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In an automotive radar scenario, the transmission of sparsely

spaced chirps along slow time creates opportunities to significantly

reduce or completely avoid mutual interference. However, nonuniform

chirps result in high Doppler sidelobes, which may introduce ambi-

guity in Doppler estimation. In this article, we present an automotive

frequency-modulated continuous-wave radar that exploits difference

co-chirps to achieve high-accuracy range–Doppler estimation with low

complexity. By exploiting sparsity in slow time, the proposed method

achieves the same Doppler velocity resolution as the regular uniform

pulsing but with much fewer chirps. The silent transmission intervals

become available to other automotive radars, thereby eliminating the

mutual interference. The fast-time samples are treated as snapshots

to construct the second-order statistical information for Doppler

spectrum estimation. For our proposed nonuniform pulsing, we de-

velop an efficient range–Doppler spectrum estimation method and

propose a matching technique that is based on 2-D compressed sensing

followed by Doppler dealiasing. This algorithm achieves ipso facto

range–Doppler pairing without grid mismatch errors in parameter
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estimation and does not require an exhaustive search. Extensive nu-

merical experiments show that accurate range–Doppler estimation is

achieved with significantly fewer chirps compared to the conventional

consecutive transmission. Field campaigns using Texas Instruments

imaging radar support our theoretical investigations.

I. INTRODUCTION

Automotive radar sensors are fundamental to advanced

driver assistance systems and modern autonomous vehi-

cles largely because of their inexpensive circuitry, abil-

ity to sense during inclement weather, and immunity to

poor visibility conditions [2], [3], [4], [5], [6]. Most

practical automotive radar systems employ frequency-

modulated continuous-wave (FMCW) transmit signals

at the millimeter-wave band to achieve low-cost high-

resolution sensing for complex functions in autonomous

driving, such as automatic emergency braking, blind-spot

detection, and adaptive cruise control [7], [8]. The deploy-

ment of such radars operating in the same frequency range

of 76–81 GHz in dense traffic scenarios has led to concerns

regarding severe mutual interference from one radar to

another.

Mutual interfering signals lead to widespread contam-

ination of range–Doppler spectrum and degrade radar’s

performance [5], [9]. Among several studies that address

the automotive radar interference problem [9], notching out

the contaminated samples at the receiver is a common prac-

tice, which, however, leads to signal distortion and reduced

resolution [10]. On the transmit side, the interference can be

addressed by transmitting well-designed radar signals that

are nearly orthogonal to each other in the spectral/temporal

domains [9] at the cost of additional time/frequency slots.

In this article, we focus on transmit-centric approaches that

address the aforementioned problems.

An alternative to traditional orthogonal transmission is

to employ nonuniform chirps (along slow time) and recover

target parameters, such as target range and Doppler (ve-

locity), through sparse construction techniques [11], [12],

[13]. This allows automotive radars to utilize the media

access control [14], [15], [16] for transmission coordination.

However, radars with nonuniform pulse repetition intervals

(PRIs) [17] are known to suffer from high sidelobe levels

along slow time as a result of undersampling. In [17], a

weight interpolation technique was considered to handle

the high sidelobes in the Doppler spectrum caused by

nonuniform pulsing. In [18], after performing interpolation

to suppress these sidelobes, the nonuniform pulses are

processed via nonuniform fast Fourier transform (NUFFT).

The direct interpolation of Fourier coefficients is avoided

in [12] by employing the compressed sensing (CS) tech-

nique to recover the Doppler information. An optimal pulse

transmission structure and sampling rules were considered

in [19] to control the sidelobe level of the Doppler spectrum.

When the number of sparse nonuniform chirps during

one coherent processing interval (CPI) is much smaller than

the number of chirps in consecutive uniform transmission,

the corresponding high sidelobes in the Doppler spectrum

can hardly be reduced by using the above approaches [11],
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[12], [13], [17], [18], [19]. Hence, further investigation on

nonuniform pulsing is required to design accurate slow-time

sparse structures for automotive radar signals. In this con-

text, it is instructive to investigate the concept of difference

coarrays [20] in the slow-time domain. By utilizing the

coarray structure, difference coarrays greatly increase the

number of spatial degrees of freedom of the correspond-

ing physical arrays to achieve more effective direction-of-

arrival estimation.

There are several variants of sparse arrays, including

minimum redundancy array [21], [22], nested array [23],

[24], and coprime array [20], [25], [26], that are suited to

effectively construct difference coarrays. In a wide-sense

stationary (WSS) process scenario, missing elements (i.e.,

holes) in the difference coarrays can be interpolated to form

a virtual uniform linear array if the snapshots are suffi-

cient [27]. Very recently, Lv et al. [28] have extended coar-

rays to a joint spatiospectral domain for a frequency-diverse

array radar through coprime chirp pulsing by a coprime

physical array to achieve joint range–Doppler–angle esti-

mation. However, in automotive radar scenarios, the WSS

assumption across multiple CPIs and multiple snapshots is

not always guaranteed because of the highly dynamic and

high-speed target environment [5], [29].

In this article, we develop the concept of difference co-

chirps for the automotive radar that leaves a silent interval in

the CPI so that other automotive radars can emit signals with

negligible interference. We obtain the ambiguity functions

(AFs) of our proposed automotive radar waveforms under

two representative difference co-chirp transmissions, i.e.,

coprime and nested. In the difference co-chirp transmis-

sion, the estimation of target Doppler velocity becomes

challenging because of spectral ambiguity and difficulty in

pairing the target Doppler with the corresponding range. We

address these challenges by constructing the second-order

covariance matrix for Doppler spectrum estimation using

fast Fourier transform (FFT) with the fast-time samples

used as snapshots. Our 2-D CS approach then pairs targets’

range and Doppler, followed by Doppler dealiasing. We fur-

ther improve the performance through an efficient boosted

pairing algorithm that leverages the information obtained

from the FFT stage to avoid CS grid mismatch errors [30],

[31] and the need for an exhaustive blind search. Exten-

sive numerical results validate our model and methods.

Finally, we demonstrate the practical feasibility of differ-

ence co-chirp transmission and parameter recovery through

field experiments using a Texas Instruments (TI) radar

setup.

The basic concept of the co-chirp scheme was pre-

sented in [1] with preliminary simulation results on the

joint range and Doppler estimation. The substantive novel

contributions of this article beyond [1] include a detailed

analysis of the AFs of the co-chirp waveforms, the devel-

opment of the boosted algorithm, more comprehensive nu-

merical studies, and verification based on field experiment

results.

The rest of this article is organized as follows. In Sec-

tion II, we briefly describe the conventional FMCW radar

processing and then generalize the difference coarray con-

cept to difference co-chirps for automotive FMCW radar.

In Section III, the AFs of difference co-chirps transmis-

sions are derived for performance analysis. The range–

Doppler reconstruction method and pairing techniques to

construct the 2-D range–Doppler spectrum are presented

in Section IV. We validate our models and methods with

extensive numerical and field experiments in Section V.

Finally, Section VI concludes this article.

Throughout this article, uppercase and lowercase bold

characters denote matrices and vectors, respectively. Matrix

vectorization operation is denoted by vec(·). The conjugate

transpose is (·)H and conjugate is denoted by (·)∗. The

complex values set isC. The function �·� yields the smallest

integer that is greater than or equal to its argument. The

notation � denotes the Kronecker product.

II. SYSTEM MODEL

Conventional automotive sensing is based on the

FMCW radar, which offers very high-range resolutions

unmatched by contemporary pulse-Doppler radars and high

resilience to the negative effects of target Doppler. This is

very useful in obtaining cleaner displays with low clutter

and tracking fast targets in automotive scenarios. The focus

of this article is the detection of only high-speed targets.

Clutter being a low Doppler scatterer is, therefore, not

considered in our model. The clutter encountered in lane

change assist, blind-spot detection, and tune assist are not

considered in this article. Note that stationary clutter is gen-

erally observed at a very low depression angle yielding in-

significant backscattering. The clutter is typically homoge-

nous with concentrated Doppler frequencies corresponding

to the platform’ speed, which is known to the radar. As

such, the clutter may be easily mitigated. Usually, clutter

returns tend to be composed of discrete scatterers, such as

walls, vegetation, and traffic signs. The literature suggests

that space-time adaptive processing (STAP) is effective in

removing both periodic [32] and nonperiodic [33] clutter in

road environments. Whereas these methods were proposed

for conventional uniform chirp transmission strategies, the

authors in [34], [35], and [36] have previously considered

STAP-based clutter suppression for nested/coprime struc-

tures and are applicable to our approach.

A. Uniform Pulse Repetition Frequency FMCW Radar

Consider a monostatic FMCW radar that emits a linear

frequency ramp [see Fig. 1(a)] with bandwidth B, duration

time T , and carrier frequency fc. The transmit signal for

one ramp at the mth chirp is

x(m, t ) = rect

(
t − mTp

T

)
e j2π[ fc+

B
T

(t−mTp)](t−mTp) (1)

where Tp = 1/ fPRF is the uniform PRI, fPRF is the pulse rep-

etition frequency (PRF), and the rectangular pulse window

function is defined as

rect

(
t − τ

T

)
=

{
1, τ ≤ t ≤ τ + T

0, otherwise
. (2)
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Fig. 1. Nonuniform chirps transmission sequences and their difference

co-chirps. The missing chirp indices are left blank, and the filled

difference chirp indices are denoted by green sawtooth waveform.

(a) Uniform PRF chirps. (b) Nested chirps transmission sequence for

N1 = 3 and N2 = 3. (c) Interpolated chirps in nested transmission.

(d) Coprime chirp transmission sequence for N1 = 3 and N2 = 5.

(e) Interpolated chirps in coprime transmission.

After integration, the phase of the transmit signal x(m, t )

becomes

ϕT

(
t − mTp

)
= 2π

∫ mTp+t

mTp

[
fc +

B

T
(t − mTp)

]
dt

= 2π

(
fct +

1

2
·

B

T
t2

)
− ϕT0

(3)

where ϕT0
depends on the PRI Tp.

Assume K signals within the radar’s effective field of

view. The noise-free received signal y(m, t ) is a weighted

delayed version of x(m, t ), expressed as

y(m, t ) =

K∑

k=1

αke j2π[ fc (t−τk )+ B
2T

(t−τk )2−ϕT0 ] (4)

where αk denotes the reflection coefficient of signal with

delay τk .

The emitted signal x(m, t ) is used to dechirp the received

signal y(m, t ) to generate the beat signal, whose phase is

�ϕ(t )=ϕT (t )−ϕT (t − τk )=2π

(
fcτk +

B

T
tτk −

B

2T
τ 2

k

)

(5)

where t is the fast time with 0 ≤ t ≤ T , and τk characterizes

the delay between the transmitted signal and the received

signal of the kth target. The quadratic term of τk is negligible

in (5) because τk/T � 1 holds in short-range automotive

radar.

To unfold the delay time τk , consider the kth target

located at range rk away from the radar and moving with

a constant velocity vk . Then, the round-trip transmission

delay for the kth target is τk = 2(rk + vkt )/c, where c is the

speed of light. The phase of the dechirped signal is

�ϕ(t ) = 2π

[
2 fcrk

c
+

(
2 fcvk

c
+

2Brk

cT

)
t +

2Bvk

cT
t2

]
.

(6)

The last term can be neglected for a similar reason t/T � 1.

The term 2 fcrk/c does not change with the fast time and

is only associated with the range and, therefore, can be

absorbed into the reflection coefficient. Simplifying, the

resulting beat frequency is

f k
b =

2 fcvk

c
+

2Brk

cT
= f k

D + f k
R (7)

where f k
D = 2 fcvk/c and f k

R = 2Brk/(cT ) are the Doppler

and range frequencies of the kth target, respectively.

In automotive radars, the maximum detection range is

typically several hundreds of meters, and therefore, fb � B

holds. As a result, the beat signals are sampled using a

relatively inexpensive low-rate analog-to-digital converter.

Denote the sampling interval in the fast time by TA and

1/TA > 2 f max
b , where f max

b denotes the maximum beat fre-

quency. Then, the ith sample in the mth chirp becomes

y(m, i) =

K∑

k=1

αke j2π( f k
b iTA+ f k

DmTp) (8)

where fDmTp = 2 fcvkTpm/c denotes the Doppler fre-

quency change in the mth chirp. The CPI consists of M

chirps, and the number of samples in each chirp is I .

The sampled automotive radar data matrix of a channel is

Y ∈ C
I×M , whose (m, i)th entry is denoted as y(m, i).

In most automotive radar scenarios, fD � fR holds [5].

Thus, the Doppler frequency fD is negligible when a single

chirp is considered. However, for the high-range-resolution

radar, this term should be compensated to realize a high

range accuracy. The target range is estimated by applying

FFT to fast-time samples in the abovementioned data ma-

trix. For each range bin, the range frequency fR is constant

across the slow time. Therefore, the Doppler is estimated

by applying FFT along the slow time in data matrix Y [5].

To avoid ambiguity in the Doppler spectrum estimation in a

uniform PRF radar, it is required that fPRF ≥ 2 f max
D , where

f max
D denotes the maximum Doppler frequency.

B. Difference Co-Chirp-Based FMCW Radar

Consider a uniformly spaced chirp set S =

{m1, m2, . . ., mM}, which has M entries with mi describing

the position of the ith chirp. The difference co-chirp set is

Sdiff =
{
mi − m j

}
∀i, j ∈ S. (9)

In this definition, Sdiff does not allow the repetition of its

elements, i.e., all the entries have distinct values.

1) FMCW Radar With Nested Chirps: We now exam-

ine the FMCW radar that schedules its slow-time emission

following the nested-chirp relationship. Two-level chirp

indices are used in the basic nested-chirp transmission.
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Specifically, the first and second levels consist of N1 and

N2 chirps with corresponding PRIs as Tp and (N1 + 1)Tp,

respectively. Here, two integers N1 and N2 are selected to

realize a reasonable Doppler resolution. Under the nested

chirps, the FMCW radar transmits chirps at slow-time in-

dices as per the set

Snested ={1, 2, . . . , N1, (N1+1), 2(N1+1), . . . , N2(N1+1)}.

(10)

The set Sdiff = {n1 − n2|n1, n2 ∈ Snested} is called the dif-

ference set of nested chirps, where the total number of the

transmitted chirps is N = N1 + N2.

Under the nested transmission, the first N1 transmitted

chirps have a PRI of Tp, while the other N2 chirps have a PRI

of (N1 + 1)Tp. The sampled beat signal at the mth chirp is (8)

for m ∈ Snested. Following (8), the ith snapshot of slow-time

samples or the ith row of the sparse radar matrix is

yi
nested = B�si + ni (11)

where B = [b( f 1
D), . . . , b( f K

D )] ∈ C
N×K is the Doppler

manifold with b( f k
D) = [e j2π f k

DTp, . . . , e j2π f k
DNTp]T and si =

[e j2π f k
b iTA, . . . , e j2π f k

b iTA ]T . Here, ni denotes the addictive

white Gaussian noise vector in the ith snapshot of slow-time

samples and � = diag([α1, . . . , αK ]).

2) FMCW Radar With Coprime Chirps: A classical

coprime structure is illustrated in Fig. 1(d), where N1 and

N2 are two coprime integers that define a chirp slow-time

slot set as

Scoprime =

{N1(n2 − 1), 1 � n2 � N2} ∪ {N2(n1 − 1), 1 � n1 � N1} .

(12)

An FMCW signal is transmitted at the slow-time indices

specified in the above coprime set and the total number of

the transmitted chirps is N = N1 + N2 − 1 because of the

shared first chirp. The difference co-chirps set is

Sdiff =
{
s1 − s2|s1, s2 ∈ Scoprime

}
. (13)

However, the difference co-chirp set does not provide

consecutive chirps between time slots −N2(N1 − 1) and

N1(N2 − 1), so certain chirp indices are missing [see

Fig. 1(e)].

Under the nested transmission, the transmitted chirps

are scheduled following the transmission set Scoprime. The

sampled beat signal at the mth chirp is (8) for m ∈ Scoprime.

Following a similar procedure as the nested transmis-

sion, we also obtain the ith row yi
coprime for the coprime

scheme.

C. Advantages of Sparse Transmissions

The advantages of sparse transmission in slow time

manifest in several ways.

1) High Doppler Resolution Using Few Chirps: The

Doppler velocity resolution �ν is determined by the length

of a CPI, �ν = c/(2 fcMTp). To achieve the same Doppler

resolution as a uniform PRF, an FMCW radar under the

difference co-chirp needs to sparsely occupy the whole CPI

along the slow time following the corresponding coprime

or nested co-chirp rules. Fig. 1(a) illustrates a case where a

total of 13 chirps are transmitted under the uniform PRF in

one CPI. In comparison, for the same observation interval,

only seven and six chirps are needed under the coprime and

nested-chirp strategies, respectively.

2) Significantly Reduced Interference to Victim Radar

Through Sparse Transmission: The sparse transmission

along slow time significantly reduces the probability a

victim radar would be interfered compared to the uniform

transmission scheme since much fewer chirps of the victim

radars could be potentially corrupted. As the interference

sample’s amplitude is stronger than the target echo, the

interference can be further suppressed by adopting the

simple thresholding/gating approach [5] to mitigate the

interference before carrying out 2-D FFT for range–Doppler

estimation. The gating approach is chosen as the baseline

method for interference mitigation due to simplicity and

relative good performance [5]. Fig. 12 illustrates an example

of the interference gating.

3) Support Multiple Radars’ Simultaneous Transmis-

sion With Low Interference: The proposed sparse trans-

mission in slow time offers opportunistic transmission for

other automotive radars with only a small fraction of pulses

being interfered. To take advantage of these silent opportu-

nities, these radars must coordinate with the host radar using

vehicle-to-vehicle communication [37], such as dedicated

short-range communication [38]. Then, time synchroniza-

tion between radars can be realized by the global positioning

system (GPS) technology or atomic clock technology [39],

[40], [41]. For example, pulse-per-second signals from

two GPS modules achieve 60-ns accuracy in synchroniza-

tion [42]. More specifically, timing and carrier frequency

synchronization in the case of distributed radar systems,

as is the case with vehicular traffic scenarios, may also

be achieved through the use of existing communications

protocols [43], two-way time transfer [44], and multitone

frequency transfer [45].

To analyze the maximum number of radars that can

transmit sparsely at the same time, we consider a simple

example where all the radars follow the same transmis-

sion pattern but with different starting times. In the nested

transmission scheme, there are N = N1 + N2 chirps. In the

first level, N1 chirps will be transmitted with PRI = Tp.

In the second level, N2 chirps will be transmitted with

PRI = (N1 + 1)Tp. Therefore, there are N2 − 1 slots avail-

able for other radars to transmit signals, and each slot

duration is N1Tp. The maximum number of radars that can

simultaneously transmit is N2. Here, we define the collision

rate as

cr = μ/(N1 + N2) (14)

where μ denotes the number of collided chirps. A simple

example of N1 = 3 and N2 = 3 is shown in Fig. 2(a). In this

case, starting from the second CPI, most of the radars will

have μ = N2 overlapping chirps with each other, and thus,

the collision rate is cr = N2/(N1 + N2) = 0.5.
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Fig. 2. Nonuniform chirps transmission sequences and their maximum

transmission capacity simultaneously. The different colors block denote

the different radars. (a) Maximum transmission capacity with full silence

slots usage. (b) Incremental transmission strategy with fewer collisions.

To reduce the collision rate, an incremental schedule to

support Nt radars to transmit simultaneously with a short

idle time of (Nt − 1)N1Tp is proposed. Fig. 2(b) illustrates

an example of the schedule of Nt = 5 radars, each using the

nested scheme of N1 = 5 and N2 = 5. In this schedule, an

idle time is introduced to allow all Nt radars to complete one

CPI transmission. The number of maximum overlapping

chirps is μ = Nt − 1 = 4, and thus, the collision rate can

be small. For example, to support five radars to transmit

simultaneously with N1 = N2 = 17, the collision rate is

cr = μ/(N1 + N2) = 4/34 = 0.117. A thorough simulation

is carried out in Section V-B, and the results are shown in

Fig. 14.

It is worth noting that other radars can exploit the silent

periods without necessarily adhering to the same difference

co-chirps as we illustrated in this article. For instance, by

transmitting irregular sparse chirps, utilizing compressive

sensing for Doppler estimation may achieve better perfor-

mance [46], [47].

D. Detection Performance With Respect to Signal-to-
Noise Ratio

The U.S. Federal Communications Commission [48]

recommends that the peak and average power densities

of automotive radar systems operating in 76–77 GHz are,

respectively, less than 2.79 and 0.88 W/m2, at a distance

of 3 m. The typical transmit power of automotive radar

systems is around 1 W [5]. It is reported in [49] that the

power density is 0.88 W/m2 at 3 m for a radio source with

transmit power of 2 W, which is much smaller than 10 W/m2

suggested by the International Commission on Nonionizing

Radiation Protection (ICNIRP) [50].

Sparse transmission along slow time results in reduced

SNR, which may lead to detection performance degradation

under low-signal-to-noise ratio (SNR) scenarios compared

to uniform transmission. A thorough simulation under dif-

ferent SNRs has been conducted in Section V-A, and the

result is shown in Fig. 11. This performance degradation

under low SNRs is common for radar systems employing

sparse signal processing [11], [12], [13]. Under high-SNR

scenarios, the difference co-chirp has comparable perfor-

mance to the conventional uniform transmission.

A feasible approach to achieving comparable detection

performance to that of conventional transmission is to in-

crease the transmit power of each chirp in the sparse trans-

mission, while still satisfying the power density requirement

suggested by the ICNIRP. By doing so, the transmit signal

can reach greater distances, subsequently increasing the

likelihood of interference with a larger number of victim

radars. Assuming the same total transmit power for sparse

and uniform transmissions, the worst case is that the total

interference power received by a victim radar under both

sparse and uniform transmissions will be the same. Again,

thresholding/gating can help mitigate the interference with

a higher amplitude experienced at the victim radar. In Sec-

tion V-B, we conduct a thorough performance comparison

of victim radar under sparse and uniform transmissions,

and the results shown in Fig. 15 demonstrate significant

performance improvement of the proposed difference co-

chirp scheme over the uniform transmission counterpart,

since much fewer chirps are corrupted and strong interfer-

ence signals due to increased transmit power are efficiently

mitigated by gating.

III. AFS OF AUTOMOTIVE RADARS WITH DIFFERENCE
CO-CHIRP

The radar AF is an important tool for waveform design

and analysis that succinctly describes the behavior of a

waveform paired with its matched filter. The AF is useful

for the analysis of the resolution, sidelobe behavior, and

ambiguities in both range and Doppler domains for a given

waveform, as well as phenomena such as range–Doppler

coupling [51], [52]. The AFs of classical continuous-wave

waveforms, such as linear frequency-modulated (FM) or

single-frequency signals for uniform PRF, have been inves-

tigated thoroughly in the literature [53]. In Theorem 1, we

derive the AFs for the nested and coprime transmissions.

THEOREM 1 Consider a rectangular pulse with duration of

T that has the AF

A(t, fd ) =

∣∣∣∣∣

(
1 −

|t |

T

)
sin

[
π fd (T − |t |)

]

π fd (T − |t |)

∣∣∣∣∣ , |t | � T

(17)

where fd denotes the Doppler frequency. Consider a nested-

chirp transmission formed by two groups of chirps N1 and N2

with respective PRIs T and T̂ = (N1 + 1)T , and a coprime

chirp transmission formed by two overlapped group chirps

of coprime numbers N1 and N2 with respective PRIs T1 and

T2. The AFs under nested and coprime transmissions are

expressed in (15) and (16), shown at the bottom of the next

page, respectively.

PROOF See the Appendix. �

The unambiguous Doppler interval of nested AF is

nonuniform, and it is minimum and maximum intervals are

1/T̂ and 1/T , respectively. The unambiguous range interval

is bounded by [T, T̂ ]. The minimum unambiguous Doppler

interval of coprime AF is min(1/T1, 1/T2), and its maximum
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Fig. 3. (a) AF of nested-chirp transmission sequence. (b) Same as

(a) but shown in a contour plot. (c) and (d) Same as (a) and (b),

respectively, but for coprime chirp transmission sequence.

is max(1/T1, 1/T2). The unambiguous range interval of

coprime AF is bounded by [min(T1, T2), max(T1, T2)].

Fig. 3 shows an example of the nested-chirp AF in the

top panel. The first (second) group of chirps have N1 = 3

(N2 = 3) pulses with the PRI of 1 s (4 s). This results in a

dwell time of 12 s. Fig. 3(a) and (b) shows that the nested

chirp possesses the same Doppler resolution as the uniform

one, and its unambiguous range interval and unambiguous

Doppler interval are limited by the PRIs of the inner and

outer group chirps, respectively. Similarly, the bottom panel

of Fig. 3 plots the coprime-chirp AF, where the PRI of the

first (second) group with N1 = 3 (N2 = 5) pulses is 1 s (5 s).

Fig. 3(c) and (d) illustrates that the unambiguous range in-

terval is confined by the PRI difference between N1 and N2,

and the unambiguous Doppler interval is limited by the PRI

of N2 group chirps. Fig. 3 demonstrates that, compared with

coprime, the nested-chirp transmission does not change the

maximum unambiguous range and Doppler interval, and

its sidelobes decay faster than the coprime transmission.

However, the coprime technique narrows down the unam-

biguous Doppler interval because of nonconsecutive chirps

in the transmission.

Since the difference co-chirp following the coprime

transmission results in some missing data in the full dwell

time after slow-time interpolation, an intuitive way is to

truncate the dwell time to maintain a consecutive slow-time

sequence. However, this degrades the velocity estimation

performance because of a shorter CPI. A more effective al-

ternative is to interpolate these missing data via the Toeplitz

matrix completion approaches [54], [55] using the second-

order statistical information. The matrix completion-based

interpolation approach requires a high SNR to guarantee

bias-free interpolation. However, the input SNR of the raw

echo data in the automotive radar is relatively low (usually

less than 0 dB) [5]. In this context, the nested co-chirp

transmission is more favorable than the coprime counterpart

because of its nonhole feature in the whole CPI duration

after slow-time interpolation.

IV. RANGE–DOPPLER–ANGLE RECOVERY

In a uniform PRF FMCW radar, performing a 2-D FFT

on the beat signal directly yields paired range and Doppler

information. However, when the transmission sequence

is sparse, this technique is both inapplicable and inaccu-

rate [11]. We address these shortcomings by developing

a Doppler estimation procedure with difference co-chirps

based on the second-order statistics of radar samples. This is

followed by an efficient pairing strategy for range–Doppler

parameters.

A. Doppler Estimation With Difference Co-Chirps

In each CPI, we interpolate the missing samples along

the slow time for Doppler estimation via the construction

of a second-order covariance matrix. Such interpolation

requires a large number of snapshots. As mentioned earlier

in Section II-A, the Doppler shift in a typical automotive

radar is negligible during fast-time sampling of a single

chirp and is viewed as a constant [5]. Therefore, we treat

the fast-time samples as “snapshots” for Doppler covariance

Anested(t, fd ) =

N1−1∑

n1=−(N1−1)

A

(
t − n1T, fd +

B

T
t

) ∣∣∣∣∣
sin(π ( fd + B

T
t )(N1 − |n1|)T )

sin(π ( fd + B
T

t )T )

∣∣∣∣∣

+

N2−1∑

n2=−(N2−1)

A

(
t − n2T̂ , fd +

B

T̂
t

) ∣∣∣∣∣
sin(π ( fd + B

T̂
t )(N2 − |n2|)T̂ )

sin(π ( fd + B

T̂
t )T̂ )

∣∣∣∣∣ . (15)

Acoprime(t, fd ) =

N1−1∑

n1=−(N1−1)

A

(
t − n1T1, fd +

B

T1

t

) ∣∣∣∣∣
sin(π ( fd + B

T1
t )(N1 − |n1|)T1)

sin(π ( fd + B
T1

t )T1)

∣∣∣∣∣

+

N2−1∑

n2=−(N2−1)

A

(
t − n2T2, fd +

B

T2

t

) ∣∣∣∣∣
sin(π ( fd + B

T2
t )(N2 − |n2|)T2)

sin(π ( fd + B
T2

t )T2)

∣∣∣∣∣ . (16)
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matrix construction. The sampling Doppler covariance ma-

trix is

Rnested =
1

I

I∑

i=1

yi
nested

(
yi

nested

)H

=
1

I

I∑

i=1

[
B�si(si )H

�
H BH + ni

(
ni

)H
]

= BnRαBH
n + σ 2

n I. (18)

For the same range bin, the term si(si )H = I, where I is an

identity matrix and I is the number of fast-time samples,

which means the fast-time information embedded in fb will

be dismissed in the covariance matrix and only Doppler-

related samples will be extracted. By vectorizing Rnested,

the co-chirp signal model is

rnested = vec(Rnested ) =
(
B∗

n � Bn

)
p + σ 2

n i (19)

where p = (α2
1, . . . , α

2
K )T and i = vec(I).

The Doppler autocorrelation yi
nested(yi

nested )
H

is com-

posed of entries including e j2π f k
D (n2−n1 )Tp for n1, n2 ∈ Snested,

i.e., e j2π f k
DnTp for n ∈ Sdiff . It follows from the properties of

the nested chirps that the indices in Sdiff are consecutive for

a given observation interval N1(N2 − 1)Tp, and therefore,

the missing Doppler samples along the slow time can be

interpolated via the Doppler autocorrelation. The number

of averaged unique consecutive Doppler samples dUC
diff =

unique(rnested ) is obtained from the sampling covariance

vector with indices defined in Sdiff .

The Doppler spectrum is then obtained by applying FFT

to the interpolated Doppler samples along the slow time.

The Doppler spectrum is accurate and robust, which also

reveals the targets’ power as the diagonal elements of Rα =

��
H = diag([α2

1, . . . , α
2
K ]). In a similar way, the decoupled

range and Doppler spectrum can also be estimated using the

coprime transmission strategy. However, due to the coprime

chirp properties, the coprime transmission fashion cannot

enjoy the consecutive Doppler samples for the same dwell

time as the conventional transmission scheme after slow-

time interpolation.

For single-range multiple-Doppler or single-Doppler

multiple-range scenarios, the cross-spectrum displays the

target position and velocity information. However, for mul-

tiple target scenarios, the cross-range–Doppler spectrum

would yield redundant peaks arising from the decoupling

between the range and the velocity. Fig. 4 shows an example

of the range–Doppler spectrum based on the unpaired range

and velocity results under nested co-chirp transmission

with N1 = N2 = 17 and Tp = 15 μs. Two targets with the

same radar cross section (RCS) at ranges of r1 = 45 m and

r2 = 87.5 m, and corresponding velocities of v1 = 35 m/s

and v2 = 10 m/s are considered in the simulation.

B. Joint Range–Doppler Estimation

Sparse sampling in the Doppler domain yields high

sidelobes in the Doppler spectrum posing a challenge in

Fig. 4. Range–Doppler spectrum based on the unpaired results. The

true locations (marked by ×) of the targets in the range–Doppler plane

are {r1 = 45 m, v1 = 35 m/s} and {r2 = 87.5 m, v2 = 10 m/s}.

Fig. 5. Range–Doppler spectrum of nested co-chirp transmission with

three targets.

correctly pairing range and Doppler parameters in the

nested transmission. Consider the following example: There

are three targets in the field of view of the radar, and

their range–velocity pairs are [45 m, 10 m/s], [87.5 m,

10 m/s], and [45 m, 35 m/s], respectively. The reflection

coefficients of the three targets are normalized to α1 =

0.3, α2 = 0.5, and α3 = 1 and assumed to be unchanged

during the processing interval. As shown in Fig. 5, the

weaker target (target 1 with α1 = 0.3 and range–velocity

pair [45 m, 10 m/s]) is buried in the high sidelobes of

the targets with larger RCS and, therefore, difficult to de-

tect. It means that the range and Doppler results obtained

from FFT cannot be directly used to detect the true tar-

get positions. To this end, we now present our co-chirp

joint range-Doppler estimation with DoppDler dealiasing

(CoDDler) super-resolution algorithm. The first step of this

technique employs 2-D CS to jointly estimate the range and

Doppler using sparse samples along the slow-time. In the

second step, we remove the Doppler ambiguity through a

difference co-chirps interpolation-based Doppler dealiasing

strategy.

Denote the maximum detection range and the maxi-

mum velocity by Ru and vmax, respectively. To construct

an appropriate CS dictionary [56], [57], we discretize range

and Doppler into a fine grid with Mr × Mv points. This
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results in the corresponding range and Doppler grid sizes

of Ru/Mr and 2vmax/Mv , respectively. The ξ th range and

ηth discretized velocity are denoted as Rξ and vη, respec-

tively. The corresponding beat frequency is f
ξη

b
= f

ξ
R + f

η
D.

Denote the noise-free data matrix by Zξη ∈ C
I×N , whose

(n, i)th element is

z(n, i) = e
j2π

(
f
ξη

b
iTA+ f

η
DnTp

)

, n ∈ Snested. (20)

The dictionary of the 2-D CS is

A =
[
vec (Z11) , . . . , vec

(
Z1Mv

)
,

vec (Z21) , . . . , vec
(
ZMr Mv

) ]
. (21)

In practice, the measurement is corrupted by additive noise

leading to vec(Y) = Ax + n, where n is the noise vector.

Here, x ∈ C
MvMr×1 is a sparse vector, where x j = αh with

h = Ku or h = Pc if the hth target has range of Ru

Mr

⌈
j

Mv

⌉
and

velocity of −vmax + 2vmax

Mv

mod ( j, Mr ); otherwise, x j = 0.

We obtain the unknown range and Doppler by solving

the following relaxed �1-norm optimization:

minimize ‖x‖1 subject to ‖vec (Y) − Ax‖2 ≤ δ (22)

where δ is the noise bound. The signal vector x in (22)

may be estimated through popular solvers such as Dantzig

selector [58] or orthogonal matching pursuit (OMP) [59]. In

general, for the successful recovery of the sparse vector x,

the dictionary matrix A must satisfy certain properties dic-

tated by CS theory, e.g., low value of mutual coherence [60],

defined as

μ (A) = max
l 
= j

∣∣aH
l a j

∣∣
‖al‖2

∥∥a j

∥∥
2

(23)

where a j denotes the jth column of matrix A.

For nested (and, similarly, for coprime) transmission,

there are two subchirp sequences with two different uniform

TABLE I

Radar Parameters

PRIs. Using the similar phase conjugation in [61], the (r; v)-

dependent range–Doppler pattern is written as

ϕ (r; v) =

N1+N2−1∑

n=0

I−1∑

i=0

z∗ (ri; vn) z (r; v). (24)

The range–Doppler pattern has a peak value when ri = r

and vn = v. The aH
l a j for l 
= j, represents the energy leak-

age of the range–Doppler steering vector pointing at (rl; vl )

to range and velocity bins of (r j; v j ). Thus, maxl 
= j |a
H
l a j |

corresponds to the peak sidelobe of the range–Doppler

pattern. Let �r = rl − r j, �v = vl − v j , and Tp2 = (N1 +

1)Tp. Equations (25) and (26) shown at the bottom of the

this page, hold. It is clear that the mutual coherence μ(A) is

a parameter-dependent value. For given system parameters,

its value reaches a maximum I (N1 + N2) when �r and �v

approach to zero. The mutual coherence will decrease when

�r and �v take larger values. Equation (26) reveals that

the peak sidelobe appear around the real target leading to

inaccurate detections. Therefore, a dealiasing in range and

Doppler is necessary.

To illustrate the parameter-dependent mutual coher-

ence, we plot the mutual coherence of the radar dictionary

as a function of discretized grid size of the range and the

Doppler in Fig. 6 with parameters given in Table I, and

the grid steps are set to the same along the range and

Doppler axes. It follows that the mutual coherence is highly

correlated with the discretized grid step of the velocity and

aH
l a j =

N1−1∑

n1=0

I−1∑

i=0

e j2π( f l
b iTA+ f l

Dn1Tp)e
−j2π

(
f

j

b
iTA+ f

j
Dn1Tp

)

+

N2−1∑

n2=0

I−1∑

i=0

e j2π( f l
b iTA+ f l

Dn2Tp2)e
−j2π

(
f

j

b
iTA+ f

j
Dn2Tp2

)

=

N1−1∑

n1=0

I−1∑

i=0

{
e j2π [ 2B

cT
(rl−r j )+

2 fc
c

(vl−v j )]iTA e j2π [
2 fc

c
n1Tp(vl−v j )]

}
+

N2−1∑

n2=0

I−1∑

i=0

{
e j2π [ 2B

cT
(rl−r j )+

2 fc
c

(vl−v j )]iTA e j2π [
2 fc

c
n2Tp2(vl−v j )]

}

=
1 −

[
e j2π ( 2B

cT
�r+

2 fc
c

�v )TA ]I

1 − e
j2π

(
2B
cT

�r+
2 fc

c
�v

)
TA

×
1 −

[
e j2π

2 fc
c

�vTp

]N1

1 − e j2π
2 fc

c
�vTp

+
1 −

[
e

j2π
(

2B
cT

�r+
2 fc

c
�v

)
TA

]I

1 − e
j2π

(
2B
cT

�r+
2 fc

c
�v

)
TA

×
1 −

[
e j2π

2 fc
c

�vTp2
]N2

1 − e j2π
2 fc

c
�vTp2

. (25)

∣∣aH
l a j

∣∣ =

∣∣∣∣∣∣

sin
[
π

(
2B
cT

�r +
2 fc

c
�v

)
TAI

]

sin
[
π

(
2B
cT

�r +
2 fc

c
�v

)
TA

]

∣∣∣∣∣∣
×

∣∣∣∣∣∣

sin
(
π

2 fc

c
�vTpN1

)

sin
(
π

2 fc

c
�vTp

) +
sin

(
π

2 fc

c
�vTp2N2

)

sin
(
π

2 fc

c
�vTp2

)

∣∣∣∣∣∣

=

∣∣∣∣∣∣
I

sinc
[(

2B
cT

�r +
2 fc

c
�v

)
TAI

]

sinc
[(

2B
cT

�r +
2 fc

c
�v

)
TA

]

∣∣∣∣∣∣
×

∣∣∣∣∣∣
N1

sinc
(

2 fc

c
�vTpN1

)

sinc
(

2 fc

c
�vTp

) + N2

sinc
(

2 fc

c
�vTp2N2

)

sinc
(

2 fc

c
�vTp2

)

∣∣∣∣∣∣
. (26)
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Fig. 6. Mutual coherence of the dictionary matrix with respect to the

discretized grid step in range and Doppler domains.

Algorithm 1: Co-Chirp Joint Range-Doppler Estima-

tion With Doppler Dealiasing.

Input: N1, N2, Mv, Mr , and the received sparse

data matrix Y.

Output: dealiasing CS range–Doppler spectrum.

Doppler spectrum with interpolated Doppler

samples:

1: Rnested = 1
I

∑I
i=1 yi

nested(yi
nested )

H
.

2: dUC
diff = unique(rnested ).

3: D = FFT{dUC
diff}.

Range-Doppler estimation with 2-D CS and

Doppler dealiasing:

4: Discretize the range and velocity into a fine grid

and construct dictionary matrix A according to

(21).

5: Solve �1-norm optimization problem (22) by OMP.

6: Apply the Doppler spectrum D to filter out

spurious velocity peaks in CS estimation.

the range. In order to obtain a high range and Doppler reso-

lutions, a finer local discretized gridding in the range and the

velocity is beneficial. However, such a small grid step results

in high mutual coherence and, subsequently, high sidelobes

of the Doppler spectrum. Algorithm 1 summarizes these

steps.

Although the co-chirp joint range–Doppler estimation

with Doppler dealiasing pairs range and Doppler correctly

with a high resolution, the computation cost is relatively

high. Moreover, the matching error highly depends on the

way the dictionary is constructed. For instance, if the dis-

cretized grid is small enough, the matching error will be less

significant. However, according to the mutual coherence

analysis of the dictionary, a small discretized step leads

to a larger mutual coherence value, which worsens the

sidelobe level in the range–Doppler spectrum and requires

high computer memory demand. Inevitably, the inherent

off-grid problem also results in pairing errors.

The cost of solving the l1-norm optimization problem

(22) by OMP is O(dim(A)G), where dim(A) is the size

Algorithm 2: Boost Co-chirp joint range-Doppler

estimation with Doppler dealiasing (BoDDler).

Input: rfft, vfft, D and the received sparse data

matrix Y.

Output: dealiasing CS range–Doppler spectrum.

1: Construct dictionary matrix Ar according to (21).

2: Solve �1-norm optimization problem (22) by OMP.

3: Apply the Doppler spectrum D to filter out fake

velocity peaks in CS estimation.

of dictionary matrix A and G denotes the number of it-

erations [62]. In this application, the size of a conven-

tional dictionary matrix A is IN × MrMv . The need for

high-resolution sensing requires the discretized steps in

Mr and Mv directions to be kept small, leading to pro-

hibitively high computational costs. For example, storing

several gigabytes for dictionary matrix A is impractical for

many embedded systems. To mitigate such problems, we

propose a minimum dictionary size-based Doppler dealias-

ing and pairing procedure. The candidate set of range

rfft = {r1, r2, . . ., rK} is captured very well by FFT along

fast-time sampling with threshold techniques. After per-

forming FFT on consecutive interpolated Doppler samples

obtained from the sampling covariance matrix, the velocity

candidate set vfft = {v1, v2, . . ., vJ} can also be estimated.

Thus, the reduced-size dictionary matrix Ar is

Ar =
[
vec(Zr1v1

), vec(Zr2v1
), . . ., vec(Zrkv j

)
]
,

rk ∈ rfft, v j ∈ vfft. (27)

This boosted version of CoDDler algorithm (BoDDler) is

summarized in Algorithm 2.

The dimension of the dictionary matrix Ar in the BoD-

Dler is at most IN × KJ . Because KJ � MrMv , the com-

putation cost of BoDDler is O(INKJG). The computation

cost of the BoDDler is much less than the computation

complexity of the original version, where typically MrMv

is quite large (say 104) to realize a high resolution. One

additional advantage of the BoDDler is that it does not

require grid discretization because all detected range and

Doppler results are given to build the dictionary, which

totally avoids the off-grid issue inherent in CS [30] and

the resolution limitation depends only on the fast-time and

slow-time Fourier transforms. The matching guarantee is

based on the fact that Ar is still an overcomplete dictionary

and contains all atoms of the original signal.

After obtaining a range estimate from range FFT, one

could apply 1-D CS [58], [59], [63] along the slow time

for each range to automatically pair the range and the

Doppler. However, this approach does not exploit the known

velocity information obtained from slow-time FFT along

the interpolated slow-time samples and, therefore, requires

a longer time for the matching process.

Conventional CS methods do have the ability to retrieve

information from sparse (nonuniform) sampling. A straight-

forward nonuniform sampling could be random, but it must
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Fig. 7. Illustration of the beam vector extraction from a nested radar data cube.

be properly designed to keep a low mutual coherence in

the dictionary and a low computational complexity. The

coarray-based chirping is more structured and, therefore,

easy to implement in hardware when compared to random

pulsing, which usually leads to higher sidelobes. Moreover,

basic co-chirp processing may be used as a template for

analyzing other nonuniform pulsing methods (see [28, Sec.

V.C] for some examples). Using the coarray method, we can

use the fast-time samples as snapshots, so that the Doppler

information is recovered by exploiting the coarray feature.

Combining the velocity and the range, the pairing procedure

becomes more cost-effective.

C. Direction Finding and Extension to 4-D High-
Resolution Imaging Radar

An application of the automotive radar with difference

co-chirps to a 4-D high-resolution imaging radar in range,

Doppler, azimuth, and elevation is shown in Fig. 7. For

each channel, the interpolated Doppler spectrum SP(dUC
diff ) ∈

C
Nvfft×1 is obtained by performing Nvfft-point FFT along the

interpolated Doppler. Following the same trace, the range

spectrum SP(R) ∈ C
Nrfft×1 is the result of performing Nrfft-

point FFT along the fast-time samples. Therefore, the cross

spectrum is obtained as SP(CP) = SP(R) × SP(dUC
diff )T ∈

C
Nrfft×Nvfft . For specific target locations, the indexes in the

range–Doppler spectrum corresponding to the actual target

positions are obtained from the BoDDler algorithm. These

true positions are aligned with the cross spectrum to select

the actual angle information cell pi
n of the ith target for the

nth channel, where i ∈ [1, 2, . . ., P] and n ∈ [1, 2, . . ., N].

After performing this procedure for all channels and target

locations, the actual angular cells are stacked according

to their channel index order to form the array manifold

Aangle ∈ C
N×P, which is then used to perform direction

finding. Depending on the array geometry and the avail-

ability of array snapshots, direction finding can be carried

out using FFT or high-resolution subspace methods, such as

MUSIC [64], ESPRIT [65], or CS [58], or iterative adaptive

approach [66].

For driver-over and driver-under functions [7], 2-D an-

tenna arrays deployed in both horizontal and vertical di-

rections are required to support joint azimuth and elevation

direction finding. The angular resolution is determined by

the antenna array aperture, i.e., �θ = 2arcsin(1.4λ/(πD)),

where λ is the wavelength corresponding to the carrier

frequency and D is the aperture size of the receiver array.

As a result, the hardware cost of 4-D imaging radar is high

if full arrays of large apertures are adopted for joint azimuth

and elevation direction finding. To reduce the hardware

complexity while achieving the same angular resolution as

a full-array counterpart, different strategies are available to

design 2-D sparse arrays in the context of multi-input multi-

output radar [5]. For example, to enable high-resolution 4-D

imaging, the authors in [7] and [67] proposed to exploit

a joint sparsity design in frequency spectrum and array

configurations. There are several off-the-shelf 4-D imaging

radar prototypes, such as TI cascade imaging radar [68], and

commercial automotive radar products, such as Continental

ARS540 [69]. However, the detailed discussion of 2-D

sparse array design and direction finding is out of the scope

of this article.

V. NUMERICAL AND FIELD EXPERIMENT RESULTS

We carried out numerical and radar field experiment

results to evaluate the performance of the proposed differ-

ence co-chirps waveform. Table I lists the settings of a radar

system consisting of a single transmitter and 20 uniformly

deployed 1-D linear receivers used in our experiments.

A. Parameter Retrieval Without Interference

To realize the maximum unambiguous detectable ve-

locity requirement listed in Table I, the PRI is bounded by

Tp = 15 μs. To determine the target velocities, for con-

ventional FMCW radar, a total number of 306 uniform

chirps are transmitted in one CPI, and the dwell time is

NTp = 4.59 ms. Consequently, the velocity resolution is

�v = λ/(2NTp) = 0.42 m/s. Two targets are considered

with ranges r1 = 87.5 m and r2 = 45 m, velocities v1 =

10 m/s and v2 = 35 m/s, and azimuth angles θ1 = 15◦ and

θ2 = 37◦. The reflection coefficients of the two targets are

normalized to α1 = 0.5 and α2 = 1.0 and are assumed to be

unchanged during the processing interval. The input SNR

is set to 0 dB.

In order to achieve the same dwell time as the conven-

tional one to maintain the velocity resolution, the nested

co-chirp transmission suggests that the first uniform pulse

train has N1 = 17 chirps with the same repetition interval Tp

as in the traditional transmission, and the second uniform

pulse train transmits a total number of N2 = 17 pulses with
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Fig. 8. Range–Doppler spectrum on sparse data under nested co-chirp

transmission. (a) 2-D FFT. (b) 2-D nonuniform FFT. The red × denotes

the actual positions of the targets.

PRI of TP2
= (N1 + 1)Tp. For the coprime transmission, the

coprime pair is N1 = 17 and N2 = 18.

Under the nested transmission, the FFT spectrum per-

formed on the received sparse data directly is shown in

Fig. 8(a), where it can be found that the high sidelobes of

the strong target would bury targets with weaker reflection

coefficients, thereby reducing the radar probability of de-

tection (PD). Another classical technique to perform FFT

on nonuniform sampling data is the nonuniform FFT [18].

Fig. 8(b) shows the 2-D spectrum obtained by applying

NUFFT on only 11% of the original uniform sampling

data. And it can be found that the high sidelobe levels

still stand out and may mask targets with weaker reflection

coefficients.

With the range and Doppler estimates obtained by ap-

plying FFTs on, respectively, fast-time and interpolated

slow-time samples, the pairing is achieved by the 2-D

boosted-CS method. Certain spurious peaks appear in the

2-D boosted-CS spectrum because of the overestimation of

the number of targets, as shown in Fig. 9(a). To remove

these, the target magnitude and velocity set D is used to

filter out noise-like peaks in the 2-D boosted-CS spectrum.

After dealiasing, a perfect spectrum is available in Fig. 9(b).

It should be noted for 2-D boosted CS of carrying range and

Doppler pairing, the atoms in the dictionary are constructed

Fig. 9. 2-D boosted CS on sparse data. (a) Initial pairing. (b) After

amplitude dealiasing. The red × denotes the actual positions of the

targets.

Fig. 10. Direction finding using nested co-chirp from a 20-element

uniform linear array, where × denotes the ground truth.

from the estimations in the set of rfft and vfft. Therefore, the

resolution of 2-D boosted CS depends on the number of

points used in the FFT.

The beam vector pI for each target was obtained by

alignment of the clean positioning output of the 2-D en-

hanced CS with the prepossessed cross-range–Doppler

spectra of each channel. Applying FFT along each beam

vector is an efficient method for target angle analysis. As

shown in Fig. 10, two targets can be accurately estimated.

To statistically evaluate the recovery performance of the

nested co-chirp, we apply the hit or missing criterion [13]
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Fig. 11. Performance comparison between conventional and nested

co-chirp transmissions. (a) Hit rate comparison. (b) RMSE of range and

velocity for conventional (dashed lines) and nested (solid lines)

transmissions.

to examine the range–Doppler recovery rate under different

input SNR values. Here, a hit denotes that the absolute error

of the recovered range–Doppler pair is within the range

and Doppler resolutions. For comparison, we also show the

recovered hit rate of the conventional chirp transmission

scheme. We placed two targets with normalized reflection

coefficients of α1 = 0.5 and α2 = 1.0, which remain un-

changed during the processing interval. The velocity and

range of these two targets are drawn uniformly at random

from [10, 90] m/s and [10, 100] m, respectively. For each in-

put SNR selected from 11 uniformly spaced values in the in-

terval [−25, 25] dB, we perform 1000 Monte Carlo simula-

tions. As shown in Fig. 11(a), the hit rate reaches unity when

the input SNR is above −10 dB. The root-mean-squared

error (RMSE), defined as RMSE =

√∑Mc

i=1(ŷi − yi )2/Mc

using Mc independent trials, is used as the performance

metric to measure the deviation of the detection result ŷ

from the ground truth y. Here, ŷ and y denote either velocity

or range estimation and their corresponding ground truth

values, respectively. All the detection results for conven-

tional and nested co-chirp schemes are obtained from the

same (2048 × 2048)-point FFTs along the range and the

Doppler dimensions. Fig. 11(b) shows that the RMSEs of

the range and velocity estimates under the nested co-chirp

are close to those obtained from a conventional uniform

chirp transmission when SNR is larger than −10 dB. The

number of points of FFT along fast time or slow time bounds

the estimation errors.

Under the nested co-chirp transmission, we use the

fast-time samples as snapshots to construct a covariance

matrix, based on which the missing data containing Doppler

information along slow time can be interpolated. Then, FFT

is applied to these interpolated data to retrieve the target

velocity spectrum. The velocity and the range spectra are

plotted in Fig. 13(a) and (c), respectively, which perfectly

match the ground truth. Therefore, these detected range

and Doppler peaks can be imported to a 2-D boosted-CS

algorithm for pairing. However, for the coprime transmis-

sion, the interpolated data are not consecutive in the whole

dwell time. The few missing slow-time slots lead to energy

leakage on the velocity spectrum when performing FFT

on the interpolated data. Fig. 13(b) shows the slow-time

FFT spectrum based on the interpolated data under the co-

prime transmission, and the consequence of energy leakage

appears in a form of high sidelobes. Targets with weaker

reflection coefficients have the risk of being buried by the

high sidelobes. Since the mutual coherence of the dictionary

matrix is high, the 2-D CS technique is not guaranteed to find

correct range–Doppler estimation without reliable Doppler

dealiasing. Therefore, the nested-chirp transmission is su-

perior to its coprime counterpart.

B. Parameter Retrieval in the Presence of Interference

It is of great interest to see the performance of auto-

motive radar under difference co-chirp transmissions when

there is interference, i.e., there is no transmission coordina-

tion among multiple radars. The radar parameters remain

the same as those used in Section V-A. The interference

duration at certain chirps is given by Ti = |2 f max
b /(Si − S)|,

where f max
b denotes the maximum beat frequency and Si

and S are the chirp slopes of the interference and the victim

radars, respectively [5]. The signal-to-interference-plus-

noise ratio (SINR) of the mth chirp is defined as SINR =

10log10(‖y(:, m)‖2/(‖�‖2) + ‖n‖2), where � contains the

interference samples collected within the interference du-

ration and n denotes the noise vector. To investigate the

interference signal, we set the input SNR = 0 dB to define

the fixed input noise level. After dechirping and low-pass

filtering, the received signal consists of signal and interfer-

ence trails, as shown in Fig. 12(a). Since the interference

signal comes from a direct path, it has stronger power than

the target echoes. As shown in Fig. 12(b), the noise floor of

the range–Doppler spectrum increases significantly due to

the interference.

It is imperative to evaluate the performance of the pro-

posed automotive radar under the nested-chirp transmission

using the receiver operating characteristic (ROC) curve for

different SINR settings. In the simulation, the interference

is generated following the above worst case setting. Five

targets are located at a range between 10 and 90 m. Their

normalized reflection coefficients vary between α1 = 0.5
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Fig. 12. Performance under interference. (a) Fast-time samples under the nested transmission with SINR = −12 dB. (b) Range–Doppler spectrum

with SINR = −12 dB. (c) ROC curve under different SINRs in the worst case interference setting.

Fig. 13. Performance comparison between (a)–(c) without interference, (d)–(f) with interference of SINR = −12 dB appearing continuously with a

duration equivalent to the first 30 chirps, and (g)–(i) with interference of SINR = −12 dB appearing sparsely at random along the whole CPI. Doppler

estimation with FFT: (a), (d), and (g) Nested transmission; (b), (e), and (h) coprime transmission; and (c), (f), and (i) range estimation with FFT under

the nested transmission.
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TABLE II

Parameters of Interfering Radar

and α2 = 1. The input INR varies between −16 and −8 dB

with a step size of 4 dB, and a total number of 3000 inde-

pendent trials are carried out to compute the averaged PD

and probability of false alarm (PFA). Each range–Doppler

map has 512 × 512 samples. Here, a successful detection

means that both the ranges and velocities of the five tar-

gets are correctly estimated. During each trial, the velocity

difference between the two targets is at least 1 m/s, and

the range difference between the two targets is more than

1 m/s. Fig. 12(c) shows that, for SINR = −16 dB, only

under higher PFAs, the five targets are detected successfully.

When SINR = −8 dB, the PD is close to 1 for a small PFA,

i.e., 10−4.

We consider the worst interference scenario that the in-

terference appears continuously in a duration equivalent to

the first 30 chirps. It is clear that the first subgroup chirps of

the victim radar under the nested-chirp transmission would

be contaminated by this type of interference. As shown in

Fig. 13(d) and (f), the noise floor in both Doppler and range

spectra raise drastically compared with those in Fig. 13(a)

and (c) without interference. However, the effect of this

continuous interference appearing in the first few chirps

is less significant for victim radar under the coprime trans-

mission because less number of chirps are contaminated. As

shown in Fig. 13(e), the noise floor of the Doppler spectrum

under the coprime transmission increases slightly compared

with the result in Fig. 13(b) without interference. We then

consider the other interference scenarios, for instance, when

an interference appears sparsely at random along the whole

CPI. Fig. 13(g)–(i) indicates that the influence of this type

of interference is less significant because the victim radar

under the difference co-chirps remains silent for most of the

time during one CPI. As a result, the chance of receiving

interference is greatly reduced. If there is interference, it

only appears in a few chirps.

To evaluate the performance of detection with different

interfering parameters, we conduct Monte Carlo simula-

tions with a total number of 3000 independent runs to

assess the hit rate of the victim radar. In the experiment,

the victim radar has the following parameters, i.e., B = 150

MHz, Td = 7.33 μs, and PRI = 9.76 μs. The parameters

of interfering radar with FMCW waveforms are given in

Table II, and the incident azimuth angle of interfering radar

is always at θi = 0◦. In each run, the interfering radar’s

bandwidth, pulse duration, PRI, and distance to the victim

radar are randomly drawn from the feasible region given in

Table II. The simulation result is shown in Fig. 14, where we

observe that if the collision occurs in the sparse transmission

stage and, hence, cr < 0.5 (e.g., we use cr = 0.12 in the

Fig. 14. Hit rate with respect to SINR for different collision scenarios.

simulations), the hit rate reaches to unity when the SINR

exceeds −10 dB. A partial collision scenario (cr = 0.5)

requires SINR to be higher than −7 dB to reach similar

hit rates. Simultaneous transmission during all chirps, i.e.,

the full collision case (cr = 1), requires SINR to be up to

−5 dB to reach the unity hit rate. However, full collision

situation does not frequently occur, and the nested co-chirp

offers good anti-interference performance in most cases.

It would be highly beneficial to investigate the advan-

tages of the proposed sparse transmission, both with and

without increased transmit power per chirp, in reducing

interference to victim radars employing uniform transmis-

sion. Fig. 15(a) shows an example with two targets in the

field of view of a victim radar with normalized amplitudes

α1 = 1 and α2 = 0.01, ranges r1 = 20 m and r2 = 5 m, and

velocities v1 = 15 m/s and v2 = 10 m/s, and azimuth angles

θ1 = 15◦ and θ2 = 37◦. Fig. 15(b) shows that, when both the

host and the victim FMCW radars use uniform transmission

and interference exists in the whole CPI, the targets cannot

be identified from the range–Doppler spectrum of the victim

radar due to the high interference power. As shown in Fig.

15(c), after applying the gating technique to clip the inter-

ference with a high amplitude, the target with a small RCS

is still embedded under the noise floor. We also utilize the

singular value decomposition (SVD) method as a compara-

tive scheme because of its proven superiority in eliminating

interference signals within the received signal, as outlined

in [70]. For the mth chirp, the received data of the victim

radar with N channels are Y = Ys + Yi ∈ C
I×N , where Ys,

and Yi are targets and interference samples, respectively.

The received signal covariance matrix is R = YYH . Typ-

ically, the incident power of the interfering radar to the

victim radar is much higher than the power received from

the target because of the direct path between the interfering

and the victim radars. Therefore, the principal component of

the SVD of R, expressed by eigenvalue s1 and eigenvector

U(:, 1), is regarded as the contribution of the inter-

fering radar. In this case, the interference is sup-

pressed by orthogonal subspace projection. The resulting
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Fig. 15. Range–Doppler spectrum of victim radar, where × denotes the ground truth. (a) Targets plus noise. (b) Target plus interference and noise

under the conventional uniform transmission before gating. (c) Same as (b), but after gating. (d) Same as (b), but after SVD mitigation. (e) Target plus

interference and noise under the nested co-chirp transmission before gating. (f) Same as (e), but after gating. (g) Same as (e), but after SVD mitigation.

interference-free signal is expressed as Ŷ = P⊥Y, where

P⊥ = I − U(:, 1)UH (:, 1), and I is the identity matrix. This

method effectively restores the data matrix of the target

signal with high precision.

Fig. 15(d) shows the case when the interference signal

energy is strong and the target dynamic range is large.

Although the target with a small RCS can be distinguished

with the help of SVD technique, its strength is nevertheless

very close to the sidelobe signal level of the large RCS

target. On the other hand, as shown in Fig. 15(f), with

co-chirps, the entire spectrum is free of interference. The

target with a smaller RCS is clearly distinguished, and it

demonstrates that the SVD method is superior to gating.

Now, the host radar adopts the proposed sparse transmission

following the nested co-chirp scheme with an increased

transmit power to achieve the same processing gain as

the uniform transmission scheme. Fig. 15(e) shows that,

before gating, the targets are buried by the increased noise

in the range–Doppler spectrum. However, after gating or

SVD interference mitigation, the weaker target is clearly

detected, as shown in Fig. 15(f) and (g). This is because

only a much smaller number of chirps are corrupted under

the sparse transmission scheme compared to the uniform

transmission scheme.

Although sparse transmission can reduce the interfer-

ence to other radar systems, increasing the power of a single

chirp in order to obtain a processing gain similar to the

traditional transmission method will cause higher electro-

magnetic pollution. Therefore, it is crucial to investigate

how the increased chirp power impacts the radar illumina-

tion range. As introduced in [71], the linear gains of the

transmitting and receiving antennas of an ultra-short-range

radar (USRR) and a medium-range radar (MRR) are 4 and

10, respectively. At the same time, the RCS of the vehicle is
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Fig. 16. Radar detection range versus power per chirp.

TABLE III

TI Radar Settings for Field Experiment

10 dBsm. Therefore, in the traditional transmission mode,

the RF output power is 12 dBm and the minimum detection

power of the receiving chain is −110 dBm. Taking into

account the aforementioned link budget and observing the

relationship between the received power and the detection

distance, as depicted in Fig. 16, it becomes evident that an

increase in the chirp power can effectively extend the radar

illumination distance. This implies that the transmission in

the co-chirp mode amplifies the range of radar radiation.

To further compare the power interference range of the

traditional chirp and co-chirp transmission methods, we set

up victim radars V1, V2, V3, and V4 at distances of 100,

150, 200, and 250 m, respectively, from the interference

radar. Targets were located at 20 and 5 m within the range

of each victim radar with the RCS of 10 and 0.1 dBsm,

respectively. Fig. 17 shows that with the conventional trans-

mission, the victim radar is not required to perform any

interference mitigation beyond 250 m; the two goals can

be easily distinguished. However, the power of each chirp

is now greater than in the co-chirp mode, and hence, the

smaller RCS target is still submerged in noise. In other

words, for the co-chirp radar, with its greater range, more

radars need to perform interference mitigation.

C. Field Campaign Results

A TI imaging radar [68] is used in our field experiment,

and its configuration is given in Table III. The simple

scenario is shown in Fig. 18(a), where two pedestrians walk

within the radar field of view with different velocities. The

collected data consisted of 306 chirps in a conventional

transmission with uniform PRI. Following the nested trans-

mission, total N1 = N2 = 17 chirps are extracted from the

Fig. 17. Range profiles of victim radars at various distances without

interference mitigation in (a) conventional chirp and (b) nested co-chirp

transmission.

consecutive measurement to form an equivalent observation

window as the conventional uniform PRI one.

Fig. 18(b) shows the range–Doppler spectrum obtained

by performing 512-point FFTs along fast time and slow

time of collected data from consecutive transmissions. In

this figure, two targets are located at different ranges with

distinct velocities, and the light pole is also labeled. The

energy leakage from transmitters to receivers will result

in a peak corresponding to the first few range bin indices

in the range–Doppler spectrum. Since the range frequency

fR defined in (7) is proportional to the range of target [5],

a high-pass filter has been implemented to suppress the

leakage from transmitters before range–Doppler process-

ing. The nonuniform FFT spectrum on nested data is shown

in Fig. 18(c), where it is hard to tell the targets from the

2-D spectrum because of the high sidelobes. The constant

false alarm rate method is used to detect range candidates

rfft from the range spectrum. Following the same way, we

selected velocity candidates vfft from the Doppler spectrum.

Then, the range candidates rfft and velocity candidates vfft

are exported into boost 2-D CS to pair. Many spurious

peaks exist in Fig. 18(d) because the number of targets is

overestimated when dealing with pairing. Fig. 18(e) shows

that two pedestrians and a light pole are estimated correctly

after dealiasing.
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Fig. 18. Difference co-chirp FMCW radar field experiment. (a) Experiment scenario. (b) Nonuniform FFT range–Doppler spectrum from nested

measurement. (c) FFT performed on collected consecutive data. (d) Boost pairing CS spectrum in nested transmission without dealiasing. (e) Boost

pairing CS spectrum in nested transmission after dealiasing.

VI. CONCLUSION

In this article, we presented a difference co-chirp-based

nonuniform PRI automotive FMCW radar, which is shown

to achieve the same range–Doppler estimation performance

as conventional FMCW radar with uniform PRI while sig-

nificantly reducing the total number of chirps along slow

time. Based on the constructed covariance matrix with fast-

time samples as snapshots, the Doppler estimation has been

estimated efficiently with FFT. A boosted 2-D CS algorithm

followed by a Doppler dealiasing step was proposed to

pair the range–Doppler estimation for multiple targets and

filter out any spurious peaks, which has greatly reduced

the computation cost of solving the pairing problem and

completely avoided off-grid issues in CS. Numerical results

demonstrated the feasibility of the proposed method. The

robustness of the range–Doppler estimation under inter-

ference with different SINR levels was investigated. The

radar field experiments revealed that the range and velocity

of multiple targets can be estimated efficiently with high

accuracy using the proposed boost 2-D CS technique.

APPENDIX A
PROOF OF THEOREM 1

Considering a rectangular pulse

x(t ) = Rect

(
t

T

)
, −T/2 � t � T/2. (28)

The complex AF, i.e., the matched filter output of x(t )

when there is a Doppler shift fd , is

Â(t, fd ) =

∫ +∞

−∞

x(s)x∗(s − t )e j2π fd sds. (29)

Following the definition in [72], the AF of rectangular pulse

is the absolute value of Â(t, fd ), i.e.,

A(t, fd ) =
∣∣̂A(t, fd )

∣∣ =

∣∣∣∣∣

(
1 −

|t |

T

)
sin

[
π fd (T − |t |)

]

π fd (T − |t |)

∣∣∣∣∣ ,

|t | � T . (30)

The waveform of a single FM pulse is

x̂(t ) = x(t )e j2π [ fct+(B/2T )t2], and its complex AF is

Âfm(t, fd ) =

∫ +∞

−∞

x̂(s)̂x∗(s − t )e j2π fd sds

=

∫ +∞

−∞

{
x(s)e j2π[ fcs+ B

2˜T
s2]

· x∗(s − t )e− j2π[ fc (s−t )+ B
2˜T

(s−t )2]e j2π fd s
}
ds

=e j2π( fct− B
2T

t2)
∫ +∞

−∞

x(s)x∗(s−t )e j2π( fd + B
T

t )sds

= e j2π( fct− B
2T

t2)Â

(
t, fd +

B

T
t

)
. (31)

Therefore, the AF of an FM pulse is

Afm(t, fd ) =
∣∣̂Afm(t, fd )

∣∣

=

∣∣∣∣∣

(
1 −

|t |

T

)
sin

[
π

(
fd + B

T
t
)

(T − |t |)
]

π
(

fd + B
T

t
)

(T − |t |)

∣∣∣∣∣ , |t | � T .

(32)

Compared with the rectangular pulse AF A(t, fd ), only the

Doppler term is changed in the FM pulse AF Afm(t, fd ).

XU ET AL.: AUTOMOTIVE FMCW RADAR WITH DIFFERENCE CO-CHIRPS 8161

Authorized licensed use limited to: The University of Alabama. Downloaded on May 12,2025 at 19:12:49 UTC from IEEE Xplore.  Restrictions apply. 



A pulse burst can be exploited to increase the Doppler

resolution. For M burst pulses, it holds that

Âb(t, fd )=

∫ +∞

−∞

M−1∑

m=0

x(s−mT )

M−1∑

n=0

x∗(s−t −nT )e j2π fd sds.

Replacing s − mT with ŝ, it holds that

Âb(t, fd )

=

∫ +∞

−∞

M−1∑

m=0

x(ŝ)

M−1∑

n=0

x∗(ŝ + (m−n)T −t )e j2π fd ŝe j2π fd mT dŝ

=

M−1∑

m=0

e j2π fd mT

M−1∑

n=0

∫ +∞

−∞

x(ŝ)x∗(ŝ−[t −(m−n)T ])e j2π fd ŝdŝ

=

M−1∑

m=0

e j2π fd mT

M−1∑

n=0

Â(t − (m − n)T, fd ) (33)

Let m − n = n̂. For some function F (m, n), it is well known

that the following equation holds [73]:

M−1∑

m=0

M−1∑

n=0

F [m, n] =

0∑

n̂=−(M−1)

M−|n̂|−1∑

m=0

F [m, m − n̂]

+

M−1∑

n̂=1

M−|n̂|−1∑

m=0

F [m + n̂, m]. (34)

Therefore

Âb(t, fd ) =

0∑

n̂=−(M−1)

Â(t − n̂T, fd )

M−|n̂|−1∑

m=0

e j2π fd mT

+

M−1∑

n̂=1

e j2π fd n̂T Â(t − n̂T, fd )

M−|n̂|−1∑

m=0

e j2π fd mT .

With the sum of geometric series, it holds that

M−|n̂|−1∑

m=0

e j2π fd mT =
1 − e j2π fd T [M−|n̂|]

1 − e j2π fd T

= e jπ fd T (M−|n̂|−1)
sin

(
π fd (M − |n̂|)T

)

sin(π fd T )
.

Thus

Âb(t, fd ) =

M−1∑

n̂=−(M−1)

Â(t − n̂T, fd )e jπ fd T (M+n̂−1) sin(π fd (M − |n̂|)T )

sin(π fd T )
.

As a result, the AF of a simple pulse train is

Ab(t, fd )=

M−1∑

n̂=−(M−1)

A(t − n̂T, fd )

∣∣∣∣
sin(π fd (M − |n̂|)T )

sin(π fd T )

∣∣∣∣ .

(35)

Then, the AF of the burst FM pulse train is

Abfm(t, fd ) = Ab

(
t, fd +

B

T
t

)

=

n̂=M−1∑

n̂=−(M−1)

A

(
t −n̂T, fd +

B

T
t

)∣∣∣∣∣
sin(π ( fd + B

T
t )(M−|n̂|)T )

sin(π ( fd + B
T

t )T )

∣∣∣∣∣ .

(36)

Nonuniform chirp waveform under the nested transmission

includes two groups of uniform chirps with different PRIs.

The number of chirps in the first and second groups is N1

and N2 with PRI of T and (N1 + 1)T , respectively. For the

nested-chirp waveforms, it holds

Ânested(t, fd )

=

∫ +∞

−∞

N1−1∑

m=0

x̂(s − mT )

N1−1∑

n=0

x̂∗(s − t − nT )e j2π fd sds

+

∫ +∞

−∞

{ N2−1∑

m=0

x̂(s − (m + 1)(N1 + 1)T )

·

N2−1∑

n=0

x̂∗(s − t − (n + 1)(N1 + 1)T )e j2π fd s

}
ds. (37)

Define T̂ = (N1 + 1)T . It follows from (36) that (38) and

(39) shown at the bottom of this page, hold.

Therefore, the AF of nested-chirp waveform is obtained

as (15). Similarly, nonuniform chirp waveform under co-

prime transmission includes two overlapped groups of uni-

form chirp sequences with PRIs of T1 and T2, respectively. In

∣∣∣∣∣

∫ +∞

−∞

N1−1∑

m=0

x̂(s − mT )

N1−1∑

n=0

x̂∗(s − t − nT )e j2π fd sds

∣∣∣∣∣ =

N1−1∑

p=−(N1−1)

A

(
t − pT, fd +

B

T
t

) ∣∣∣∣∣
sin

(
π ( fd + B

T
t )(N1 − |p|)T

)

sin
(
π ( fd + B

T
t )T

)
∣∣∣∣∣ .

(38)
∣∣∣∣∣

∫ +∞

−∞

N2−1∑

m=0

x̂(s − (m + 1)T̂ )

N2−1∑

n=0

x̂∗(s − t − (n + 1)T̂ )e j2π fd sds

∣∣∣∣∣

=

N2−1∑

q=−(N2−1)

A

(
t − qT, fd +

B

T̂
t

) ∣∣∣∣∣∣

sin
(
π ( fd + B

T̂
t )(N2 − |q|)T̂

)

sin
(
π ( fd + B

T̂
t )T̂

)

∣∣∣∣∣∣
. (39)

8162 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 59, NO. 6 DECEMBER 2023

Authorized licensed use limited to: The University of Alabama. Downloaded on May 12,2025 at 19:12:49 UTC from IEEE Xplore.  Restrictions apply. 



a similar way, the AF of coprime chirp waveform is obtained

as in (16), which concludes the proof. �
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