference time and trainable parame-

ters. To ensure fairness, all DOA methods were performed in

Python 3.8 using PyTorch 1.10 and CUDA 11.1 on a single

Nvidia RTX A6000 GPU, and the inference time was mea-

sured by averaging over 5, 000 trials. For the deep learning-

based methods, a batch size of 1 was used. The results, shown

in Table I, reveal that the DBF method has the fastest inference

time. The UAA method was found to be 9 times faster than

the IAA method. It’s worth noting that the CNN method has a

higher number of trainable parameters compared to the UAA

method, due to the use of 2D convolution layers, as its input

is a 2D covariance matrix. However, the CNN method has a

lower inference time than the UAA method, which may be

attributed to its fewer layers.

Methods Inference Time (ms) # Trainable Parameters

DBF 0.12 –
IAA 49.9 –
CNN 1.0 49, 216, 317

UAA 5.7 127, 4096

TABLE I
INFERENCE TIME COMPARISON OF DOA METHODS

V. CONCLUSIONS

By leveraging the strengths of both classical IAA methods

and recent deep learning-based DOA estimation techniques,

the UAA network unrolls the IAA algorithm into multiple

deep neural network layers. The proposed UAA method pro-

vides an innovative solution for high-resolution angle finding

in automotive radars with fast inference time by avoiding

the high computational cost of large matrix inversion and

better generalization capability than purely data-driven deep

learning approaches. The numerical experiments conducted in

this paper demonstrate that the UAA network outperforms

the IAA method in terms of inference time and estimation

accuracy under varying SNR conditions. This new approach

offers a promising solution for real-time DOA estimation in

automotive radars.
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