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Throughout development, complex networksof cell signaling pathwaysdrive cellular decision-making
across different tissues and contexts. The transforming growth factor β (TGF-β) pathways, including
the BMP/Smad pathway, play crucial roles in determining cellular responses. However, as the Smad
pathway is used reiteratively throughout the life cycle of all animals, its systems-level behavior varies
from one context to another, despite the pathway connectivity remaining nearly constant. For
instance, some cellular systems require a rapid response, while others require high noise filtering. In
this paper, we examine how the BMP-Smadpathway balances trade-offs among three such systems-
level behaviors, or “Performance Objectives (POs)”: response speed, noise amplification, and the
sensitivity of pathwayoutput to receptor input. Using aSmadpathwaymodel fit to human cell data, we
show that varying non-conserved parameters (NCPs) such as protein concentrations, the Smad
pathway can be tuned to emphasize any of the three POs and that the concentration of nuclear
phosphatase has the greatest effect on tuning the POs. However, due to competition among the POs,
the pathway cannot simultaneously optimize all three, but at best must balance trade-offs among the
POs. We applied the multi-objective optimization concept of the Pareto Front, a widely used concept
in economics to identify optimal trade-offs among various requirements. We show that the BMP
pathwayefficiently balancescompetingPOsacross speciesand is largelyPareto optimal.Our findings
reveal that varying theconcentrationofNCPsallows theSmadsignalingpathway togenerate adiverse
range of POs. This insight identifies how signaling pathways can be optimally tuned for each context.

Throughout the process of development, an array of essential commu-
nication pathways exert influence over a wide spectrum of cellular destiny
determinations and various processes in different tissues and situations,
including the Bone Morphogenetic Protein (BMP) pathway, a member of
the Transforming Growth Factor β (TGF-β) superfamily of signaling
pathways. The BMP pathway regulates a wide variety of cellular responses,
including apoptosis, differentiation, homeostasis, stem cell maintenance,
and regeneration in animals from flies to humans1–7. The BMP module is
functionally conserved to a point that human components can replace their
respectivehomologs inDrosophila8–10.Thepathway is activatedby ligandsof
the BMP family, which bind to cognate Type I serine-threonine kinase
receptors, promoting the recruitment of the Type II receptors (Fig. 1A). The

Type I/Type II receptor complex phosphorylates Smad1/5/8, which then
dimerizes and forms a complex with the Co-Smad (Smad4), forming the
signaling complex (PSmad1)2/Smad4. This signaling complex (SC) enters
the nucleus and activates downstream gene expression1,11. The first Smads
were discovered in Drosophila: Mothers against Dpp (Mad; homolog of
Smad1/5/8) and Medea (Med; homologof Smad4)12.

Despite its high degree of conservation across different species, the
BMP/Smad pathway exhibits remarkable diversity in its responses to BMPs
in different contexts. For example, the response speed of the Smad pathway
varieswidely across commonmodel systems (Fig. 1B-H), including thewell-
studied blastoderm stage of the Drosophila embryo (BMP signaling time-
scale of 30min13–16), Drosophila pupal wing formation (timescale of
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hours17), Drosophila germline stem cells (BMP signaling timescale
~12–16 h18), the zebrafish embryo (30min19,20), the mammalian cochlea
(order of days21), and human induced pluripotent stem cells (hiPSCs;
response speed on the scale of hours22–25).

These differences in response speed highlight the fact that the BMP-
Smad pathway exhibits a diversity of behavior depending on the biological
context. It is likely that the response speed is in a trade-off relationship with
other systems-level behaviors, or “Performance Objectives (POs)”26,27. To
first order, a minimal set of such POs includes (1) response time, (2) noise
filtering, and (3) linear sensitivity of output with respect to extracellular
inputs1–5. While there are other POs that likely affect the fitness of the
organism, such as signal amplification, precision, or information
capacity2,3,6, our three proposed POs are based on fundamental constraints
for all communication systems andare shared across the animal kingdom7–9.
However, due to competitionamong thesePOs, a “utopian system” inwhich
all three POs are optimally and simultaneously satisfied is not biologically or
physically possible, and compromises must be made to emphasize the
proper POs for each biological context. For example, communication sys-
tems can sacrifice response speed to reduce noise through time-
averaging28,29. To simultaneously improve noise filtering and response
speed, signaling pathways could operate in the regime of high levels of
activated receptor inputs. However, in this regime, linear sensitivity to input
levels is sacrificed, as the network would become saturated28,29. Therefore,
certain cellular systems might demand swift responses to BMP signaling,
like Drosophila and zebrafish embryos, whereas others may necessitate
extensive noise filtration, like human stem cells. This diversity in the
behavior of the BMP module cannot derive from rewiring the pathway, or
from altering protein biochemical function, as these aspects of the BMP
pathway are highly conserved across the animal kingdom8–11,30. Instead, we
hypothesize the tunability is achieved through differential concentrations of
the pathway components, such as Smad1 and Smad4, whose sequences and
functions are conserved, but whose concentrations are not.

In this study, we used a Smadpathwaymodel, calibrated to time course
data from human cells31, to analyze how the Smad pathway balances trade-
offs among the three POs through variation of non-conserved parameters
(NCPs): concentrations of phosphatase and Smad proteins, and the nuclear
import rate of activated Smad protein complex. We found that the NCPs
allow the Smad signaling pathway to generate a diverse range of POs, and
that phosphatase concentration has the largest effect on shifting the balance
of POs. To systematically determine which combinations of POs are opti-
mal, we utilized the concept of the Pareto Front, which has been widely
employed in economics for multi-objective optimization to identify a col-
lection of designs that offer optimal trade-offs among various
requirements32,33. The shape of the Pareto front supplies information about
the relationship of the objectives. If the Pareto front curves towards the
“utopian point” (UP), where all objectives are maximally satisfied, then
adequate compromise solutions exist34. On the other hand, a concave shape
that curves away from the UP suggests that the objectives severely exclude
each other, and compromises will be difficult. In the field of biology, the
Pareto front approach allows for a comprehensive analysis of the diverse
factors influencing biological systems and aids in the identification of
solutions that achieve the best compromise between competing objectives.
We found that, for most combinations of NCP values, the Smad pathway is
Pareto optimal. We analyzed which systems fall on the Pareto front and
predicted the relationship between values of NCPs and which POs a given
system would emphasize. We conclude that the Smad pathway is highly
versatile to achieve a variety of trade-offs among the POs, depending on the
needs of each system in their biological context.

Results
Phosphatase, a non-conserved parameter, determines the per-
formance objectives of the system
Our BMP/Smad pathway model was adapted from a similar model con-
structed for the Smad pathway downstream of the TGF-β pathway31. We

Fig. 1 | Smad signaling is a conserved pathway. A Reaction network diagram of the
Smad pathway. TGF-β binds and activates the receptors, thus phosphorylating
Smad1. PSmad1 binds to Smad4 and forms dimers which then form trimers.
Illustrative figures of model systems in which BMP signaling pathway patterns
tissues with BMP producing cells marked in maroon and an approximate timescale

over which BMP signaling either is active or patterns the tissue is indicated in blue,
(B) Drosophila Embryo, (C) Drosophila adult germline stem cells, (D) Drosophila
Wing Disc, (E) Drosophila Pupal Wing (24–30 h APF), (F) Zebrafish Embryo, (G)
Mouse Cochlea, and (H) Human Lymphangiogenesis. (created using Adobe
Illustrator).
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used a core set of parameters that were fit to previously published TGF-β/
Smad pathway data31. With the core parameters in place, we performed
simulations of the BMP/Smad pathway (hereafter referred to simply as the
Smad pathway) with the pathway initially at rest (active receptor level,
Ract = 0).At time t = 0,we increased the active receptor level to its newvalue,
Ract, which resulted in an increase in the nuclear concentration of the sig-
naling complex (SC), (PSmad1)2/Smad4. Based on this simulation, we
computed the rise time (trise) (PM1), which serves as an indicator of the
system’s response speed (PO1). The trise is defined as the duration it takes for
the response variable to reach 95% of the final steady state (Fig. 2A).

To evaluate the noise amplification properties (PO2) of the Smad
pathway, we extended the simulation, beginning at the established steady
state, but with a time-varying noise Ract (Supplementary Fig. 5A, See Sup-
plementaryNote 4.1). The variations inRactmimic stochastic simulations of
receptor activation35. The simulation was continued over a simulation time
of 24 hours.During that time, the response variablefluctuated about amean
of μ with a standard deviation of σ (Fig. 2B). Using these simulated fluc-
tuations in the response variable, we calculated the second metric, Noise
Attenuation Ratio (NAR, PM2)36, which tracks the dynamic properties of
the response and is defined as the ratio of the coefficient of variation
(CV � σ

μ) of the response variable to that of the input variable (Ract). The
finalmetric, the steady state sensitivity coefficient (ϕ) (PM3), is ameasure of
the linear fidelity (PO3) of the response variable with respect to the input
variable. To calculate this metric, we ran a parallel simulation by perturbing
Ract by 1%, resulting in a slightly different steady state for the response
variable (inset of Fig. 2A). The sensitivity coefficient is defined as the ratio of
the fractional change in steady state output to that of the input.

Because phosphatase (PPase) levels often control the dynamics of
signaling systems37–41, we evaluated the three performance objectives (POs)
by calculating their respective performance metrics (PMs) at varying levels
of PPase concentration (Fig. 2E). We found that increasing the PPase
concentration from 1 nM to 10 nM, keeping all other core parameters and
initial concentrations unchanged, resulted in a decrease in the rise time (Fig.
2A, C), an increase in NAR (Fig. 2B, D), and an increase in the sensitivity
coefficient (inset of Fig. 2A, C). These trends were also maintained for
intermediate values of the phosphatase concentration (Fig. 2E). By com-
parison, the utopian ideal has trise = 0, NAR = 0, and ϕ = 1 (black triangle in
Fig. 2E), which according to our mathematical model, cannot be attained
and may not biologically or physically possible. In summary, our results
indicate that the PPase concentration affects the performance measures
(PMs). Therefore, by regulating PPase concentration, the Smad signaling
pathway can be fine-tuned to achieve specific desired outcomes.

The effect of non-conserved parameters on the performance
objectives
While the Smad pathway topology and component protein sequence are
highly conserved across the animal kingdom, we consider four parameters
in themodel to be “non conservedparameters (NCPs)”. ThefirstNCP is the
concentration of the PPase (see above).Whilewe donot directly identify the
PPase, we assume it is one of the factors that control the pseudo-first order
rate constant for PSmad dephosphorylation. The next two NCPs are the
concentrations of Smad1, and Smad4, whose sequence and function are
conserved, but whose concentrations are not. The fourth NCP in themodel
is the complex-import factor (CIF), which is defined as the nuclear import
rate constant of the SC normalized to the nuclear import rate of the other
Smad-containing complexes31 and is likely controlled by the concentration
of specific nuclear transport proteins. Thus, the NCPs are concentrations
that either enter the equations as initial conditions (such as for Smad1 and
Smad4) or control kinetics (such as for PPase and CIF).

To determine how each of these NCPs affects the three PMs, we per-
formed a parameter screen and calculated the three PMs for 104 sets of
randomly generated sets of NCPs (seeMethods) spanning several orders of
magnitude. This extensive analysis allowed us to generate a three-
dimensional manifold of all feasible PMs in “PM-space” (Fig. 3A), which
revealed that no parameter set resulted in optimal values of all three PMs
simultaneously (designated as the utopianpoint,UP). Theprojections of the
three-dimensionalmanifold indicate that thePMspace is constrainedby the
model formulation (Fig. 3B–D). The shape of the manifold indicates that
there is a large infeasible space, and the Smad pathway has to balance
performance trade-offs to attain the desired performance. Notably, these
POs do not appear independent but instead are in trade-off relationships,
such as between response speed vs. noise amplification (Fig. 3B), and noise
amplification vs. sensitivity coefficient (Fig. 3C).

To visualize the effect of each NCP on determining the PMs of the
signaling network, we sorted the points from the parameter screen into bins
based on the value of each NCP (Supplementary Fig. 12). However, given
the high density of points, we replaced each cluster of points by its centroid
(seeMethods). We found that PPase concentration has the largest effect on
the balance of PMs, while CIF has the smallest (Fig. 4A, B). Smad1, Smad4,
and their ratio each had a non-monotonic effect on the balance of PMs
(Fig. 4C–E).

To determine the combination of NCPs for which the system is
“optimal,” we calculated the Euclidean distance of each point using equal
weights, hereafter referred to as the Equal Weights Distance in the curves
plotted in Fig. 4A-E to the Utopian Point (UP, Fig. 4A). The utopian points

Fig. 2 | ThePerformanceMetrics (PMs) of the Smad signalingpathwaydependon
the PPase concentration. The simulated concentration profiles for the signaling
complex in the nucleus, SCnuc, at a constant activated receptor level and PPase
concentration of (A) 1 nM (C) 10 nM (inset) The differential change in steady state
concentrationwith respect to change in Ract. In response to the noise input (S5A) the

resulting dynamic profile for SCnuc has a small coefficient of variation at PPase
concentration of (B) 1 nM (D) 10 nM (black dashed line indicates mean and grey
rectangle indicates standard deviation. EA spider plot of the three PMs: trise (PM 1),
NAR (PM 2), and sensitivity coefficient (φ) (PM 3) at increasing levels of PPase. The
“utopian ideal”, in which all three PMs are optimized, is shown in black.
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are defined as the “ideal” optimal performance point with minimum rise
time (trise = 0) and noise ratio (NAR = 0), and optimal sensitivity coefficient
(ϕ = 1). While sensitivity coefficient and NAR are unitless ratios of order
one, the rise time is not unitless and can reach values of a few hundred
minutes. To account for this difference in scales, we scaled the rise time by
themaximumcalculated value over all ten clusters, then arbitrarilyweighted
the threePMs equally (see “Methods”).We found there is an optimal level of
PPase that minimizes the distance to the utopian point (Fig. 4F). The cen-
troids of CIF clusters are largely equidistant from the utopian point, except
at higher concentrations (clusters 8–10) (Fig. 4F). The Smad1 clusters
advance towards the utopian point with increasing Smad1 concentration
but stagnate such that any further increase in concentration does not sig-
nificantly affect the position of the clusters (Fig. 4F). In accord with the “U”
shape formedby the curves for Smad4and the Smad1/Smad4 ratio, there are
clear optimal values for these NCPs that minimize the distance to the
utopian point (Fig. 4F).

The optimality of performance objectives at different
receptor levels
Up to this point, all the simulations described previously were done at a
single value of Ract (Supplementary Fig. 5A). However, Ract levels are
expected to vary across species, systems, and space. We generated a total of
60 receptor inputs of varying mean Ract and frequency distribution
(Supplementary Figs. 6–9) (see “Methods”) and calculated the PMs at the
104 previously generated NCPs sets. Since Ract is based on an extracellular
component and canvary across cells in a tissue exposed to agradient ofBMP
signaling, we treated it as an input to the model, rather than a model
parameter, and varied it separately from the other NCPs.

For PPase, at higher Ract levels the centroid of point clusters advances
closer to the utopian point and stagnates (Supplementary Figs. 2A, 5A). The
centroid of point clusters of CIF have the same nature at all Ract, but the
distance from the utopian point progressively increases on increasing Ract

(Supplementary Figs. 2B, 5B). For all Ract, increasing total Smad1 shifts the
system closer to the utopian point (Supplementary Figs. 2C, 5C) whereas
increasing total Smad4 shifts the system further away fromtheutopianpoint
(Supplementary Figs. 2D, 5D). To balance the competing nature of Smad1
and Smad4, the ratio of Smad1total/Smad4total must be optimally controlled
(Supplementary Figs. 2E, 5E). (Fig. 5 summarizes “Rmax” levels, for “Rmin”
see Supplementary Figs. 1, 3).

The Pareto optimality of the performance objectives
Minimizing the distance of the curves in Fig. 4A–E to the optimal point was
based on an equal weights distance metric in which the values of trise
(normalized), NAR, and the sensitivity coefficient were given equal
numerical weight. However, as themetrics for the three PMs are not related
to each other numerically, there is no inherent justification for equal
weighting. To address this concern, we have taken a multi-objective

optimization (MOO) approach to determine which points in PM space can
be considered optimal. Unlike standard, single-objective optimization,
MOO attempts to satisfy multiple, conflicting objectives, and therefore,
MOO is the proper method to apply to balance the PMs42.

In general, in a MOO approach, one identifies the subset of model
results in which improvements to one objective cannot be made without
compromising the others. This subset is known as the “Pareto Front,” and
each of the points on the Pareto Front is considered optimal, from a Pareto
standpoint. In practice, points on the Pareto Front are identified as those for
whichnoother point is better in all three objectives.Applying thismethod to
our screen, we found that roughly 70% of results fromour screen resided on
the Pareto front (Fig. 6). If the optimality criterion is relaxed to allow
solutionswhich arewithin 10%of the distance fromother optimal solutions
to also reside on the Pareto front, then≥99%of all solutions lie on the Pareto
front (Supplementary Fig. 14). Even some points that perform very poorly
on one PM may still considered Pareto optimal because the trade-offs are
such that the other PMs are close to their respective optimal values.
Therefore, the Smad pathway is tunable to the needs of each system simply
by altering the values of the NCPs.

Mapping performance of biological systems to NCPs
To correlate different system behaviors with values of NCPs, we considered
three different potential system behaviors. In the first behavior, System 1
favors linearity and rise time (emphasizing POs 1 and 3) while sacrificing
NAR (Fig. 7A). In the second behavior, System 2 favors a small NAR
(emphasizing PO2) while sacrificing rise time and linearity (Fig. 7A). In the
final behavior, System3 favors a short response time and high noisefiltering
(emphasizing POs 1 and 2) while sacrificing linearity (Fig. 7A). In these
three different regions of PM-space, being limited to the Pareto Front, the
NCPs take on hallmark distributions (Fig. 7B–P). For example, System 1 is
characterized by high phosphatase and Smad1 levels, and low Smad4 levels.
System 2 has low phosphatase and medium Smad1 and Smad4 levels.
Finally, System 3 has medium phosphatase and Smad4 levels, and high
Smad1 levels. This relationship between NCPs and PMs would allow us to
predict NCP values from experimentally observed systems-level behavior
and, perhapsmore importantly, to rationally control systems-level behavior
by manipulating NCP levels.

The combinatorial role of NCPs in mapping performance objec-
tives along the Pareto plane
To determine the synergistic role of NCPs in mapping performance
objectives along thePareto optimal plane,we simulated the Smadmodel at a
fixed concentration CIF and Smad4total, and systematically varied the
concentrations of PPase and Smad1total, such that PPase varies along each
curve and Smad1total varies across the curves (Fig. 8A). We found that
varying PPase results in a family of curves that follow the Pareto front, and
the section of the Pareto front traced out by a given PPase curve depends on

Fig. 3 | The results of the parameter screen in PM-space. A 3D surface repre-
sentation of the results of the front of the parameter screen in PM-space. Trade-offs
are evident as no parameter set results in PMs that approach the utopian point (UP).

The rise time (trise)-NAR (B), NAR-sensitivity coefficient (φ) (C), and sensitivity
coefficient (ϕ) – rise time (trise) (D) projection of all PMs generated by
sampling NCPs.
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the concentration of Smad1total (Fig. 8A). We observed a similar behavior
whenwefixed Smad1total andCIF andvariedSmad4total andPPase (Fig. 8B),
although the extent towhich Smad4total allows thePPase curves to sweep the
Pareto optimal surface depends on the concentration of Smad1total (Sup-
plementary Fig. 15). The results indicate that PPase is a major driver of the
location of the system in PM-space while NCPs such as Smad1total and

Smad4total allow the system’s PMs to span the entire Pareto plane (Fig. 8C).
Since CIF has only a small effect on the performance of a system (Figs. 4B,
5B, 7E–G) we did not consider it in this analysis. Note that driving PPase
levels too high causes the system tomove off the plane (Fig. 8A, B); however,
for some values of Smad1total and Smad4total, further increases in PPase
levels bring the system back on the Pareto surface (Supplementary Fig. 15).
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Phosphatase levels are variable across biological systems
Our results have shown that nuclear phosphatase, which dephosphorylates
PSmad, has the greatest effect of the NCPs on the balance of trade-offs
among the POs. To ascertain the variability in phosphatase levels across
different species,weused availableRNA-Seqdata fromDrosophila embryos,
zebrafish embryos, and human cell data. Several phosphatases have been
previously linked to the Smad pathway, such as PPM1A43–45, PPM1H46,
MTMR447, SCP1/2/348, SCP4/CTDSPL249, Dullard, Pyruvate dehy-
drogenase phosphatase (PDP)50, PP2A51, etc. Notably, we identified that
PPM1A, MTMR4, and Dullard were consistently expressed in Drosophila,
zebrafish, andhuman cells.We focusedon the available publishedRNA-Seq
data for zebrafish embryos52,Drosophila embryos53, and human aorta cells54

specifically examining the expression of the phosphatase Dullard (ctdnep1a
in zebrafish andctdnep1 inhumans).The currentdata reflected thatDullard

mRNA exhibited significant expression during the developmental stages of
both zebrafish and Drosophila embryos, where the BMP/Smad pathway
plays a crucial role in shaping the major body axis for these two species.
These RNA-Seq datasets arise from different experimental groups, making
direct comparisons across species on a universal scale challenging55. For a
broader perspective on expression levels throughout different species, we
conducted a comparison of Dullard expression relative to two highly con-
served housekeeping genes, GAPDH (glyceraldehyde-3-phosphate dehy-
drogenase) and UBC (Ubiquitin C) (Data summary available in
Supplementary Note 6). Our findings indicate that the relative expression
level of Dullard is higher inDrosophila embryos than in zebrafish embryos
asmeasuredagainst bothGAPHDandUBC.TheHumanAortadata showa
low expression level of Dullard compared to both the Drosophila embryo
and the zebrafish embryo data in reference to GAPDH, but slightly higher

Fig. 4 | NCPs determine the position of the system in three-dimensional PM-
space. A–E The centroid of ten point cloud clusters into which the PMs were sorted
based onNCP concentration. The projections of the curve formed by connecting the
centroids is as shown on the trise-NAR, trise-sensitivity coefficient (ϕ), NAR-
sensitivity coefficient (ϕ) planes (shown in grey). Increasing circle diameter denotes
increasing concentration.AAn increase in the PPase concentration shifts the PMs of
the system closer to the utopian point “UP”. “UP” is the “ideal” optimal performance
point with coordinates [trise, NAR, ϕ] = [0, 0, 1] (shown as a black-filled circle).
B Increasing CIF concentration has a small effect in determining the position of the
centroid of the point cloud clusters. C Increasing total Smad1 concentration

continuously advances the centroid of the point cloud clusters toward the optimal
point. After a certain level, any further increase in Smad1 has a small effect in
repositioning the PMs. D The centroid of point cloud clusters forms a “U” shape
such that increasing total Smad4 moves the system closer to the optimal point and
then after a certain point any further increase in Smad4moves the system away from
the optimal point. E The Smad1total/Smad4total has a mirror “U” trend with lower
Smad1total/Smad4total values being further away from the optimal than higher
Smad1total/Smad4total. F The equal weights distance of the point cloud cluster from
the optimal point for all four NCPs and Smad1total/Smad4total.

Fig. 5 | Equal Weights Distance of point cloud
clusters. A–E The equal weights distance from the
optimal point of the point cloud clusters at 30 Rmax
(see Methods) inputs. The size of the circle repre-
sents increasing NCP concentrations. The equal
weights distance from the optimal point of the point
cloud clusters of (A) PPase (B) CIF (C) Smad1total
(D) Smad4total (E) ratio of Smad1total/Smad4total at
30 Rmax inputs.
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Fig. 6 | Pareto optimality of POs. Projections in the trise-NAR (A), NAR-sensitivity
coefficient (ϕ), (B), and The sensitivity coefficient (ϕ)− trise, (C) planes of the three-
dimensional PM-space. Darker filled circles represent Pareto optimal POs, whereas
lighter circles represent POs that are not on the Pareto front. The histogram with

solid lines indicates the distribution of Pareto optimal POs and the histogram with
dashed line indicates the distribution of POs that are not Pareto optimal. indicated
with black-filled circles.

Fig. 7 | Mapping the performance of biological systems to NCPs. AWe arbitrarily
chose three systems on the PM surface such that system 1 favors linearity, system 2
favors NAR, and system 3 favors both rise time and NAR. The three systems lie on
different regions on the surface fit through all the Pareto optimal PMs. B–P The
distribution of each NCP, normalized by a probability distribution function, for the
three systems in (A). B–D PPase: System 1 prefers high values of PPase, whereas
System 2 favors low values of PPase, and System 3 favors intermediate values of

PPase. E–G CIF: There is no observed trend in the distribution of the concentration
of CIF across the three systems. H–J Smad1total: In general, the distribution of
Smad1total is centered around the highest concentrations for System 3, followed by
System 1 and 2. K–M Smad4total: The distribution of Smad4total is centered around
the highest concentration for System 2, followed by System 1 and 3.N–P Smad1total/
Smad4total: In general, System 1 prefers high, System 2 intermediate, and System 3
very high concentrations of Smad1total/Smad4total.
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relative to the zebrafish embryo in refernce toUBC. This relative expression
difference couldbe the result of the significantlyhigher expressionofUBC in
zebrafish embryos. To illustrate the significance of these findings, we con-
structed a convex hull from all Pareto optimal response time at their
respective PPase levels, and annotated the three biological systems; Human
Aorta, Zebrafish embryo, and Drosophila embryo based on relative PPase
levels from RNA-Seq data (Table S10, ratio to GAPDH) and approximate
BMP signaling response time (Fig. 1). Our findings are consistent with our
prior modeling outcomes, and a higher level of PPase maintains POs by
achieving a balance between lower noise filtration and heightened sensi-
tivity, leading to quicker response times (Fig. 9).

Discussion
Highly conserved cell-cell signaling pathways, such as the BMP pathway,
operate within multiple biological systems, and as such, must be adaptable
and versatile to achieve a variety of goals specific to each organism. A
fundamental question is how the general morphogen pathway has adapted
to the specific needs of a given system, and what mechanisms are at its core
in fine-tuning system performance. In the case of BMP-Smad pathway,
despite the central and highly conserved role that BMP signaling plays in
tissue patterning, the dynamics of signal transmission from the BMP input
to the PSmad output varies widely across taxa or developmental stages. For
example, BMP signaling requires a rapid response in Drosophila and zeb-
rafish embryo development, which occurs on the order of minutes to a few
hours. On the other hand, in Drosophila pupal vein formation and hiPSC

differentiation, BMP signaling persists for hours and days, implying that
noise filtering may be more important than a rapid response25. These
observations suggest that the sharedBMPsignalingmodulemaybe tuned to
emphasize different POs depending on the context. In certain scenarios, an
“ideal” systemwith optimal POswould respond rapidly, filter noise, and act
as a linear sensor of BMP concentration. These response features play a
crucial role in determining the fitness of an organism when it faces chal-
lenges such as biological noise and perturbations. However, real commu-
nication systems are subject to constraints and must navigate trade-offs
between various optimal solutions. Balancing these competing factors
becomes essential for the functional adaptation and robustness of the BMP-
Smad pathway.

Here we investigated the effect of non-conserved parameters (NCPs)
on the performance objectives (POs) of the Smad nucleo-cytoplasmic
dynamic model. The investigation involved the evaluation of three specific
PMs: response time (PM1), noise-amplification-ratio (NAR) (PM2), and
sensitivity coefficient (PM3). To assess these objectives, we evaluated the
POs by characterizing the response of the system to the localization of
(PSmad1)2/Smad4 in the nucleus upon pathway activation. The results
revealed an intriguing relationship between the concentration of one NCP,
PPase, and the POs. As the concentration of PPase increased, the response
time of the system decreased. This suggests that a higher concentration of
PPase led to a more rapid response, indicating its role in modulating the
response timing of the Smad nucleo-cytoplasmic dynamics. On the other
hand, the results also unveiled that an elevated concentration of PPase
correlated with an increased noise-amplification capability. This implies
that PPase plays a vital role in filtering out extraneous noise, enhancing the
system’s ability to maintain accurate signaling despite external perturba-
tions. Additionally, as the concentration of PPase was increased, the sen-
sitivity coefficient of the system also increased. This suggests that PPase
concentration influences the system’s sensitivity to variations in the input
signals, potentially allowing for more precise and nuanced responses to
changes in the cellular environment. PPase plays an essential role in reg-
ulating the TGF-β/BMP signaling pathway by dephosphorylating key
components to modulate its activity. Based on our preliminary analysis of
the available published RNA-Seq data from Drosophila and zebrafish
embryos, as well as human cell data, the phosphatase expression levels vary
across different species, the relative expression level of Dullard is higher in
Drosophila embryos than in zebrafish embryos as measured against both
GAPHD and UBC. Our findings are consistent with our prior modeling
outcomes, and a higher level of PPasemaintains POs by achieving a balance
between lower noise filtration and heightened sensitivity, leading to quicker
response times. These observations align with the developmental require-
ments of Drosophila embryos, which necessitate rapid responsiveness
during their developmental stages. The findings underscore the significance
of protein phosphatases inmodulating TGF-β/BMP signaling and highlight
the need for further exploration into their role.

Fig. 8 | The combinatorial role ofNCPs inmapping performance objectives along
the Pareto plane. Each curve traces an increasing concentration of PPase, visualized
with increasing marker size, at a fixed (A) Smad1total and (B) Smad4total which is

varied across curves as indicated. The colors in (A) and (B) represent that the same
Smad1total/Smad4total was maintained while performing the two sets of simulations.
C Illustrative trends by which each NCP moves the system along Pareto plane.

Fig. 9 | PPase levels across tissues and BMP signaling response time. The rela-
tionship between BMP signaling response time and relative PPase levels across
various tissues can be mapped onto model-predicted space.
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While PPase levels play the largest role in shaping the balance of trade-
offs among the POs we analyzed here, it is only a singular parameter, and
variation of PPase alone can, at best, trace out a single curve in PO-space.
Therefore, the otherNCPs, in particular, Smad1 and Smad4 concentrations,
can fine-tune the balance of trade-offs to allow the system to sample the
entire Pareto surface. Interestingly, our model predicts that Smad1 and
Smad4 have largely opposite effects on the POs. Our model predictions of
the relationship betweenNCPs and POs could be tested experimentally in a
variety of BMP systems across multiple animal species.

In this work, we focused on only three POs, given they are require-
ments for communications systems26,27,36,56. However, the BMP systemmay
have other competing POs that must also be balanced depending on the
context. For example, signal amplification, precision, and information
processing are plausiblePOs that could alsobe considered in the future26,27,57.

This study presents a fresh perspective on the regulation of BMP/Smad
signaling by emphasizing the significance of considering multiple systems-
level objectives in determining signaling pathway function across different
species. This research also sheds light on the flexibility of the BMP/Smad
pathway to achieve different outcomes in different contexts, and further
exploration is warranted to determine how cells regulate the concentrations
of pathway components to tune the POs according to the needs of the
cellular system. Our results, which are based on engineering principles of
trade-offs and compromise among competing objectives, are likely to
generalize to other biological pathways and have implications not only for
developmental biology but also for disease-related contexts including
regenerative medicine.

Methods
Simulating the Smadmodel
For this study, wemodified the Smad signal transductionmodel reported in
Schmierer et al. 31. In this model, the ligand TGF-β binds to the receptor
resulting in the phosphorylation of Smad2, a receptor-regulated Smad (R-
Smad). The phosphorylated-Smad2 (PSmad2) forms homomeric or het-
eromeric complexes with Smad4, a common mediator Smad (Co-Smad)
which then translocates to the nucleus to regulate gene expression. We
implemented this mathematical model to simulate the BMP pathway and
model Smad1 dynamics as its network structure is similar to TGF- β
pathway. The Smad complexes localize to the nucleus, which ismodeledas a
multiplication factor, complex-import factor (CIF).

It has been reported in the literature58–60 that the active signaling
complex is a trimer consisting of two molecules of PSmad1 and one
molecule of Smad4 (see Supplementary Table 3 for complete model reac-
tions). We accordingly modified the model to account for interactions
between dimers that result in the formation of the trimer—(PSmad1)2/
Smad4 (see Supplementary Table 4 for model equations). We fit this
modifiedmodel to the nuclear EGFP-Smad2 concentration data reported in
Schmierer et al. 31 (Supplementary Fig. 4).

In our modified model (referred to as the Smad model; See Supple-
mentary Note 3), before the activation of the pathway, only monomeric-
Smad1 is present in the nucleus, and after the pathway is activated due to
TGF-β signaling all Smad species such as PSmad1, PSmad1/Smad4,
PSmad1/PSmad1, and (PSmad1)2/Smad4 are present in the nucleus. This
leads to the accumulation of Smad1 species in the nucleus when the TGF-β
signaling is active. All the Smad species (monomeric and dimeric) can
dynamically move between the cytoplasm and the nucleus. An externally
supplied inhibitor that deactivates the receptors turns off this signaling
network. In our Smad model, the complex-import factor (CIF), which is a
multiplication factor to the import rate of the Smad complex to denote
enhanced nuclear translocation of the Smad complexes, only multiplies the
import rate constant of the trimeric Smad complex: (PSmad1)2/Smad4.

Simulation conditions. The initial conditions of all protein complexes
were set to 0 (Supplementary Table 5).

To calculate the POs at randomly generated NCPs we simulated the
Smad model (Supplementary Table 9) for 24 h (Rmax) and 48 h (Rmin).

Smad1 and Smad4 initial conditions. Smad1 distribution in initial
conditions:

Keq ¼
kin
kex

ð1Þ

Smad1tot cyt:
� � ¼ Smad1tot

1þ Keq
ð2Þ

Smad1tot nuc:ð Þ ¼ Smad1tot � Smad1totðcyt:Þ ð3Þ
Smad4 is equally distributed in the cytoplasm and the nucleus before

the activation of the pathway.
CIF and PPase were passed to the model without modification.

Parameters for Smad model. We implemented Improved Stochastic
Ranking Evolutionary Strategy plus (ISRES+)61 to estimate the 10 variable
parameters in the model (Supplementary Table 2) by minimizing the sum
of squared errors (SSE) between the experimental data and the model
predictions, normalized by standard deviation. The Smad model (Supple-
mentary Table 3) was fit to nuclear EGFP-Smad1 concentrations in HaCat
cells in the presence of TGF-β signaling and later when an inhibitor of the
Smad pathway was externally added (see Supplementary Table 5 for initial
conditions). ISRES+ is a (μ-λ)-based evolutionary algorithm employed to
solve global optimization problems using stochastic ranking. It additionally
has gradient-based algorithms embedded to improve the search strategy,
called lin-step and newton-step. The algorithm was run for 100 generations
with 150 individuals, with a recombination rate of 0.85. Lin-step con-
tributed one individual and Newton-step contributed two individuals to
every generation. The complete description of hyperparameters and
bounds on the model parameters supplied to ISRES+ are in the Supple-
mentary Tables 7 and 8. The best individual of all generations, i.e., the
parameter set with the best fitness score was chosen for all the simulations
in this study (Supplementary Table 6). The model fit with the estimated
parameters is shown in Supplementary Fig. 4. Additional details are in the
Supplementary Text Note 3.

Receptor concentrations. The time-varying value of the activated
receptor (Ract) is the number of active receptor complexes predicted by a
stochastic model of the extracellular BMP signaling pathway. These
activated receptor level inputs used to calculate the PM-2 were obtained
using a model from Larson et al.35. This model uses the GillesPy python
package62 to simulate the cell surface BMP receptor network as it interacts
with given extracellular BMP ligand concentrations. There were two sets
of starting parameters for the number of receptor components. Based on
literature TGF-β receptor estimations from63,64, we used a value of 14,000
TGF-β receptors per cell split between type-I and type-II65. suggests that
at some stages only ten percent of these may be present on the cell
membrane. To this end, the simulations were run a second time with
“Rmin” being ten percent of “Rmax”. For each of the two starting receptor
levels, extracellular BMP ligand concentrations ranging from 0.001 to
3 nM were used to initialize the simulation. Following 24–48 h of simu-
lation, all species population values were tracked over 24 h to collect noise
information at the steady state (see SupplementaryNote 4.1 for frequency
analysis on stochastic receptor inputs).

The Ract values for “Rmax” range from 0.01 nM to 3.5 nM, and for
“Rmin” range from 0.001 to 0.1 nM (Figure S5).

To calculate the PM-1 and PM-3, we adapt (details in the Supple-
mentary TextNote 4) ourmodel and simulate at starting receptor levels as a
constant input.

Sampling non-conserved protein concentrations
We generated 104 sets of three non-conserved protein concentrations
(Smad4, CIF, and PPase) using Latin-hypercube design with a sample
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density of 104.Weuniformly sample the Smad1/Smad4 ratio in the logspace
(Table 1).

The following were the range we generated to sample within:
The simulation results with nuclear (PSmad1)2/Smad4 concentration

less than 0.1 nM are not shown in the figures since these concentrations are
too low to be biologically relevant.

Calculating the three performance objectives
The three performance objectives (POs) are:

Rise time (trise). The rise time is defined as the duration of a response to
reach 95% of its steady state value. We calculated the rise time using a
MATLAB function stepinfo from the control systems toolbox, on the
dynamic profile of total nuclear (PSmad1)2/Smad4. The steady state
(PSmad1)2/Smad4 concentration was externally supplied as an input to
stepinfo, which was calculated by solving the system of ODEs using
Newton’s method with the final condition from ode23tb in MATLAB as
an initial guess. The “RiseTimeLimits” were defined as [0 0.95].

Noise amplification ratio (NAR). The NAR is defined as the ratio of
coefficient of variation of the response signal to the input signal. We used
the steady state of nuclear (PSmad1)2/Smad4 obtained in PO1 as an initial
condition to simulate continuous model again using ode23tb with a
“MaxStep” of 0.5 with a stochastic receptor input. We simulate the model
for the same timespan as PO1 i.e., 24 h for “Rmax” and 48 h for “Rmin”.
The NAR is then calculated as the ratio CV of (PSmad1)2/Smad4 over Ract:

NAR ¼ CVð PSmad1ð Þ2=Smad4Þ
CVðRactÞ

ð4Þ

Here,

CVðxÞ ¼ σ xð Þ
μ xð Þ ð5Þ

Sensitivity coefficient (ϕ).We calculated the sensitivity coefficient at the
steady state concentration of (PSmad1)2/Smad4 obtained by solving the
system of ODEs using Newton’s method with the final condition from
ode23tb in MATLAB as an initial guess. The sensitivity coefficient
defined as:

ϕ ¼
dln PSmad1ð Þ2

Smad4

� �
dln Ractð Þ

ð6Þ

Here,

ϕ ¼ Ract
PSmad1ð Þ2=Smad4

×
PSmad1ð Þ2=Smad4δ � PSmad1ð Þ2=Smad4

Ractδ � Ract

ð7Þ
Here, Ractδ = 1.01×Ract and (PSmad1)2/Smad4δ (SCnucδ) is the steady

state concentration of (PSmad1)2/Smad4 (SCnuc) for Ractδ.

Pareto optimality
Wedefine anoptimal point that has coordinates such that trise = 0,NAR = 0,
and ϕ = 1.

The optimization problem was formulated as:

minimize F ¼ f
trise

maxðtriseÞ
;NAR; absðlog10ðabsðϕÞÞÞ

� �
ð8Þ

trise ¼ f ðPPase;CIF; Smad1; Smad4Þ ð9Þ

NAR ¼ f ðPPase;CIF; Smad1; Smad4Þ ð10Þ

ϕ ¼ f ðPPase;CIF; Smad1; Smad4Þ ð11Þ

PPase;CIF; Smad1; Smad4≥ 0 ð12Þ

We determined Pareto optimality by selecting non-dominated
solutions66,67, which are defined as solutions for which no other member
of the solution set is closer to the UP in all three PMs. This was done by
calculating the distance between every point in the solution set from the
utopian point. These distances were calculated by normalizing the POs to
ensure they lie in the same range. The response speed, trise (PM 1) was
normalized by the maximum trise in the random screen. The abs
log10abs ϕ

� �� �
value of ϕ was used to ensure ϕ = 1 is optimal.

Centroid of point clouds
The POs were sorted into ten discrete clusters to visualize the effect of
varying NCP. We calculated the centroid of each cluster by taking the
average of the three POs. The same procedure is used to calculate the
centroid of point cloud clusters at all Ract concentrations.

The Euclidean distance (d) was calculated as follows:

d ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX3
k¼1

ðPMNCPiðkÞ � OPPMðkÞÞ2
vuut ð13Þ

NCPi 2 ðPpase;CIF; Smad1tot; Smad4totÞ ð14Þ

Surface fitting and generating distribution of NCPs
To visualize the PM-space in three dimensions and correlate system
behavior using a data-driven approach, we fit a curve through all the Pareto
optimal solutions using the “fit” function in MATLAB using “cubicinterp”
methodand setting “ExtrapolationMethod” to “none”. The resulting surface
is as shown in Fig. 7A. To generate the distribution of NCPs in distinct
regions on the PM surface, we draw a cuboid in three dimensions using the
interactive MATLAB function “drawcuboid”, and reverse calculate the
distributionofNCPs that allows each systembehavior. Thehistogramswere
normalized by probability distribution function.

The combinatorial role of NCPs
The simulations in Fig. 8A were performed at a fixed CIF concentration of
50 nM and Smad4total equal to 50 nM and in Fig. 8B were performed at a
fixed CIF concentration of 50 nM and Smad1total equal to 50 nM. The
concentration of PPase along each curve in Fig. 8 ranges from 0.01 nM to
100 nM. Across each curve, the Smad1/Smad4 is in the range 10−2–104.

The same conditions were used to simulate Supplementary Fig. 15,
except the concentration of Smad1total was fixed to values in the range {50,
100, 500, 1000, 5000}.

Phosphatase levels across biological systems
The illustration in Fig. 9 is a convex hull constructed with Pareto optimal
response time along increase PPase levels. It was computed by performing a
Delaunay triangulation on the 2-D response time v/s PPase concentration
points, which was then used to identify the vertices of the convex hull on
MATLAB. We then annotated the three biological systems: Human Aorta,
Zebrafish embryo, and Drosophila embryo based on relative PPase levels

Table 1 | Bounds on the non-conserved parameters

Min (nM) Max (nM)

CIF 10−1 102

PPase 10−2 102

Smad1tot 10−1 103

Smad4tot 10−1 103
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from RNA-Seq data (Table S10, ratio to GAPDH) and approximate BMP
signalingresponse time (Fig. 1).

Data availability
The data and code for this manuscript are uploaded here: https://github.
com/gtreeves/balancing-pos-shaikh2024.
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