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Abstract—In computational biology, accurately modeling bi-
ological systems is essential for understanding the underlying
mechanisms of biological processes. One of the primary chal-
lenges in modeling lies in the inability to measure certain biolog-
ical parameters directly. The task of identifying the parameters
is known as the inverse problem and it entails estimating these
unobservable parameters from available data. Existing modeling
methods primarily focus on single-direction prediction. These
methods include traditional Partial Differential Equation (PDE)
modeling and machine learning approaches where given param-
eters are provided to predict the output and further compare the
output with experimental evidence. However, these unidirectional
methods struggle to effectively apply the experimental evidence
directly to address the inverse problem. We contend that a single
biological process should be modeled bidirectionally to simul-
taneously address the inverse problem. To this end, we propose
leveraging the capabilities of the invertible neural network (INN)
to establish a connection between the input parameter space and
the model output space. We meticulously designed a bidirectional
training technique that effectively applies real-world experimen-
tal data in guiding the INN in modeling the biological process.
We tested our approach on a PDE-based Bone Morphogenic
Protein (BMP) signaling network system in the zebrafish embryo
and found the bidirectional modeling approach significantly
enhances the alignment between simulation and experimental
data. This method achieves a 94.65% reduction in Root Mean
Square Error (RMSE) compared to the single-direction model
when reconstructing experimental data using simulation with
INN-identified parameters. Moreover, our method is rapid to
implement, facilitating the precise identification of parameter
ranges from experimental data. It makes parameter optimization
feasible and provides a guideline for determining simulation
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parameter ranges, bypassing the traditional and laborious trial-
and-error method.

Index Terms—Invertible modeling, PDE, Systems Biology
Model

I. INTRODUCTION

Computational modeling has been widely used in studying

biological systems through mathematics, physics, and com-

puter science to improve the understanding of complex sys-

tems. Computational models have been applied at various lev-

els of biological organization, from gene regulation networks

and molecular interactions to tissue and organ-level changes.

Depending on the specific system, computational modeling

studies typically involve using mathematical equations to

predict and complement experimental observations, aiding in

the understanding of system complexity. Additionally, com-

putational models can conduct existing experimental data to

facilitate the development of new experiments or identify the

most important variables to investigate [1].

When analyzing complex biological processes and con-

structing the mathematical model, a major challenge is the in-

ability to directly measure the parameters of certain processes

and accurately determine the model parameters [2]. Calibrating

the parameters for these models to experimental evidence

is crucial to ensure that they accurately represent biological

phenomena and nonlinear relationships. The common process

is to perform parameter optimization in biophysical parameter

space to find the best-fit parameter for the experimental data.

However, this process is usually computationally expensive

due to the large parameter space or system complexity [3], [4].

For instance, a partial differential equation (PDE) system re-

quires computation across both spatial and temporal domains.
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Machine learning-based artificial intelligence (AI) methods

have been increasingly valuable tools in parameter optimiza-

tion for biological computational models in overcoming the

challenge posed by the complexity and high dimensionality of

the biological system [5]. Previously, various techniques have

been applied to perform parameter optimization in biological

computation models. Artificial Neural Networks (ANNs) mod-

els, particularly deep learning models advanced in managing

high-dimension data are used for parameter estimation in

cognitive models and systems biology models [6], [7]. Physics-

Informed Neural Networks (PINNs) integrate the physical

laws governing biological systems into the training process.

By embedding differential equations directly into the neural

network’s loss function, PINNs can infer hidden dynamics

and unknown parameters, offering robustness to noise and

scattered data [5]. Instead of predicting or identifying the

direct mapping between input parameter space and model

output, Bayesian Methods integrate with a comprehensive

framework for uncertainty quantification, using Markov Chain

Monte Carlo (MCMC) sampling to fully characterize posterior

parameter distributions [3]. This method is particularly useful

when addressing challenges related to non-identifiable param-

eters.

Additionally, experimental data are crucial for calibrating

and validating the model. However, most of the existing

Machine Learning (ML) optimization methods struggle to

effectively integrate both simulation results and experimental

evidence through active search, often relying instead on bulk

screening approaches. For instance, the ANNs model usually

relies on training the model to achieve the one-directional

mapping between parameter space and the simulation results

without knowledge of the initial experimental input or output.

Concentrating exclusively on a single direction can lead to

overfitting in that specific direction, resulting in suboptimal

performance for bidirectional prediction tasks. After obtain-

ing the well-trained model, there is still a requirement for

additional post-processing of parameter analysis and result

evaluation against the experimental output, therefore, extensive

parameter screening is still necessary. In this paper, our goal

is to leverage advanced ML techniques to train a bi-directional

model that can map both parameter space to simulation results

and vice versa. By directly incorporating experimental data,

we aim to enable an active search for identifying the most

sensitive and best-fit parameters within the model.

Building upon the bidirectional mapping in the biological

model, we propose utilizing an Invertible Neural Network

(INN) to accurately represent this process. Specifically, the

INN establishes a bidirectional mapping between the input and

output spaces, as depicted in Figure 2. We designed a forward

prediction model that significantly accelerates the PDE solving

process, achieving the computation of approximately 6000

samples per second—this means a 6000-time faster compared

to using traditional PDE solvers, which process only one

sample per second. For backward predictions, we introduced

a bidirectional training objective that enables the tracing of

parameters used for the simulation based on the experiment

curves, a functionality not available in traditional PDE models.

The bidirectional approach utilizes a single architecture that

faithfully models the biological process.

To test our approach, we adapted a systems biology model

that studies the Bone Morphogenetic Protein (BMP) patterning

in early zebrafish embryos. In zebrafish, Bone Morphogenetic

Proteins (BMPs), part of the TGF-´ super-family, regulate

gene expression along the dorsal-ventral (DV) axis. During

early embryonic development, BMP signaling shapes the DV

axis in both invertebrates and vertebrates. BMP inhibitors like

Chordin, Noggin, and others bind BMP ligands to prevent

receptor interaction. Chordin can be cleaved by metallopro-

teases like Tolloid, releasing BMP ligands to activate receptors.

BMP signaling involves forming receptor complexes, leading

to the phosphorylation of Smad proteins, which then regulate

gene expression in the nucleus. Our model uses multiple PDEs

describing the process of protein molecular level of diffusion

and reactions of BMP signaling regulation crossing the margin

region of the zebrafish embryo [7], [8]. The governing equation

of the BMP regulation network has been listed in Figure 1D.

Our results indicate that our proposed bidirectional method

is significantly more robust than existing single-directional

methods. Additionally, our method demonstrates superior per-

formance in aligning simulation outcomes with experimental

data. By harnessing experimental data to accurately trace

simulation parameters, our approach secures a 94.65% reduc-

tion in RMSE when reconstructing and comparing simulation

outputs to experimental observations, outperforming conven-

tional Multi-Layer Perceptron (MLP) with single-directional

capabilities.

The remainder of the paper is organized as follows. In

Section II, we introduce the technical details of our approach

in terms of problem setting and objective function, along with

adapting to a systems biology model that studies the Bone

Morphogenetic Protein (BMP) patterning in early zebrafish

embryos. In Section III, we provide extensive results on both

simulation and experiment data to validate our approach. We

further illustrate the explanation results from our approach.

Then in Section IV, we conclude our work.

II. MATERIALS AND METHODS

A. Training Data

As described in the previous section, our PDE system

simulates the BMP signaling network in the marginal region

of the zebrafish embryo. The simulation domain is assumed to

be half of the circumference of the marginal region (700 µm),

as we consider the BMP pattern to be symmetric along the

lateral direction. The BMP expression region spans 350 µm

ventrally, while the Chordin(Chd) expression region covers

150 µm dorsally, based on previous studies. The governing

equations involve 12 parameters that require calibration: DB

(BMP diffusion rate), DC (Chd diffusion rate), DBC (BMP-

Chd complex diffusion rate), k1 (forward reaction rate for

BMP and Chd), k
−1 (backward reaction rate for BMP and

Chd), KB (BMP decay rate), KC (Chd decay rate), KBC

(BMP-Chd complex decay rate), ¼C (Tld processing rate of
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Fig. 1: Computational model of BMP patterning formation in zebrafish embryo. A, Zebrafish embryo illustration with BMP(Red)

and Chordin(Blue) expression region. Figure adapted with permission from [9]. B, Cross section of marginal region. C. mRNA

whole mount expression imaged by confocal microscope D. Governing equation of BMP regulatory network. [B]: BMP,

[C]:Chordin, [BC]:BMP-Chordin complex, Tld: Tolliod. E. The shaded region indicates the downstream pSmad5 relative

intensity profile of BMP signaling on the marginal region. The solid line is an example of a good fit simulation results. F.

Figure of adult Zebrafish. G. Model illustration of BMP signaling regulatory network.

Chd), ¼BC (Tld processing rate of BMP-Chd complex), j1
(BMP production rate), j2 (Chd production rate). Assuming

that the forward and backward reaction rates for B and Chd

are identical, we have 11 unknown parameters to screen. The

output domain is defined by 36 nodes along the 700 µm region,

making the input size for our neural network system 11 and

the output size 36.

B. Problem formulation

Notations. Denote y ∈ R
d as the 11 input unknown

parameters. The order in which the parameters follow is k1,

KB , KC , KBC , DB , DC , DBC , ¼C , ¼BC , j1, j2, which

serve as inputs for the simulation (input d = 11 in our NN

experiments). x ∈ R
m represents the BMP concentration

profile in 36 nodes over the embryo margin, which is the

result obtained from the PDE solver (output m = 36 in

our INN experiments). We define an convertible function fθ
parameterized by ¹ such that fθ : y ´ x. For clarity, we denote

the forward process as ffw : y → x and the backward process

as fbw : x → y. It also satisfies the relationship ffw = f−1

bw .

Our learning object is to train a function f using paired train-

ing data. Given the bijective nature of the mapping between

inputs and outputs, it necessitates that d = m. However, this

condition conflicts with our data structure where d < m. To

address this, we augment the dimensionality of the input space

by introducing a noise vector noise ∈ R
m−d. The complete

input is then the concatenation of the original input and the

noise vector, expressed as [y, noise]. Consequently, the output

x is defined by x = ffw([y, noise]).

C. Invertible neural network architecture

In this study, we employ an invertible neural network (INN)

to model the invertible function f . Specifically, we utilize

RealNVP [10] for implementing the INN.

Forward computation. For an arbitrary m dimensional

input z. We split x into two parts: z1:n and zn+1:m, where

z1:n is the first n dimensions and zn+1:m is the remaining

m − n dimensions. The INN consists of a series of coupling

layers. A coupling layer can be computed as:

r1:n = z1:n

rn+1:m = zn+1:m » exp(s(z1:n)) + t(z1:n)
(1)

where s(·) and t(·) are nonlinear neural networks that output

scale and translation parameters.

A single coupling layer is not sufficient to transform an

input to a desired latent representation, stacking them can be

expressive. However, just stacking would always leave z1:d
unchanged. To resolve this, INN permutes the dimensions after

each coupling layer, ensuring all dimensions get transformed

as the data passes through multiple coupling layers.

Inverse computation. For a coupling layer of an INN, the

inverse computation is

z1:n = r1:n

zn+1:m = (rn+1:m − t(r1:n))» exp(−s(r1:n))
(2)

D. Bi-directional training

We now introduce our approach for learning the function f ,

which is designed to model the biological process. To guide

the learning procedure, we employ four specific loss functions.

Expressive loss. We consider that the function f can predict

the output with high accuracy. Given the input [y, noise], the

output is expected to be highly expressive. The expressive loss

is defined as:

Lexp = E[||ffw([y, noise])− x||2] (3)
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Fig. 2: Our proposed learning framework capitalizes on the invertibility of the Invertible Neural Network (INN), enhancing its

versatility and enabling deployment in two distinct directions. For forward prediction, the INN serves as an accelerator for PDE

solvers, efficiently handling large datasets without significant time costs. In the inverse prediction scenario, the INN facilitates

parameter discovery, a crucial process for simulations that addresses the challenges of finding optimal input parameters via

traditional PDE methods. This dual capability markedly improves both computational efficiency and analytical precision in

complex predictive environments.

Reconstruction loss. The second term is the reconstruction

loss, which enables the prediction of parameters in the input

space based on a given output. This loss functions as the

inverse of the expressive loss, it is defined as:

Lback = E[||fbw(x)− [y,0]||2], (4)

The reconstruction loss aims to encode the useful information

within the first d dimensions. Here, the tensor 0 ∈ R
m−d is

used to align the dimensions of the input and output.

Noise calibration loss. The third term is the noise cali-

bration loss, which aims to minimize the magnitude of noise,

serving as a robustness component within the learning ob-

jective. Given the high sensitivity of the INN to input, setting

noise to 0 would establish an overly strict relationship between

y and x. This is undesirable, as slight fluctuations in either y

or x could lead to significant prediction deviations. Therefore,

we maintain that the noise should be small but not eliminated.

The noise calibration loss is defined as follows:

Lnoi = E[||xnoise|| − ϵn]+, (5)

where ϵn is a hyperparameter that controls the magnitude of

the noise tensor. We detail the practical determination of this

parameter in Section III-C2.

Noise prior loss. The fourth term aims to control the

distribution of the noise term, ensuring it conforms to a

predefined prior distribution. We denote the distribution of the

noise term as noise ∼ P and a target noise distribution as

znoise ∼ N. Consequently, the noise prior loss is defined as

follows:

Lnop = MMD(P,N), (6)

where N represents a Gaussian prior with zero mean and

unit covariance matrix. Maximum Mean Discrepancy (MMD)

is a statistical method for comparing two distributions that

are accessible only through samples. A small MMD value

indicates that the distribution P is converging towards N.

In other words, the noise vector is approaching the prior

distribution.

The total objective function is the weighted sum of all the

terms above:

L = ¼expLexp + ¼reconLrecon + ¼noiLnoi + ¼nopLnop. (7)

In practice, we only tune ¼nop in the forward running. We

determined ¼nop based on the lowest RMSE on the validation

set. We set ¼nop = 0.5 for all tests. Other hyperparameters are

set to 1.

III. VALIDATION

In this section, we first assess our proposed method using

a simulation test set generated by solving the PDE outlined

in Section II-A. Subsequently, we evaluate the method using

experiment data to determine its effectiveness in reversely

identifying optimal parameters with our trained model. We

also apply our approach to the experiment data to ascertain

whether the parameter ranges are biologically relevant. Lastly,

we employ explanatory methods to elucidate the best-fitted

parameter predictions made by our model. Our code is publicly

accessible on GitHub.

A. Setup

Data processing. The training dataset is generated from

simulations and consists of 51491 instances, the validation and

test sets contain 90000 and 26000 instances respectively. Given

the significant scale discrepancies among different features, we

apply the logarithmic transformation to the input features to

ensure a consistent range across inputs. For the output, to align
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the simulation results with the experimental data, we employ

min-max normalization on each output. This ensures that the

maximum value of each output is scaled to 1 and the minimum

value to 0.

Network. We implement the invertible neural network using

FrEIA library [11]. Our model comprises 15 fully connected

coupling blocks, each with a three-layer MLP featuring ReLU

activations. Two affine coupling functions are applied within

each block. The network is optimized by AdamW optimizer,

with a learning rate of 2−5.

B. Results on Simulation Test

We evaluate the model performance bidirectionally: the

forward pass maps parameters from an 11-dimensional space

(R11) to predictions in a 36-dimensional space (R36), while the

backward pass inversely maps predictions back to the param-

eter space. For our approach, we employ the same Invertible

Neural Network (INN) for both directions. In contrast, due to

the unidirectional capacity of Multilayer Perceptrons (MLPs),

we train two separate MLPs: one for forward predictions

(MLP Forward) and the other for backward predictions (MLP

Backward), each specifically trained for direction-specific out-

comes. Other baseline models utilize distinct network param-

eters, each uniquely trained for one direction.

For baseline comparisons, we employ commonly used

regression methods, including Gradient Boosting Regressor

(GBR), Decision Tree (DT), Support Vector Machine (SVM),

Linear Regression (LR), Ridge Regression (RR), and MLPs.

For GBR, DT, SVM, LR, and RR, we constructed models

using the scikit-learn library [12]. For the MLP, we used a

five-layer architecture using PyTorch, ensuring that the total

number of trainable parameters is comparable to those of the

INN model. The results can be found in Table I.

Method Forward RMSE ↓ Backward RMSE ↓

GBR 0.4537 0.3919
DT 0.4949 0.5315
SVM 0.4273 0.4224
LR 0.5629 0.4409
RR 0.5629 0.4436
MLP (Forward) 0.0854 NA
MLP (Backward) NA 0.3801
Our INN 0.2228 0.4088

TABLE I: Performance on single-direction prediction: Our

proposed method closely approaches the performance of the

MLP. Both models are executed bidirectionally using the same

network architecture, which better simulates real biological

processes. Approaching the performance of the MLP is consid-

ered satisfactory, given our stringent requirements for network

construction and bidirectional functionality.

From Table I, we observe that our method achieves compa-

rable performance with MLP in one-way prediction tasks. This

result is noteworthy considering our model’s complexity, as it

is designed to handle both forward and backward predictions

within a single framework. The dual functionality inherently

introduces more constraints compared to the baseline single-

direction networks, yet our approach remains highly compet-

itive. This demonstrates the effectiveness and potential of our

method in complex predictive scenarios.

We evaluate the robustness of each method through a

reconstruction test. Specifically, we input parameters from

an 11-dimensional input parameter space (R11) to generate

predictions in a 36-dimensional output simulation results space

(R36). Subsequently, these predictions are used as inputs to

retrieve the original parameters. The robustness is quantified

by computing the RMSE between the reconstructed parameters

and the original inputs, providing a measure of each method’s

fidelity in preserving information through the transformation

cycle. From Table II, we observe that while the MLP performs

well in single-direction prediction, it tends to over-fit in this

direction, resulting in deteriorated performance in terms of

robustness. Regardless, owing to its invertibility, our proposed

method demonstrates superior robustness compared to all other

methods evaluated.

Method Reconstruction RMSE ↓

GBR 0.4915
Decision tree 0.4327
SVM 0.5719
Linear regression 0.4213
Ridge regression 0.4270
MLP (MLP forward & MLP backward) 0.4752
Our INN 0.0000

TABLE II: Performance on the robustness test. Summary of

encoding-decoding test results, highlighting the robustness and

fidelity of data reconstruction.

For the experimental data tests (presented in Sec III-C), we

selected MLPs as our comparison method. This selection is

based on the similarity of the number of parameters between

MLPs and our model, ensuring a fair comparison. Further-

more, the strong unidirectional prediction capability of MLPs

establishes them as a vital baseline for comparison.

C. Results on Experiments Data Test

We further evaluate the model’s performance using real-

world experimental profiles of P-Smad (a downstream com-

ponent of the BMP signaling network) obtained through

fluorescence-labeled antibody immunostaining. The image

data were collected using confocal microscope and processed

with our previously developed image processing package,

WaveletSEG [13]. The range of profile reflects the normalized

intensity between multiple samples of P-Smad images across

the marginal region shown in Fig. 1. We specifically focus on

mean value lines that are interpolated into a 36-node profile to

match the input size of our model. These values are input into

the backward prediction modules of our proposed INN and a

separately trained MLP (Backward) to estimate the simulation

parameters for comparison. After obtaining the predicted best-

fitted parameter set from both INN and MLP, we then apply the

original PDE solver to simulate outcomes for evaluation. The

simulation results are compared with the experimental mean
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values again to evaluate the accuracy of each model, shown

in Fig. 3. The RMSE between the simulation outcomes and

experimental data is computed to quantify the precision of the

INN and MLP models.

(a) Comparison between simulation results and
experiment data, with simulation parameters de-
termined by the INN.

(b) Comparison between simulation results and
experiment data, with simulation parameters de-
termined by the MLP (Backward).

Fig. 3: Comparison of Experimental Data: BMP signaling

data is input into the network to identify the optimal param-

eters for simulation. Subsequently, simulations are conducted

using parameters determined by both the INN and MLP, which

address the specified equations of the BMP regulatory net-

work. Comparisons are drawn between the simulated network

outputs and the mean values of actual experimental data. A

smaller discrepancy between these datasets indicates more

precise parameter estimation in the model.

Results demonstrate that our method benefits from its bidi-

rectional capabilities, establishing a more accurate relationship

between input features and outputs. This leads to a substan-

tially improved fit for real-world experimental data, achieving

a 94.65% reduction in RMSE compared to the MLP. This

significant improvement highlights the enhanced predictive

accuracy and utility of our approach in practical applications.

1) Parameter range space discovery: In practice, experi-

mental results do not yield a specific value but rather vary

within a range, multiple parameter sets can possibly fit the

experimental results within a minimal RMSE. Owing to the

robustness of our method, we can leverage the experimental

results to deduce optimized input ranges. Building on this, we

can leverage our methods to perform and accelerate parameter

optimization in the partial differential equation models. This

range can also be a guide to design experiments for validation

of the model at the laboratory. This will significantly reduce

the laborious trial-and-error process traditionally required to

determine the appropriate input range for simulations.

To achieve this, we extract the experimental profile falling

within one standard deviation above and below the mean.

Subsequently, we normalize these curves to match the region

between [0,1] (since we are focusing on the signal profile

shape instead of the amplitude of the signal level) and delineate

the envelope encompassing the parameter region defined by

these curves. We utilize the invertibility of the network to trace

the input of each curve in the parameter space, as illustrated

in Figure 4. This approach demonstrates our method’s capa-

bility to identify the appropriate input ranges for simulations

effectively. Then, we apply a grid search and linear sample 30

curves within that parameter region found by our INN model,

fellows the forward prediction to obtain the INN predicted

BMP profile based on refined parameter region. To further

validate the identified input range, we input the traced param-

eter values into our PDE solver for simulation outputs. These

outputs were then compared with actual experimental data, as

well as data adjusted to include plus and minus one standard

deviation. As shown in Figure 4, the simulations using our

identified inputs consistently fall within the region bounded

by one standard deviation above and below the experimental

data, validating the accuracy of the input best-fitted parameter

region identified by our method. These results indicate that our

invertible network can utilize a limited amount of simulation

data to archive a bi-directional mapping between parameter

space and simulation result space. By leveraging this INN

network, we can perform an active search for the best-fitted

parameter set based on the experimental evidence.
2) Ablation Study: In this section, to further evaluate the

model, we systematically investigate the contribution of each

loss function employed in the training of the INN. By sequen-

tially removing individual loss components while maintaining

the others, we examine their impact on the model’s perfor-

mance. The effectiveness of each component is quantified by

the accuracy in both forward and backward predictions on the

simulation test set. The results are shown in Table III.

Method Forward RMSE Backward RMSE

w/o Expressive loss 0.2386 0.4100
w/o Reconstruction loss 0.2230 0.4090
w/o Noise prior loss 0.2339 0.4092
Our loss 0.2228 0.4088

TABLE III: Ablation Study on different loss components.

Table III indicates that the Expressive Loss is essential, as

its removal leads to a significant drop in overall performance.

Additionally, the Reconstruction Loss and Noise Prior Loss

contribute to enhanced performance, with the system achieving

optimal results when all loss terms are incorporated.

D. Feature explanation

Sensitivity analysis is a crucial process in the parameter

analysis of the biophysical model. It allows the researchers
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Fig. 4: Parameter range identification and validation: Left: The x-axis represents the indices (across 11 dimensions) of

the simulation parameters, the y-axis indicates the permissible ranges for each specific parameter found by the reverse run of

the INN. Right: We generated 30 input sequences based on the ranges depicted in the left figure. These sequences were used

as inputs for simulations to generate BMP signals. The outputs of these simulations consistently fell within a narrow region

(marked in brown), defined by one standard deviation above and below the mean.

to determine how the individual parameters influence the

overall behavior of the model. Also, by identifying which

parameters have the most significant influence on the system,

sensitivity analysis helps prioritize efforts in model calibration

and refinement, ensuring that the model accurately reflects the

underlying biological processes. This process also contributes

to designing specific experiments that guide and optimize the

Model-Based Design of Experiments (MBDOE).

Compared to the traditional sensitivity analysis, our INN

model inherently incorporates feature extraction during the

training process. In this section, we aim to evaluate our trained

INN model’s ability to identify the significance of parame-

ters in the original PDE model. To achieve this, we utilize

explanatory tools [14] to interpret our model’s predictive out-

comes. Specifically, we implement a gradient-based method,

Integrated Gradients [15], along with a perturbation-based

method, Feature Ablation. These techniques quantitatively

assess and attribute importance to the input features within

our forward prediction model, enhancing our understanding

of the model’s decision-making process. Integrated Gradient

calculates the gradient of the model’s output with respect to

each input feature across a series of steps from a baseline to

the actual input. Feature ablation is a method used to assess

the importance of individual features in a model’s predictions

by systematically removing these features and observing the

impact on model performance. The feature explanation result

can be found in Figure 5. The feature explanation results

shown in Fig 5 demonstrated that the protein decay rates

(KB , KC and KBC), and the (Tld processing rate of Chd

and BMP-Chd complex),( ¼C ¼BC ) significantly contribute

to our trained INN model.

Additionally, We conduct a sensitivity analysis of our

method by selecting the test set sample with the lowest RMSE

compared to the experimental data, ensuring a close match.

Subsequently, we compute the gradient of the loss with respect

to the input. The results are presented in Fig 6. the sensitivity

analysis identifies a similar key parameter, with the inclusion

of the production rate of BMP and Chd, (j1 , j2). These results

are consistent with our previous conclusions in [8].

Fig. 5: Feature importance in INN predictions: Two

explanation-based methods were employed to assess the im-

portance of features in INN predictions. The consistent results

across the KB , KC and KBC features highlight their impor-

tance in the predictive process.

Fig. 6: Sensitivity analysis of the input features: The

sensitivity of each input feature is quantified by calculating

the gradient of the loss function with respect to the input.

In summary, we demonstrate the robustness and effective-

ness of the Invertible Neural Network model to accelerate

model calibration and parameter optimization for partial differ-
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ential equation (PDE) models. By applying the experimental

data within one standard deviation of the mean and utilizing

the invertibility of our network, we can trace the corresponding

parameter space and refine the model’s input range. Our

method leverages this variability to deduce optimized input

ranges, reducing the traditional trial-and-error process. The

results consistently show that simulations using our identified

inputs fall within the expected experimental range, confirming

the accuracy of our method. Additionally, we employ sensi-

tivity analysis and explanatory tools to evaluate our model’s

performance, using techniques like Integrated Gradients and

Feature Ablation to understand the model’s decision-making

process.

IV. CONCLUSION.

In this paper, we propose a method that utilizes an Invertible

Neural Network (INN) to model biological processes. Our

method uniquely employs a single architecture to model both

the forward and backward processes, a capability not achieved

by other methods. Compared to traditional machine learning

algorithms like MLP, our approach demonstrates enhanced

robustness and superior accuracy in parameter estimation

from experimental data. Moreover, our method significantly

outperforms PDE solvers in terms of efficiency. For example,

during the forward process, our method can perform inference

of 6000 samples in 1 second, whereas the PDE solver requires

1 second for a single sample. Beyond mere efficiency, our

method also enables inverse inference, which was not feasible

for a PDE solver. This comprehensive approach not only

improves model calibration and refinement but also guides the

design of experiments and enhances our understanding of the

underlying biological processes. This approach can not only

accelerate PDE solvers but also facilitate parameter discovery.

It is a pioneering study in addressing inverse problems using

INN.

In future research, we are planning to apply this method in

further facilitating the modeling study such as Multi-objective

optimization between organisms or high dimensional PDE

models. In addition, including Evolutionary Algorithms, such

as genetic algorithms and particle swarm optimization, mimic

natural evolutionary processes to explore large parameter

spaces efficiently, making them ideal for optimizing complex

models like metabolic networks and gene regulatory systems.
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