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In an automotive radar scenario, the transmission of sparsely
spaced chirps along slow time creates opportunities to significantly
reduce or completely avoid mutual interference. However, nonuniform
chirps result in high Doppler sidelobes, which may introduce ambi-
guity in Doppler estimation. In this article, we present an automotive
frequency-modulated continuous-wave radar that exploits difference
co-chirps to achieve high-accuracy range—-Doppler estimation with low
complexity. By exploiting sparsity in slow time, the proposed method
achieves the same Doppler velocity resolution as the regular uniform
pulsing but with much fewer chirps. The silent transmission intervals
become available to other automotive radars, thereby eliminating the
mutual interference. The fast-time samples are treated as snapshots
to construct the second-order statistical information for Doppler
spectrum estimation. For our proposed nonuniform pulsing, we de-
velop an efficient range-Doppler spectrum estimation method and
propose a matching technique that is based on 2-D compressed sensing
followed by Doppler dealiasing. This algorithm achieves ipso facto
range-Doppler pairing without grid mismatch errors in parameter
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estimation and does not require an exhaustive search. Extensive nu-
merical experiments show that accurate range-Doppler estimation is
achieved with significantly fewer chirps compared to the conventional
consecutive transmission. Field campaigns using Texas Instruments
imaging radar support our theoretical investigations.

[. INTRODUCTION

Automotive radar sensors are fundamental to advanced
driver assistance systems and modern autonomous vehi-
cles largely because of their inexpensive circuitry, abil-
ity to sense during inclement weather, and immunity to
poor visibility conditions [2], [3], [4], [5], [6]. Most
practical automotive radar systems employ frequency-
modulated continuous-wave (FMCW) transmit signals
at the millimeter-wave band to achieve low-cost high-
resolution sensing for complex functions in autonomous
driving, such as automatic emergency braking, blind-spot
detection, and adaptive cruise control [7], [8]. The deploy-
ment of such radars operating in the same frequency range
of 76-81 GHz in dense traffic scenarios has led to concerns
regarding severe mutual interference from one radar to
another.

Mutual interfering signals lead to widespread contam-
ination of range—Doppler spectrum and degrade radar’s
performance [5], [9]. Among several studies that address
the automotive radar interference problem [9], notching out
the contaminated samples at the receiver is a common prac-
tice, which, however, leads to signal distortion and reduced
resolution [10]. On the transmit side, the interference can be
addressed by transmitting well-designed radar signals that
are nearly orthogonal to each other in the spectral/temporal
domains [9] at the cost of additional time/frequency slots.
In this article, we focus on transmit-centric approaches that
address the aforementioned problems.

An alternative to traditional orthogonal transmission is
to employ nonuniform chirps (along slow time) and recover
target parameters, such as target range and Doppler (ve-
locity), through sparse construction techniques [11], [12],
[13]. This allows automotive radars to utilize the media
access control [14], [15], [16] for transmission coordination.
However, radars with nonuniform pulse repetition intervals
(PRIs) [17] are known to suffer from high sidelobe levels
along slow time as a result of undersampling. In [17], a
weight interpolation technique was considered to handle
the high sidelobes in the Doppler spectrum caused by
nonuniform pulsing. In [18], after performing interpolation
to suppress these sidelobes, the nonuniform pulses are
processed via nonuniform fast Fourier transform (NUFFT).
The direct interpolation of Fourier coefficients is avoided
in [12] by employing the compressed sensing (CS) tech-
nique to recover the Doppler information. An optimal pulse
transmission structure and sampling rules were considered
in [19] to control the sidelobe level of the Doppler spectrum.

When the number of sparse nonuniform chirps during
one coherent processing interval (CPI) is much smaller than
the number of chirps in consecutive uniform transmission,
the corresponding high sidelobes in the Doppler spectrum
can hardly be reduced by using the above approaches [11],
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[12], [13], [17], [18], [19]. Hence, further investigation on
nonuniform pulsing is required to design accurate slow-time
sparse structures for automotive radar signals. In this con-
text, it is instructive to investigate the concept of difference
coarrays [20] in the slow-time domain. By utilizing the
coarray structure, difference coarrays greatly increase the
number of spatial degrees of freedom of the correspond-
ing physical arrays to achieve more effective direction-of-
arrival estimation.

There are several variants of sparse arrays, including
minimum redundancy array [21], [22], nested array [23],
[24], and coprime array [20], [25], [26], that are suited to
effectively construct difference coarrays. In a wide-sense
stationary (WSS) process scenario, missing elements (i.e.,
holes) in the difference coarrays can be interpolated to form
a virtual uniform linear array if the snapshots are suffi-
cient [27]. Very recently, Lv et al. [28] have extended coar-
rays to a joint spatiospectral domain for a frequency-diverse
array radar through coprime chirp pulsing by a coprime
physical array to achieve joint range—Doppler—angle esti-
mation. However, in automotive radar scenarios, the WSS
assumption across multiple CPIs and multiple snapshots is
not always guaranteed because of the highly dynamic and
high-speed target environment [5], [29].

In this article, we develop the concept of difference co-
chirps for the automotive radar that leaves a silent interval in
the CPI so that other automotive radars can emit signals with
negligible interference. We obtain the ambiguity functions
(AFs) of our proposed automotive radar waveforms under
two representative difference co-chirp transmissions, i.e.,
coprime and nested. In the difference co-chirp transmis-
sion, the estimation of target Doppler velocity becomes
challenging because of spectral ambiguity and difficulty in
pairing the target Doppler with the corresponding range. We
address these challenges by constructing the second-order
covariance matrix for Doppler spectrum estimation using
fast Fourier transform (FFT) with the fast-time samples
used as snapshots. Our 2-D CS approach then pairs targets’
range and Doppler, followed by Doppler dealiasing. We fur-
ther improve the performance through an efficient boosted
pairing algorithm that leverages the information obtained
from the FFT stage to avoid CS grid mismatch errors [30],
[31] and the need for an exhaustive blind search. Exten-
sive numerical results validate our model and methods.
Finally, we demonstrate the practical feasibility of differ-
ence co-chirp transmission and parameter recovery through
field experiments using a Texas Instruments (TI) radar
setup.

The basic concept of the co-chirp scheme was pre-
sented in [1] with preliminary simulation results on the
joint range and Doppler estimation. The substantive novel
contributions of this article beyond [1] include a detailed
analysis of the AFs of the co-chirp waveforms, the devel-
opment of the boosted algorithm, more comprehensive nu-
merical studies, and verification based on field experiment
results.

The rest of this article is organized as follows. In Sec-
tion II, we briefly describe the conventional FMCW radar
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processing and then generalize the difference coarray con-
cept to difference co-chirps for automotive FMCW radar.
In Section III, the AFs of difference co-chirps transmis-
sions are derived for performance analysis. The range—
Doppler reconstruction method and pairing techniques to
construct the 2-D range—Doppler spectrum are presented
in Section IV. We validate our models and methods with
extensive numerical and field experiments in Section V.
Finally, Section VI concludes this article.

Throughout this article, uppercase and lowercase bold
characters denote matrices and vectors, respectively. Matrix
vectorization operation is denoted by vec(-). The conjugate
transpose is (-)7 and conjugate is denoted by (-)*. The
complex values setis C. The function [-] yields the smallest
integer that is greater than or equal to its argument. The
notation © denotes the Kronecker product.

[I. SYSTEM MODEL

Conventional automotive sensing is based on the
FMCW radar, which offers very high-range resolutions
unmatched by contemporary pulse-Doppler radars and high
resilience to the negative effects of target Doppler. This is
very useful in obtaining cleaner displays with low clutter
and tracking fast targets in automotive scenarios. The focus
of this article is the detection of only high-speed targets.
Clutter being a low Doppler scatterer is, therefore, not
considered in our model. The clutter encountered in lane
change assist, blind-spot detection, and tune assist are not
considered in this article. Note that stationary clutter is gen-
erally observed at a very low depression angle yielding in-
significant backscattering. The clutter is typically homoge-
nous with concentrated Doppler frequencies corresponding
to the platform’ speed, which is known to the radar. As
such, the clutter may be easily mitigated. Usually, clutter
returns tend to be composed of discrete scatterers, such as
walls, vegetation, and traffic signs. The literature suggests
that space-time adaptive processing (STAP) is effective in
removing both periodic [32] and nonperiodic [33] clutter in
road environments. Whereas these methods were proposed
for conventional uniform chirp transmission strategies, the
authors in [34], [35], and [36] have previously considered
STAP-based clutter suppression for nested/coprime struc-
tures and are applicable to our approach.

A. Uniform Pulse Repetition Frequency FMCW Radar

Consider a monostatic FMCW radar that emits a linear
frequency ramp [see Fig. 1(a)] with bandwidth B, duration
time 7', and carrier frequency f.. The transmit signal for
one ramp at the mth chirp is

x(m, 1) = rect (t = mT”) el ety (1)
T

where T}, = 1/ fpr is the uniform PRI, fpg is the pulse rep-
etition frequency (PRF), and the rectangular pulse window
function is defined as

t—1 I, t<t<t+T

rect{ —— | = ;
T 0, otherwise

2
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Fig. 1. Nonuniform chirps transmission sequences and their difference

co-chirps. The missing chirp indices are left blank, and the filled
difference chirp indices are denoted by green sawtooth waveform.
(a) Uniform PREF chirps. (b) Nested chirps transmission sequence for
N; =3 and N, = 3. (c) Interpolated chirps in nested transmission.
(d) Coprime chirp transmission sequence for Ny = 3 and N, = 5.
(e) Interpolated chirps in coprime transmission.

After integration, the phase of the transmit signal x(m, t)
becomes

mTp+t B
or (t —mT,) =2n/ [fCJrT(t—mTp)} di
mT,
2 ft+1 Bt2 (3)
= T ¢ —_—. — J—
2T “n

where ¢z, depends on the PRI 7,,.

Assume K signals within the radar’s effective field of
view. The noise-free received signal y(m, t) is a weighted
delayed version of x(m, t), expressed as

K
y(m, t) = Zakeﬂ”[ﬂ-(f—fk)-‘r%(f—fk)z—(ﬁro] 4)
k=1

where oy denotes the reflection coefficient of signal with
delay 7.

The emitted signal x(m, ¢ ) is used to dechirp the received
signal y(m, t) to generate the beat signal, whose phase is

Ao(f)— , B B,
o) =er(t)—er(t — 7)) =21 <fcrk+7trk—ﬁ k>
)

where ¢ is the fast time with 0 < ¢t < T, and 7} characterizes
the delay between the transmitted signal and the received
signal of the kth target. The quadratic term of 7y is negligible
in (5) because t;/T < 1 holds in short-range automotive
radar.

To unfold the delay time t;, consider the kth target
located at range r away from the radar and moving with
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a constant velocity vg. Then, the round-trip transmission
delay for the kth target is T, = 2(rx + vit)/c, where c is the
speed of light. The phase of the dechirped signal is

2 2 2B 2B

Ag(t) = 21 fcrk+ fcvk+ Y, 4 2B ]
c c cT cT

(6)

The last term can be neglected for a similar reason /7T < 1.
The term 2f.ry/c does not change with the fast time and
is only associated with the range and, therefore, can be
absorbed into the reflection coefficient. Simplifying, the
resulting beat frequency is

2fcvr  2Bry
k k k

+ = fr 4+ 7
Ip - T Ip+ 1k (N

where f£ = 2f.vi/c and f§ = 2Br;/(cT) are the Doppler
and range frequencies of the kth target, respectively.

In automotive radars, the maximum detection range is
typically several hundreds of meters, and therefore, f, < B
holds. As a result, the beat signals are sampled using a
relatively inexpensive low-rate analog-to-digital converter.
Denote the sampling interval in the fast time by 74 and
/Ty > 2f,"™, where f;"™ denotes the maximum beat fre-
quency. Then, the ith sample in the mth chirp becomes

K
ym, i)=Y ayel?rUsitatfont;) (8)
k=1

where fpmT, = 2f.vT,m/c denotes the Doppler fre-
quency change in the mth chirp. The CPI consists of M
chirps, and the number of samples in each chirp is 1.
The sampled automotive radar data matrix of a channel is
Y € CM whose (m, i)th entry is denoted as y(m, i).

In most automotive radar scenarios, fp < fg holds [5].
Thus, the Doppler frequency fp is negligible when a single
chirp is considered. However, for the high-range-resolution
radar, this term should be compensated to realize a high
range accuracy. The target range is estimated by applying
FFT to fast-time samples in the abovementioned data ma-
trix. For each range bin, the range frequency fx is constant
across the slow time. Therefore, the Doppler is estimated
by applying FFT along the slow time in data matrix Y [5].
To avoid ambiguity in the Doppler spectrum estimation in a

uniform PRF radar, it is required that fprp > 2 f'*, where
fp™ denotes the maximum Doppler frequency.
B. Difference Co-Chirp-Based FMCW Radar

Consider a uniformly spaced chirp set S =

{my, my, ..., my}, which has M entries with m; describing
the position of the ith chirp. The difference co-chirp set is

Saitr = {mi — m_,-} Vi, jeS. 9)

In this definition, Sy does not allow the repetition of its
elements, i.e., all the entries have distinct values.

1) FMCW Radar With Nested Chirps: We now exam-
ine the FMCW radar that schedules its slow-time emission
following the nested-chirp relationship. Two-level chirp
indices are used in the basic nested-chirp transmission.
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Specifically, the first and second levels consist of N; and
N, chirps with corresponding PRIs as T, and (N; + 1)1},
respectively. Here, two integers N; and N, are selected to
realize a reasonable Doppler resolution. Under the nested
chirps, the FMCW radar transmits chirps at slow-time in-
dices as per the set

Snested ={1,2, ..., NI, (N +1), 2(N +1), ..., (N + 1)
(10)

The set Sgir = {n1 — na|ny, Ny € Spesiea} 18 called the dif-
ference set of nested chirps, where the total number of the
transmitted chirps is N = N; + N;.

Under the nested transmission, the first N; transmitted
chirps have a PRI of T, while the other NV, chirps have a PRI
of (N1 + 1)T,,. The sampled beat signal at the mth chirp s (8)
for m € Spesieq- Following (8), the ith snapshot of slow-time
samples or the ith row of the sparse radar matrix is

Yhesiea = BES' + 1’ (11)

where B = [b(f}), ..., b(f5)] € CV*K is the Doppler
manifold with b(f%) = [e/27/57r . e/ /NTT and s =
[e27/hiTh . e27fiiTa]T | Here, n' denotes the addictive
white Gaussian noise vector in the ith snapshot of slow-time
samples and ¥ = diag([«y, ..., ak]).

2) FMCW Radar With Coprime Chirps: A classical
coprime structure is illustrated in Fig. 1(d), where N, and
N, are two coprime integers that define a chirp slow-time
slot set as

Scoprime =
{Ni(n — 1), 1 <np < N} U{Na(my — 1), 1 < my <N}
(12)

An FMCW signal is transmitted at the slow-time indices
specified in the above coprime set and the total number of
the transmitted chirps is N = N; + N, — 1 because of the
shared first chirp. The difference co-chirps set is

Saitt = {51 — 82151, 82 € Scoprime }- (13)

However, the difference co-chirp set does not provide
consecutive chirps between time slots —N,(N; — 1) and
Ni{(N, — 1), so certain chirp indices are missing [see
Fig. 1(e)].

Under the nested transmission, the transmitted chirps
are scheduled following the transmission set Scoprime. The
sampled beat signal at the mth chirp is (8) for m € Scoprime-

Following a similar procedure as the nested transmis-
sion, we also obtain the ith row yéopﬁme for the coprime
scheme.

C. Advantages of Sparse Transmissions

The advantages of sparse transmission in slow time
manifest in several ways.

1) High Doppler Resolution Using Few Chirps: The
Doppler velocity resolution Av is determined by the length
of a CPI, Av = ¢/(2f.MT,). To achieve the same Doppler
resolution as a uniform PRF, an FMCW radar under the
difference co-chirp needs to sparsely occupy the whole CPI
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along the slow time following the corresponding coprime
or nested co-chirp rules. Fig. 1(a) illustrates a case where a
total of 13 chirps are transmitted under the uniform PRF in
one CPIL. In comparison, for the same observation interval,
only seven and six chirps are needed under the coprime and
nested-chirp strategies, respectively.

2) Significantly Reduced Interference to Victim Radar
Through Sparse Transmission: The sparse transmission
along slow time significantly reduces the probability a
victim radar would be interfered compared to the uniform
transmission scheme since much fewer chirps of the victim
radars could be potentially corrupted. As the interference
sample’s amplitude is stronger than the target echo, the
interference can be further suppressed by adopting the
simple thresholding/gating approach [5] to mitigate the
interference before carrying out 2-D FFT for range—Doppler
estimation. The gating approach is chosen as the baseline
method for interference mitigation due to simplicity and
relative good performance [5]. Fig. 12 illustrates an example
of the interference gating.

3) Support Multiple Radars’ Simultaneous Transmis-
sion With Low Interference: The proposed sparse trans-
mission in slow time offers opportunistic transmission for
other automotive radars with only a small fraction of pulses
being interfered. To take advantage of these silent opportu-
nities, these radars must coordinate with the host radar using
vehicle-to-vehicle communication [37], such as dedicated
short-range communication [38]. Then, time synchroniza-
tion between radars can be realized by the global positioning
system (GPS) technology or atomic clock technology [39],
[40], [41]. For example, pulse-per-second signals from
two GPS modules achieve 60-ns accuracy in synchroniza-
tion [42]. More specifically, timing and carrier frequency
synchronization in the case of distributed radar systems,
as is the case with vehicular traffic scenarios, may also
be achieved through the use of existing communications
protocols [43], two-way time transfer [44], and multitone
frequency transfer [45].

To analyze the maximum number of radars that can
transmit sparsely at the same time, we consider a simple
example where all the radars follow the same transmis-
sion pattern but with different starting times. In the nested
transmission scheme, there are N = N; + N, chirps. In the
first level, N; chirps will be transmitted with PRI = 7.
In the second level, N, chirps will be transmitted with
PRI = (N, + 1)T},. Therefore, there are N, — 1 slots avail-
able for other radars to transmit signals, and each slot
duration is N;T),. The maximum number of radars that can
simultaneously transmit is ;. Here, we define the collision
rate as

cr = /(N1 + N2) (14)
where p denotes the number of collided chirps. A simple
example of Ny = 3 and N, = 3 is shown in Fig. 2(a). In this
case, starting from the second CPI, most of the radars will
have u = N, overlapping chirps with each other, and thus,
the collision rate is cr = N, /(N + N,) = 0.5.
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Fig. 2. Nonuniform chirps transmission sequences and their maximum
transmission capacity simultaneously. The different colors block denote
the different radars. (a) Maximum transmission capacity with full silence
slots usage. (b) Incremental transmission strategy with fewer collisions.

To reduce the collision rate, an incremental schedule to
support N, radars to transmit simultaneously with a short
idle time of (N, — 1)N;T,, is proposed. Fig. 2(b) illustrates
an example of the schedule of N; = 5 radars, each using the
nested scheme of Ny = 5 and N, = 5. In this schedule, an
idle time is introduced to allow all V, radars to complete one
CPI transmission. The number of maximum overlapping
chirps is © = N, — 1 = 4, and thus, the collision rate can
be small. For example, to support five radars to transmit
simultaneously with Ny = N, = 17, the collision rate is
cr = u/(Ny + N;) = 4/34 = 0.117. A thorough simulation
is carried out in Section V-B, and the results are shown in
Fig. 14.

It is worth noting that other radars can exploit the silent
periods without necessarily adhering to the same difference
co-chirps as we illustrated in this article. For instance, by
transmitting irregular sparse chirps, utilizing compressive
sensing for Doppler estimation may achieve better perfor-
mance [46], [47].

D. Detection Performance With Respect to Signal-to-
Noise Ratio

The U.S. Federal Communications Commission [48]
recommends that the peak and average power densities
of automotive radar systems operating in 7677 GHz are,
respectively, less than 2.79 and 0.88 W/mz, at a distance
of 3 m. The typical transmit power of automotive radar
systems is around 1 W [5]. It is reported in [49] that the
power density is 0.88 W/m? at 3 m for a radio source with
transmit power of 2 W, which is much smaller than 10 W /m?
suggested by the International Commission on Nonionizing
Radiation Protection (ICNIRP) [50].

Sparse transmission along slow time results in reduced
SNR, which may lead to detection performance degradation
under low-signal-to-noise ratio (SNR) scenarios compared
to uniform transmission. A thorough simulation under dif-
ferent SNRs has been conducted in Section V-A, and the
result is shown in Fig. 11. This performance degradation
under low SNRs is common for radar systems employing
sparse signal processing [11], [12], [13]. Under high-SNR
scenarios, the difference co-chirp has comparable perfor-
mance to the conventional uniform transmission.

XU ET AL.: AUTOMOTIVE FMCW RADAR WITH DIFFERENCE CO-CHIRPS

A feasible approach to achieving comparable detection
performance to that of conventional transmission is to in-
crease the transmit power of each chirp in the sparse trans-
mission, while still satisfying the power density requirement
suggested by the ICNIRP. By doing so, the transmit signal
can reach greater distances, subsequently increasing the
likelihood of interference with a larger number of victim
radars. Assuming the same total transmit power for sparse
and uniform transmissions, the worst case is that the total
interference power received by a victim radar under both
sparse and uniform transmissions will be the same. Again,
thresholding/gating can help mitigate the interference with
a higher amplitude experienced at the victim radar. In Sec-
tion V-B, we conduct a thorough performance comparison
of victim radar under sparse and uniform transmissions,
and the results shown in Fig. 15 demonstrate significant
performance improvement of the proposed difference co-
chirp scheme over the uniform transmission counterpart,
since much fewer chirps are corrupted and strong interfer-
ence signals due to increased transmit power are efficiently
mitigated by gating.

[ll.  AFS OF AUTOMOTIVE RADARS WITH DIFFERENCE
CO-CHIRP

The radar AF is an important tool for waveform design
and analysis that succinctly describes the behavior of a
waveform paired with its matched filter. The AF is useful
for the analysis of the resolution, sidelobe behavior, and
ambiguities in both range and Doppler domains for a given
waveform, as well as phenomena such as range—Doppler
coupling [51], [52]. The AFs of classical continuous-wave
waveforms, such as linear frequency-modulated (FM) or
single-frequency signals for uniform PRF, have been inves-
tigated thoroughly in the literature [53]. In Theorem 1, we
derive the AFs for the nested and coprime transmissions.

THEOREM 1 Consider a rectangular pulse with duration of
T that has the AF

(1 B ﬂ) sin [ f(T — [t])]

T 7 fa(T — |t])

A, fa) = . lfsT

a7

where f,; denotes the Doppler frequency. Consider a nested-
chirp transmission formed by two groups of chirps N; and N,
with respective PRIs 7 and T = (N; 4+ 1)T, and a coprime
chirp transmission formed by two overlapped group chirps
of coprime numbers N; and N, with respective PRIs 77 and
T,. The AFs under nested and coprime transmissions are
expressed in (15) and (16), shown at the bottom of the next
page, respectively.

PROOF See the Appendix. (]

The unambiguous Doppler interval of nested AF is
nonuniform, and it is minimum and maximum intervals are
1/T and 1/T, respectively. The unambiguous range interval
is bounded by [7', 7']. The minimum unambiguous Doppler
interval of coprime AFis min(1/7y, 1/7>), and its maximum
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Fig. 3. (a) AF of nested-chirp transmission sequence. (b) Same as

(a) but shown in a contour plot. (c) and (d) Same as (a) and (b),
respectively, but for coprime chirp transmission sequence.

is max(1/Ty, 1/T>). The unambiguous range interval of
coprime AF is bounded by [min(7, 75), max(7}, T5)].

Fig. 3 shows an example of the nested-chirp AF in the
top panel. The first (second) group of chirps have N; = 3
(N, = 3) pulses with the PRI of 1 s (4 s). This results in a
dwell time of 12 s. Fig. 3(a) and (b) shows that the nested
chirp possesses the same Doppler resolution as the uniform
one, and its unambiguous range interval and unambiguous
Doppler interval are limited by the PRIs of the inner and
outer group chirps, respectively. Similarly, the bottom panel
of Fig. 3 plots the coprime-chirp AF, where the PRI of the
first (second) group with N; = 3 (N, = 5) pulsesis 1 s (5s).
Fig. 3(c) and (d) illustrates that the unambiguous range in-
terval is confined by the PRI difference between N, and N,,
and the unambiguous Doppler interval is limited by the PRI
of N, group chirps. Fig. 3 demonstrates that, compared with
coprime, the nested-chirp transmission does not change the
maximum unambiguous range and Doppler interval, and

its sidelobes decay faster than the coprime transmission.
However, the coprime technique narrows down the unam-
biguous Doppler interval because of nonconsecutive chirps
in the transmission.

Since the difference co-chirp following the coprime
transmission results in some missing data in the full dwell
time after slow-time interpolation, an intuitive way is to
truncate the dwell time to maintain a consecutive slow-time
sequence. However, this degrades the velocity estimation
performance because of a shorter CPI. A more effective al-
ternative is to interpolate these missing data via the Toeplitz
matrix completion approaches [54], [55] using the second-
order statistical information. The matrix completion-based
interpolation approach requires a high SNR to guarantee
bias-free interpolation. However, the input SNR of the raw
echo data in the automotive radar is relatively low (usually
less than O dB) [5]. In this context, the nested co-chirp
transmission is more favorable than the coprime counterpart
because of its nonhole feature in the whole CPI duration
after slow-time interpolation.

IV. RANGE-DOPPLER-ANGLE RECOVERY

In a uniform PRF FMCW radar, performing a 2-D FFT
on the beat signal directly yields paired range and Doppler
information. However, when the transmission sequence
is sparse, this technique is both inapplicable and inaccu-
rate [11]. We address these shortcomings by developing
a Doppler estimation procedure with difference co-chirps
based on the second-order statistics of radar samples. This is
followed by an efficient pairing strategy for range—Doppler
parameters.

A. Doppler Estimation With Difference Co-Chirps

In each CPI, we interpolate the missing samples along
the slow time for Doppler estimation via the construction
of a second-order covariance matrix. Such interpolation
requires a large number of snapshots. As mentioned earlier
in Section II-A, the Doppler shift in a typical automotive
radar is negligible during fast-time sampling of a single
chirp and is viewed as a constant [5]. Therefore, we treat
the fast-time samples as “snapshots” for Doppler covariance

N;—1 . B
B sin(m (fy + =t)(Ny — |niDT)
Anested(t’ fd) = Z A <[ - anv fd + _t> :fd L ; 1
v T sin(r (fg + 70T)
No—1 . B A
R B sin(w (fy + =t)(N, — |no)T)
+ Y a4 (r . Tz) Jit 7 _ Ll (15)
o e—1) T sin(w (fg + 707T)
N—1 . B
! B\ |sin( (fa + £1)(Ny — [mDTh)
Acorime(taf)z A<t_n T’f +_t> : .
ot =2 AN ) Tt oy
No—1 . B
2 B\ |sin( (fy + £)(N2 — [n2|)T2)
+ Alt —nD, fy+ —t - 16
m:_(ZNZ_U ( nh ity ) sin( (fa + £0)T) (1o
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matrix construction. The sampling Doppler covariance ma-
trix is

1 1
—_ 1 1
Rnested - I E :ynested (ynested)
i=1

1
:=%§:[Bz§@5HzHBH-Fn%n§”]
i=1

=B,R,BY + 51 (18)

For the same range bin, the term s'(s') = I, where I is an
identity matrix and [ is the number of fast-time samples,
which means the fast-time information embedded in f, will
be dismissed in the covariance matrix and only Doppler-
related samples will be extracted. By vectorizing Ryesieqs
the co-chirp signal model is

Fhested = VEC(Ryested) = (BZ © Bn) p+ Unzi (19)

where p = (¢, ..., a2)" and i = vec(I).

The Doppler autocorrelation yi_ . (¥ . .q) i com-
posed of entries including e/27/5 =T for ny 1y € Shesteds
i.e., /27577y for n € Sgigr. It follows from the properties of
the nested chirps that the indices in Sy are consecutive for
a given observation interval N;(N, — 1)7},, and therefore,
the missing Doppler samples along the slow time can be
interpolated via the Doppler autocorrelation. The number
of averaged unique consecutive Doppler samples d} =
unique(Tyegeq) 18 obtained from the sampling covariance
vector with indices defined in Sg;g.

The Doppler spectrum is then obtained by applying FFT
to the interpolated Doppler samples along the slow time.
The Doppler spectrum is accurate and robust, which also
reveals the targets’ power as the diagonal elements of R, =
22 = diag([o7, ..., az]). Inasimilar way, the decoupled
range and Doppler spectrum can also be estimated using the
coprime transmission strategy. However, due to the coprime
chirp properties, the coprime transmission fashion cannot
enjoy the consecutive Doppler samples for the same dwell
time as the conventional transmission scheme after slow-
time interpolation.

For single-range multiple-Doppler or single-Doppler
multiple-range scenarios, the cross-spectrum displays the
target position and velocity information. However, for mul-
tiple target scenarios, the cross-range—Doppler spectrum
would yield redundant peaks arising from the decoupling
between the range and the velocity. Fig. 4 shows an example
of the range—Doppler spectrum based on the unpaired range
and velocity results under nested co-chirp transmission
with Ny = N, = 17 and T, = 15 us. Two targets with the
same radar cross section (RCS) at ranges of r; = 45 m and
r, = 87.5 m, and corresponding velocities of v; = 35 m/s
and v, = 10 m/s are considered in the simulation.

B. Joint Range-Doppler Estimation

Sparse sampling in the Doppler domain yields high
sidelobes in the Doppler spectrum posing a challenge in

XU ET AL.: AUTOMOTIVE FMCW RADAR WITH DIFFERENCE CO-CHIRPS
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Fig. 4. Range-Doppler spectrum based on the unpaired results. The
true locations (marked by x) of the targets in the range—Doppler plane
are {r; =45 m, vy =35 m/s} and {r, = 87.5 m, v, = 10 m/s}.

Amplitude (normalized)

Range [m] 0

10
0 Velocity [m/s]

Fig. 5. Range-Doppler spectrum of nested co-chirp transmission with

three targets.

correctly pairing range and Doppler parameters in the
nested transmission. Consider the following example: There
are three targets in the field of view of the radar, and
their range—velocity pairs are [45 m, 10 m/s], [87.5 m,
10 m/s], and [45 m, 35 m/s], respectively. The reflection
coefficients of the three targets are normalized to o =
0.3, @y = 0.5, and o3 = 1 and assumed to be unchanged
during the processing interval. As shown in Fig. 5, the
weaker target (target 1 with oy = 0.3 and range—velocity
pair [45 m, 10 m/s]) is buried in the high sidelobes of
the targets with larger RCS and, therefore, difficult to de-
tect. It means that the range and Doppler results obtained
from FFT cannot be directly used to detect the true tar-
get positions. To this end, we now present our co-chirp
joint range-Doppler estimation with DoppDler dealiasing
(CoDDler) super-resolution algorithm. The first step of this
technique employs 2-D CS to jointly estimate the range and
Doppler using sparse samples along the slow-time. In the
second step, we remove the Doppler ambiguity through a
difference co-chirps interpolation-based Doppler dealiasing
strategy.

Denote the maximum detection range and the maxi-
mum velocity by R, and vy, respectively. To construct
an appropriate CS dictionary [56], [57], we discretize range
and Doppler into a fine grid with M, x M, points. This
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results in the corresponding range and Doppler grid sizes
of R,/M, and 2v,,x/M,, respectively. The £th range and
nth discretized velocity are denoted as R; and v,, respec-

tively. The corresponding beat frequency is f;" = f5 + f;).
Denote the noise-free data matrix by Zg, € C'*V, whose
(n, i)th element is
o i (f T )
Z(l’l, l) =e€ , nE Snesled~ (20)
The dictionary of the 2-D CS is
A= [VCC(Zu), , vec (Z1MU),
vec(Zy1), ..., vec (ZM,_MU) ] (21)

In practice, the measurement is corrupted by additive noise
leading to vec(Y) = Ax + n, where n is the noise vector.
Here, x € CM"M:>1 ig a sparse vector, where x; = ), with

h = K, or h = P, if the hth target has range of & {ﬁ] and
velocity of —vmax + ”m“ mod (j, M,); otherw1se x;=0.

We obtain the unknown range and Doppler by solving
the following relaxed £;-norm optimization:

minimize |x||; subjectto |vec(Y)— Ax|, <& (22)

where § is the noise bound. The signal vector x in (22)
may be estimated through popular solvers such as Dantzig
selector [58] or orthogonal matching pursuit (OMP) [59]. In
general, for the successful recovery of the sparse vector x,
the dictionary matrix A must satisfy certain properties dic-
tated by CS theory, e.g., low value of mutual coherence [60],
defined as

|aj"a;|

n(A) = (23)

max ——————
1# layll, ||a; ”2

where a; denotes the jth column of matrix A.
For nested (and, similarly, for coprime) transmission,
there are two subchirp sequences with two different uniform

TABLE I
Radar Parameters

Parameters Values
Carrier frequency, f,. 77 GHz
Maximum detection range, R« 200 m
Maximum detection velocity, V.« 230 km/h
Bandwidth, B 150 MHz
Pulse duration, T, 7.3 us

PRIs. Using the similar phase conjugationin [61], the (r; v)-
dependent range—Doppler pattern is written as

Ni+No—1 I—1

;o)=Y Y Z(v)z(rv).
n=0 =0

The range—Doppler pattern has a peak value whenr; = r
and v, = v. The alH a; for [ # j, represents the energy leak-
age of the range—Doppler steering vector pointing at (r;; v;)
to range and velocity bins of (r;; v;). Thus, max,; [afa;]|
corresponds to the peak sidelobe of the range—Doppler
pattern. Let A, =1 —rj, Ay =v; —vj, and T)p = (N, +
1)T,. Equations (25) and (26) shown at the bottom of the
this page, hold. It is clear that the mutual coherence (£ (A) is
a parameter-dependent value. For given system parameters,
its value reaches a maximum /(N; + N,) when A, and A,
approach to zero. The mutual coherence will decrease when
A, and A, take larger values. Equation (26) reveals that
the peak sidelobe appear around the real target leading to
inaccurate detections. Therefore, a dealiasing in range and
Doppler is necessary.

To illustrate the parameter-dependent mutual coher-
ence, we plot the mutual coherence of the radar dictionary
as a function of discretized grid size of the range and the
Doppler in Fig. 6 with parameters given in Table I, and
the grid steps are set to the same along the range and
Doppler axes. It follows that the mutual coherence is highly
correlated with the discretized grid step of the velocity and

(24)

(26)

N—1I—-1 No—1 I—1
al a; = Z Z j2r (FliTy+fimT,) —]Zﬂ(fthA+fDn1 ) 4+ Z ZeJZN(beT}\+fDnzT,,z) J27r(fhl7}\+fnn7Tp2)
n1_0 i=0 nz_O i=0
Ni—11-1 111
— Z Z {ejZN[%(rhrj)+ 2e (y,— v,)JzTAeJZn[Z“ n T, (v— v])J} Z Z {61271[[, (r1— r,)+2f‘ (v — v,)]tTAeﬂn[zf‘ 1y T (v — v])]}
nm=0 i=0 =0 i=
N] 5
1— [eﬂw%m#(—fw)ny 1- [eﬂ” =B T] [ m (a2 a )T, ]’ 1— [eﬂn%mﬂ]Nz
= : — X —— . (25)
| ejzn(f—;‘A,Jr%An)TA | — ei2mAT, L— o 27 (B A+ ATy | — o2 3T,
Y sin [H (%A, + 2'—Cf”AU> nl] sin (n%AvaM) sin <7T—A T,,2N2>
Jai"a;] = 28 2, | 2, 2
sin [JT (c_TAf + —‘Av> TA] sin (71 . Ava> sin ( . A,,Tp2>
s1nc [( A+ 2N ) TAI] sine (i AvaNl) sine (ZTf"AvazNz)
= x |N; + N>
sinc [ 21; A, + %Av) TA] sinc (%AUTP> sinc (%AUTﬂ)
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Fig. 6. Mutual coherence of the dictionary matrix with respect to the

discretized grid step in range and Doppler domains.

Algorithm 1: Co-Chirp Joint Range-Doppler Estima-
tion With Doppler Dealiasing.

Input: Ny, N,, M,,, M., and the received sparse
data matrix Y.
Output: dealiasing CS range—Doppler spectrum.
Doppler spectrum with interpolated Doppler
samples:
15 i i H

1t Riested = T Zi:l y;ested (y;ested) .

2: dJ$ = unique(Tyesied)-

3: D = FFT{d}$}.

Range-Doppler estimation with 2-D CS and
Doppler dealiasing:

4: Discretize the range and velocity into a fine grid
and construct dictionary matrix A according to
21).

5: Solve £;-norm optimization problem (22) by OMP.

6: Apply the Doppler spectrum D to filter out
spurious velocity peaks in CS estimation.

the range. In order to obtain a high range and Doppler reso-
lutions, a finer local discretized gridding in the range and the
velocity is beneficial. However, such a small grid step results
in high mutual coherence and, subsequently, high sidelobes
of the Doppler spectrum. Algorithm 1 summarizes these
steps.

Although the co-chirp joint range—Doppler estimation
with Doppler dealiasing pairs range and Doppler correctly
with a high resolution, the computation cost is relatively
high. Moreover, the matching error highly depends on the
way the dictionary is constructed. For instance, if the dis-
cretized grid is small enough, the matching error will be less
significant. However, according to the mutual coherence
analysis of the dictionary, a small discretized step leads
to a larger mutual coherence value, which worsens the
sidelobe level in the range—Doppler spectrum and requires
high computer memory demand. Inevitably, the inherent
off-grid problem also results in pairing errors.

The cost of solving the /;-norm optimization problem
(22) by OMP is O(dim(A)G), where dim(A) is the size

XU ET AL.: AUTOMOTIVE FMCW RADAR WITH DIFFERENCE CO-CHIRPS

Algorithm 2: Boost Co-chirp joint range-Doppler
estimation with Doppler dealiasing (BoDDler).

Input: r, v, D and the received sparse data
matrix Y.
Output: dealiasing CS range—Doppler spectrum.
1: Construct dictionary matrix A, according to (21).
2: Solve £;-norm optimization problem (22) by OMP.
3: Apply the Doppler spectrum D to filter out fake
velocity peaks in CS estimation.

of dictionary matrix A and G denotes the number of it-
erations [62]. In this application, the size of a conven-
tional dictionary matrix A is IN x M, M,. The need for
high-resolution sensing requires the discretized steps in
M, and M, directions to be kept small, leading to pro-
hibitively high computational costs. For example, storing
several gigabytes for dictionary matrix A is impractical for
many embedded systems. To mitigate such problems, we
propose a minimum dictionary size-based Doppler dealias-
ing and pairing procedure. The candidate set of range
rege = {ry, ra, . .., r} is captured very well by FFT along
fast-time sampling with threshold techniques. After per-
forming FFT on consecutive interpolated Doppler samples
obtained from the sampling covariance matrix, the velocity
candidate set vg = {vy, v2, ..., vy} can also be estimated.
Thus, the reduced-size dictionary matrix A, is

A = [VeC(Zr1v1 ) vee(Zyyy,), - - - VeC(Zrkuj )] >
Tk € I'ti, Vj € Vg (27)

This boosted version of CoDDler algorithm (BoDDler) is
summarized in Algorithm 2.

The dimension of the dictionary matrix A, in the BoD-
Dler is at most IN x KJ. Because KJ < M,M,, the com-
putation cost of BoDDler is O(INKJG). The computation
cost of the BoDDler is much less than the computation
complexity of the original version, where typically M, M,
is quite large (say 10*) to realize a high resolution. One
additional advantage of the BoDDler is that it does not
require grid discretization because all detected range and
Doppler results are given to build the dictionary, which
totally avoids the off-grid issue inherent in CS [30] and
the resolution limitation depends only on the fast-time and
slow-time Fourier transforms. The matching guarantee is
based on the fact that A, is still an overcomplete dictionary
and contains all atoms of the original signal.

After obtaining a range estimate from range FFT, one
could apply 1-D CS [58], [59], [63] along the slow time
for each range to automatically pair the range and the
Doppler. However, this approach does not exploit the known
velocity information obtained from slow-time FFT along
the interpolated slow-time samples and, therefore, requires
a longer time for the matching process.

Conventional CS methods do have the ability to retrieve
information from sparse (nonuniform) sampling. A straight-
forward nonuniform sampling could be random, but it must
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be properly designed to keep a low mutual coherence in
the dictionary and a low computational complexity. The
coarray-based chirping is more structured and, therefore,
easy to implement in hardware when compared to random
pulsing, which usually leads to higher sidelobes. Moreover,
basic co-chirp processing may be used as a template for
analyzing other nonuniform pulsing methods (see [28, Sec.
V.C] for some examples). Using the coarray method, we can
use the fast-time samples as snapshots, so that the Doppler
information is recovered by exploiting the coarray feature.
Combining the velocity and the range, the pairing procedure
becomes more cost-effective.

C. Direction Finding and Extension to 4-D High-
Resolution Imaging Radar

An application of the automotive radar with difference
co-chirps to a 4-D high-resolution imaging radar in range,
Doppler, azimuth, and elevation is shown in Fig. 7. For
each channel, the interpolated Doppler spectrum SP(d}$) €
CNux1 jg obtained by performing N,;-point FFT along the
interpolated Doppler. Following the same trace, the range
spectrum SP(R) € CN*! is the result of performing Nig-
point FFT along the fast-time samples. Therefore, the cross
spectrum is obtained as SP(CP) = SP(R) x SP(d}$)T €
CNaxNvr - For specific target locations, the indexes in the
range—Doppler spectrum corresponding to the actual target
positions are obtained from the BoDDler algorithm. These
true positions are aligned with the cross spectrum to select
the actual angle information cell p!, of the ith target for the
nth channel, where i € [1,2,...,Pland n € [1,2,...,N].
After performing this procedure for all channels and target
locations, the actual angular cells are stacked according
to their channel index order to form the array manifold
Agngle € CN*P| which is then used to perform direction
finding. Depending on the array geometry and the avail-
ability of array snapshots, direction finding can be carried
out using FFT or high-resolution subspace methods, such as
MUSIC [64], ESPRIT [65], or CS [58], or iterative adaptive
approach [66].

For driver-over and driver-under functions [7], 2-D an-
tenna arrays deployed in both horizontal and vertical di-
rections are required to support joint azimuth and elevation
direction finding. The angular resolution is determined by
the antenna array aperture, i.e., Ay = 2arcsin(1.41/(w D)),
where XA is the wavelength corresponding to the carrier
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Tllustration of the beam vector extraction from a nested radar data cube.

frequency and D is the aperture size of the receiver array.
As aresult, the hardware cost of 4-D imaging radar is high
if full arrays of large apertures are adopted for joint azimuth
and elevation direction finding. To reduce the hardware
complexity while achieving the same angular resolution as
a full-array counterpart, different strategies are available to
design 2-D sparse arrays in the context of multi-input multi-
output radar [5]. For example, to enable high-resolution 4-D
imaging, the authors in [7] and [67] proposed to exploit
a joint sparsity design in frequency spectrum and array
configurations. There are several off-the-shelf 4-D imaging
radar prototypes, such as TI cascade imaging radar [68], and
commercial automotive radar products, such as Continental
ARSS540 [69]. However, the detailed discussion of 2-D
sparse array design and direction finding is out of the scope
of this article.

V. NUMERICAL AND FIELD EXPERIMENT RESULTS

We carried out numerical and radar field experiment
results to evaluate the performance of the proposed differ-
ence co-chirps waveform. Table I lists the settings of a radar
system consisting of a single transmitter and 20 uniformly
deployed 1-D linear receivers used in our experiments.

A. Parameter Retrieval Without Interference

To realize the maximum unambiguous detectable ve-
locity requirement listed in Table I, the PRI is bounded by
T, =15 ps. To determine the target velocities, for con-
ventional FMCW radar, a total number of 306 uniform
chirps are transmitted in one CPI, and the dwell time is
NT, = 4.59 ms. Consequently, the velocity resolution is
Av = A/(2NT,) = 0.42 m/s. Two targets are considered
with ranges r; = 87.5 m and r, = 45 m, velocities v; =
10 m/s and v, = 35 m/s, and azimuth angles 6, = 15° and
6, = 37°. The reflection coefficients of the two targets are
normalized to &y = 0.5 and op = 1.0 and are assumed to be
unchanged during the processing interval. The input SNR
is set to 0 dB.

In order to achieve the same dwell time as the conven-
tional one to maintain the velocity resolution, the nested
co-chirp transmission suggests that the first uniform pulse
train has Ny = 17 chirps with the same repetition interval 7,
as in the traditional transmission, and the second uniform
pulse train transmits a total number of N, = 17 pulses with
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Fig. 8. Range-Doppler spectrum on sparse data under nested co-chirp
transmission. (a) 2-D FFT. (b) 2-D nonuniform FFT. The red x denotes
the actual positions of the targets.

PRI of Tp, = (N; + 1)T),. For the coprime transmission, the
coprime pairis Ny = 17 and N, = 18.

Under the nested transmission, the FFT spectrum per-
formed on the received sparse data directly is shown in
Fig. 8(a), where it can be found that the high sidelobes of
the strong target would bury targets with weaker reflection
coefficients, thereby reducing the radar probability of de-
tection (PD). Another classical technique to perform FFT
on nonuniform sampling data is the nonuniform FFT [18].
Fig. 8(b) shows the 2-D spectrum obtained by applying
NUFFT on only 11% of the original uniform sampling
data. And it can be found that the high sidelobe levels
still stand out and may mask targets with weaker reflection
coefficients.

With the range and Doppler estimates obtained by ap-
plying FFTs on, respectively, fast-time and interpolated
slow-time samples, the pairing is achieved by the 2-D
boosted-CS method. Certain spurious peaks appear in the
2-D boosted-CS spectrum because of the overestimation of
the number of targets, as shown in Fig. 9(a). To remove
these, the target magnitude and velocity set D is used to
filter out noise-like peaks in the 2-D boosted-CS spectrum.
After dealiasing, a perfect spectrum is available in Fig. 9(b).
It should be noted for 2-D boosted CS of carrying range and
Doppler pairing, the atoms in the dictionary are constructed
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Fig. 9. 2-D boosted CS on sparse data. (a) Initial pairing. (b) After
amplitude dealiasing. The red x denotes the actual positions of the
targets.
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Fig. 10. Direction finding using nested co-chirp from a 20-element
uniform linear array, where x denotes the ground truth.

from the estimations in the set of rg and vg. Therefore, the
resolution of 2-D boosted CS depends on the number of
points used in the FFT.

The beam vector p’ for each target was obtained by
alignment of the clean positioning output of the 2-D en-
hanced CS with the prepossessed cross-range—Doppler
spectra of each channel. Applying FFT along each beam
vector is an efficient method for target angle analysis. As
shown in Fig. 10, two targets can be accurately estimated.

To statistically evaluate the recovery performance of the
nested co-chirp, we apply the hit or missing criterion [13]
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Fig. 11. Performance comparison between conventional and nested
co-chirp transmissions. (a) Hit rate comparison. (b) RMSE of range and
velocity for conventional (dashed lines) and nested (solid lines)
transmissions.

to examine the range—Doppler recovery rate under different
input SNR values. Here, a hit denotes that the absolute error
of the recovered range—Doppler pair is within the range
and Doppler resolutions. For comparison, we also show the
recovered hit rate of the conventional chirp transmission
scheme. We placed two targets with normalized reflection
coefficients of «; = 0.5 and o, = 1.0, which remain un-
changed during the processing interval. The velocity and
range of these two targets are drawn uniformly at random
from [10, 90] m/s and [10, 100] m, respectively. For each in-
put SNR selected from 11 uniformly spaced values in the in-
terval [—25, 25] dB, we perform 1000 Monte Carlo simula-
tions. As shown in Fig. 11(a), the hit rate reaches unity when
the input SNR is above —10 dB. The root-mean-squared

error (RMSE), defined as RMSE = /Y2 5, — y,? /M.
using M, independent trials, is used as the performance
metric to measure the deviation of the detection result y
from the ground truth y. Here, § and y denote either velocity
or range estimation and their corresponding ground truth
values, respectively. All the detection results for conven-
tional and nested co-chirp schemes are obtained from the
same (2048 x 2048)-point FFTs along the range and the
Doppler dimensions. Fig. 11(b) shows that the RMSEs of
the range and velocity estimates under the nested co-chirp
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are close to those obtained from a conventional uniform
chirp transmission when SNR is larger than —10 dB. The
number of points of FFT along fast time or slow time bounds
the estimation errors.

Under the nested co-chirp transmission, we use the
fast-time samples as snapshots to construct a covariance
matrix, based on which the missing data containing Doppler
information along slow time can be interpolated. Then, FFT
is applied to these interpolated data to retrieve the target
velocity spectrum. The velocity and the range spectra are
plotted in Fig. 13(a) and (c), respectively, which perfectly
match the ground truth. Therefore, these detected range
and Doppler peaks can be imported to a 2-D boosted-CS
algorithm for pairing. However, for the coprime transmis-
sion, the interpolated data are not consecutive in the whole
dwell time. The few missing slow-time slots lead to energy
leakage on the velocity spectrum when performing FFT
on the interpolated data. Fig. 13(b) shows the slow-time
FFT spectrum based on the interpolated data under the co-
prime transmission, and the consequence of energy leakage
appears in a form of high sidelobes. Targets with weaker
reflection coefficients have the risk of being buried by the
high sidelobes. Since the mutual coherence of the dictionary
matrix is high, the 2-D CS technique is not guaranteed to find
correct range—Doppler estimation without reliable Doppler
dealiasing. Therefore, the nested-chirp transmission is su-
perior to its coprime counterpart.

B. Parameter Retrieval in the Presence of Interference

It is of great interest to see the performance of auto-
motive radar under difference co-chirp transmissions when
there is interference, i.e., there is no transmission coordina-
tion among multiple radars. The radar parameters remain
the same as those used in Section V-A. The interference
duration at certain chirps is given by 7; = [2f;" /(S; — S)I,
where f,"* denotes the maximum beat frequency and §;
and § are the chirp slopes of the interference and the victim
radars, respectively [5]. The signal-to-interference-plus-
noise ratio (SINR) of the mth chirp is defined as SINR =
10log10([ly(:, m)||2/(|All2) + |In]l2), where A contains the
interference samples collected within the interference du-
ration and n denotes the noise vector. To investigate the
interference signal, we set the input SNR = 0 dB to define
the fixed input noise level. After dechirping and low-pass
filtering, the received signal consists of signal and interfer-
ence trails, as shown in Fig. 12(a). Since the interference
signal comes from a direct path, it has stronger power than
the target echoes. As shown in Fig. 12(b), the noise floor of
the range—Doppler spectrum increases significantly due to
the interference.

It is imperative to evaluate the performance of the pro-
posed automotive radar under the nested-chirp transmission
using the receiver operating characteristic (ROC) curve for
different SINR settings. In the simulation, the interference
is generated following the above worst case setting. Five
targets are located at a range between 10 and 90 m. Their
normalized reflection coefficients vary between oy = 0.5
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Fig. 13. Performance comparison between (a)—(c) without interference, (d)—(f) with interference of SINR = —12 dB appearing continuously with a

duration equivalent to the first 30 chirps, and (g)—(i) with interference of SINR = —12 dB appearing sparsely at random along the whole CPI. Doppler
estimation with FFT: (a), (d), and (g) Nested transmission; (b), (e), and (h) coprime transmission; and (c), (f), and (i) range estimation with FFT under
the nested transmission.
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TABLE II
Parameters of Interfering Radar

Parameter Value
Distance 10—40m
Bandwidth [0.6—1.05] B MHz
Pulse duration [0.9—1.35]T,; s
PRI, [0.9—1.35]PRI us

and ap = 1. The input INR varies between —16 and —8 dB
with a step size of 4 dB, and a total number of 3000 inde-
pendent trials are carried out to compute the averaged PD
and probability of false alarm (PFA). Each range—Doppler
map has 512 x 512 samples. Here, a successful detection
means that both the ranges and velocities of the five tar-
gets are correctly estimated. During each trial, the velocity
difference between the two targets is at least 1 m/s, and
the range difference between the two targets is more than
1 m/s. Fig. 12(c) shows that, for SINR = —16 dB, only
under higher PFAs, the five targets are detected successfully.
When SINR = —8 dB, the PD is close to 1 for a small PFA,
ie., 107

We consider the worst interference scenario that the in-
terference appears continuously in a duration equivalent to
the first 30 chirps. It is clear that the first subgroup chirps of
the victim radar under the nested-chirp transmission would
be contaminated by this type of interference. As shown in
Fig. 13(d) and (f), the noise floor in both Doppler and range
spectra raise drastically compared with those in Fig. 13(a)
and (c) without interference. However, the effect of this
continuous interference appearing in the first few chirps
is less significant for victim radar under the coprime trans-
mission because less number of chirps are contaminated. As
shown in Fig. 13(e), the noise floor of the Doppler spectrum
under the coprime transmission increases slightly compared
with the result in Fig. 13(b) without interference. We then
consider the other interference scenarios, for instance, when
an interference appears sparsely at random along the whole
CPL. Fig. 13(g)—(i) indicates that the influence of this type
of interference is less significant because the victim radar
under the difference co-chirps remains silent for most of the
time during one CPI. As a result, the chance of receiving
interference is greatly reduced. If there is interference, it
only appears in a few chirps.

To evaluate the performance of detection with different
interfering parameters, we conduct Monte Carlo simula-
tions with a total number of 3000 independent runs to
assess the hit rate of the victim radar. In the experiment,
the victim radar has the following parameters, i.e., B = 150
MHz, T; = 7.33 us, and PRI = 9.76 us. The parameters
of interfering radar with FMCW waveforms are given in
Table II, and the incident azimuth angle of interfering radar
is always at 6; = 0°. In each run, the interfering radar’s
bandwidth, pulse duration, PRI, and distance to the victim
radar are randomly drawn from the feasible region given in
Table I1. The simulation result is shown in Fig. 14, where we
observe that if the collision occurs in the sparse transmission
stage and, hence, cr < 0.5 (e.g., we use c¢r = 0.12 in the
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Full collision
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Fig. 14. Hit rate with respect to SINR for different collision scenarios.

simulations), the hit rate reaches to unity when the SINR
exceeds —10 dB. A partial collision scenario (cr = 0.5)
requires SINR to be higher than —7 dB to reach similar
hit rates. Simultaneous transmission during all chirps, i.e.,
the full collision case (cr = 1), requires SINR to be up to
—5 dB to reach the unity hit rate. However, full collision
situation does not frequently occur, and the nested co-chirp
offers good anti-interference performance in most cases.

It would be highly beneficial to investigate the advan-
tages of the proposed sparse transmission, both with and
without increased transmit power per chirp, in reducing
interference to victim radars employing uniform transmis-
sion. Fig. 15(a) shows an example with two targets in the
field of view of a victim radar with normalized amplitudes
o) = land oy = 0.01, ranges r; = 20 m and r, = 5 m, and
velocities vy = 15 m/s and v, = 10 m/s, and azimuth angles
0, = 15° and 6, = 37°. Fig. 15(b) shows that, when both the
host and the victim FMCW radars use uniform transmission
and interference exists in the whole CPI, the targets cannot
be identified from the range—Doppler spectrum of the victim
radar due to the high interference power. As shown in Fig.
15(c), after applying the gating technique to clip the inter-
ference with a high amplitude, the target with a small RCS
is still embedded under the noise floor. We also utilize the
singular value decomposition (SVD) method as a compara-
tive scheme because of its proven superiority in eliminating
interference signals within the received signal, as outlined
in [70]. For the mth chirp, the received data of the victim
radar with N channels are Y = Y, + Y; € C/*V, where Y,
and Y, are targets and interference samples, respectively.
The received signal covariance matrix is R = YY. Typ-
ically, the incident power of the interfering radar to the
victim radar is much higher than the power received from
the target because of the direct path between the interfering
and the victim radars. Therefore, the principal component of
the SVD of R, expressed by eigenvalue s; and eigenvector
U(:, 1), is regarded as the contribution of the inter-
fering radar. In this case, the interference is sup-
pressed by orthogonal subspace projection. The resulting
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Fig. 15. Range-Doppler spectrum of victim radar, where x denotes the ground truth. (a) Targets plus noise. (b) Target plus interference and noise
under the conventional uniform transmission before gating. (c) Same as (b), but after gating. (d) Same as (b), but after SVD mitigation. (e) Target plus
interference and noise under the nested co-chirp transmission before gating. (f) Same as (e), but after gating. (g) Same as (e), but after SVD mitigation.

interference-free signal is expressed as ¥ = P, Y, where before gating, the targets are buried by the increased noise
P, =1—U(, HUA(, 1), and I is the identity matrix. This  in the range-Doppler spectrum. However, after gating or
method effectively restores the data matrix of the target SVD interference mitigation, the weaker target is clearly
signal with high precision. detected, as shown in Fig. 15(f) and (g). This is because
Fig. 15(d) shows the case when the interference signal only a much smaller number of chirps are corrupted under
energy is strong and the target dynamic range is large. the sparse transmission scheme compared to the uniform
Although the target with a small RCS can be distinguished transmission scheme.
with the help of SVD technique, its strength is nevertheless Although sparse transmission can reduce the interfer-
very close to the sidelobe signal level of the large RCS ence to other radar systems, increasing the power of a single
target. On the other hand, as shown in Fig. 15(f), with chirp in order to obtain a processing gain similar to the
co-chirps, the entire spectrum is free of interference. The traditional transmission method will cause higher electro-
target with a smaller RCS is clearly distinguished, and it magnetic pollution. Therefore, it is crucial to investigate
demonstrates that the SVD method is superior to gating. how the increased chirp power impacts the radar illumina-
Now, the host radar adopts the proposed sparse transmission  tion range. As introduced in [71], the linear gains of the
following the nested co-chirp scheme with an increased transmitting and receiving antennas of an ultra-short-range
transmit power to achieve the same processing gain as radar (USRR) and a medium-range radar (MRR) are 4 and
the uniform transmission scheme. Fig. 15(e) shows that, 10, respectively. At the same time, the RCS of the vehicle is

XU ET AL.: AUTOMOTIVE FMCW RADAR WITH DIFFERENCE CO-CHIRPS 8159

Authorized licensed use limited to: The University of Alabama. Downloaded on May 12,2025 at 19:12:49 UTC from IEEE Xplore. Restrictions apply.



T T
—— USRR original

— — USRR power up

—— MRR orginal

— — MRR power up

~~~~~~~~ Minimum detection power

10710

1072

Detection power [Watts]

10714

10-16 . ol

1018 I I | . | I I | | .
20 40 60 80 100 120 140 160 180 200 220
Detection range [m]

Fig. 16. Radar detection range versus power per chirp.

TABLE III
TI Radar Settings for Field Experiment
Parameter Value
Carrier frequency, f,. 77 GHz
Maximum detection range, R, 25 m
Maximum detection velocity, V.« 22 km/h
Bandwidth, B 3.12 GHz

10 dBsm. Therefore, in the traditional transmission mode,
the RF output power is 12 dBm and the minimum detection
power of the receiving chain is —110 dBm. Taking into
account the aforementioned link budget and observing the
relationship between the received power and the detection
distance, as depicted in Fig. 16, it becomes evident that an
increase in the chirp power can effectively extend the radar
illumination distance. This implies that the transmission in
the co-chirp mode amplifies the range of radar radiation.

To further compare the power interference range of the
traditional chirp and co-chirp transmission methods, we set
up victim radars V1, V2, V3, and V4 at distances of 100,
150, 200, and 250 m, respectively, from the interference
radar. Targets were located at 20 and 5 m within the range
of each victim radar with the RCS of 10 and 0.1 dBsm,
respectively. Fig. 17 shows that with the conventional trans-
mission, the victim radar is not required to perform any
interference mitigation beyond 250 m; the two goals can
be easily distinguished. However, the power of each chirp
is now greater than in the co-chirp mode, and hence, the
smaller RCS target is still submerged in noise. In other
words, for the co-chirp radar, with its greater range, more
radars need to perform interference mitigation.

C. Field Campaign Results

A Tl imaging radar [68] is used in our field experiment,
and its configuration is given in Table IIl. The simple
scenario is shown in Fig. 18(a), where two pedestrians walk
within the radar field of view with different velocities. The
collected data consisted of 306 chirps in a conventional
transmission with uniform PRI. Following the nested trans-
mission, total Ny = N, = 17 chirps are extracted from the
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Fig. 17. Range profiles of victim radars at various distances without
interference mitigation in (a) conventional chirp and (b) nested co-chirp
transmission.

consecutive measurement to form an equivalent observation
window as the conventional uniform PRI one.

Fig. 18(b) shows the range—Doppler spectrum obtained
by performing 512-point FFTs along fast time and slow
time of collected data from consecutive transmissions. In
this figure, two targets are located at different ranges with
distinct velocities, and the light pole is also labeled. The
energy leakage from transmitters to receivers will result
in a peak corresponding to the first few range bin indices
in the range—Doppler spectrum. Since the range frequency
fr defined in (7) is proportional to the range of target [5],
a high-pass filter has been implemented to suppress the
leakage from transmitters before range—Doppler process-
ing. The nonuniform FFT spectrum on nested data is shown
in Fig. 18(c), where it is hard to tell the targets from the
2-D spectrum because of the high sidelobes. The constant
false alarm rate method is used to detect range candidates
rire from the range spectrum. Following the same way, we
selected velocity candidates vg, from the Doppler spectrum.
Then, the range candidates rg and velocity candidates vy
are exported into boost 2-D CS to pair. Many spurious
peaks exist in Fig. 18(d) because the number of targets is
overestimated when dealing with pairing. Fig. 18(e) shows
that two pedestrians and a light pole are estimated correctly
after dealiasing.
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measurement. (¢) FFT performed on collected consecutive data. (d) Boost pairing CS spectrum in nested transmission without dealiasing. (e) Boost
pairing CS spectrum in nested transmission after dealiasing.

VI.  CONCLUSION

In this article, we presented a difference co-chirp-based
nonuniform PRI automotive FMCW radar, which is shown
to achieve the same range—Doppler estimation performance
as conventional FMCW radar with uniform PRI while sig-
nificantly reducing the total number of chirps along slow
time. Based on the constructed covariance matrix with fast-
time samples as snapshots, the Doppler estimation has been
estimated efficiently with FFT. A boosted 2-D CS algorithm
followed by a Doppler dealiasing step was proposed to
pair the range—Doppler estimation for multiple targets and
filter out any spurious peaks, which has greatly reduced
the computation cost of solving the pairing problem and
completely avoided off-grid issues in CS. Numerical results
demonstrated the feasibility of the proposed method. The
robustness of the range—Doppler estimation under inter-
ference with different SINR levels was investigated. The
radar field experiments revealed that the range and velocity
of multiple targets can be estimated efficiently with high
accuracy using the proposed boost 2-D CS technique.

APPENDIX A
PROOF OF THEOREM 1

Considering a rectangular pulse
t
x(t) = Rect (T) , —T/2<t<T)2. (28)

The complex AF, i.e., the matched filter output of x(¢)
when there is a Doppler shift f, is

Z(t,fd)=/

—00

+00

x()x* (s — 1)/ s g, (29)
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Following the definition in [72], the AF of rectangular pulse
is the absolute value of A(t, fy), i.e.,

’

|t|) sin [ f4(T — |t])]
T

A fo = [Ac. fol = |(1- =
t. fa) = [AG. fo) ( 7 fa(T = |t])

It < T. (30)

The waveform of a single FM pulse is
(1) = x(t)e27 BTN and its complex AF is

+o00
A (t, fa) = / (T (s — t)el a5

o0

+00 ) 5 5
:/ {x(s)efzn[f‘s+ﬁs]

o0

(s — t)eijJr[f(,(sft)Jr%(sft)z]ejZTrfds}ds

+o00
:eﬂ”(ﬁ»t—%lz)/ x(s)x* (s —1)el 2T at 70)s g g
—00

= /(=) <t, fi+ Ez) : 31)
T
Therefore, the AF of an FM pulse is
Amm(t, fa) = [Amm(, f)]
11\ sin 7 (fa + 26) (T — |t
_ (1_u>sm[ 7 o Kl 1) |
) w(fa+ 20) (T —lth
(32)

Compared with the rectangular pulse AF A(z, f;), only the
Doppler term is changed in the FM pulse AF Ag, (¢, f4).
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A pulse burst can be exploited to increase the Doppler
resolution. For M burst pulses, it holds that

M—1

+ooM—1
Ab(t Jfa)= / ZX(S mT)Zx (s—t —nT e/ Tasds.

n=0
Replacing s — mT with §, it holds that
Aplt, f2)

Loo M-l M—1

/ ZX(S)ZX S+ (m—n)T — t)eﬂﬂfds j27rfmedS
_Z eJanme Z/ x(_ﬁ')x*(_’s“_[t_(m_n)T])ejZJrfd&ds‘

_ Z i famT ZZ(I —(m—n)T, f) (33)

m=0 n=0

Let m — n = 7. For some function F (m, n), it is well known
that the following equation holds [73]:

Thus
Aplt, fa) =
M—1 . .
Z Z([ _ AT fd)ejnde(M.;.;l_l)Sm(ﬂfd(M — [aDT)
Ny ’ sin(r f4T)
As aresult, the AF of a simple pulse train is
M—1 .
M — |a)T
Ayt )= Z AU — AT f1) sm(ﬂfd( [2)T) .
A=—(M—1) sin(7r faT')
(35)
Then, the AF of the burst FM pulse train is
B
Apim (@, fa) = Ap 1, fa + —t
A=M—1
_ Z A < AT 42 > sin(z (fa+£6)(M—|a)T)
A=—(M—1) 51n(71(fd+7t)T)
(36)

Nonuniform chirp waveform under the nested transmission

M—1M—1 M—|a|—1
includes two groups of uniform chirps with different PRIs.
F _ mnc group P
IZO ; L, nl 7_(ZM b z;) The number of chirps in the first and second groups is N,
e " Mt M T 1 and N, with PRI of 7" and (N, + 1)T, respectively. For the
n
nested-chirp waveforms, it holds
+Z > Flmtaml. G4 "o
A=l  m=0 Anested(t fd)
Therefore +oo NiZl NiZl
/ Zx(s —mT) Zx (s —t —nT)e!*™fasds
o~ 0 o~ M—1al =1 . n=0
At fy= Y A@—haT.fy) Y el Nt
A=—(M-1) =0 +/ { Y X(s— (m+ DOV + DT)
M—|Al-1 % m=0
4 Z ej27[f,1nTA(t nT fd) Z eﬂnfme N1
a=1 m=0 Y R —t— (4 DV + l)T)ejz”f”’S}ds. (37)
With the sum of geometric series, it holds that n=0
o o Define 7 = (N; + 1)T. It follows from (36) that (38) and
Ml =1 1 — ei2nfaTIM=lil} .
Z o2 famT _ (39) shown at the bottom of this page, hold.
— 1 — ej2nfal Therefore, the AF of nested-chirp waveform is obtained
B . M — DT as (15). Similarly, nonuniform chirp waveform under co-
— ITfaT(M=|al=1) s (nf aM — ADT) _ prime transmission includes two overlapped groups of uni-
sin(r f4T) form chirp sequences with PRIs of 7} and 75, respectively. In
too Ni—1 Ni—1 Ni—1 . B
o B sin (7w (fg + #t)(N} — T
‘/ Z xX(s —mT) Z (s —t —nT)e!* a5 ds| = Z A (t —pT, fa+ —t) ( .(fd ') Bl p1) )
= o E—1) T sin (n(fd + Tt)T)
(38)
oo N1 No—1
‘/ > x(s—(m+ DT) Z s —t — (n+ D)T)elisqy
m=0
o B\ |sin (7 U + £0V: — 19D T)
= ¥ a(-arn+ ) : (39)
=21 sin (7 (fa + £07)
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asimilar way, the AF of coprime chirp waveform is obtained
as in (16), which concludes the proof. O
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