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Advanced driver assistance systems (ADASs) and autonomous

vehicles rely on different types of sensors, such as camera, radar,

ultrasonic, and LiDAR, to sense the surrounding environment. Com-

pared with the other types of sensors, millimeter-wave automotive

radar has advantages in terms of cost and reliability under bad

weather conditions (e.g., snow, rain, and fog) and does not suffer

from light condition variations (e.g., darkness). Typical radar devices

used in today’s commercial vehicles with ADAS features produce

sparse point clouds in low angular resolution with a limited number of

antennas. In this article, we present a machine-learning-aided signal

processing chain to suppress the radar imaging blur effect introduced

by the phase migration in time-division multiplexing multiple-input

multiple-output radar, to generate low-level high-resolution radar

bird’s-eye view (BEV) spectra with rich object’s features. Compared
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with radar point clouds, there is no information loss in radar BEV

spectra. We then propose a temporal-fusion distance-tolerant single-

stage object detection network, termed as TDRadarNet, and an en-

hanced version, TDRadarNet+, to robustly detect vehicles in both long

and short ranges on radar BEVs. We introduce a first-of-its-kind mul-

timodel dataset, containing 14 800 frames of high-resolution low-level

radar BEV spectra with synchronized stereo camera RGB images

and 3-D LiDAR point clouds. Our dataset achieves 0.39-m range

resolution and 1.2◦ degree azimuth angular resolution with 100-m

maximum detectable range. Moreover, we create a subdataset, the

Doppler Unfolding dataset, containing 244 140 beam vectors extracted

from the 3-D radar data cube. With extensive testing and evaluation,

we demonstrate that our Doppler unfolding network achieves 93.46%

Doppler unfolding accuracy. Compared to YOLOv7, a state-of-the-art

image-based object detection network, TDRadarNet, achieves a 70.3%

average precision (AP) for vehicle detection, demonstrating a 21.0%

improvement; TDRadarNet+ achieves a 73.9% AP, showing a 24.6%

improvement in performance.

I. INTRODUCTION

Automotive radar sensors are crucial components in ad-

vanced driver assistance systems (ADASs) and autonomous

vehicles due to their low cost, all-weather sensing capa-

bilities, and immunity to poor visibility conditions [3],

[4], [5], [6], [7]. Automotive radar systems typically rely

on frequency-modulated continuous-wave (FMCW) signals

in the millimeter-wave band, which enable cost-effective

and high-resolution sensing for various autonomous driving

functions such as automatic emergency braking, blind spot

detection, and adaptive cruise control [8], [9], [10].

Object detection and classification are essential for au-

tonomous driving. Humans sense the world through their

eyes and ears and constantly use their brains to perform

detection and classification tasks. Sensors, akin to human

eyes and ears, allow vehicles to perceive their surroundings.

Recently, many high-performance object detectors based on

camera RGB images and LiDAR point clouds have been

proposed [11], [12], [13], [14]. Although cameras allow

us to better understand visual scenes, their performance

is questionable in poor weather conditions [5]. LiDAR

produces 3-D point clouds of the environment with high

resolution on a good day by reflecting laser beams off

surrounding objects [15], [16]. Its performance, however,

degrades significantly in bad weather conditions. The aver-

age price of LiDAR products is also high.

Radar, on the other hand, is robust, inexpensive, and

reliable even in harsh environments [5], [6], [7]. The wave-

length of the millimeter-wave automotive radar operating at

76–81 GHz is in the millimeter range. The high bandwidth

of a total of 4 GHz in a carrier frequency of 77–81 GHz

is available for short- and medium-range automotive radars

to achieve high range resolution. Due to the high carrier

frequency, the form factor of automotive radar can be

small so that it can be easily incorporated behind vehicle

bumpers [5]. Compared with optical sensors, such as Li-

DAR and cameras, millimeter-wave automotive radar has

strong penetration capabilities in fog, rain, snow, smoke,

and dust [7]. However, the potential of object detection

and classification using automotive radar has not been fully

exploited. Today, most radar devices in commercial vehicles
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with Level 2 features, such as adaptive cruise control func-

tion, have a relatively low angular resolution (around 10◦)

and low-end embedded computational unit [5], producing

sparse point clouds, based on which object tracking is car-

ried out. The Level 4 and Level 5 fully autonomous vehicles

would require dense point clouds or radar imaging with

a high angular resolution close to LiDAR [7]. Therefore,

high-resolution automotive imaging radars [8], [17] are of

great interest to support object detection and classification.

Several commercial imaging radar products are available

with various array configurations. For example, ZF imaging

radar [18] has a detection range of up to 350 m and a

field of view (FOV) of up to 120◦. The ARS540 from

Continental [19] has a detection range of up to 300 m and

an FOV of up to 120◦. However, both only provide radar

point clouds as output.

Multiple-input multiple-output (MIMO) radar has been

widely used to synthesize a large virtual array aperture

for higher angular resolution, while keeping the number

of transmit and receive antennas relatively small [5], [20],

[21], [22]. MIMO radar relies on waveform orthogonality of

the transmitted signals to enable separation at the receiver,

which can be achieved using different methods such as

time-division multiplexing (TDM), Doppler-division mul-

tiplexing (DDM), and frequency-division multiplexing [5].

Although TDM is a simple way to achieve waveform

orthogonality, it reduces the maximum unambiguous de-

tectable Doppler or radial velocity by a factor of the number

of transmit antennas, an important property for imaging

radar synthesized with a large number of transmit anten-

nas [23]. Moreover, the switching delays among the transmit

antennas from chirp to chirp introduce phase migration

for moving objects, resulting in blurred radar imaging and

distorted angular spectrum. To compensate for this, a correct

velocity estimation of the moving object is required before

carrying out angle estimation. However, moving targets

with high speeds are estimated with ambiguity, and there-

fore, Doppler unfolding/dealiasing is required for accurate

velocity estimation of moving objects with high speed under

TDM MIMO radar. Various approaches have been proposed

to address the challenge of unfolding ambiguous veloci-

ties, including methods such as different pulse repetition

intervals (PRIs) in conjunction with the Chinese remainder

theorem (CRT) [2], overlapped virtual arrays [24], [25],

and track-based techniques [26], [27]. These methods often

require high operating complexity or additional hardware

cost.

High-resolution imaging radar outputs are usually rep-

resented as point clouds. Networks originally developed

for LiDAR point cloud classification and segmentation,

such as PointPillars [28], VoxelNet [29], PointNet [30],

and PointNet++ [31], can be directly used or adjusted for

radar point clouds [32], [33]. Unfortunately, the threshold-

ing algorithms in generating radar point clouds from radar

low-level data often lead to significant information loss.

To address this challenge, researchers develop novel deep

neural networks [34], [35], [36], [37] on high-resolution

radar low-level data representation (e.g., range–azimuth

spectra) as it contains rich information of the object (e.g.,

shape) to support fully autonomous driving.

In this article, we propose a high-resolution radar object

detection system that can robustly detect vehicles up to

100 m under various driving scenarios. Our system con-

tains a novel machine-learning-aided TDM MIMO radar

signal processing pipeline for generating undistorted high-

resolution radar imaging, and a temporal-fusion distance-

tolerant radar single-stage object detection network, termed

as TDRadarNet, for vehicle detection in far and near fields.

Our novel signal processing pipeline overcomes the TDM

MIMO radar phase migration problem by using a deep-

learning-based Doppler unfolding network. After apply-

ing the signal processing pipeline, a high-resolution radar

range–azimuth spectrum is created in polar coordinates.

We transfer the radar range–azimuth spectrum into a radar

bird’s-eye view (BEV) in Cartesian coordinates using lin-

ear interpolation. Considering that the radar BEVs are in

general hardly shift invariant over both angle and range,

we propose a novel TDRadarNet by separating the radar

BEV into far and near fields for object detection. In this

article, we focus on recognizing targets not only in the

near field with rich shape information but also in the far

field with lower resolution. In addition, the proposed net-

work exploits temporal features from historical radar frames

for detection. To the best of our knowledge, this research

also introduces a first-of-its-kind multimodel dataset, which

contains high-resolution radar spectra with synchronized

stereo camera RGB images and 3-D LiDAR point clouds

under different driving scenarios. Unlike existing datasets

with low-resolution or short maximum detectable range, our

radar dataset achieves 0.39-m range resolution and 1.2◦ az-

imuth angular resolution with 100-m maximum detectable

range. The dataset includes 14 800 radar BEV frames

representing 30-min driving in different driving scenarios,

such as on campuses, highways, and urban streets. We

also create a subdataset for TDM MIMO radar Doppler

unfolding, which consists of 244 140 beam vectors with

varying signal-to-noise ratios (SNRs) and target directions

of arrival (DOAs). To validate our proposed system, we

train and test the Doppler unfolding network of the signal

process pipeline using a subdataset. The Doppler unfolding

network achieves 93.46% accuracy. We further train and

evaluate our TDRadarNet using our self-collected dataset

to demonstrate the outperformance of our proposed system

over state-of-the-art image-based object detection networks

with 10.6%, 17.1%, and 14.1% improvements in precision,

recall, and F1-score, respectively. Overall, our contributions

are as follows.

1) A novel signal processing pipeline with a deep learn-

ing network for TDM MIMO radar to overcome

phase migration problems is developed.

2) With field experiments, a multimodel sensor dataset

that contains high-resolution radar BEVs with syn-

chronized stereo cameras RGB images and 3-D Li-

DAR point clouds is generated. In addition, a sub-

dataset containing beam vectors with different SNRs
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and target DOAs for Doppler unfolding network

training is created.

3) A novel deep neural network, TDRadarNet, is

proposed. TDRadarNet leverages historical radar

frames to exploit temporal features and separates

far and near fields to address inconsistent resolution

in radar BEV frames, demonstrating the promise

of robust radar object detection in various driving

scenarios.

4) An enhanced version of the neural network,

TDRadarNet+, is proposed to utilize Doppler infor-

mation for object detection. TDRadarNet+ demon-

strates the potential of robust radar object detection

by effectively utilizing Doppler information.

Existing research has explored the application of ma-

chine learning and deep learning on Doppler radar data. For

example, Zheng et al. [1] presented machine-learning-aided

Doppler unfolding with preliminary simulation results. Ob-

ject detection based on high-resolution radar range–azimuth

spectra obtained at a few locations using a vanilla-image-

based neural network was presented in [2]. We argue that

our contributions go beyond [1] and [2]. Here, we propose a

novel temporal-fusion and distance-resilient neural network

for vehicle detection. We develop a high-resolution low-

level automotive radar imaging dataset with a maximum

detection range of 100 m under different driving scenarios.

In addition, comprehensive numerical studies and verifica-

tion have been conducted based on field experiment results.

The rest of this article is organized as follows. In

Section II, we review existing approaches to solve the

motion-induced phase errors in TDM MIMO radars, the

publicly available radar datasets for autonomous driving,

and different deep learning approaches for radar object

detection using different radar data representations. The

system model of automotive FMCW MIMO radar and its

challenges for TDM MIMO radar are addressed in Sec-

tion III. In Section IV, we propose a deep-learning-aided

signal processing pipeline to generate high-resolution radar

imaging by unfolding the ambiguous Doppler estimations.

The details of the proposed TDRadarNet are presented in

Section V. Our own dataset is introduced in Section VI, and

the neural network experimental performance on our dataset

is shown in Section VII. Finally, Section VIII concludes this

article.

II. RELATED WORKS

In this section, we briefly discuss the existing Doppler

unfolding approaches in automotive TDM MIMO radars,

automotive radar data representation and datasets for au-

tonomous driving, and relevant radar machine learning

work.

A. Doppler Unfolding Approaches

Under TDM MIMO radar, only one transmitter is turned

ON at each time slot. The switching delay between transmit-

ters introduces a phase migration between chirp and chirp.

As a result, it would corrupt the angular phase information

of moving targets leading to blurred radar imaging. Unlike

cameras overcoming the blurred image issue by increas-

ing frames per second (FPS), TDM MIMO radars require

special antenna geometries or adaptive signal processing

techniques to tackle the phase migration.

1) Overlapping Virtual Array Elements: Phase error is

estimated using overlapping elements in the virtual aper-

ture [24]. If two virtual elements corresponding to differ-

ent transmitters share the same virtual position, the only

phase difference between them in an ideal situation is the

motion-induced phase error. The issue of this approach is

that it requires redundancy of virtual elements and, thus,

increases hardware costs. In addition, this approach suffers

from low-SNR situations.

2) Adaptive Discrete Fourier Transform (DFT):

Bechter et al. [38] concluded that overlapping element is

unnecessary and the motion compensation can be resolved

via applying adaptive DFT on signals corresponding to dif-

ferent transmitters. However, such an approach may cause

ambiguities in the Doppler domain, and a special waveform

design is required to carry out Doppler dealiasing.

3) Staggered TDM With CRT: Several proposed studies

use multiple pulse repetition frequencies (PRFs) techniques

combined with the CRT to address the Doppler ambigui-

ties [2], [27]. The general approach involves searching for

coincidences between the unfolded estimates obtained for

each PRF. However, such an approach is sensitive to noise,

and the pairing process has a high computational cost.

4) Track-Based Approach: Examples of track-based

approaches are multiple hypothesis tracking (MHT) [26]

and the track-before-resolve (TBR) [27] method. MHT uses

multiple PRFs and initiates multiple track hypotheses to

represent potential target positions, while TBR resolves the

ambiguity using the tracking filters of multiple models. Both

approaches have shown great promise in resolving Doppler

ambiguities at low SNRs.

B. Radar Datasets for Autonomous Driving

Environmental perception plays a key role in au-

tonomous driving. The popular datasets in autonomous

vehicle perception, such as KITTI [39] and Waymo Open

Dataset [12], only contain cameras and LiDAR record-

ings. As radar gains more attention in autonomous driving,

several datasets containing radar data have been released

recently, such as nuScenes [40], Oxford Radar Robot-

Car [41], Astyx [42], RADIATE [43], CRUW [34], Zen-

dar [44], CARRADA [45], RadarScenes [46], RADIal [36],

View-of-Delft [47], and Radatron [37]. The publicly avail-

able datasets are summarized and compared in Table I.

CARRADA and CRUW datasets use single-chip Texas

Instruments (TI) radar with a low angular resolution, i.e.,

larger than 10◦. RADIATE and Oxford Radar RobotCar use

mechanical scanning radars, CTS350-X, providing high-

resolution radar images with 4 FPS. Yet, the Doppler in-

formation of targets is missing, and such a low frame rate

introduces uncorrectable motion blur to the radar imaging.

Synthetic aperture radar (SAR) technology for static targets
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TABLE I

Overview of Publicly Available Radar Datasets

is adopted in the Zendar dataset with multiple measurements

from different vehicle locations. The Astyx dataset contains

only 500 frames with sparse radar point clouds. High-

definition imaging radar with DDM MIMO configuration is

adopted in RADIal, resulting in interleaved range–Doppler

maps. The View-of-Delft dataset utilizes the ZF FRGen21

radar [18], a long-range and high-resolution imaging radar.

It provides only point cloud data, and object annotations

are available for objects within a short range of 50 m.

Radadtron uses TI cascade imaging radar, similar to ours.

It only contains targets in near fields, i.e., within 25 m.

C. Radar-Based Deep Learning

Deep learning has found wide application in radar sys-

tems [49], [50]. For example, low-cost radar, such as Soli

radar [51], is used to capture hand gesture for human–

computer interaction. Short-range radar is also proposed in

the medical field to remotely monitor human vital signs [52].

Radar has a long application history in commercial au-

tomobiles [6] since the 1990s, spanning from ADAS to

the recently emerging autonomous driving techniques [5].

Different automotive radar data representations have been

exploited, which can be, in general, divided into three

categories.

1) Radar Point Clouds: Radar data can be represented

as point clouds by applying filtering and thresholding al-

gorithms, such as constant false alarm rate, on the radar

range–azimuth map. In this way, radar produces sparse

point clouds, and it can be viewed as a low-quality LiDAR.

Point-cloud-based networks, such as PointPillars [28], Vox-

elNet [29], and PointNets [30], can be directly used or

adjusted [32] for radar point clouds. Moreover, Scheiner

et al. [53] present a comparison between five real-time capa-

ble object detector architectures on radar point clouds. Such

thresholding algorithms in generating radar point clouds

may lead to significant information loss of objects.

2) Radar Data Tensor: To avoid loss of information,

radar data can be processed in 3-D tensors, i.e., range–

Doppler–azimuth for 1-D antenna array, or 4-D tensors,

i.e., range–Doppler–azimuth–elevation for 2-D antenna ar-

ray. Deep-learning-based radar detector [50] directly learns

from 4-D complex radar tensors for object detection and

localization. It is also possible to project the 3-D radar

tensors along different views to extract 2-D features for

semantic segmentation [54] and object recognition [55],

[56], [57].

3) Radar BEVs: Radar BEVs were generated from a

radar range–azimuth map through coordinate transforma-

tion. Radar BEVs obtained from high-resolution radar con-

tain targets’ geometric information. Object detection based

on radar BEV was proposed in [2], [37], and [58], achieving

relatively accurate object detection. However, only highway

scene is considered in [58], which are considered as the

clean and easy scenario in autonomous driving. In [2], the

radar is placed at intersections and only moving targets in

the near fields are of interest. Similarly, objects within ultra

short range are considered in [37].

In radar machine learning, taking advantage of temporal

and spatial information can effectively improve detector

performance [48]. Extensive studies have been conducted

on the combination of different radar frames, such as sum-

mation among neighboring frames [54], concatenation in

frame level [59], and stacking in feature level [34], [55].

In [55], a convolutional long short-term memory layer is

adopted after the encoder network to extract temporal fea-

tures from a sequence of feature maps. In [34], frame-level

feature maps are concatenated and temporal features are

extracted by a 3-D convolutional neural network (CNN)

layer. Other than using a CNN-based network, an isotropic

graph convolution network that leverages spatial informa-

tion from neighboring nodes is proposed in [60] to boost

radar detection performance.

III. SYSTEM MODEL OF AUTOMOTIVE MIMO RADAR

FMCW radar is a widely used technology in automo-

tive applications due to its ability to provide high-range

resolution at a low cost. In this section, we will explain the

principles of FMCW radar and how it is used in automotive
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MIMO radar systems to synthesize a large virtual array

followed by the discussion of challenges that arise with

MIMO radar technology.

A. FMCW Radar

The FMCW radar signal is generated by transmitting a

continuous-wave signal that linearly increases in frequency

over time, with a carrier frequency fc, bandwidth B, and

chirp duration T . The transmitted signal’s phase ϕT (t ) is

obtained by integrating the transmitted frequency fT (t )

over time, yielding ϕT (t ) = 2π
∫ t

−T/2
fT (t )dt . When the

transmitted signal encounters a target at a range R with

radial velocity v, the signal is delayed by a round-trip time of

τ = 2(R + vt )/c, where c is the speed of light. The received

signal is mixed with the transmitted signal, resulting in a

beat signal with a phase ϕB(t ) that can be approximated as

ϕB(t ) = 2π

[

2 fcR

c
+

(

2 fcv

c
+

2BR

T c

)

t

]

(1)

where the beat frequency is given by fb = fR + fD, with

fR = 2BR/T c representing the range frequency and fD =

2 fcv/c representing the Doppler frequency. To improve

the radar’s dynamic range, the beat signal typically goes

through a bandpass filter that compensates for the gain in tar-

gets at different distances, followed by an analog-to-digital

converter (ADC) that samples the signal at a rate greater

than twice the maximum beat frequency f max
b . Range and

Doppler information of the target can then be obtained by

applying fast Fourier transforms (FFTs) along the fast-time

and slow-time dimensions.

B. Automotive MIMO Radar and Waveform Orthogo-
nality

MIMO radar has been increasingly used in automotive

radar design due to its ability to synthesize a large virtual

array for angle estimation using a small number of transmit

and receive antennas [5], [20]. An example of a MIMO

radar with Nt = 2 transmit and Nr = 4 receive antennas is

shown in Fig. 1(a), where a virtual uniform linear array

with eight elements is synthesized. By applying digital

beamforming [61] or super-resolution algorithms, such as

MUSIC [62], ESPRIT [63], and compressive sensing [64],

the DOA is estimated.

In automotive MIMO radar, it is crucial to transmit

orthogonal FMCW sequences so that at the receiving side,

the contribution of each transmit antenna can be extracted

from the receive signals. There are different ways to achieve

waveform orthogonality in MIMO radar, such as DDM and

TDM [5].

In the DDM scheme, waveform orthogonality is

achieved in the slow-time domain by multiplying a phase

code on each transmitted FMCW chirp. At the receive side,

the contribution of each transmitter can be shifted to a

higher Doppler frequency or treated as random noise by

applying slow-time Doppler demodulation after range FFT.

Fig. 1. Example of MIMO radar with eight virtual array elements,

synthesized by two transmit and four receive antenna elements via TDM.

(a) Physical and virtual arrays. (b) Illustration of waveform orthogonality

through TDM.

DDM allows all transmit antennas to transmit simultane-

ously. However, it either reduces the maximum unambigu-

ous detectable Doppler or masks objects with low radar

cross section by the waveform residual from other transmit

antennas [5].

On the other hand, the TDM scheme selects only one

transmit antenna to transmit at each time. A signal process-

ing example of a TDM MIMO radar with Nt = 2 transmit

antennas and Nr = 4 receive antennas is shown in Fig. 1(b).

Assume that Nslow chirps are transmitted in one coherent

processing interval and the number of ADC samples in

one chirp is Nfast. All odd chirps (blue) are transmitted by

TX1, and all even chirps (red) are transmitted by TX2. The

radar data matrix can be assembled at each receive antenna

into two matrices corresponding to odd and even chirp

sequences, respectively. Therefore, a radar data cube with

a dimension of (Nslow/Nt ) × Nfast × (Nt Nr ) can be obtained

from the original Nslow × Nfast × Nr data cube. Due to its

simplicity in implementation, we adopt TDM to achieve

waveform orthogonality in this article.

C. Challenges of TDM MIMO Radar

1) Doppler Aliasing: In automotive radar, the maxi-

mum unambiguous detectable velocity is given by

vmax = c/(4 fcTPRI) (2)
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Fig. 2. Illustration of Doppler folding/aliasing. The FMCW radar

simulator is configurated to have a maximum unambiguous detectable

radial speed, vmax = 3.6 m/s. Range–Doppler map with three targets at

ranges of 100, 75, and 50 m and corresponding velocities of 0, 2vmax, and

−2vmax m/s. Circle markers show the targets’ ground truth parameters.

where c is the speed of light, fc is the carrier frequency, and

TPRI is the PRI. However, in TDM MIMO radar, where only

one transmit antenna is scheduled to transmit at each time

slot, TPRI of each transmit antenna is enlarged by the number

of transmit antennas Nt . This increase in TPRI reduces vmax

by Nt times, meaning that the TDM MIMO radar can only

estimate velocities without ambiguity within a smaller range

compared to a traditional radar with the same PRI but only

one transmit antenna.

This reduction in vmax can exacerbate the problem of

Doppler aliasing, which occurs when targets move with

velocities beyond the maximum unambiguous detectable

velocity. In Doppler aliasing, targets appear on the range–

Doppler map with incorrect Doppler estimates, and this will

fold back targets at incorrect locations within the range–

Doppler map. We illustrate this problem in Fig. 2, where

an FMCW radar simulator is used to generate radar data

for three targets with different range and Doppler informa-

tion. Although those three targets have different velocities,

they share the same Doppler/velocity estimation on the

range–Doppler map due to Doppler folding. In this case,

the velocity information of the object cannot be estimated

accurately, and an object moving with an aliasing velocity,

such as 2vmax or −2vmax, could be detected as stationary.

2) Phase Migration: The scheduling delay, �t , be-

tween different transmit antennas can result in phase migra-

tion for moving targets between different chirps, defined as

follows:

φ = (4π/λ)v�t (3)

where λ = c/ fc is the wavelength. For the mth switched

transmit antenna, the phase migration is written as [65]

φm = (m − 1) π
v

vmax

. (4)

This phenomenon will cause a distortion in the virtual

array beampattern, leading to inaccurate angle finding. For

a MIMO radar with Nt transmit and Nr receive antennas,

the transmit and receive steering vectors are

at (θt ) =

[

e j 2π
λ

d1
t sin(θt ), . . . , e j 2π

λ
d

Nt
t sin(θt )

]T

(5)

ar (θr ) =

[

e j 2π
λ

d1
r sin(θr ), . . . , e j 2π

λ
dNr

r sin(θr )
]T

(6)

where dm
t denotes the distance of the mth transmit antenna

to the reference transmit antenna; similarly, dn
r denotes the

nth receive antenna to the reference receive antenna. For

targets in far field, it holds that θt = θr
�
= θ . The virtual

array steering vector is

a (θ ) = at (θ ) ⊗ ar (θ ) (7)

where ⊗ is the Kronecker product. The element of the vir-

tual array steering vector corresponding to the mth transmit

and nth receive antenna is denoted as e jϕmn , where

ϕmn =
2π

λ

(

dm
t + dn

r

)

sin (θ ) . (8)

As a result, the element of the virtual array steering vector

corresponding to the mth transmit and nth receive antenna

is e j(ϕmn+φm ). The term φm needs to be compensated to avoid

beampattern distortion.

To illustrate this effect, we performed simulations using

an array configuration shown in Fig. 8, which is similar to

the one used in TI imaging radar [25]. Assume that there is

a moving target at 10◦ with a velocity of 20 m/s. Fig. 3(a)

shows the angle spectrum obtained from the virtual array

without velocity compensation. To remove phase migration,

a compensation value of e− jφm needs to be multiplied along

the virtual array before angle finding for every moving

target. The velocity of the target is estimated from the 2-D

FFT result of a single RX antenna data matrix. Fig. 3(b)

shows the correct angle spectra after compensation. In

addition, Fig. 3(d) and (e) demonstrates the radar BEVs of

highway guardrails before and after motion compensation.

Without compensation, the radar BEV is severely blurred

due to the phase errors induced by the moving host vehicle.

The compensated radar BEV matches well with the camera

image and LiDAR BEV of the guardrail shown in Fig. 3(c)

and (f), respectively, which serves as the ground truth.

IV. DEEP-LEARNING-AIDED SIGNAL PROCESSING
PIPELINE OF HIGH-RESOLUTION IMAGING
RADAR

In this section, we introduce a novel signal processing

pipeline that leverages the power of deep learning to synthe-

size a virtual uniform linear antenna array with 86 elements

for TDM MIMO radar. As a result, high-resolution radar

imaging with an azimuth resolution of 1.2◦ is achieved by

cascading four AWR2243 chipsets [25].

The proposed deep-learning-aided TDM MIMO radar

signal processing pipeline is illustrated in Fig. 4. To syn-

thesize MIMO virtual array, a waveform decoding process

is applied to the 3-D radar data cube at the radar receive

side. This will separate the transmit signals from different

transmit antennas and rearranges the data cube to have a

large virtual array.
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Fig. 3. Angle spectra of a moving target with a velocity of 20 m/s and

azimuth angle of 10◦: (a) before and (b) after phase compensation. The

radar is configured to select 9 TX and 16 RX antennas with a chirp

duration of 50 μs. Guardrail from (c) camera image and (d) radar BEV

before, (e) after phase compensation, and (f) LiDAR BEV.

In practice, there may exist frequency, phase, and am-

plitude mismatches across the four radar chipsets. These

mismatches can be caused by various factors, such as

path length mismatch, chip-to-chip variation, and antenna

coupling. To address this issue, a corner reflector at the

boresight direction is utilized to generate a frequency and

amplitude calibration matrix to compensate for the different

transmit–receive antenna path delays.

To estimate the target range and Doppler information,

the dc offset is first removed and an Nfast-point Hanning

window is applied to the 3-D radar data cube along the fast

time axis before performing an FFT to estimate the targets’

range.

Next, another Nslow/Nt -point Hanning window is ap-

plied to the data cube along the slow time axis, followed by a

second FFT to estimate the targets’ Doppler. The Hanning

window reduces the effects of sidelobes in the frequency

domain, which can distort the range or Doppler estimation.

Overall, the combination of dc offset removal and Hanning

windowing helps to improve the accuracy and precision of

the range and Doppler estimation in the signal processing

chain.

To account for the motion-induced phase error, a

Doppler unfolding and phase compensation step is neces-

sary. In practical applications such as autonomous driving,

the range of velocities is typically limited. For instance, the

velocity range is typically within [−120, 120] mi/h. This

implies that the number of possible velocity values is finite.

Thus, when the maximum velocity, vmax, is sufficiently

large, it is possible to unfold the velocity a limited number

of times to estimate the velocity correctly. In our case, only

nine possible unfolded velocity candidates are considered,

i.e.,

S = {v − 4 × (2vmax), . . . , v, . . . , v + 4 × (2vmax)} . (9)

As shown in Fig. 4, we use a 1-D CNN, comprising

three CNN layers and one fully connected layer, to estimate

Doppler in automotive TDM MIMO radar. The CNN is

pretrained with simulated data and fine-tuned on real data

with the same antenna configuration as the TI imaging radar.

The simulated data consist of beam vectors of virtual arrays

obtained after range and Doppler FFTs. The dataset includes

nine velocity candidates, with labels 0–8. The beam vector

of the virtual array is selected from the 3-D radar data cube

along the channel dimension, and a signal preprocessing

step is applied to remove the angle-dependent phase in the

beam vector to ensure that the input data for the Doppler un-

folding network only contain motion-induced phase error,

mutual coupling error, and noise. This preprocessing step

significantly reduces the amount of data required for train-

ing. Next, phase features in the beam vector are extracted

using a 1-D CNN. The network output is the estimated

velocity used to compensate for the phase migration in the

beam vector of the virtual array.

It is important to note that mutual coupling and fabri-

cation imperfections may lead to degraded antenna perfor-

mance, highlighting the need for antenna array calibration

in producing high-quality radar imaging [66], [67]. While

the TI cascaded imaging radar employs a simple one-time

boresight calibration method for improved angle perfor-

mance, this approach suffers from reduced performance

when targets are off-boresight. To address this, we adopt

an angle-dependent calibration method that uses radar mea-

surements of a corner reflector at various angles to calibrate

the already compensated virtual array beam vector.

Next, an angle FFT is conducted along the already

compensated and calibrated virtual array with a Chebyshev

window with 50-dB sidelobe attenuation, generating a 3-D

radar spectra that contains range, Doppler, and azimuth

information. A range–azimuth heatmap is obtained by col-

lapsing the 3-D data spectra along the Doppler dimension.

Finally, the polar coordinates (r, θ ) of the range–azimuth

map are converted to Cartesian coordinates (X,Y ), generat-

ing a radar BEV. This representation provides a 2-D view of

the surrounding environment, with the X -axis representing

the horizontal distance and the Y -axis representing the

vertical distance from the radar sensor.

An example of the radar range–azimuth spectra of a

street intersection and its corresponding BEV generated

through polar-to-Cartesian transformation are presented in
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Fig. 4. Illustration of deep-learning-aided TDM MIMO radar signal processing pipeline.

Fig. 5. (a) Camera. (b) LiDAR. (c) Polar coordinate and its (d)

Cartesian coordinate transformation.

Fig. 5. The high-resolution radar BEVs provide rich shape

information of various objects such as buildings, cars,

trees, and light poles, as observed in Fig. 5, as well as

in Figs. 13 and 15. The shape information enables accu-

rate target detection using the proposed TDRadarNet (see

Section V).

V. TDRADARNET FOR RADAR OBJECT DETECTION

Radar BEVs are single-channel grayscale images with

varying resolutions and SNR. Considering these unique

characteristics, we propose a new object detection net-

work called temporal-fusion distance-tolerant radar ob-

ject detection network (TDRadarNet). TDRadarNet uti-

lizes temporal features and handles objects in far and near

fields differently to improve detection performance on radar

BEVs.

A. Not Every Pixel Is Created Equally

To enable object detection via deep learning, high-

resolution radar BEVs in Cartesian coordinate are utilized,

as they contain rich shape information of objects. However,

it is important to note that not every pixel in radar BEV

is generated with the same accuracy. The accuracy of the

pixels is generally sensitive to both range and angle. This

will have implications on the performance of any detection

algorithm utilizing radar BEV, as small measurement errors

can result in large variances in the Cartesian coordinate for

targets in the far field. This issue will be discussed in more

detail in the following sections.

1) Effective Antenna Aperture Relies on Angle: In a

uniform linear array, the half power beamwidth [68] is

given by θB ≈ 0.886λ
Nd cos θ

, where θ is the angle of view, N is

the number of antenna elements, d is the antenna spacing,

and λ is the wavelength. The maximum effective antenna

aperture, and hence the best angular resolution, is achieved

along the boresight direction. The effective aperture of the

array decreases as the view angle increases, resulting in

poorer angular resolution.

2) SNR Drops as Range Increases: According to the

radar range equation, the received power decreases as the

range increases. The radar receive power of a target of range

r with radar cross section of σ is [69]

Pr =
PtCσ

(4π )3r4
(10)

where C can be considered as a constant number for the

same radar, which includes antenna gain, effective antenna

area, and efficiency, and Pt is the transmit power. Therefore,

Pr ∝ 1/r4. Typically, targets at a far distance have lower

SNR, as a result of which the angle estimation error is

relatively large for targets with long ranges.

3) Information Loss in Coordinate Systems Transform:

The radar range–azimuth spectrum is typically obtained in

polar coordinates, which are then transformed or interpo-

lated into a Cartesian coordinate system before fed into
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Fig. 6. TDRadarNet. Far-near fields are divided and used to train two

sets of learnable parameters of the model. Temporal fusion works by

extracting temporal features from a sequence of frames.

deep neural networks. As the range increases, the distance

between adjacent bins becomes larger, resulting in a larger

variance in the distance between adjacent pixels in Cartesian

coordinate systems for targets at longer ranges. A small

error in angle estimation will cause a large variance in the

radar BEV pixels in far fields. And the SNR decreases at

longer ranges, leading to relatively large DOA estimation

errors, which further amplify the variance in these pixels.

This issue is particularly significant for radar BEVs, where

inconsistencies in pixel resolution and SNR are already

present.

To summarize, the radar BEV image obtained using

MIMO radar with fixed antenna arrays exhibits shift vari-

ance over both angles and ranges, making it inherently

difficult to be shift invariant.

B. Network Architecture of TDRadarNet

Given the unique characteristics of radar BEVs, we

introduce TDRadarNet (see Fig. 6). This network comprises

two identical subnetworks trained for object detection in

the far and near fields, respectively. The input radar frame

sequences are partitioned into overlapping sequences of far

and near fields. A backbone network extracts features from

each frame, followed by a temporal fusion stage to explore

Fig. 7. Temporal fusion module. Feature maps extracted from N

consecutive frames are concatenated in three scales separately. The

temporal features are then extracted by applying a convolution kernel

followed by batch normalization and ReLU activation.

the historical relationship between the features across con-

secutive frames. The detection head produces predictions,

which are combined for the far and near fields. Inspired

by You Only Look Once (YOLO) v7 [70], TDRadarNet

is optimized for radar BEVs by learning distinct features

for far and near fields and integrating temporal information

from historical radar frames.

The details of TDRadarNet are outlined as follows.

1) Far and Near Fields: Detecting objects in radar

BEVs can be challenging due to varying reflection intensity,

shape, and contrast caused by differences in resolution.

This dissimilarity is particularly notable when attempting

to detect the same type of object, such as cars, in both near

and far fields. To address this issue, we divided the radar

BEV frame into two regions: far field and near field, as

shown in Fig. 6. These regions overlap to ensure that no

information is lost at the boundaries. A deep learning model

on each region is trained to learn two sets of parameters

optimized for detecting objects in far and near fields. We

decide to adopt a separate processing approach for far and

near areas for multiple reasons. First, translating polar to

Cartesian before feeding it into the object detection network

allows us to leverage LiDAR and camera images for extrin-

sic calibration. Second, separately processing the far and

near areas helps to handle error amplification in coordinate

translation as well as SNR deviations due to path loss. Third,

it enables the network to learn field-related specific features

to improve the vehicle detection performance in far field that

experiences lower resolution and SNR drop.

2) Temporal Fusion: While object detection can be

performed with a single radar frame, we contend incor-

porating temporal information from multiple consecutive

frames can improve detection accuracy. As shown in Fig. 7,

a sequence of N frames is processed by the backbone to

extract feature maps of three scales for each frame, resulting

in a total of 3 × N feature maps. To incorporate temporal

information, the feature maps that correspond to the same

scale are concatenated and passed through a convolutional

layer, followed by batch normalization and rectified linear

unit (ReLU) activation, to extract temporal features.

3) Merging: Once the TDRadarNet generates object

detection results for the far and near fields, the results

are merged into a single frame. In cases where there are

overlapping detections in the common region of both fields,

we use nonmaximum suppression to filter out duplicate
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Fig. 8. TI imaging radar. Four AWR2243 radar transceivers are

cascaded together, providing 9 transmit and 16 receive antennas in

horizontal direction, enabling the synthesis of 86 unique virtual array

elements with half-wavelength spacing. Note 58 virtual array elements

are overlapped.

detections. Specifically, we set an intersection over union

(IoU) threshold to determine the extent of the overlap. If

multiple detections share the same intersection, the detec-

tion with the highest confidence score is kept.

C. TDRadarNet+ Exploiting Doppler Information

Radar BEVs are grayscale images that represent reflec-

tion intensity with valuable Doppler information such as

the velocity of objects in the scene relative to the radar

sensor. To make use of the Doppler information, we create a

radar Doppler BEV. This involves creating a Doppler feature

map by replacing the pixel values of the range–azimuth

heatmap with corresponding Doppler information obtained

through our Doppler unfolding network. A polar–Cartesian

transformation to both the range–azimuth and Doppler fea-

ture maps is employed to ensure consistency. As a result,

the radar Doppler BEV has the same dimensions as the

radar BEV, with the only difference being that the pixel

values represent Doppler information rather than reflection

intensity. We propose an improved version called TDRadar-

Net+ that leverages the Doppler information provided by

the radar sensor to improve performance. TDRadarNet+ is

specifically designed to incorporate a radar Doppler BEV

as part of its input. Unlike TDRadarNet, which takes radar

frame sequences directly as input, TDRadarNet+ takes one

less radar frame and includes a single radar Doppler BEV.

VI. BAMA HIGH-RESOLUTION AUTOMOTIVE RADAR
IMAGING DATASET

We implemented the proposed deep-learning-aided

imaging radar signal processing chain shown in Fig. 4 on

TI cascaded imaging radar, which is a chirp configurable

MIMO radar with 12 TX and 16 RX antennas, cascaded

by four radar transceivers of AWR2243 [25]. The azimuth

FOV is 70◦. A virtual uniform linear array with 86 elements

and half-wavelength spacing can be synthesized with 9 TX

and 16 RX antennas, of which 58 virtual array elements

are overlapped (see Fig. 8). The 3-dB beamwidth of the

imaging radar in azimuth is �θAZ = 2arcsin( 1.4λ
πDx

) ≈ 1.2◦,

where Dx = 42.5λ is the virtual array aperture in the hori-

zontal direction. Antenna calibration is required to reduce

the frequency, phase, and amplitude mismatches across

those four radar transceivers. Instead of using a one-time

Fig. 9. Data acquisition vehicle platform of Lexus RX450h with

high-resolution imaging radar, LiDAR, and stereo cameras is used to

carry out field experiments at the University of Alabama.

TABLE II

Multimodal Sensors

boresight calibration method, we adopt angle-dependent

calibration for better performance. The processed radar

image is presented as a single-channel grayscale image

instead of an RGB image because each pixel only presents

the target’s reflection intensity.

Note our system, as per TI user manual, can detect

objects up to 150 m in the MIMO mode and 350 m in the

beamforming mode. In our study, the maximum detectable

range is set to be 100 m because only one transmitter is

selected to transmit at each time slot under TDM, resulting

in lower transmit power, and labeling objects beyond 100

m is challenging, as obtaining ground truth from LiDAR

and cameras on the same host vehicle can be difficult due

to occlusion.

A. Data Acquisition and Distribution

Our field experiments included three multimodal sen-

sors, i.e., a TI imaging radar, stereo cameras of Teledyne

FLIR Blackfly S, and Velodyne Ultra Puck VLP-32C Li-

DAR, as shown in Fig. 9. The measurements of cameras

and LiDAR are used as ground truth for labeling the radar

data. The sensor features are summarized in Table II.

We drove over 30 min to collect data around the city

of Tuscaloosa, AL, USA. As shown in Fig. 10(a), the

experimental driving route consists of three types of driving

scenarios, i.e., campus road, urban street, and highway.
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Fig. 10. (a) Data collection route in the city of Tuscaloosa, AL, USA.

The lines with different colors denote the different driving scenarios.

Yellow: campus road; Red: urban street; Green: highway. (b) Vehicle

range distribution. (c) Doppler Unfolding Dataset class distribution. (d)

SNR distribution of beam vector.

The BAMA dataset contains 14 800 radar BEV frames

with synchronized stereo camera images and LiDAR 3-D

point clouds. There are different types of objects of interest,

including pedestrian, car, truck, and bus. Thanks to the

high-resolution azimuth capability, the collected low-level

radar BEV imaging contains rich object geometry features,

as shown in Fig. 13. Specifically, the zoom-in radar BEV

views of typical objects, such as bike, car, bus, truck, and

pedestrian are plotted in Fig. 13(b). The high-resolution

radar BEVs representing the objects’ shape provide more

information than radar point clouds [53] for object detec-

tion using the proposed TDRadarNet. For demonstration,

in this article, we focus on vehicle detection only [35].

Using camera images and LiDAR 3-D point clouds as

ground truth, a total number of 42 390 vehicles at various

ranges are labeled with 2-D bounding boxes that encompass

their physical dimensions (see examples in Fig. 15). 2-D

bounding box labeling is a conventional label method for

object detection and has been shown to be effective in many

applications [70]. Vehicle range distribution is shown in

Fig. 10(b). Examples under various driving scenarios are

shown in Fig. 13 (also in Fig. 15).

B. Doppler Unfolding Dataset

We created a separate subdataset for our Doppler un-

folding network using 1700 3-D radar data cube frames,

from which we extracted a total of 244 140 beam vec-

tors. The SNR of each beam vector was estimated using

SNR = 10 log10(S2/N2), where S represents the signal am-

plitude and N represents the noise floor from the range–

Doppler spectrum of each channel. In our processing, the

Fig. 11. Confusion matrix of Doppler Unfolding Dataset.

Fig. 12. Motion-induced error removed by Doppler Unfolding

Network. (a) Camera image. (b) Blurred radar BEV. (c) Undistorted radar

BEV. (d) LiDAR BEV.

range–Doppler 2-D FFT provides a signal processing gain

of 10 log10(NfastNslow) = 42.14 dB, where Nfast = 256 and

Nslow = 64 are the number of samples in the fast-time and

slow-time dimensions, respectively. The class distribution

and SNR distribution of the dataset are depicted in Fig. 10(c)

and (d), respectively.

VII. EXPERIMENTS

In this section, we evaluate the Doppler Unfolding Net-

work and TDRadarNet with the BAMA dataset quantita-

tively and qualitatively. We demonstrate that our Doppler

Unfolding Network performs accurate Doppler unfolding

results on signals with various SNRs. We further analyze

the TDRadarNet by comparing it with a baseline model

and performing ablation experiments.
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Fig. 13. (a) Examples from the BAMA dataset showing the effect of velocity compensation on radar BEV frames. The first column shows BEVs

before motion compensation, and the second column shows BEVs after motion compensation via the proposed Doppler Unfolding Network. The third

column shows LiDAR point clouds in BEV format, and the fourth column shows an image from the left camera. (b) Zoom-in radar BEV views of

typical objects, such as bike, car, bus, truck, and pedestrian.

A. Doppler Unfolding Network

To train the Doppler Unfolding Network, we use a

simulated dataset that contains 46 000 beam vectors with

different velocities and DOAs, evenly distributed across

nine classes. To further enhance the network’s perfor-

mance on real-world data, we use a small training set from

the BAMA Doppler Unfolding dataset that contains 900

samples, evenly distributed across the same classes. The

proposed network achieves an accuracy of 93.46%. The

confusion matrix for the BAMA dataset is presented in

Fig. 11. Examples of radar BEV frames captured under

various driving scenarios, both with and without compen-

sation, are shown in Figs. 12 and 13. When driving at

high speeds on a highway, motion-induced phase errors

severely affect the radar BEVs, resulting in a blur effect

that can cause false targets due to high sidelobes. After
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Fig. 14. Recall–precision curve.

compensation with the correct velocity predicted by the

proposed Doppler Unfolding Network, the blur effect is

significantly suppressed. As a result, false targets are suc-

cessfully mitigated, demonstrating the effectiveness of the

deep-learning-aided signal processing chain. In addition,

we include examples from intersections where most targets

are stationary or have low velocities, and compensation is

not required. Overall, our proposed approach successfully

suppresses the “motion-blur” effect of TDM MIMO radar

for various driving scenarios.

B. TDRadarNet

We used a total of 14 800 high-resolution radar BEV

frames, out of which 11 500 frames were selected for train-

ing, and the remaining 3300 frames were used for testing.

It is important to note that our testing data were obtained

from an independent sequence and were not obtained by

randomly shuffling frames. This ensures that our testing

data are representative of real-world scenarios and are not

biased toward the training data. The YOLOv7 network

trained with a single-frame dataset is used for the baseline.

For the proposed TDRadarNet, we feed the network with

a sequence of radar frames, and the annotations in the last

frame of the input frame sequence are used as reference. The

sequences of radar frames are overlapping in time order so

that each frame is guaranteed to be trained and evaluated.

The experiment was built in Python 3.8, PyTorch 1.10,

CUDA 11.1 on four Nvidia RTX A6000 GPUs. The baseline

model YOLOv7 using a single-frame dataset was trained

200 epochs with a batch size of 8. For the TDRadarNet, the

model was trained 200 epochs to ensure convergence, with a

batch size of 8, and a linear decaying learning rate initialized

as 0.001. Besides, we performed two ablation experiments

to evaluate the far-near field and temporal fusion design,

with all the hyperparameters the same as the implementation

of TDRadarNet.

TABLE III

Object Detection Results of Deep Learning Models in Precision,

Recall, F-1 Score, and AP

To assess the detection performance, we employ several

standard metrics including precision, recall, F1-score, and

average precision (AP), using an IoU threshold of 0.5. In

addition, we present the recall versus precision curves for

all the models, as illustrated in Fig. 14. Notably, YOLOv7

reports its precision and recall based on the optimal F1-

score, which ensures a desirable tradeoff between precision

and recall. To maintain consistency, we follow the same

approach.

Table III presents the quantitative evaluation results.

Our proposed TDRadarNet outperforms the baseline model,

achieving a 10.6% improvement in precision, a 17.1% im-

provement in recall, a 14.1% improvement in F1-score, and

a 21.0% improvement in AP. By leveraging Doppler infor-

mation, TDRadarNet+ achieves even better performance,

with a 6.0% improvement in precision, a 0.6% improvement

in recall, a 3.1% improvement in F1-score, and a 3.6%

improvement in AP compared to TDRadarNet. Regarding

the far–near-field design and temporal fusion design, our

ablated models generally outperform the baseline method.

To assess the complexity of our proposed TDRadar-

Net, we evaluated the number of parameters and FPS. We

compared it with the baseline YOLOv7 network, which has

36.5M parameters and achieves 100 FPS. Since TDRadar-

Net and TDRadarNet+ share the same architecture, they

have the same number of parameters and FPS. Therefore,

we focused on evaluating the complexity of TDRadarNet.

The results showed that TDRadarNet has 80.2M parameters

and achieves 34 FPS. While the number of parameters is

higher than the baseline, the achieved FPS is still suitable

for real-world applications.

The representative detection results over three scenar-

ios, the corresponding original radar frames, and ground

truth annotations are shown in Fig. 15. In the second column

of Fig. 15, the implementation of far–near field not only

helps to detect vehicles that are far in distance and have

a lower resolution but also improves the detection in the

near field, by learning field-related specific features, respec-

tively. In addition, compared to the baseline model, the tem-

poral fusion also shows better performance, especially in the

example of the highway scenario, in providing accurate and

complete predictions. The observations overall agree with

the quantitative evaluation. The proposed TDRadarNet has

shown superior capability in detecting objects in both far

and near fields and performs well in the campus and high-

way scenarios where fewer data (n = 1700 and n = 2300,

respectively) are available compared to the urban scenario

(n = 7500).
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Fig. 15. Examples from our test set. Detection results are marked in red. (Note: The pixels represent locations beyond 100 m from ego vehicle

located at original (0, 0) are set as zeros, corresponding to dark pixels.)

VIII. CONCLUSION

In this article, we reported a novel deep-learning-aided

TDM MIMO radar signal pipeline that contains a network

for solving the Doppler unfolding problem. After extensive

tests, we showed that our signal process pipeline is able

to generate undistorted radar BEVs containing rich object

features under various driving scenarios.

In an innovative way, the proposed TDRadarNet com-

bined temporal fusion and far-near field designs to perform

vehicle detection tasks on high-resolution radar BEVs,

which do not suffer from information loss compared to

radar point clouds. Furthermore, the enhanced TDRadar-

Net+ maximized the utilization of Doppler information

and achieved better vehicle detection performance. We

investigated and compared the detection performance of

TDRadarNet and TDRadarNet+ on our own dataset con-

taining 14 800 frames of high-resolution radar BEVs, to-

gether with synchronized stereo camera images and Li-

DAR 3-D point clouds, collected in diverse driving sce-

narios. The results showed that the proposed model is

superior to the image-based neural network baseline model

in producing accurate vehicle detection results. The ab-

lation experiments demonstrated the effectiveness of our

designs.

The potential limitation of TDRadarNet could be the

extra computational cost introduced by the temporal fusion

over a sequence of frames. An investigation of the tradeoff

between the number of historical frames fed into neural

network and detection accuracy is desired. The imbalance

of radar BEVs in different ranges and driving scenarios may

be an issue that would impact the TDRadarNet training

and detection performance. To overcome the limitations,

in future work, we plan to investigate the lightweight deep

learning detection model, conduct additional experiments to

optimize the number of historical frames in a sequence, and

implement data augmentation for limited available driving

scenarios to further enhance the TDRadarNet detection

accuracy and efficiency.
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