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Abstract—In computational biology, accurately modeling bi-
ological systems is essential for understanding the underlying
mechanisms of biological processes. One of the primary chal-
lenges in modeling lies in the inability to measure certain biolog-
ical parameters directly. The task of identifying the parameters
is known as the inverse problem and it entails estimating these
unobservable parameters from available data. Existing modeling
methods primarily focus on single-direction prediction. These
methods include traditional Partial Differential Equation (PDE)
modeling and machine learning approaches where given param-
eters are provided to predict the output and further compare the
output with experimental evidence. However, these unidirectional
methods struggle to effectively apply the experimental evidence
directly to address the inverse problem. We contend that a single
biological process should be modeled bidirectionally to simul-
taneously address the inverse problem. To this end, we propose
leveraging the capabilities of the invertible neural network (INN)
to establish a connection between the input parameter space and
the model output space. We meticulously designed a bidirectional
training technique that effectively applies real-world experimen-
tal data in guiding the INN in modeling the biological process.
We tested our approach on a PDE-based Bone Morphogenic
Protein (BMP) signaling network system in the zebrafish embryo
and found the bidirectional modeling approach significantly
enhances the alignment between simulation and experimental
data. This method achieves a 94.65% reduction in Root Mean
Square Error (RMSE) compared to the single-direction model
when reconstructing experimental data using simulation with
INN-identified parameters. Moreover, our method is rapid to
implement, facilitating the precise identification of parameter
ranges from experimental data. It makes parameter optimization
feasible and provides a guideline for determining simulation
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parameter ranges, bypassing the traditional and laborious trial-
and-error method.

Index Terms—Invertible modeling, PDE, Systems Biology
Model

I. INTRODUCTION

Computational modeling has been widely used in studying
biological systems through mathematics, physics, and com-
puter science to improve the understanding of complex sys-
tems. Computational models have been applied at various lev-
els of biological organization, from gene regulation networks
and molecular interactions to tissue and organ-level changes.
Depending on the specific system, computational modeling
studies typically involve using mathematical equations to
predict and complement experimental observations, aiding in
the understanding of system complexity. Additionally, com-
putational models can conduct existing experimental data to
facilitate the development of new experiments or identify the
most important variables to investigate [1].

When analyzing complex biological processes and con-
structing the mathematical model, a major challenge is the in-
ability to directly measure the parameters of certain processes
and accurately determine the model parameters [2]. Calibrating
the parameters for these models to experimental evidence
is crucial to ensure that they accurately represent biological
phenomena and nonlinear relationships. The common process
is to perform parameter optimization in biophysical parameter
space to find the best-fit parameter for the experimental data.
However, this process is usually computationally expensive
due to the large parameter space or system complexity [3], [4].
For instance, a partial differential equation (PDE) system re-
quires computation across both spatial and temporal domains.
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Machine learning-based artificial intelligence (AI) methods
have been increasingly valuable tools in parameter optimiza-
tion for biological computational models in overcoming the
challenge posed by the complexity and high dimensionality of
the biological system [5]. Previously, various techniques have
been applied to perform parameter optimization in biological
computation models. Artificial Neural Networks (ANNs) mod-
els, particularly deep learning models advanced in managing
high-dimension data are used for parameter estimation in
cognitive models and systems biology models [6], [7]. Physics-
Informed Neural Networks (PINNs) integrate the physical
laws governing biological systems into the training process.
By embedding differential equations directly into the neural
network’s loss function, PINNs can infer hidden dynamics
and unknown parameters, offering robustness to noise and
scattered data [5]. Instead of predicting or identifying the
direct mapping between input parameter space and model
output, Bayesian Methods integrate with a comprehensive
framework for uncertainty quantification, using Markov Chain
Monte Carlo (MCMC) sampling to fully characterize posterior
parameter distributions [3]. This method is particularly useful
when addressing challenges related to non-identifiable param-
eters.

Additionally, experimental data are crucial for calibrating
and validating the model. However, most of the existing
Machine Learning (ML) optimization methods struggle to
effectively integrate both simulation results and experimental
evidence through active search, often relying instead on bulk
screening approaches. For instance, the ANNs model usually
relies on training the model to achieve the one-directional
mapping between parameter space and the simulation results
without knowledge of the initial experimental input or output.
Concentrating exclusively on a single direction can lead to
overfitting in that specific direction, resulting in suboptimal
performance for bidirectional prediction tasks. After obtain-
ing the well-trained model, there is still a requirement for
additional post-processing of parameter analysis and result
evaluation against the experimental output, therefore, extensive
parameter screening is still necessary. In this paper, our goal
is to leverage advanced ML techniques to train a bi-directional
model that can map both parameter space to simulation results
and vice versa. By directly incorporating experimental data,
we aim to enable an active search for identifying the most
sensitive and best-fit parameters within the model.

Building upon the bidirectional mapping in the biological
model, we propose utilizing an Invertible Neural Network
(INN) to accurately represent this process. Specifically, the
INN establishes a bidirectional mapping between the input and
output spaces, as depicted in Figure 2. We designed a forward
prediction model that significantly accelerates the PDE solving
process, achieving the computation of approximately 6000
samples per second—this means a 6000-time faster compared
to using traditional PDE solvers, which process only one
sample per second. For backward predictions, we introduced
a bidirectional training objective that enables the tracing of
parameters used for the simulation based on the experiment
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curves, a functionality not available in traditional PDE models.
The bidirectional approach utilizes a single architecture that
faithfully models the biological process.

To test our approach, we adapted a systems biology model
that studies the Bone Morphogenetic Protein (BMP) patterning
in early zebrafish embryos. In zebrafish, Bone Morphogenetic
Proteins (BMPs), part of the TGF- super-family, regulate
gene expression along the dorsal-ventral (DV) axis. During
early embryonic development, BMP signaling shapes the DV
axis in both invertebrates and vertebrates. BMP inhibitors like
Chordin, Noggin, and others bind BMP ligands to prevent
receptor interaction. Chordin can be cleaved by metallopro-
teases like Tolloid, releasing BMP ligands to activate receptors.
BMP signaling involves forming receptor complexes, leading
to the phosphorylation of Smad proteins, which then regulate
gene expression in the nucleus. Our model uses multiple PDEs
describing the process of protein molecular level of diffusion
and reactions of BMP signaling regulation crossing the margin
region of the zebrafish embryo [7], [8]. The governing equation
of the BMP regulation network has been listed in Figure 1D.

Our results indicate that our proposed bidirectional method
is significantly more robust than existing single-directional
methods. Additionally, our method demonstrates superior per-
formance in aligning simulation outcomes with experimental
data. By harnessing experimental data to accurately trace
simulation parameters, our approach secures a 94.65% reduc-
tion in RMSE when reconstructing and comparing simulation
outputs to experimental observations, outperforming conven-
tional Multi-Layer Perceptron (MLP) with single-directional
capabilities.

The remainder of the paper is organized as follows. In
Section II, we introduce the technical details of our approach
in terms of problem setting and objective function, along with
adapting to a systems biology model that studies the Bone
Morphogenetic Protein (BMP) patterning in early zebrafish
embryos. In Section III, we provide extensive results on both
simulation and experiment data to validate our approach. We
further illustrate the explanation results from our approach.
Then in Section IV, we conclude our work.

II. MATERIALS AND METHODS
A. Training Data

As described in the previous section, our PDE system
simulates the BMP signaling network in the marginal region
of the zebrafish embryo. The simulation domain is assumed to
be half of the circumference of the marginal region (700 um),
as we consider the BMP pattern to be symmetric along the
lateral direction. The BMP expression region spans 350 um
ventrally, while the Chordin(Chd) expression region covers
150 um dorsally, based on previous studies. The governing
equations involve 12 parameters that require calibration: Dp
(BMP diffusion rate), D¢ (Chd diffusion rate), Dpc (BMP-
Chd complex diffusion rate), k; (forward reaction rate for
BMP and Chd), k_; (backward reaction rate for BMP and
Chd), Kp (BMP decay rate), Ko (Chd decay rate), Kpc
(BMP-Chd complex decay rate), A¢c (Tld processing rate of
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Fig. 1: Computational model of BMP patterning formation in zebrafish embryo. A, Zebrafish embryo illustration with BMP(Red)
and Chordin(Blue) expression region. Figure adapted with permission from [9]. B, Cross section of marginal region. C. mRNA

whole mount expression imaged by confocal microscope D.

Governing equation of BMP regulatory network. [B]: BMP,

[C]:Chordin, [BC]:BMP-Chordin complex, Tld: Tolliod. E. The shaded region indicates the downstream pSmad5 relative
intensity profile of BMP signaling on the marginal region. The solid line is an example of a good fit simulation results. F.
Figure of adult Zebrafish. G. Model illustration of BMP signaling regulatory network.

Chd), Apc (TId processing rate of BMP-Chd complex), j;
(BMP production rate), jo (Chd production rate). Assuming
that the forward and backward reaction rates for B and Chd
are identical, we have 11 unknown parameters to screen. The
output domain is defined by 36 nodes along the 700 pm region,
making the input size for our neural network system 11 and
the output size 36.

B. Problem formulation

Notations. Denote y € R? as the 11 input unknown
parameters. The order in which the parameters follow is ki,
Kp, K¢, Kpc, Dp, Dc, Dpc, Ac, ABc, ji» j2, Which
serve as inputs for the simulation (input d = 11 in our NN
experiments). x € R™ represents the BMP concentration
profile in 36 nodes over the embryo margin, which is the
result obtained from the PDE solver (output m 36 in
our INN experiments). We define an convertible function fy
parameterized by 6 such that fy : y < x. For clarity, we denote
the forward process as fy,, : y — x and the backward process
as fp,, : x — y. It also satisfies the relationship fy,, = f,;ul.

Our learning object is to train a function f using paired train-
ing data. Given the bijective nature of the mapping between
inputs and outputs, it necessitates that d = m. However, this
condition conflicts with our data structure where d < m. To
address this, we augment the dimensionality of the input space
by introducing a noise vector noise € R™~%, The complete
input is then the concatenation of the original input and the
noise vector, expressed as [y, noise]. Consequently, the output
x is defined by x = £y, ([y, noise]).

C. Invertible neural network architecture

In this study, we employ an invertible neural network (INN)
to model the invertible function f. Specifically, we utilize

6220

RealNVP [10] for implementing the INN.

Forward computation. For an arbitrary m dimensional
input z. We split x into two parts: z;., and Z,1.,, Where
Zi., is the first n dimensions and z,, ., is the remaining
m — n dimensions. The INN consists of a series of coupling
layers. A coupling layer can be computed as:

Ti:n = Z1:n

'n+im = Zn+1:m © eXP(S(len)) + t(zlzn)

(D

where s(-) and ¢(-) are nonlinear neural networks that output
scale and translation parameters.

A single coupling layer is not sufficient to transform an
input to a desired latent representation, stacking them can be
expressive. However, just stacking would always leave z.4
unchanged. To resolve this, INN permutes the dimensions after
each coupling layer, ensuring all dimensions get transformed
as the data passes through multiple coupling layers.

Inverse computation. For a coupling layer of an INN, the
inverse computation is

Z1:p = Tlin

_ @)

Zn+1:m (rnJrl:m - t(rl:n)) O] eXp(_S(rlzn))

D. Bi-directional training

We now introduce our approach for learning the function f,
which is designed to model the biological process. To guide
the learning procedure, we employ four specific loss functions.

Expressive loss. We consider that the function f can predict
the output with high accuracy. Given the input [y, noise], the
output is expected to be highly expressive. The expressive loss
is defined as:

Lexp = E[|[fr [y, noise]) — x||?] 3)
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Fig. 2: Our proposed learning framework capitalizes on the invertibility of the Invertible Neural Network (INN), enhancing its
versatility and enabling deployment in two distinct directions. For forward prediction, the INN serves as an accelerator for PDE
solvers, efficiently handling large datasets without significant time costs. In the inverse prediction scenario, the INN facilitates
parameter discovery, a crucial process for simulations that addresses the challenges of finding optimal input parameters via
traditional PDE methods. This dual capability markedly improves both computational efficiency and analytical precision in

complex predictive environments.

Reconstruction loss. The second term is the reconstruction
loss, which enables the prediction of parameters in the input
space based on a given output. This loss functions as the
inverse of the expressive loss, it is defined as:

Loack = E[|[fow (x) — [y, 0][[?], @

The reconstruction loss aims to encode the useful information
within the first d dimensions. Here, the tensor 0 € R™~¢ js
used to align the dimensions of the input and output.

Noise calibration loss. The third term is the noise cali-
bration loss, which aims to minimize the magnitude of noise,
serving as a robustness component within the learning ob-
jective. Given the high sensitivity of the INN to input, setting
noise to 0 would establish an overly strict relationship between
y and x. This is undesirable, as slight fluctuations in either y
or x could lead to significant prediction deviations. Therefore,
we maintain that the noise should be small but not eliminated.
The noise calibration loss is defined as follows:

S

where €, is a hyperparameter that controls the magnitude of
the noise tensor. We detail the practical determination of this
parameter in Section III-C2.

Noise prior loss. The fourth term aims to control the
distribution of the noise term, ensuring it conforms to a
predefined prior distribution. We denote the distribution of the
noise term as noise ~ P and a target noise distribution as
Znoise ~ N. Consequently, the noise prior loss is defined as
follows:

Lnoi = E[HxnoiseH - 6n]+7

(6)

where N represents a Gaussian prior with zero mean and
unit covariance matrix. Maximum Mean Discrepancy (MMD)

Lyop = MMD(P, N),
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is a statistical method for comparing two distributions that
are accessible only through samples. A small MMD value
indicates that the distribution P is converging towards N.
In other words, the noise vector is approaching the prior
distribution.

The total objective function is the weighted sum of all the
terms above:

L= /\expﬁexp + )\reconﬁrecon + )\noiﬁnoi + )\nop['nop- (7

In practice, we only tune A, in the forward running. We
determined A, based on the lowest RMSE on the validation
set. We set \yop = 0.5 for all tests. Other hyperparameters are
set to 1.

III. VALIDATION

In this section, we first assess our proposed method using
a simulation test set generated by solving the PDE outlined
in Section II-A. Subsequently, we evaluate the method using
experiment data to determine its effectiveness in reversely
identifying optimal parameters with our trained model. We
also apply our approach to the experiment data to ascertain
whether the parameter ranges are biologically relevant. Lastly,
we employ explanatory methods to elucidate the best-fitted
parameter predictions made by our model. Our code is publicly
accessible on GitHub.

A. Setup

Data processing. The training dataset is generated from
simulations and consists of 51491 instances, the validation and
test sets contain 90000 and 26000 instances respectively. Given
the significant scale discrepancies among different features, we
apply the logarithmic transformation to the input features to
ensure a consistent range across inputs. For the output, to align
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the simulation results with the experimental data, we employ
min-max normalization on each output. This ensures that the
maximum value of each output is scaled to 1 and the minimum
value to 0.

Network. We implement the invertible neural network using
FrEIA library [11]. Our model comprises 15 fully connected
coupling blocks, each with a three-layer MLP featuring ReLU
activations. Two affine coupling functions are applied within
each block. The network is optimized by AdamW optimizer,
with a learning rate of 27°.

B. Results on Simulation Test

We evaluate the model performance bidirectionally: the
forward pass maps parameters from an 11-dimensional space
(R') to predictions in a 36-dimensional space (R3®), while the
backward pass inversely maps predictions back to the param-
eter space. For our approach, we employ the same Invertible
Neural Network (INN) for both directions. In contrast, due to
the unidirectional capacity of Multilayer Perceptrons (MLPs),
we train two separate MLPs: one for forward predictions
(MLP Forward) and the other for backward predictions (MLP
Backward), each specifically trained for direction-specific out-
comes. Other baseline models utilize distinct network param-
eters, each uniquely trained for one direction.

For baseline comparisons, we employ commonly used
regression methods, including Gradient Boosting Regressor
(GBR), Decision Tree (DT), Support Vector Machine (SVM),
Linear Regression (LR), Ridge Regression (RR), and MLPs.
For GBR, DT, SVM, LR, and RR, we constructed models
using the scikit-learn library [12]. For the MLP, we used a
five-layer architecture using PyTorch, ensuring that the total
number of trainable parameters is comparable to those of the
INN model. The results can be found in Table I.

Method Forward RMSE |  Backward RMSE |
GBR 0.4537 0.3919

DT 0.4949 0.5315

SVM 0.4273 0.4224

LR 0.5629 0.4409

RR 0.5629 0.4436

MLP (Forward) 0.0854 NA

MLP (Backward) NA 0.3801

Our INN 0.2228 0.4088

TABLE I: Performance on single-direction prediction: Our
proposed method closely approaches the performance of the
MLP. Both models are executed bidirectionally using the same
network architecture, which better simulates real biological
processes. Approaching the performance of the MLP is consid-
ered satisfactory, given our stringent requirements for network
construction and bidirectional functionality.

From Table I, we observe that our method achieves compa-
rable performance with MLP in one-way prediction tasks. This
result is noteworthy considering our model’s complexity, as it
is designed to handle both forward and backward predictions
within a single framework. The dual functionality inherently

6222

introduces more constraints compared to the baseline single-
direction networks, yet our approach remains highly compet-
itive. This demonstrates the effectiveness and potential of our
method in complex predictive scenarios.

We evaluate the robustness of each method through a
reconstruction test. Specifically, we input parameters from
an 11-dimensional input parameter space (R!'!) to generate
predictions in a 36-dimensional output simulation results space
(R36). Subsequently, these predictions are used as inputs to
retrieve the original parameters. The robustness is quantified
by computing the RMSE between the reconstructed parameters
and the original inputs, providing a measure of each method’s
fidelity in preserving information through the transformation
cycle. From Table II, we observe that while the MLP performs
well in single-direction prediction, it tends to over-fit in this
direction, resulting in deteriorated performance in terms of
robustness. Regardless, owing to its invertibility, our proposed
method demonstrates superior robustness compared to all other
methods evaluated.

Method Reconstruction RMSE |
GBR 0.4915
Decision tree 0.4327
SVM 0.5719
Linear regression 0.4213
Ridge regression 0.4270
MLP (MLP forward & MLP backward) 0.4752
Our INN 0.0000

TABLE II: Performance on the robustness test. Summary of
encoding-decoding test results, highlighting the robustness and
fidelity of data reconstruction.

For the experimental data tests (presented in Sec III-C), we
selected MLPs as our comparison method. This selection is
based on the similarity of the number of parameters between
MLPs and our model, ensuring a fair comparison. Further-
more, the strong unidirectional prediction capability of MLPs
establishes them as a vital baseline for comparison.

C. Results on Experiments Data Test

We further evaluate the model’s performance using real-
world experimental profiles of P-Smad (a downstream com-
ponent of the BMP signaling network) obtained through
fluorescence-labeled antibody immunostaining. The image
data were collected using confocal microscope and processed
with our previously developed image processing package,
WaveletSEG [13]. The range of profile reflects the normalized
intensity between multiple samples of P-Smad images across
the marginal region shown in Fig. 1. We specifically focus on
mean value lines that are interpolated into a 36-node profile to
match the input size of our model. These values are input into
the backward prediction modules of our proposed INN and a
separately trained MLP (Backward) to estimate the simulation
parameters for comparison. After obtaining the predicted best-
fitted parameter set from both INN and MLP, we then apply the
original PDE solver to simulate outcomes for evaluation. The
simulation results are compared with the experimental mean
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values again to evaluate the accuracy of each model, shown
in Fig. 3. The RMSE between the simulation outcomes and
experimental data is computed to quantify the precision of the
INN and MLP models.

Result compare for 5.7hpf SSE WT = 0.0031157
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(a) Comparison between simulation results and
experiment data, with simulation parameters de-
termined by the INN.
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(b) Comparison between simulation results and
experiment data, with simulation parameters de-
termined by the MLP (Backward).

Fig. 3: Comparison of Experimental Data: BMP signaling
data is input into the network to identify the optimal param-
eters for simulation. Subsequently, simulations are conducted
using parameters determined by both the INN and MLP, which
address the specified equations of the BMP regulatory net-
work. Comparisons are drawn between the simulated network
outputs and the mean values of actual experimental data. A
smaller discrepancy between these datasets indicates more
precise parameter estimation in the model.

Results demonstrate that our method benefits from its bidi-
rectional capabilities, establishing a more accurate relationship
between input features and outputs. This leads to a substan-
tially improved fit for real-world experimental data, achieving
a 94.65% reduction in RMSE compared to the MLP. This
significant improvement highlights the enhanced predictive
accuracy and utility of our approach in practical applications.

1) Parameter range space discovery: In practice, experi-
mental results do not yield a specific value but rather vary
within a range, multiple parameter sets can possibly fit the
experimental results within a minimal RMSE. Owing to the
robustness of our method, we can leverage the experimental
results to deduce optimized input ranges. Building on this, we
can leverage our methods to perform and accelerate parameter
optimization in the partial differential equation models. This
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range can also be a guide to design experiments for validation
of the model at the laboratory. This will significantly reduce
the laborious trial-and-error process traditionally required to
determine the appropriate input range for simulations.

To achieve this, we extract the experimental profile falling
within one standard deviation above and below the mean.
Subsequently, we normalize these curves to match the region
between [0,1] (since we are focusing on the signal profile
shape instead of the amplitude of the signal level) and delineate
the envelope encompassing the parameter region defined by
these curves. We utilize the invertibility of the network to trace
the input of each curve in the parameter space, as illustrated
in Figure 4. This approach demonstrates our method’s capa-
bility to identify the appropriate input ranges for simulations
effectively. Then, we apply a grid search and linear sample 30
curves within that parameter region found by our INN model,
fellows the forward prediction to obtain the INN predicted
BMP profile based on refined parameter region. To further
validate the identified input range, we input the traced param-
eter values into our PDE solver for simulation outputs. These
outputs were then compared with actual experimental data, as
well as data adjusted to include plus and minus one standard
deviation. As shown in Figure 4, the simulations using our
identified inputs consistently fall within the region bounded
by one standard deviation above and below the experimental
data, validating the accuracy of the input best-fitted parameter
region identified by our method. These results indicate that our
invertible network can utilize a limited amount of simulation
data to archive a bi-directional mapping between parameter
space and simulation result space. By leveraging this INN
network, we can perform an active search for the best-fitted
parameter set based on the experimental evidence.

2) Ablation Study: In this section, to further evaluate the
model, we systematically investigate the contribution of each
loss function employed in the training of the INN. By sequen-
tially removing individual loss components while maintaining
the others, we examine their impact on the model’s perfor-
mance. The effectiveness of each component is quantified by
the accuracy in both forward and backward predictions on the
simulation test set. The results are shown in Table III.

Method Forward RMSE  Backward RMSE
w/o Expressive loss 0.2386 0.4100
w/o Reconstruction loss 0.2230 0.4090
w/o Noise prior loss 0.2339 0.4092
Our loss 0.2228 0.4088

TABLE III: Ablation Study on different loss components.

Table III indicates that the Expressive Loss is essential, as
its removal leads to a significant drop in overall performance.
Additionally, the Reconstruction Loss and Noise Prior Loss
contribute to enhanced performance, with the system achieving
optimal results when all loss terms are incorporated.

D. Feature explanation

Sensitivity analysis is a crucial process in the parameter
analysis of the biophysical model. It allows the researchers
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to determine how the individual parameters influence the
overall behavior of the model. Also, by identifying which
parameters have the most significant influence on the system,
sensitivity analysis helps prioritize efforts in model calibration
and refinement, ensuring that the model accurately reflects the
underlying biological processes. This process also contributes
to designing specific experiments that guide and optimize the
Model-Based Design of Experiments (MBDOE).

Compared to the traditional sensitivity analysis, our INN
model inherently incorporates feature extraction during the
training process. In this section, we aim to evaluate our trained
INN model’s ability to identify the significance of parame-
ters in the original PDE model. To achieve this, we utilize
explanatory tools [14] to interpret our model’s predictive out-
comes. Specifically, we implement a gradient-based method,
Integrated Gradients [15], along with a perturbation-based
method, Feature Ablation. These techniques quantitatively
assess and attribute importance to the input features within
our forward prediction model, enhancing our understanding
of the model’s decision-making process. Integrated Gradient
calculates the gradient of the model’s output with respect to
each input feature across a series of steps from a baseline to
the actual input. Feature ablation is a method used to assess
the importance of individual features in a model’s predictions
by systematically removing these features and observing the
impact on model performance. The feature explanation result
can be found in Figure 5. The feature explanation results
shown in Fig 5 demonstrated that the protein decay rates
(Kp, K¢ and Kp¢), and the (Tld processing rate of Chd
and BMP-Chd complex),( A\c Apc ) significantly contribute
to our trained INN model.

Additionally, We conduct a sensitivity analysis of our
method by selecting the test set sample with the lowest RMSE
compared to the experimental data, ensuring a close match.
Subsequently, we compute the gradient of the loss with respect
to the input. The results are presented in Fig 6. the sensitivity
analysis identifies a similar key parameter, with the inclusion
of the production rate of BMP and Chd, (j; , j2). These results
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are consistent with our previous conclusions in [8].

0.08 Integrated Gradients
S Feature Ablation
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"
2
2
2
2
g 0.04 1
T
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|
0.00 L e o e I e o e
ki Ks Kc Kec Ds Dc Dsc Ac Asc jr J2
Features
Fig. 5: Feature importance in INN predictions: Two

explanation-based methods were employed to assess the im-
portance of features in INN predictions. The consistent results
across the K, Ko and Kpc features highlight their impor-
tance in the predictive process.
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Fig. 6: Sensitivity analysis of the input features: The

sensitivity of each input feature is quantified by calculating
the gradient of the loss function with respect to the input.

In summary, we demonstrate the robustness and effective-
ness of the Invertible Neural Network model to accelerate
model calibration and parameter optimization for partial differ-
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ential equation (PDE) models. By applying the experimental
data within one standard deviation of the mean and utilizing
the invertibility of our network, we can trace the corresponding
parameter space and refine the model’s input range. Our
method leverages this variability to deduce optimized input
ranges, reducing the traditional trial-and-error process. The
results consistently show that simulations using our identified
inputs fall within the expected experimental range, confirming
the accuracy of our method. Additionally, we employ sensi-
tivity analysis and explanatory tools to evaluate our model’s
performance, using techniques like Integrated Gradients and
Feature Ablation to understand the model’s decision-making
process.

IV. CONCLUSION.

In this paper, we propose a method that utilizes an Invertible
Neural Network (INN) to model biological processes. Our
method uniquely employs a single architecture to model both
the forward and backward processes, a capability not achieved
by other methods. Compared to traditional machine learning
algorithms like MLP, our approach demonstrates enhanced
robustness and superior accuracy in parameter estimation
from experimental data. Moreover, our method significantly
outperforms PDE solvers in terms of efficiency. For example,
during the forward process, our method can perform inference
of 6000 samples in 1 second, whereas the PDE solver requires
1 second for a single sample. Beyond mere efficiency, our
method also enables inverse inference, which was not feasible
for a PDE solver. This comprehensive approach not only
improves model calibration and refinement but also guides the
design of experiments and enhances our understanding of the
underlying biological processes. This approach can not only
accelerate PDE solvers but also facilitate parameter discovery.
It is a pioneering study in addressing inverse problems using
INN.

In future research, we are planning to apply this method in
further facilitating the modeling study such as Multi-objective
optimization between organisms or high dimensional PDE
models. In addition, including Evolutionary Algorithms, such
as genetic algorithms and particle swarm optimization, mimic
natural evolutionary processes to explore large parameter
spaces efficiently, making them ideal for optimizing complex
models like metabolic networks and gene regulatory systems.
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