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Advanced driver assistance systems (ADASs) and autonomous
vehicles rely on different types of sensors, such as camera, radar,
ultrasonic, and LiDAR, to sense the surrounding environment. Com-
pared with the other types of sensors, millimeter-wave automotive
radar has advantages in terms of cost and reliability under bad
weather conditions (e.g., snow, rain, and fog) and does not suffer
from light condition variations (e.g., darkness). Typical radar devices
used in today’s commercial vehicles with ADAS features produce
sparse point clouds in low angular resolution with a limited number of
antennas. In this article, we present a machine-learning-aided signal
processing chain to suppress the radar imaging blur effect introduced
by the phase migration in time-division multiplexing multiple-input
multiple-output radar, to generate low-level high-resolution radar
bird’s-eye view (BEV) spectra with rich object’s features. Compared
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with radar point clouds, there is no information loss in radar BEV
spectra. We then propose a temporal-fusion distance-tolerant single-
stage object detection network, termed as TDRadarNet, and an en-
hanced version, TDRadarNet+, to robustly detect vehicles in both long
and short ranges on radar BEVs. We introduce a first-of-its-kind mul-
timodel dataset, containing 14 800 frames of high-resolution low-level
radar BEV spectra with synchronized stereo camera RGB images
and 3-D LiDAR point clouds. Our dataset achieves 0.39-m range
resolution and 1.2° degree azimuth angular resolution with 100-m
maximum detectable range. Moreover, we create a subdataset, the
Doppler Unfolding dataset, containing 244 140 beam vectors extracted
from the 3-D radar data cube. With extensive testing and evaluation,
we demonstrate that our Doppler unfolding network achieves 93.46 %
Doppler unfolding accuracy. Compared to YOLOV?7, a state-of-the-art
image-based object detection network, TDRadarNet, achieves a 70.3 %
average precision (AP) for vehicle detection, demonstrating a 21.0%
improvement; TDRadarNet+ achieves a 73.9% AP, showing a 24.6 %
improvement in performance.

[. INTRODUCTION

Automotive radar sensors are crucial components in ad-
vanced driver assistance systems (ADASs) and autonomous
vehicles due to their low cost, all-weather sensing capa-
bilities, and immunity to poor visibility conditions [3],
[4], [5], [6], [7]. Automotive radar systems typically rely
on frequency-modulated continuous-wave (FMCW) signals
in the millimeter-wave band, which enable cost-effective
and high-resolution sensing for various autonomous driving
functions such as automatic emergency braking, blind spot
detection, and adaptive cruise control [8], [9], [10].

Object detection and classification are essential for au-
tonomous driving. Humans sense the world through their
eyes and ears and constantly use their brains to perform
detection and classification tasks. Sensors, akin to human
eyes and ears, allow vehicles to perceive their surroundings.
Recently, many high-performance object detectors based on
camera RGB images and LiDAR point clouds have been
proposed [11], [12], [13], [14]. Although cameras allow
us to better understand visual scenes, their performance
is questionable in poor weather conditions [5]. LiDAR
produces 3-D point clouds of the environment with high
resolution on a good day by reflecting laser beams off
surrounding objects [15], [16]. Its performance, however,
degrades significantly in bad weather conditions. The aver-
age price of LiDAR products is also high.

Radar, on the other hand, is robust, inexpensive, and
reliable even in harsh environments [5], [6], [7]. The wave-
length of the millimeter-wave automotive radar operating at
76-81 GHz is in the millimeter range. The high bandwidth
of a total of 4 GHz in a carrier frequency of 77-81 GHz
is available for short- and medium-range automotive radars
to achieve high range resolution. Due to the high carrier
frequency, the form factor of automotive radar can be
small so that it can be easily incorporated behind vehicle
bumpers [5]. Compared with optical sensors, such as Li-
DAR and cameras, millimeter-wave automotive radar has
strong penetration capabilities in fog, rain, snow, smoke,
and dust [7]. However, the potential of object detection
and classification using automotive radar has not been fully
exploited. Today, most radar devices in commercial vehicles
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with Level 2 features, such as adaptive cruise control func-
tion, have a relatively low angular resolution (around 10°)
and low-end embedded computational unit [5], producing
sparse point clouds, based on which object tracking is car-
ried out. The Level 4 and Level 5 fully autonomous vehicles
would require dense point clouds or radar imaging with
a high angular resolution close to LiDAR [7]. Therefore,
high-resolution automotive imaging radars [8], [17] are of
great interest to support object detection and classification.
Several commercial imaging radar products are available
with various array configurations. For example, ZF imaging
radar [18] has a detection range of up to 350 m and a
field of view (FOV) of up to 120°. The ARS540 from
Continental [19] has a detection range of up to 300 m and
an FOV of up to 120°. However, both only provide radar
point clouds as output.

Multiple-input multiple-output (MIMO) radar has been
widely used to synthesize a large virtual array aperture
for higher angular resolution, while keeping the number
of transmit and receive antennas relatively small [5], [20],
[21], [22]. MIMO radar relies on waveform orthogonality of
the transmitted signals to enable separation at the receiver,
which can be achieved using different methods such as
time-division multiplexing (TDM), Doppler-division mul-
tiplexing (DDM), and frequency-division multiplexing [5].
Although TDM is a simple way to achieve waveform
orthogonality, it reduces the maximum unambiguous de-
tectable Doppler or radial velocity by a factor of the number
of transmit antennas, an important property for imaging
radar synthesized with a large number of transmit anten-
nas [23]. Moreover, the switching delays among the transmit
antennas from chirp to chirp introduce phase migration
for moving objects, resulting in blurred radar imaging and
distorted angular spectrum. To compensate for this, a correct
velocity estimation of the moving object is required before
carrying out angle estimation. However, moving targets
with high speeds are estimated with ambiguity, and there-
fore, Doppler unfolding/dealiasing is required for accurate
velocity estimation of moving objects with high speed under
TDM MIMO radar. Various approaches have been proposed
to address the challenge of unfolding ambiguous veloci-
ties, including methods such as different pulse repetition
intervals (PRIs) in conjunction with the Chinese remainder
theorem (CRT) [2], overlapped virtual arrays [24], [25],
and track-based techniques [26], [27]. These methods often
require high operating complexity or additional hardware
cost.

High-resolution imaging radar outputs are usually rep-
resented as point clouds. Networks originally developed
for LiDAR point cloud classification and segmentation,
such as PointPillars [28], VoxelNet [29], PointNet [30],
and PointNet++ [31], can be directly used or adjusted for
radar point clouds [32], [33]. Unfortunately, the threshold-
ing algorithms in generating radar point clouds from radar
low-level data often lead to significant information loss.
To address this challenge, researchers develop novel deep
neural networks [34], [35], [36], [37] on high-resolution
radar low-level data representation (e.g., range—azimuth
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spectra) as it contains rich information of the object (e.g.,
shape) to support fully autonomous driving.

In this article, we propose a high-resolution radar object
detection system that can robustly detect vehicles up to
100 m under various driving scenarios. Our system con-
tains a novel machine-learning-aided TDM MIMO radar
signal processing pipeline for generating undistorted high-
resolution radar imaging, and a temporal-fusion distance-
tolerant radar single-stage object detection network, termed
as TDRadarNet, for vehicle detection in far and near fields.
Our novel signal processing pipeline overcomes the TDM
MIMO radar phase migration problem by using a deep-
learning-based Doppler unfolding network. After apply-
ing the signal processing pipeline, a high-resolution radar
range—azimuth spectrum is created in polar coordinates.
We transfer the radar range—azimuth spectrum into a radar
bird’s-eye view (BEV) in Cartesian coordinates using lin-
ear interpolation. Considering that the radar BEVs are in
general hardly shift invariant over both angle and range,
we propose a novel TDRadarNet by separating the radar
BEV into far and near fields for object detection. In this
article, we focus on recognizing targets not only in the
near field with rich shape information but also in the far
field with lower resolution. In addition, the proposed net-
work exploits temporal features from historical radar frames
for detection. To the best of our knowledge, this research
also introduces a first-of-its-kind multimodel dataset, which
contains high-resolution radar spectra with synchronized
stereo camera RGB images and 3-D LiDAR point clouds
under different driving scenarios. Unlike existing datasets
with low-resolution or short maximum detectable range, our
radar dataset achieves 0.39-m range resolution and 1.2° az-
imuth angular resolution with 100-m maximum detectable
range. The dataset includes 14 800 radar BEV frames
representing 30-min driving in different driving scenarios,
such as on campuses, highways, and urban streets. We
also create a subdataset for TDM MIMO radar Doppler
unfolding, which consists of 244 140 beam vectors with
varying signal-to-noise ratios (SNRs) and target directions
of arrival (DOAs). To validate our proposed system, we
train and test the Doppler unfolding network of the signal
process pipeline using a subdataset. The Doppler unfolding
network achieves 93.46% accuracy. We further train and
evaluate our TDRadarNet using our self-collected dataset
to demonstrate the outperformance of our proposed system
over state-of-the-art image-based object detection networks
with 10.6%, 17.1%, and 14.1% improvements in precision,
recall, and F1-score, respectively. Overall, our contributions
are as follows.

1) Anovel signal processing pipeline with a deep learn-
ing network for TDM MIMO radar to overcome
phase migration problems is developed.

2) With field experiments, a multimodel sensor dataset
that contains high-resolution radar BEVs with syn-
chronized stereo cameras RGB images and 3-D Li-
DAR point clouds is generated. In addition, a sub-
dataset containing beam vectors with different SNRs
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and target DOAs for Doppler unfolding network
training is created.

3) A novel deep neural network, TDRadarNet, is
proposed. TDRadarNet leverages historical radar
frames to exploit temporal features and separates
far and near fields to address inconsistent resolution
in radar BEV frames, demonstrating the promise
of robust radar object detection in various driving
scenarios.

4) An enhanced version of the neural network,
TDRadarNet+, is proposed to utilize Doppler infor-
mation for object detection. TDRadarNet+ demon-
strates the potential of robust radar object detection
by effectively utilizing Doppler information.

Existing research has explored the application of ma-
chine learning and deep learning on Doppler radar data. For
example, Zheng et al. [1] presented machine-learning-aided
Doppler unfolding with preliminary simulation results. Ob-
jectdetection based on high-resolution radar range—azimuth
spectra obtained at a few locations using a vanilla-image-
based neural network was presented in [2]. We argue that
our contributions go beyond [1] and [2]. Here, we propose a
novel temporal-fusion and distance-resilient neural network
for vehicle detection. We develop a high-resolution low-
level automotive radar imaging dataset with a maximum
detection range of 100 m under different driving scenarios.
In addition, comprehensive numerical studies and verifica-
tion have been conducted based on field experiment results.

The rest of this article is organized as follows. In
Section II, we review existing approaches to solve the
motion-induced phase errors in TDM MIMO radars, the
publicly available radar datasets for autonomous driving,
and different deep learning approaches for radar object
detection using different radar data representations. The
system model of automotive FMCW MIMO radar and its
challenges for TDM MIMO radar are addressed in Sec-
tion III. In Section IV, we propose a deep-learning-aided
signal processing pipeline to generate high-resolution radar
imaging by unfolding the ambiguous Doppler estimations.
The details of the proposed TDRadarNet are presented in
Section V. Our own dataset is introduced in Section VI, and
the neural network experimental performance on our dataset
is shown in Section VII. Finally, Section VIII concludes this
article.

[I. RELATED WORKS

In this section, we briefly discuss the existing Doppler
unfolding approaches in automotive TDM MIMO radars,
automotive radar data representation and datasets for au-
tonomous driving, and relevant radar machine learning
work.

A. Doppler Unfolding Approaches

Under TDM MIMO radar, only one transmitter is turned
ON at each time slot. The switching delay between transmit-
ters introduces a phase migration between chirp and chirp.
As a result, it would corrupt the angular phase information
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of moving targets leading to blurred radar imaging. Unlike
cameras overcoming the blurred image issue by increas-
ing frames per second (FPS), TDM MIMO radars require
special antenna geometries or adaptive signal processing
techniques to tackle the phase migration.

1) Overlapping Virtual Array Elements: Phase error is
estimated using overlapping elements in the virtual aper-
ture [24]. If two virtual elements corresponding to differ-
ent transmitters share the same virtual position, the only
phase difference between them in an ideal situation is the
motion-induced phase error. The issue of this approach is
that it requires redundancy of virtual elements and, thus,
increases hardware costs. In addition, this approach suffers
from low-SNR situations.

2) Adaptive Discrete Fourier Transform (DFT):
Bechter et al. [38] concluded that overlapping element is
unnecessary and the motion compensation can be resolved
via applying adaptive DFT on signals corresponding to dif-
ferent transmitters. However, such an approach may cause
ambiguities in the Doppler domain, and a special waveform
design is required to carry out Doppler dealiasing.

3) Staggered TDM With CRT: Several proposed studies
use multiple pulse repetition frequencies (PRFs) techniques
combined with the CRT to address the Doppler ambigui-
ties [2], [27]. The general approach involves searching for
coincidences between the unfolded estimates obtained for
each PRF. However, such an approach is sensitive to noise,
and the pairing process has a high computational cost.

4) Track-Based Approach: Examples of track-based
approaches are multiple hypothesis tracking (MHT) [26]
and the track-before-resolve (TBR) [27] method. MHT uses
multiple PRFs and initiates multiple track hypotheses to
represent potential target positions, while TBR resolves the
ambiguity using the tracking filters of multiple models. Both
approaches have shown great promise in resolving Doppler
ambiguities at low SNRs.

B. Radar Datasets for Autonomous Driving

Environmental perception plays a key role in au-
tonomous driving. The popular datasets in autonomous
vehicle perception, such as KITTI [39] and Waymo Open
Dataset [12], only contain cameras and LiDAR record-
ings. As radar gains more attention in autonomous driving,
several datasets containing radar data have been released
recently, such as nuScenes [40], Oxford Radar Robot-
Car [41], Astyx [42], RADIATE [43], CRUW [34], Zen-
dar [44], CARRADA [45], RadarScenes [46], RADIal [36],
View-of-Delft [47], and Radatron [37]. The publicly avail-
able datasets are summarized and compared in Table I.
CARRADA and CRUW datasets use single-chip Texas
Instruments (TI) radar with a low angular resolution, i.e.,
larger than 10°. RADIATE and Oxford Radar RobotCar use
mechanical scanning radars, CTS350-X, providing high-
resolution radar images with 4 FPS. Yet, the Doppler in-
formation of targets is missing, and such a low frame rate
introduces uncorrectable motion blur to the radar imaging.
Synthetic aperture radar (SAR) technology for static targets
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TABLE I
Overview of Publicly Available Radar Datasets

. Radar
Dataset # of Frames Data Type LiDAR | Camera Range | Resolution Radar/Technology
nuScenes [40] 40,000 Sparse PC V4 Vv LR Low Continental ARS408
Oxford Radar [41] 240,000 RA N4 Vv MR High Navtech Spinning Radar
Astyx [42] 500 PC V4 4 MR High Astyx 6455
RADIATE [43] 44,000 RA Vv v MR High Navtech Spinning Radar
CRUW [34] 396,241 RA X v USR Low TI AWR1843
Zendar [44] 94, 460 ADC,RD.PC V4 Vv MR High SAR
CARRADA [45] 12,666 RA,RD,RAD X Vv SR Low TI AWR1843
RadarScenes [46] 975 Dense PC X v MR High 77GHz Middle-Range Radar
RADIal [36] 25,000 ADC,RD,PC V4 4 MR High Valeo Middel Range DDM
View-of-Delft [47] 8,693 PC+Doppler Vv V4 LR High ZF FRGen21 Radar
Radatron [37] 152,000 RA X 4 USR High TI Cascade Imaging Radar
BAMA (Ours) 14, 800 RA-+Doppler 4 4 MR High TI Cascade Imaging Radar

Data type: Raw ADC data (ADC), range-Doppler map (RD), range—azimuth map (RA), and point clouds (PC). Range: LR, MR, SR, and USR stands for
long range (> 200 m), medium range (< 200 m), short range (< 50 m), and ultrashort range (< 25 m) [48].

is adopted in the Zendar dataset with multiple measurements
from different vehicle locations. The Astyx dataset contains
only 500 frames with sparse radar point clouds. High-
definition imaging radar with DDM MIMO configuration is
adopted in RADIal, resulting in interleaved range—Doppler
maps. The View-of-Delft dataset utilizes the ZF FRGen21
radar [18], a long-range and high-resolution imaging radar.
It provides only point cloud data, and object annotations
are available for objects within a short range of 50 m.
Radadtron uses TI cascade imaging radar, similar to ours.
It only contains targets in near fields, i.e., within 25 m.

C. Radar-Based Deep Learning

Deep learning has found wide application in radar sys-
tems [49], [50]. For example, low-cost radar, such as Soli
radar [51], is used to capture hand gesture for human—
computer interaction. Short-range radar is also proposed in
the medical field to remotely monitor human vital signs [52].
Radar has a long application history in commercial au-
tomobiles [6] since the 1990s, spanning from ADAS to
the recently emerging autonomous driving techniques [5].
Different automotive radar data representations have been
exploited, which can be, in general, divided into three
categories.

1) Radar Point Clouds: Radar data can be represented
as point clouds by applying filtering and thresholding al-
gorithms, such as constant false alarm rate, on the radar
range—azimuth map. In this way, radar produces sparse
point clouds, and it can be viewed as a low-quality LiDAR.
Point-cloud-based networks, such as PointPillars [28], Vox-
elNet [29], and PointNets [30], can be directly used or
adjusted [32] for radar point clouds. Moreover, Scheiner
etal. [53] present a comparison between five real-time capa-
ble object detector architectures on radar point clouds. Such
thresholding algorithms in generating radar point clouds
may lead to significant information loss of objects.

2) Radar Data Tensor: To avoid loss of information,
radar data can be processed in 3-D tensors, i.e., range—
Doppler—azimuth for 1-D antenna array, or 4-D tensors,
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i.e., range—Doppler—azimuth—elevation for 2-D antenna ar-
ray. Deep-learning-based radar detector [50] directly learns
from 4-D complex radar tensors for object detection and
localization. It is also possible to project the 3-D radar
tensors along different views to extract 2-D features for
semantic segmentation [54] and object recognition [55],
[56], [57].

3) Radar BEVs: Radar BEVs were generated from a
radar range—azimuth map through coordinate transforma-
tion. Radar BEVs obtained from high-resolution radar con-
tain targets’ geometric information. Object detection based
onradar BEV was proposed in [2], [37], and [58], achieving
relatively accurate object detection. However, only highway
scene is considered in [58], which are considered as the
clean and easy scenario in autonomous driving. In [2], the
radar is placed at intersections and only moving targets in
the near fields are of interest. Similarly, objects within ultra
short range are considered in [37].

In radar machine learning, taking advantage of temporal
and spatial information can effectively improve detector
performance [48]. Extensive studies have been conducted
on the combination of different radar frames, such as sum-
mation among neighboring frames [54], concatenation in
frame level [59], and stacking in feature level [34], [55].
In [55], a convolutional long short-term memory layer is
adopted after the encoder network to extract temporal fea-
tures from a sequence of feature maps. In [34], frame-level
feature maps are concatenated and temporal features are
extracted by a 3-D convolutional neural network (CNN)
layer. Other than using a CNN-based network, an isotropic
graph convolution network that leverages spatial informa-
tion from neighboring nodes is proposed in [60] to boost
radar detection performance.

[ll.  SYSTEM MODEL OF AUTOMOTIVE MIMO RADAR

FMCW radar is a widely used technology in automo-
tive applications due to its ability to provide high-range
resolution at a low cost. In this section, we will explain the
principles of FMCW radar and how it is used in automotive

IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 59, NO.5 OCTOBER 2023

Authorized licensed use limited to: The University of Alabama. Downloaded on May 12,2025 at 19:15:20 UTC from IEEE Xplore. Restrictions apply.



MIMO radar systems to synthesize a large virtual array
followed by the discussion of challenges that arise with
MIMO radar technology.

A. FMCW Radar

The FMCW radar signal is generated by transmitting a
continuous-wave signal that linearly increases in frequency
over time, with a carrier frequency f., bandwidth B, and
chirp duration 7. The transmitted signal’s phase @7 (¢) is
obtained by integrating the transmitted frequency fr(¢)
over time, yielding ¢r(t) =27 fir P fr(t)dt. When the
transmitted signal encounters a target at a range R with
radial velocity v, the signal is delayed by a round-trip time of
T = 2(R + vt)/c, where c is the speed of light. The received
signal is mixed with the transmitted signal, resulting in a
beat signal with a phase ¢p(¢) that can be approximated as

op(t) = 21 [chR + <2va + ZBR) r] (1)
c c Tc

where the beat frequency is given by f, = fx + fp, with
fr = 2BR/T c representing the range frequency and fp =
2f.v/c representing the Doppler frequency. To improve
the radar’s dynamic range, the beat signal typically goes
through a bandpass filter that compensates for the gain in tar-
gets at different distances, followed by an analog-to-digital
converter (ADC) that samples the signal at a rate greater
than twice the maximum beat frequency f;"*. Range and
Doppler information of the target can then be obtained by
applying fast Fourier transforms (FFTs) along the fast-time
and slow-time dimensions.

B. Automotive MIMO Radar and Waveform Orthogo-
nality

MIMO radar has been increasingly used in automotive
radar design due to its ability to synthesize a large virtual
array for angle estimation using a small number of transmit
and receive antennas [5], [20]. An example of a MIMO
radar with N, = 2 transmit and N, = 4 receive antennas is
shown in Fig. 1(a), where a virtual uniform linear array
with eight elements is synthesized. By applying digital
beamforming [61] or super-resolution algorithms, such as
MUSIC [62], ESPRIT [63], and compressive sensing [64],
the DOA is estimated.

In automotive MIMO radar, it is crucial to transmit
orthogonal FMCW sequences so that at the receiving side,
the contribution of each transmit antenna can be extracted
from the receive signals. There are different ways to achieve
waveform orthogonality in MIMO radar, such as DDM and
TDM [5].

In the DDM scheme, waveform orthogonality is
achieved in the slow-time domain by multiplying a phase
code on each transmitted FMCW chirp. At the receive side,
the contribution of each transmitter can be shifted to a
higher Doppler frequency or treated as random noise by
applying slow-time Doppler demodulation after range FFT.

ZHENG ET AL.: DEEP-NEURAL-NETWORK-ENABLED VEHICLE DETECTION
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Fig. 1. Example of MIMO radar with eight virtual array elements,
synthesized by two transmit and four receive antenna elements via TDM.
(a) Physical and virtual arrays. (b) Illustration of waveform orthogonality

through TDM.

DDM allows all transmit antennas to transmit simultane-
ously. However, it either reduces the maximum unambigu-
ous detectable Doppler or masks objects with low radar
cross section by the waveform residual from other transmit
antennas [5].

On the other hand, the TDM scheme selects only one
transmit antenna to transmit at each time. A signal process-
ing example of a TDM MIMO radar with N; = 2 transmit
antennas and N, = 4 receive antennas is shown in Fig. 1(b).
Assume that N0y chirps are transmitted in one coherent
processing interval and the number of ADC samples in
one chirp is Npg. All odd chirps (blue) are transmitted by
TX1, and all even chirps (red) are transmitted by TX2. The
radar data matrix can be assembled at each receive antenna
into two matrices corresponding to odd and even chirp
sequences, respectively. Therefore, a radar data cube with
a dimension of (Ngjow/N;) X Npg X (N, N,) can be obtained
from the original Nyow X Npg X N, data cube. Due to its
simplicity in implementation, we adopt TDM to achieve
waveform orthogonality in this article.

C. Challenges of TDM MIMO Radar

1) Doppler Aliasing: In automotive radar, the maxi-
mum unambiguous detectable velocity is given by

Umax = ¢/(4f:Tprr) (2)
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Fig. 2. Tllustration of Doppler folding/aliasing. The FMCW radar
simulator is configurated to have a maximum unambiguous detectable
radial speed, vmax = 3.6 m/s. Range-Doppler map with three targets at

ranges of 100, 75, and 50 m and corresponding velocities of 0, 2vpax, and
—2vmax m/s. Circle markers show the targets’ ground truth parameters.

where c is the speed of light, f, is the carrier frequency, and
Tpr1 is the PRI. However, in TDM MIMO radar, where only
one transmit antenna is scheduled to transmit at each time
slot, Tpg; of each transmit antenna is enlarged by the number
of transmit antennas NN;. This increase in Tpr; reduces vpax
by N; times, meaning that the TDM MIMO radar can only
estimate velocities without ambiguity within a smaller range
compared to a traditional radar with the same PRI but only
one transmit antenna.

This reduction in vy, can exacerbate the problem of
Doppler aliasing, which occurs when targets move with
velocities beyond the maximum unambiguous detectable
velocity. In Doppler aliasing, targets appear on the range—
Doppler map with incorrect Doppler estimates, and this will
fold back targets at incorrect locations within the range—
Doppler map. We illustrate this problem in Fig. 2, where
an FMCW radar simulator is used to generate radar data
for three targets with different range and Doppler informa-
tion. Although those three targets have different velocities,
they share the same Doppler/velocity estimation on the
range—Doppler map due to Doppler folding. In this case,
the velocity information of the object cannot be estimated
accurately, and an object moving with an aliasing velocity,
such as 2vp,x or —2vpn., could be detected as stationary.

2) Phase Migration: The scheduling delay, Af, be-
tween different transmit antennas can result in phase migra-
tion for moving targets between different chirps, defined as
follows:

¢ = (4 /M)At )

where A = ¢/ f, is the wavelength. For the mth switched
transmit antenna, the phase migration is written as [65]

b = (m — 1)1 ——. )

vmax

This phenomenon will cause a distortion in the virtual
array beampattern, leading to inaccurate angle finding. For
a MIMO radar with N, transmit and N, receive antennas,
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the transmit and receive steering vectors are
24} sin(9,) 2 gV sino) "
at(el): ej;,r‘ t’...’e.])\r~ ! (5)

a6 = [T grare@]’ g
where d;" denotes the distance of the mth transmit antenna
to the reference transmit antenna; similarly, d;' denotes the
nth receive antenna to the reference receive antenna. For
targets in far field, it holds that 6, = 0, £ 9. The virtual
array steering vector is

a(0)=a (0)Qa, () (N

where ® is the Kronecker product. The element of the vir-
tual array steering vector corresponding to the mth transmit
and nth receive antenna is denoted as e¢/%m, where

21 .
P = —~ (d" +d!)sin (9). ®)

As a result, the element of the virtual array steering vector
corresponding to the mth transmit and nth receive antenna
is e/@m+®n)_The term ¢, needs to be compensated to avoid
beampattern distortion.

To illustrate this effect, we performed simulations using
an array configuration shown in Fig. 8, which is similar to
the one used in TI imaging radar [25]. Assume that there is
a moving target at 10° with a velocity of 20 m/s. Fig. 3(a)
shows the angle spectrum obtained from the virtual array
without velocity compensation. To remove phase migration,
a compensation value of e ~/#» needs to be multiplied along
the virtual array before angle finding for every moving
target. The velocity of the target is estimated from the 2-D
FFT result of a single RX antenna data matrix. Fig. 3(b)
shows the correct angle spectra after compensation. In
addition, Fig. 3(d) and (e) demonstrates the radar BEVs of
highway guardrails before and after motion compensation.
Without compensation, the radar BEV is severely blurred
due to the phase errors induced by the moving host vehicle.
The compensated radar BEV matches well with the camera
image and LiDAR BEV of the guardrail shown in Fig. 3(c)
and (f), respectively, which serves as the ground truth.

[V. DEEP-LEARNING-AIDED SIGNAL PROCESSING
PIPELINE OF HIGH-RESOLUTION  IMAGING
RADAR

In this section, we introduce a novel signal processing
pipeline that leverages the power of deep learning to synthe-
size a virtual uniform linear antenna array with 86 elements
for TDM MIMO radar. As a result, high-resolution radar
imaging with an azimuth resolution of 1.2° is achieved by
cascading four AWR?2243 chipsets [25].

The proposed deep-learning-aided TDM MIMO radar
signal processing pipeline is illustrated in Fig. 4. To syn-
thesize MIMO virtual array, a waveform decoding process
is applied to the 3-D radar data cube at the radar receive
side. This will separate the transmit signals from different
transmit antennas and rearranges the data cube to have a
large virtual array.
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Fig. 3. Angle spectra of a moving target with a velocity of 20 m/s and
azimuth angle of 10°: (a) before and (b) after phase compensation. The
radar is configured to select 9 TX and 16 RX antennas with a chirp
duration of 50 pus. Guardrail from (c) camera image and (d) radar BEV
before, (e) after phase compensation, and (f) LIDAR BEV.

In practice, there may exist frequency, phase, and am-
plitude mismatches across the four radar chipsets. These
mismatches can be caused by various factors, such as
path length mismatch, chip-to-chip variation, and antenna
coupling. To address this issue, a corner reflector at the
boresight direction is utilized to generate a frequency and
amplitude calibration matrix to compensate for the different
transmit-receive antenna path delays.

To estimate the target range and Doppler information,
the dc offset is first removed and an Npg-point Hanning
window is applied to the 3-D radar data cube along the fast
time axis before performing an FFT to estimate the targets’
range.

Next, another Ny /N;-point Hanning window is ap-
plied to the data cube along the slow time axis, followed by a
second FFT to estimate the targets’ Doppler. The Hanning
window reduces the effects of sidelobes in the frequency
domain, which can distort the range or Doppler estimation.
Overall, the combination of dc offset removal and Hanning
windowing helps to improve the accuracy and precision of
the range and Doppler estimation in the signal processing
chain.

ZHENG ET AL.: DEEP-NEURAL-NETWORK-ENABLED VEHICLE DETECTION

To account for the motion-induced phase error, a
Doppler unfolding and phase compensation step is neces-
sary. In practical applications such as autonomous driving,
the range of velocities is typically limited. For instance, the
velocity range is typically within [—120, 120] mi/h. This
implies that the number of possible velocity values is finite.
Thus, when the maximum velocity, vy, 1s sufficiently
large, it is possible to unfold the velocity a limited number
of times to estimate the velocity correctly. In our case, only
nine possible unfolded velocity candidates are considered,
ie.,

S={v—4xQUmax)s - sV, ..., V+4x Lumna)}. (9)

As shown in Fig. 4, we use a 1-D CNN, comprising
three CNN layers and one fully connected layer, to estimate
Doppler in automotive TDM MIMO radar. The CNN is
pretrained with simulated data and fine-tuned on real data
with the same antenna configuration as the TTimaging radar.
The simulated data consist of beam vectors of virtual arrays
obtained after range and Doppler FFTs. The dataset includes
nine velocity candidates, with labels 0-8. The beam vector
of the virtual array is selected from the 3-D radar data cube
along the channel dimension, and a signal preprocessing
step is applied to remove the angle-dependent phase in the
beam vector to ensure that the input data for the Doppler un-
folding network only contain motion-induced phase error,
mutual coupling error, and noise. This preprocessing step
significantly reduces the amount of data required for train-
ing. Next, phase features in the beam vector are extracted
using a 1-D CNN. The network output is the estimated
velocity used to compensate for the phase migration in the
beam vector of the virtual array.

It is important to note that mutual coupling and fabri-
cation imperfections may lead to degraded antenna perfor-
mance, highlighting the need for antenna array calibration
in producing high-quality radar imaging [66], [67]. While
the TI cascaded imaging radar employs a simple one-time
boresight calibration method for improved angle perfor-
mance, this approach suffers from reduced performance
when targets are off-boresight. To address this, we adopt
an angle-dependent calibration method that uses radar mea-
surements of a corner reflector at various angles to calibrate
the already compensated virtual array beam vector.

Next, an angle FFT is conducted along the already
compensated and calibrated virtual array with a Chebyshev
window with 50-dB sidelobe attenuation, generating a 3-D
radar spectra that contains range, Doppler, and azimuth
information. A range—azimuth heatmap is obtained by col-
lapsing the 3-D data spectra along the Doppler dimension.
Finally, the polar coordinates (r, 8) of the range—azimuth
map are converted to Cartesian coordinates (X, Y'), generat-
ing aradar BEV. This representation provides a 2-D view of
the surrounding environment, with the X -axis representing
the horizontal distance and the Y-axis representing the
vertical distance from the radar sensor.

An example of the radar range—azimuth spectra of a
street intersection and its corresponding BEV generated
through polar-to-Cartesian transformation are presented in
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Fig. 5. The high-resolution radar BEVs provide rich shape
information of various objects such as buildings, cars,
trees, and light poles, as observed in Fig. 5, as well as
in Figs. 13 and 15. The shape information enables accu-
rate target detection using the proposed TDRadarNet (see
Section V).

V. TDRADARNET FOR RADAR OBJECT DETECTION

Radar BEVs are single-channel grayscale images with
varying resolutions and SNR. Considering these unique
characteristics, we propose a new object detection net-
work called temporal-fusion distance-tolerant radar ob-
ject detection network (TDRadarNet). TDRadarNet uti-
lizes temporal features and handles objects in far and near
fields differently to improve detection performance on radar
BEVs.

4822

A. Not Every Pixel Is Created Equally

To enable object detection via deep learning, high-
resolution radar BEVs in Cartesian coordinate are utilized,
as they contain rich shape information of objects. However,
it is important to note that not every pixel in radar BEV
is generated with the same accuracy. The accuracy of the
pixels is generally sensitive to both range and angle. This
will have implications on the performance of any detection
algorithm utilizing radar BEV, as small measurement errors
can result in large variances in the Cartesian coordinate for
targets in the far field. This issue will be discussed in more
detail in the following sections.

1) Effective Antenna Aperture Relies on Angle: In a
uniform linear array, the half power beamwidth [68] is
given by 0p 1\?&83339’ where 6 is the angle of view, N is
the number of antenna elements, d is the antenna spacing,
and A is the wavelength. The maximum effective antenna
aperture, and hence the best angular resolution, is achieved
along the boresight direction. The effective aperture of the
array decreases as the view angle increases, resulting in
poorer angular resolution.

2) SNR Drops as Range Increases: According to the
radar range equation, the received power decreases as the
range increases. The radar receive power of a target of range
r with radar cross section of o is [69]

FP.Co
(4m)3rt
where C can be considered as a constant number for the
same radar, which includes antenna gain, effective antenna
area, and efficiency, and P, is the transmit power. Therefore,
P, oc 1/r*. Typically, targets at a far distance have lower
SNR, as a result of which the angle estimation error is
relatively large for targets with long ranges.

3) Information Loss in Coordinate Systems Transform:
The radar range—azimuth spectrum is typically obtained in
polar coordinates, which are then transformed or interpo-
lated into a Cartesian coordinate system before fed into

~
~

P = (10)
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deep neural networks. As the range increases, the distance
between adjacent bins becomes larger, resulting in a larger
variance in the distance between adjacent pixels in Cartesian
coordinate systems for targets at longer ranges. A small
error in angle estimation will cause a large variance in the
radar BEV pixels in far fields. And the SNR decreases at
longer ranges, leading to relatively large DOA estimation
errors, which further amplify the variance in these pixels.
This issue is particularly significant for radar BEVs, where
inconsistencies in pixel resolution and SNR are already
present.

To summarize, the radar BEV image obtained using
MIMO radar with fixed antenna arrays exhibits shift vari-
ance over both angles and ranges, making it inherently
difficult to be shift invariant.

B. Network Architecture of TDRadarNet

Given the unique characteristics of radar BEVs, we
introduce TDRadarNet (see Fig. 6). This network comprises
two identical subnetworks trained for object detection in
the far and near fields, respectively. The input radar frame
sequences are partitioned into overlapping sequences of far
and near fields. A backbone network extracts features from
each frame, followed by a temporal fusion stage to explore

ZHENG ET AL.: DEEP-NEURAL-NETWORK-ENABLED VEHICLE DETECTION

- 1. T Conv2D+RelU+BN | Feature
N N-1 (N*C1,1,1) Map

3
2 (C1,H1,W1) (C1,H1,W1) £
S ) S
] (N*C2,1,1) 9
(C2,H2,W2) (C2,H2,W2) &
Z - &
f J i
*
(C3,H3,W3) (N*e3,1.1) (C3,H3,W3)

Fig. 7. Temporal fusion module. Feature maps extracted from N
consecutive frames are concatenated in three scales separately. The
temporal features are then extracted by applying a convolution kernel
followed by batch normalization and ReL.U activation.

the historical relationship between the features across con-
secutive frames. The detection head produces predictions,
which are combined for the far and near fields. Inspired
by You Only Look Once (YOLO) v7 [70], TDRadarNet
is optimized for radar BEVs by learning distinct features
for far and near fields and integrating temporal information
from historical radar frames.

The details of TDRadarNet are outlined as follows.

1) Far and Near Fields: Detecting objects in radar
BEVs can be challenging due to varying reflection intensity,
shape, and contrast caused by differences in resolution.
This dissimilarity is particularly notable when attempting
to detect the same type of object, such as cars, in both near
and far fields. To address this issue, we divided the radar
BEV frame into two regions: far field and near field, as
shown in Fig. 6. These regions overlap to ensure that no
information is lost at the boundaries. A deep learning model
on each region is trained to learn two sets of parameters
optimized for detecting objects in far and near fields. We
decide to adopt a separate processing approach for far and
near areas for multiple reasons. First, translating polar to
Cartesian before feeding it into the object detection network
allows us to leverage LiDAR and camera images for extrin-
sic calibration. Second, separately processing the far and
near areas helps to handle error amplification in coordinate
translation as well as SNR deviations due to path loss. Third,
it enables the network to learn field-related specific features
to improve the vehicle detection performance in far field that
experiences lower resolution and SNR drop.

2) Temporal Fusion: While object detection can be
performed with a single radar frame, we contend incor-
porating temporal information from multiple consecutive
frames can improve detection accuracy. As shown in Fig. 7,
a sequence of N frames is processed by the backbone to
extract feature maps of three scales for each frame, resulting
in a total of 3 x N feature maps. To incorporate temporal
information, the feature maps that correspond to the same
scale are concatenated and passed through a convolutional
layer, followed by batch normalization and rectified linear
unit (ReLU) activation, to extract temporal features.

3) Merging: Once the TDRadarNet generates object
detection results for the far and near fields, the results
are merged into a single frame. In cases where there are
overlapping detections in the common region of both fields,
we use nonmaximum suppression to filter out duplicate
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Fig. 8. TI imaging radar. Four AWR2243 radar transceivers are
cascaded together, providing 9 transmit and 16 receive antennas in
horizontal direction, enabling the synthesis of 86 unique virtual array
elements with half-wavelength spacing. Note 58 virtual array elements
are overlapped.

detections. Specifically, we set an intersection over union
(IoU) threshold to determine the extent of the overlap. If
multiple detections share the same intersection, the detec-
tion with the highest confidence score is kept.

C. TDRadarNet+ Exploiting Doppler Information

Radar BEVs are grayscale images that represent reflec-
tion intensity with valuable Doppler information such as
the velocity of objects in the scene relative to the radar
sensor. To make use of the Doppler information, we create a
radar Doppler BEV. This involves creating a Doppler feature
map by replacing the pixel values of the range—azimuth
heatmap with corresponding Doppler information obtained
through our Doppler unfolding network. A polar—Cartesian
transformation to both the range—azimuth and Doppler fea-
ture maps is employed to ensure consistency. As a result,
the radar Doppler BEV has the same dimensions as the
radar BEV, with the only difference being that the pixel
values represent Doppler information rather than reflection
intensity. We propose an improved version called TDRadar-
Net+ that leverages the Doppler information provided by
the radar sensor to improve performance. TDRadarNet+ is
specifically designed to incorporate a radar Doppler BEV
as part of its input. Unlike TDRadarNet, which takes radar
frame sequences directly as input, TDRadarNet+ takes one
less radar frame and includes a single radar Doppler BEV.

VI. BAMA HIGH-RESOLUTION AUTOMOTIVE RADAR
IMAGING DATASET

We implemented the proposed deep-learning-aided
imaging radar signal processing chain shown in Fig. 4 on
TI cascaded imaging radar, which is a chirp configurable
MIMO radar with 12 TX and 16 RX antennas, cascaded
by four radar transceivers of AWR2243 [25]. The azimuth
FOV is 70°. A virtual uniform linear array with 86 elements
and half-wavelength spacing can be synthesized with 9 TX
and 16 RX antennas, of which 58 virtual array elements
are overlapped (see Fig. 8). The 3-dB beamwidth of the
imaging radar in azimuth is Afxy = Zarcsin(%) ~1.2°
where D, = 42.5A is the virtual array aperture in the hori-
zontal direction. Antenna calibration is required to reduce
the frequency, phase, and amplitude mismatches across
those four radar transceivers. Instead of using a one-time

4824

Velodyne Ultra Puck
VLP-32C

Teledyne FLIR
Blackfly S

7/ Cascaded
mmMWave Radar

Fig. 9. Data acquisition vehicle platform of Lexus RX450h with
high-resolution imaging radar, LiDAR, and stereo cameras is used to
carry out field experiments at the University of Alabama.

TABLE I1
Multimodal Sensors

Model

TI Imaging Radar,

e Bandwidth: 384MHz

e Range Resolution: 0.39m

e Doppler Resolution: 0.23m/s

e Azimuth Resolution: 1.2°

e Azimuth FOV: 70°

Velodyne Ultra Puck VLP-32C

e Azimuth Resolution: 0.1° — 0.4°
e Vertical FOV: 40°

e Maximum Range: 200 m
Teledyne FLIR Blackfly S, Stereo
e Image Resolution: 2048 x 1536

Sensors
Radar

LiDAR

Camera

boresight calibration method, we adopt angle-dependent
calibration for better performance. The processed radar
image is presented as a single-channel grayscale image
instead of an RGB image because each pixel only presents
the target’s reflection intensity.

Note our system, as per TI user manual, can detect
objects up to 150 m in the MIMO mode and 350 m in the
beamforming mode. In our study, the maximum detectable
range is set to be 100 m because only one transmitter is
selected to transmit at each time slot under TDM, resulting
in lower transmit power, and labeling objects beyond 100
m is challenging, as obtaining ground truth from LiDAR
and cameras on the same host vehicle can be difficult due
to occlusion.

A. Data Acquisition and Distribution

Our field experiments included three multimodal sen-
sors, i.e., a TI imaging radar, stereo cameras of Teledyne
FLIR Blackfly S, and Velodyne Ultra Puck VLP-32C Li-
DAR, as shown in Fig. 9. The measurements of cameras
and LiDAR are used as ground truth for labeling the radar
data. The sensor features are summarized in Table II.

We drove over 30 min to collect data around the city
of Tuscaloosa, AL, USA. As shown in Fig. 10(a), the
experimental driving route consists of three types of driving
scenarios, i.e., campus road, urban street, and highway.
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The BAMA dataset contains 14 800 radar BEV frames
with synchronized stereo camera images and LiDAR 3-D
point clouds. There are different types of objects of interest,
including pedestrian, car, truck, and bus. Thanks to the
high-resolution azimuth capability, the collected low-level
radar BEV imaging contains rich object geometry features,
as shown in Fig. 13. Specifically, the zoom-in radar BEV
views of typical objects, such as bike, car, bus, truck, and
pedestrian are plotted in Fig. 13(b). The high-resolution
radar BEVs representing the objects’ shape provide more
information than radar point clouds [53] for object detec-
tion using the proposed TDRadarNet. For demonstration,
in this article, we focus on vehicle detection only [35].
Using camera images and LiDAR 3-D point clouds as
ground truth, a total number of 42 390 vehicles at various
ranges are labeled with 2-D bounding boxes that encompass
their physical dimensions (see examples in Fig. 15). 2-D
bounding box labeling is a conventional label method for
object detection and has been shown to be effective in many
applications [70]. Vehicle range distribution is shown in
Fig. 10(b). Examples under various driving scenarios are
shown in Fig. 13 (also in Fig. 15).

B. Doppler Unfolding Dataset

We created a separate subdataset for our Doppler un-
folding network using 1700 3-D radar data cube frames,
from which we extracted a total of 244 140 beam vec-
tors. The SNR of each beam vector was estimated using
SNR = 101log,,(S*/N?), where S represents the signal am-
plitude and N represents the noise floor from the range—
Doppler spectrum of each channel. In our processing, the
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Fig. 11. Confusion matrix of Doppler Unfolding Dataset.
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Fig. 12. Motion-induced error removed by Doppler Unfolding
Network. (a) Camera image. (b) Blurred radar BEV. (c) Undistorted radar
BEV. (d) LiDAR BEV.

range—Doppler 2-D FFT provides a signal processing gain
of 101og,o(NeastNeiow) = 42.14 dB, where Np,¢ = 256 and
Nyow = 64 are the number of samples in the fast-time and
slow-time dimensions, respectively. The class distribution
and SNR distribution of the dataset are depicted in Fig. 10(c)
and (d), respectively.

EXPERIMENTS

In this section, we evaluate the Doppler Unfolding Net-
work and TDRadarNet with the BAMA dataset quantita-
tively and qualitatively. We demonstrate that our Doppler
Unfolding Network performs accurate Doppler unfolding
results on signals with various SNRs. We further analyze
the TDRadarNet by comparing it with a baseline model
and performing ablation experiments.

VII.
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(a) Examples from the BAMA dataset showing the effect of velocity compensation on radar BEV frames. The first column shows BEVs

before motion compensation, and the second column shows BEVs after motion compensation via the proposed Doppler Unfolding Network. The third
column shows LiDAR point clouds in BEV format, and the fourth column shows an image from the left camera. (b) Zoom-in radar BEV views of
typical objects, such as bike, car, bus, truck, and pedestrian.

A. Doppler Unfolding Network

To train the Doppler Unfolding Network, we use a
simulated dataset that contains 46 000 beam vectors with
different velocities and DOAs, evenly distributed across
nine classes. To further enhance the network’s perfor-
mance on real-world data, we use a small training set from
the BAMA Doppler Unfolding dataset that contains 900
samples, evenly distributed across the same classes. The
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proposed network achieves an accuracy of 93.46%. The
confusion matrix for the BAMA dataset is presented in
Fig. 11. Examples of radar BEV frames captured under
various driving scenarios, both with and without compen-
sation, are shown in Figs. 12 and 13. When driving at
high speeds on a highway, motion-induced phase errors
severely affect the radar BEVs, resulting in a blur effect
that can cause false targets due to high sidelobes. After
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compensation with the correct velocity predicted by the
proposed Doppler Unfolding Network, the blur effect is
significantly suppressed. As a result, false targets are suc-
cessfully mitigated, demonstrating the effectiveness of the
deep-learning-aided signal processing chain. In addition,
we include examples from intersections where most targets
are stationary or have low velocities, and compensation is
not required. Overall, our proposed approach successfully
suppresses the “motion-blur” effect of TDM MIMO radar
for various driving scenarios.

B. TDRadarNet

We used a total of 14 800 high-resolution radar BEV
frames, out of which 11 500 frames were selected for train-
ing, and the remaining 3300 frames were used for testing.
It is important to note that our testing data were obtained
from an independent sequence and were not obtained by
randomly shuffling frames. This ensures that our testing
data are representative of real-world scenarios and are not
biased toward the training data. The YOLOvV7 network
trained with a single-frame dataset is used for the baseline.
For the proposed TDRadarNet, we feed the network with
a sequence of radar frames, and the annotations in the last
frame of the input frame sequence are used as reference. The
sequences of radar frames are overlapping in time order so
that each frame is guaranteed to be trained and evaluated.
The experiment was built in Python 3.8, PyTorch 1.10,
CUDA 11.1 on four Nvidia RTX A6000 GPUs. The baseline
model YOLOvV7 using a single-frame dataset was trained
200 epochs with a batch size of 8. For the TDRadarNet, the
model was trained 200 epochs to ensure convergence, with a
batch size of 8, and a linear decaying learning rate initialized
as 0.001. Besides, we performed two ablation experiments
to evaluate the far-near field and temporal fusion design,
with all the hyperparameters the same as the implementation
of TDRadarNet.
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TABLE III
Object Detection Results of Deep Learning Models in Precision,
Recall, F-1 Score, and AP

Networks Precision ~ Recall ~ Fl-score AP
YOLOV7 (baseline) 58.3% 49.7% 53.7% 49.3%
YOLOV7 + Far-Near Field 62.8% 57.9% 60.2% 58.9%
YOLOV7 + Temporal Fusion 67.9% 59.0%  63.2%  62.9%
TDRadarNet 68.9% 66.8% 67.8% 70.3%
TDRadarNet+ 74.9% 67.4% 70.9% 73.9%

To assess the detection performance, we employ several
standard metrics including precision, recall, F1-score, and
average precision (AP), using an IoU threshold of 0.5. In
addition, we present the recall versus precision curves for
all the models, as illustrated in Fig. 14. Notably, YOLOvV7
reports its precision and recall based on the optimal F1-
score, which ensures a desirable tradeoff between precision
and recall. To maintain consistency, we follow the same
approach.

Table III presents the quantitative evaluation results.
Our proposed TDRadarNet outperforms the baseline model,
achieving a 10.6% improvement in precision, a 17.1% im-
provement in recall, a 14.1% improvement in F1-score, and
a 21.0% improvement in AP. By leveraging Doppler infor-
mation, TDRadarNet+ achieves even better performance,
with a 6.0% improvement in precision, a 0.6% improvement
in recall, a 3.1% improvement in Fl-score, and a 3.6%
improvement in AP compared to TDRadarNet. Regarding
the far—near-field design and temporal fusion design, our
ablated models generally outperform the baseline method.

To assess the complexity of our proposed TDRadar-
Net, we evaluated the number of parameters and FPS. We
compared it with the baseline YOLOvV7 network, which has
36.5M parameters and achieves 100 FPS. Since TDRadar-
Net and TDRadarNet+ share the same architecture, they
have the same number of parameters and FPS. Therefore,
we focused on evaluating the complexity of TDRadarNet.
The results showed that TDRadarNet has 80.2M parameters
and achieves 34 FPS. While the number of parameters is
higher than the baseline, the achieved FPS is still suitable
for real-world applications.

The representative detection results over three scenar-
ios, the corresponding original radar frames, and ground
truth annotations are shown in Fig. 15. In the second column
of Fig. 15, the implementation of far—near field not only
helps to detect vehicles that are far in distance and have
a lower resolution but also improves the detection in the
near field, by learning field-related specific features, respec-
tively. In addition, compared to the baseline model, the tem-
poral fusion also shows better performance, especially in the
example of the highway scenario, in providing accurate and
complete predictions. The observations overall agree with
the quantitative evaluation. The proposed TDRadarNet has
shown superior capability in detecting objects in both far
and near fields and performs well in the campus and high-
way scenarios where fewer data (n = 1700 and n = 2300,
respectively) are available compared to the urban scenario
(n = 7500).
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VIII.  CONCLUSION

In this article, we reported a novel deep-learning-aided
TDM MIMO radar signal pipeline that contains a network
for solving the Doppler unfolding problem. After extensive
tests, we showed that our signal process pipeline is able
to generate undistorted radar BEVs containing rich object
features under various driving scenarios.

In an innovative way, the proposed TDRadarNet com-
bined temporal fusion and far-near field designs to perform
vehicle detection tasks on high-resolution radar BEVs,
which do not suffer from information loss compared to
radar point clouds. Furthermore, the enhanced TDRadar-
Net+ maximized the utilization of Doppler information
and achieved better vehicle detection performance. We
investigated and compared the detection performance of
TDRadarNet and TDRadarNet+ on our own dataset con-
taining 14 800 frames of high-resolution radar BEVs, to-
gether with synchronized stereo camera images and Li-
DAR 3-D point clouds, collected in diverse driving sce-
narios. The results showed that the proposed model is
superior to the image-based neural network baseline model
in producing accurate vehicle detection results. The ab-
lation experiments demonstrated the effectiveness of our
designs.

The potential limitation of TDRadarNet could be the
extra computational cost introduced by the temporal fusion
over a sequence of frames. An investigation of the tradeoff
between the number of historical frames fed into neural
network and detection accuracy is desired. The imbalance
of radar BEVs in different ranges and driving scenarios may
be an issue that would impact the TDRadarNet training
and detection performance. To overcome the limitations,
in future work, we plan to investigate the lightweight deep
learning detection model, conduct additional experiments to
optimize the number of historical frames in a sequence, and
implement data augmentation for limited available driving
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scenarios to further enhance the TDRadarNet detection
accuracy and efficiency.
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