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Digital twins represent a key technology for precision health. Medical digital twins consist of
computationalmodels that represent the health state of individual patients over time, enabling optimal
therapeutics and forecasting patient prognosis. Many health conditions involve the immune system,
so it is crucial to include its key featureswhen designingmedical digital twins. The immune response is
complex and varies across diseases andpatients, and itsmodelling requires the collective expertise of
the clinical, immunology, and computational modelling communities. This review outlines the initial
progress on immune digital twins and the various initiatives to facilitate communication between
interdisciplinary communities.We also outline the crucial aspects of an immunedigital twin design and
the prerequisites for its implementation in the clinic. We propose some initial use cases that could
serve as “proof of concept” regarding the utility of immune digital technology, focusing on diseases
with a very different immune response across spatial and temporal scales (minutes, days, months,
years). Lastly, we discuss the use of digital twins in drug discovery and point out emerging challenges
that the scientific community needs to collectively overcome to make immune digital twins a reality.

Building a sustainable interdisciplinary community of
researchers focused on Immune Digital Twin (IDT)
technology
Adigital twin (DT) in biomedicine is a virtual representation of a patient, or
a patient’s state, that allows communication and data feedback from the
actual patient to the virtual patient and vice versa. This capability holds the
potential to improve personalised care and patient-tailored treatments.
However, implementing such a technology may only be feasible for some
pathologies. A recent report by the National Academies of Sciences, Engi-
neering, andMedicine (NASEM) in the US specified that in healthcare, this

feedback loop might not be through (semi-)automated interactions but
might require a human-in-the-middle1. This interpretation aligns with the
definition taken by the European Commission in developing their Virtual
Human Twin (VHT) initiative and the recommendations in the VHT
roadmap2,3.WhileDTapproaches inmedicine are still in their infancy, a few
biomedical applications close to the DT concept have already been imple-
mented inoncology, radiology, and cardiology4–18.DTsof largebloodvessels
could allow the early diagnosis of potential abnormalities and aid in
designing interventions19–21. Pancreatic DTs, representing an “artificial
pancreas”, can largely automate the decision algorithms for insulin
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administration, leading to control and reduction of long-termconsequences
of type I diabetes. The clinical success achieved with the artificial pancreas
proves that the DT paradigm can profoundly change medical care and
improve human health22–25.

Several factors have limited the development and adoption of in silico
simulations of the immune system to improve patient care directly.We still
need a complete understanding of the immune system’s health, disease, and
therapy response functions. Toprogress, wemust comprehensively leverage
what we know and benefit from a wealth of data, tools, and algorithms to
augment AI-enabled and mechanism-based simulations26.

Such a complex endeavour can only be achieved through a coordi-
nated, combined effort of clinicians, immunologists, experimental and
computational biologists, computer scientists, bioinformaticians, and
mathematical modellers (Fig. 1). Initiatives to bring interdisciplinary and
international consortia together are multiplying (Building Immune Digital
Twins; Forum On Precision Immunology: Immune Digital Twins show-
casing the need to bring together stakeholders from industry, pharma,
biotech, start-ups, and bio-cluster sectors to form an active community on
Building Digital Twins for the human immune system27. Bringing these
communities together is one of the major challenges we face.

Basic principles for designing IDTs
AnIDT is adigital twin for aparticularmedical applicationwith a significant
immune systemcomponent. Besides specific characteristics for the “internal
design and content”, the IDT should follow the FAIR principles28–30 to
comply with best practices and community guidelines regarding large-scale
and multi-scale models and be:

Findable
The different IDT elements should be fully annotated and characterised by
globally unique and persistent identifiers. They should be stored in appro-
priatedata andmodel repositories, facilitating their retrieval. Theirmetadata
should also be indexed in a searchable resource.

Accessible
The different IDT elements and their metadata should be retrievable in an
open and accessiblemanner following a standard communication protocol.
The metadata should be available even if the IDT elements are inaccessible.

Interoperable
Interoperability will allow the IDT to process information from multiple
heterogeneous sources, ensuring a seamless flow of information. Standard

input and output formats and the use of accessible programming languages
and environments will help towards its adoption and usability. The IDT
design requires a concerted effort by the systems biology community to
adopt and implement suggested community standards, such as Systems
Biology Markup Language (SBML)31 for mathematical model exchange,
Systems Biology Graphical Notation (SBGN)32 for model visualisation,
Biological Pathway Exchange (BioPaX)33 for pathway descriptions, and
Simulation Experiment Description Markup Language (SED-ML)34 for
simulation specifications. IDTs will likely use various modelling platforms,
including tools that support ODE, agent-based, discrete, stochastic, or data-
driven models. Not all of them are currently supported by community
standards. Thus, there is a critical need to create standards for model spe-
cification for a much broader class of models through close collaboration
anddiscussionswith theCOMBINEcommunity35.Ahelpful resource is also
the EDITH standards collection for Virtual Human Twins in Health36.

Reusable
All IDT elements should be described in detail, comprising multiple attri-
butes using standard metadata structures. Naming and annotating DT
elements should be orchestrated by existing ontologies and newly designed
controlled vocabularies, where needed. Transparency and accuracy in the
description are necessary for maximising reusability. The aspects of scal-
ability andmodularity are particular to the IDT field of reusability. The IDT
should be:

Modular. A modular IDT architecture allows for the integration of dif-
ferent components and models. Each IDT module can be derived from
previously built models designed to represent specific aspects of the
immune system; the modules can be designed from scratch to match
unanswered questions, enabling flexibility to mix and match models as
needed. This architecture supports easy updates, replacements, or addi-
tions. It allows the integration of new data and new data types and
formats as they are discovered or developed, ensuring that the IDT can
adapt to new research findings and evolving medical and biological
knowledge, keeping it always up-to-date37. Ideally, the IDT design should
be based on standardised, well-annotated modules that can be assembled
into adaptable models. Note that the modelling community has long
recognised38 that constructing a model in a plug-and-play fashion is a
natural approach to managing model complexity and offers additional
opportunities, such as the potential to reuse model components. In
particular, the SBML Model Composition package (SBMLcomp)39 was
developed to enable amodeller to include submodels within an enclosing
model and edit, delete, or replace elements of that submodel. The concept
of modularity in IDTs is similar to using containers and container
libraries in bioinformatics frameworks40.

Scalable. Scalability is indispensable for integrating the different com-
putationalmodules accounting for different scales and the computational
power demanded for the simulations. A successful IDT requires a clear
multilevel andmultiscale organisation of the immune response, allowing
for simpler surrogate models when complexity is unnecessary41,42 or
computing resources are scarce. Additionally, the IDT infrastructure
should be able to respond to an increase in data, number ofmodels, or size
of models relative to the immune system and the pathological context
under consideration. It should include connections to HPC and cloud
computing43. While supercomputers represent hardware-enhanced
machines, HPC uses distributed resources to combine storage, applica-
tions, computational power, and network resources. Cloud computing
refers to delivering services over the internet to facilitate access to
resources and scaling. The combination of HPC and cloud computing
could accelerate simulations at a large scale, thus significantly reducing
the time to market for an IDT prototype. Furthermore, scalability,
modularity, and interoperability should allow researchers to use IDTs at
different complexity levels and with different computation resource
needs. Alternatively, surrogate models of highly complex IDTs41,42,

Fig. 1 | Interdisciplinarity as a key factor in Building Immune Digital Twins.
Illustration of the collaboration among diverse stakeholders to establish an international
and interdisciplinary community dedicated to the development and deployment of
Immune Digital Twins. Modified template from https://youexec.com/.
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methods like model order reduction44, or the use of precomputed sce-
narios might be helpful to simulate IDTs in resource-limited settings. In
addition, as a best practice in this context, model developers are
encouraged to conduct reproducible comparative tests at different levels
of scalability. This approach accurately establishes the relationship
between the accuracy and quality of the results and the computational
resources used in each test. By providing comprehensive metrics, model
developers enable end users to determine the minimum computational
resources required for their specific use cases while achieving results
comparable to those initially reported.

While the IDT should in principle be a two-way information system,
ethical questions arise regarding the accessibility of the IDT predictions for
patients9. In the proposed schema, the decision is not directly accessible by
the patient, and it implies the presence of a control point, where a clinician
(expert) uses the IDTs in silico results to make an informed decision that is
then communicated to the patient. The level of accessibility to the IDT’s
predictions should be controlled, and this can be addressed with different
user categories having various types of rights. In Fig. 2, we offer a conceptual
design of an IDT implementation.

Integrating Artificial Intelligence (AI) models with
mechanistic models for IDT construction
Data-driven solutions can bring valuable insights when the precise
mechanism of interest is unknown but sufficient data is available. Deep
learning (DL) models are playing increasingly pivotal roles in various
domains45,46. However, their application still presents challenges, such as (i)
the need for large amounts of data and computing resources (ii) ethical and
privacy issues, particularly concerning the potential misuse of AI models
and the risk of perpetuating existing biases in patient data; (iii) a complex
regulatory landscape across countries and institutions, which severely limits

the sharing of sensitive human data; and (iv) the need for interpretability,
especially in the context of the GDPR EU law, which highlights the right to
explanation and the necessity of transparency and accountability in auto-
mated decision-making processes. Due to the latter, many algorithms are
trained on small and homogeneous cohorts, leading to data overfitting and
limited generalisability to new patient groups. Innovative ML methodolo-
gies are emerging to combat these challenges. For instance, generating
synthetic data informed bymechanistic knowledge offers a way to augment
datasets and mitigate data scarcity and imbalance47.

Furthermore,models can be contextualised to represent a wide range
of demographics and conditions, enhancing the diversity in patient
population representation48. Foundational predictive AI models, built
upon extensivemulti-modal data encompassing scientific texts,molecular
datasets, and biomedical knowledge graphs, are emerging in biology and
show great potential in facilitating all aspects of model engineering, from
biocuration to training model parameters49. Transfer learning, which
involves pretraining models on larger datasets before fine-tuning with
specific data, has been successfully implemented in data-scarce
applications50. Federated learning, a collaborative learning approach
that tackles data sharing and privacy issues by keeping data localisedwhile
enabling collective model training51,52. Lastly, the field of Explainable AI
(XAI) is advancing solutions to identify data and algorithmic biases and to
derive new insights from black-box models53, facilitating more reliable,
safer and interpretable predictions of the immune response upon per-
turbations or treatments. Finally, the current approach to omics data
analysis, especially in single-cell data science, is undergoing a significant
transformation with the new generation of generative54 and causal AI
methods55. These methods effectively bridge the gap between the data-
driven approach56,57 and the mechanistic modelling, marking a notable
shift in the traditional distinction between them.

Fig. 2 | Aminimalistic conceptual design of an IDT implementation. Producing a
DT requires calibrating a computational model to data derived from a real-world
patient. The connection to the real world is seen in the grey box to the left, where
inputs of different types are generated for a particular individual and then passed to
the virtual/computational model to personalise (“twin”) that general model to the

specific patient. The “twinning” process involves parameterisation and a matching
score to the real-world system by making predictions of how the real-world system
propagates through time. This process iterates as newdata becomes available and the
DT is updated.
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Apromising avenue for future development is the integration of AI and
multiscalemechanisticmodels55.Mechanisticmodels excel in inferring causal
relationships based on known biological mechanisms58,59, while AI models
canhelp identify patterns and correlationswithin extensive datasets20.Hybrid
IDTs could combine the robustness and interpretability of mechanistic
modelswith the capability ofAImodels for extracting information from large
data sets. Furthermore, hybrid models can address data scarcity while
enhancing the robustness of the model, as exemplified in physics with
physics-informedneural networks (PINNs), which showed that constraining
neuralnetworkswithpriorknowledge improves accuracyandgeneralisability
even in data-limited scenarios60. However, biological systems are typically
described in qualitative terms, and how to effectively integrate qualitative
prior knowledgewith quantitative andmathematicalmodels requires further
investigation. Despite the difficulty of integrating qualitative knowledge into
deep learning models, proof of concept cases have already been published,
suchaspathway-awaremulti-layeredhierarchicalnetworks for cancerpatient
classification61 or visible neural networks that can reproduce the inner
workings of eukaryotic cells62.While further research is essential, hybrid IDTs
could be particularly effective in predicting and suggesting therapeutic
interventions targeting specific mechanisms63.

To summarise, efficiently building Digital Twins of the human
immune system requires advancements in informatics and mathematics to
accommodate the emergentneeds that follow such anendeavour (Fig. 3).To
bring IDTs to reality, one would need to leverage the progress in compu-
tational biology, AI, and the development of sophisticated integrative
methods for low and high-throughput biological data spanning many
biological layers to produce a robust ecosystem where data analysis and
modelling could be directly linked to patients’ data, at both clinical and
biological levels. Several building blocks can be developed independently,
ensuring that standards, FAIR principles, and interoperability are factored
in as we move towards the bigger picture.

Implementing Immune Digital Twins in the study of
complex human pathologies
As a causal and modulating factor, the human immune system is
central to several disease classes, including infectious, autoimmune,
and cancer (See Fig. 4).

A defining feature of the immune system is that it operates across scales,
bridging molecules to organs’ dynamics and spanning timescales from sec-
onds toweeks,months, or years. This implies that digital twins incorporating
immune system functions must be multiscale by default. The ubiquity of the
immune system across a host of pathophysiological processes and the mul-
tiscale nature of how that pathophysiology manifests point to two classes of
challenges when developing the infrastructure for implementing IDTs. The
first is related to representing the relevant biology to be incorporated in a
specific “fit-for-use” IDT while taking advantage of a shared knowledge base
regarding the various components of the immune system. While having a

Fig. 4 | Human immune response in various pathologies. Immune/Inflammatory
functions and their relationship to various classes of diseases: Autoimmune diseases
in which failure in non-self-recognition or negative feedback control of proin-
flammation leads to persistent inflammation and long-term tissue damage; Infec-
tions in which the immune response is responding to various types of microbes
(viruses, bacteria and fungi); Ageing, where changes in the function of the immune
response can lead to a host of diseases; Acute Illness, where a host of perturbations
rapidly activates the immune response. Immune pathophysiological processes range
in time scale from hours for acute illness and sepsis to years and decades in auto-
immune diseases and cancer. We propose that nearly every disease process and its
potential resolution involves to some degree, inflammation and immunity.

Fig. 3 | Different steps across scientific fields for a full-circle IDT implementa-
tion. Stepwise and domain specific steps for the implementation of IDTs. The
building blocks of each scientific domain can be developed independently. However,

attention to interoperability, use of common standards, and compliance with the
FAIR principles will accelerate the building of IDTs that cover most of the technical/
methodological needs.
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comprehensive computational representation of the immune system that can
directly model across different disease processes is an aspirational goal, in
initial implementations of IDTs there will be specific choicesmade regarding
what parts of the immune systemwill be incorporated into a specific IDT; the
examples below will provide some insight into how this might be handled.
The second challenge is technical: how should such IDTs be implemented?
While multiscale modelling technology in biomedicine has made significant
progress over the last decade64, many problems need to be solved, from
software engineering tomathematics, includingmethodological challenges in
sensitivity analysis or uncertainty quantification65. Specific use cases will
direct the degree of representation and detail required for the IDT. A sig-
nificant endeavour is identifying the mechanisms of interest and the core
application (“fit-for-use”). The basic steps required for a full-circle IDT
implementation are shown briefly in Fig. 5, and the examples of four fit-for-
use IDTs are discussed afterward. In short, regardless of the pathology at
stake, building aDigital Twin needs to address at least two things: pathology-
specific events and the immune response to these events. From a more
practical point of view, there are several distinct steps that one could follow to
reach a mechanistic DT implementation, with adjustments and adaptations
where possible to fit the purpose.

The following section presents four paradigms of potential DT imple-
mentations for four characteristic pathologies, including intra- and inter-
cellular interactions expanding to organ levels and their communicationwith
the immune system. All paradigms are based on existing efforts, published
models, and/or disease approaches for DT, extended to account for multiple
scales and frameworks. We call them paradigms to stress the goals and
approaches, not the specific implementation. These paradigms include
infectious pneumonia, rheumatoid arthritis, sepsis, and cancer.

Example 1: Infectious pneumonia Immune Digital Twin (IP-IDT)
paradigm
Background. Pneumonia is among the most common human diseases
and the 4th leading cause of death. Infectious pneumonia inflames the air

sacs in one or both lungs, which can quickly become life-threatening.
Pathogenic insults such as viruses, fungi, or bacteria can cause the lungs’
air sacs (alveoli) to become inflamed and filled up with fluid or pus. A
robust immune response is crucial for the clearance of the pathogen and
the resolution of inflammation. However, an overpowering response can
lead to acute respiratory distress syndrome (ARDS). Alveolar macro-
phages are the sentinels of the alveoli; their functions are broad, e.g.,
phagocytosis, clearing debris, resolution of inflammatory responses, and
tissue remodelling66. Pulmonary macrophages are diverse, including
tissue-resident alveolar macrophages that maintain immune balance and
monocyte-derived alveolar macrophages that adapt to the
microenvironment67. Recently, alveolar epithelial cells were found to
actively participate in innate immunity by directly communicating with
alveolar macrophages, phagocytosis of pathogens, and/or recruiting
other leucocytes to the injury site. If the pneumonia lasts several days,
adaptive immunity, such as T-cells and B cells, must be considered68.

Objective. Current ICU risk calculators accurately predict the likelihood
of death but do not provide actionable information about therapeutic
interventions in a particular patient. This paradigm aims to develop a
computational model that encodes disease-relevant biological mechan-
isms and is dynamically recalibrated as new patient data becomes avail-
able in the clinic. The pneumonia DT can be used at any given time to
simulate different interventions and help the critical care doctor optimise
personalised interventions, such as timing and duration of antibiotic
treatment based on patient status.

Implementation suggestion. The computational model underlying the
IP-IDT needs to include mechanisms from the intracellular to the
organism scale, as well as features of the pathogen. The epithelial cells
lining the alveoli are involved in signalling events and coordinate the
early immune response. They also sustain major damage as the infection
develops. Immune cells, such as macrophages, dendritic cells, and NK

Fig. 5 | A bioinformatics ecosystem for data analysis, integration and modelling
in IDT implementations. Stepwise process to obtain a DT implementation that
accommodates different types of input data, integrative methods, and modelling
formalisms to template model building, simulation, and analysis to create

personalised instantiations for therapeutic interventions. The predictions can be
tested using in vitro assays using humanised cellular systems (like organoids) and in
silico population trials.
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cells, are recruited and secrete defensive substances. Fungal pneumonia
starts in a highly localised fashion in immunocompromised patients, and
the infection progresses slowly compared to bacterial pneumonia. To
simulate pharmaceutical interventions, the intracellular and tissue scales
are particularly important. Other interventions, such as prone posi-
tioning of patients in ICU beds or mechanical ventilator assistance,
require lung physiology representation. A suitable implementation of an
IP-IDT could consist of Ordinary Differential Equations (ODE) or dis-
crete models at the intracellular scale, agent-based models (ABM) at the
tissue scale and ODE models at the whole-organ scale.

Input data. In an ICU setting, routinely collected data include immune
cell counts, cytokine levels, and regular blood draws.One can periodically
obtain data from intubated patients through bronchoalveolar lavage
characterising the lung environment, such as cell counts, infection
severity, and epithelial damage. X-ray images are collected regularly, as
well as occasional CT scans. Intracellular data are not likely to be col-
lected, requiring the construction of surrogate models.

Potential impact.When fully developed, a pneumoniaDT could provide
a critical care doctor with a decision-support tool that provides action-
able, personalised recommendations for a given patient at a given time.

Example 2: The rheumatoid arthritis Immune Digital Twin para-
digm (RA-IDT)
Background. Rheumatoid arthritis is an autoimmune complex disease
affecting the human body’s articular joints. The disease is multifactorial,
with genetic and environmental factors pivotal in the disease pathogenesis.
RA’s aetiology is unknown, and the treatment is primarily symptomatic.
The disease affects the immune system, mistakenly attacking the synovial
lining of the joints, causing inflammation, cartilage destruction, and bone
erosion. The autoimmune component is central; however, other
mechanisms, both immunologic and tissue-derived, clearly contribute to
its onset and progression69. If left untreated, the fulminant stage of the
disease is describedbyahyperplastic inflamedsynovium, cartilagedamage,
bone erosion, and other systemic consequences70. The response rate to
current therapies is around 40%71, demonstrating the pressing need for
accelerating innovative and powerful technologies for personalised care.

Objective. Many cells and their cytokines play critical roles in the
development of RA. The synovial compartment is infiltrated by leuco-
cytes and the synovial fluid is inundated with pro-inflammatory med-
iators that are produced to induce an inflammatory cascade, which is
characterised by interactions of fibroblast-like synoviocytes with the cells
of the innate immune system, including monocytes, macrophages, mast
cells, dendritic cells, and so on, as well as cells of adaptive immune system
such as T cells and B cells. Endothelial cells contribute to the extensive
angiogenesis. The fulminant stage contains hyperplastic synovium, car-
tilage damage, bone erosion, and systemic consequence. The destruction
of the subchondral bone can eventually result in the degeneration of the
articular cartilage as the result of a decrease in osteoblasts and an increase
in osteoclasts and synoviocytes70. The main aim of the RA-IDT would be
to digitally represent the interplay between resident cells of the joint and
immune cells in RA, which leads to bone erosion, cartilage breakdown,
and inflammation, to the level where the RA-IDTs can propose perso-
nalised therapy interventions. One major unmet need in the field is the
understanding of response to therapy, especially for the non-responders
to traditional medication.

Implementation suggestion. Hybrid modelling methods that allow for
combinations of large-scale inter-cellular models with cell-level agent-
based models could create a virtual joint. Recently, disease and cell-
specific pathway models72,73 and dynamic models on the intra and inter-
cellular level have been developed74–79 that could serve as the core com-
ponents of an RA-IDT. Moreover, given some shared characteristics,

especially regarding bone erosion and cartilage destruction, between RA
and Osteoarthritis (OA), OA models could also be contextualised and
implemented in the RA-IDT80,81. Modelling methods that couple sig-
nalling, gene regulation, and metabolic fluxes are now available74,82 and
can be combined with omics data technologies to create personalised
instantiations. For the RA-IDT, a combination of large-scale Boolean
models that govern cellular behaviour, with agent based models (ABM)
for accounting for the interactions of multiple cellular types, could be a
suitable implementation. In ABM, agents may receive signals and input
from the environment and their neighbouring agents, provide output to
the environment and their neighbours, andmake ‘decisions’ based on the
input from around them and their internal, sub-cellular decision making
rules. An agent may grow, proliferate, enter a quiescent state, express
cytokines/chemokines or undergo apoptosis or necrosis in response to
surrounding environmental conditions. A first attempt to link Boolean
models with ABMs was done during the COVID-19 Disease Map
initiative83.

Input data. Biosensors that can measure matrix degradation and bone
erosion along with patient-reported outcomes and scores, could be used
to assess the patient’s joint and bone health and monitor changes over
time84. The RA-IDT could also be integrated with other technologies,
such as imaging techniques or wearable non-invasive sensors (smart
watches, smartphone applications), to provide a more comprehensive
picture of the patient’s joint and overall health.

Potential impact. Complex diseases are associated with a heavy societal
burden that stems from patients’ disabilities and health conditions and
the economic costs which come with it. The RA-IDT could help in
identifying novel therapeutic combinations tailored to the needs of
individual patients, especially beneficial for the ones not responding to
traditionally administered medication. In addition, it could provide
valuable insights into the disease pathogenesis and help identify newdrug
targets.

Example 3: The sepsis-IDT paradigm
Background. Sepsis is a syndrome in which a disordered immune
response to severe infection or injury leads to early proinflammatory
collateral tissue damage/organ dysfunction85 and later immune incom-
petence, leading to increased susceptibility to nosocomial infections86. As
sepsis is a systemic disease, a sepsis-IDT will necessarily include the
organs at risk: the immune system, lung, liver, kidney, gut, and cardio-
vascular system.

Objective. The primary goal of the Sepsis-IDT is to provide the capability
to treat sepsis by multimodal adaptive modulation of a patient’s under-
lying cytokinemilieu (“fit-for-purpose” as per the NASEM report). It will
account for sepsis’s heterogeneity and dynamic complexity by having an
ongoing data link between the virtual and real twin and informing
control/guiding therapy1.

Implementation suggestion. The clinical time scale of sepsis (hours to
weeks) focuses on the acute aspects of the innate immune response and its
initial transition to adaptive immunity. An example of an existing
computational model for this can be seen in ref. 87. Furthermore, sepsis
manifests in dysfunction of multiple organs, and thus, each organ system
can be cast as a module of the system-level Sepsis-IDT. An early example
of this approach simulates the gut-lung axis in sepsis. It consists of
modular agent-based models of tissue/organ-specific epithelial cells
interacting with and connected to an agent-based model of endothelial
cells and circulating immune cells.88. These existing examples of dynamic
multiscale molecule-to-organ integration form the basis of an initial
Critical IllnessDigital Twin (CIDT)89,90. ThisCIDTwould be used to train
(off-line) an artificial intelligence controller (AIC) offline, as described in
refs. 90,91. This digital twin-trained AIC would be the “brain” of an
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integrated cyber-physical system that monitors real-time plasma cyto-
kine/mediator levels (using existing technologies as described in ref. 92
and uses the AIC to guide the administration of different amounts of pro-
and anti-inflammatory mediators/monoclonal antibodies to steer an
individual patient back to a state of health.

Input data. The ongoing data link between the virtual and real world, per
the NASEMDT definition, can be accomplished for the Sepsis-IDT via a
suite of clinical and laboratory measurements providing dynamic
molecular profiling of the patient’s immune state as reflected by circu-
lating inflammatory mediators92 and determinants of trajectories of
organ function. For the latter, the Sequential Organ Failure Score
(SOFA)93 and its variants94 can be generated by readily obtainable clinical
measurements and sequentiallymeasured to update the IDT. The current
version of the CIDT is poised for testing in a sufficiently complex animal
model of sepsis, but should the performance of this cyber-physical system
be insufficient, the development loop can both refine the Sepsis-IDT and
guide sensor/assay developments as per guidance from the NASEM
report.

Potential impact. Given that the current inability to effectivelymodulate
the inflammatory/immune dynamics in sepsis is due in significant part to
the heterogeneity and dynamic complexity of the disease process95, the
personalised and adaptive control capabilities offered by the digital twin
paradigm point to the potential therapeutic benefits of a successfully
implemented Sepsis-IDT.

Example 4: The onco-IDT paradigm
Background. The ability to evade immune surveillance and destruction
is a hallmark of cancer96. Immunotherapy approaches have significantly
improved cancer outcomes for several cancer types97. During oncogen-
esis, the immune system activates a multifaceted response involving
innate and adaptive immune systems. However, cancer cells and their
environment progressively evade immune surveillance by down-
regulating major histocompatibility complexes (MHC) and upregulat-
ing immune checkpoint proteins98,99. Cancerous, immune, and stromal
cells are the critical components of the tumour microenvironment
(TME), and their interplay represents a complex system. TheUSNational
Cancer Institute and the US Department of Energy have started to
explore the development and implementation of predictive Cancer
Patient Digital Twins for personalised treatment100.

Objective. The main aim of Onco-IDTs would be to provide a compu-
tational representation of the patient’s cancer disease, including the
interactions between cancer cells, tumour-associated cells, and the
immune system. An ideal Onco-IDT should have the ability to be cali-
brated to patient’s data and used for clinical decision support. An Onco-
IDT should include elements like the TME, neo-angiogenesis, pre-
metastatic and metastatic conditions, and system-level information like
blood and lymphatic transport. Today, personalised therapy in oncology
is making progress in identifying cancer-driver mutations for each
patient101 or cellular patterns linked with disease state/progression102–104.
Successful implementations of in silico mechanistic models led to the
identification of optimal treatments with minimal toxicity in melanoma
and breast cancer105,106. Recently, patient-specific Boolean models of
signalling networks were used to guide personalised treatments107.

Implementation suggestion. A possible implementation of an Onco-
IDT can draw inspiration from the multiscale model of the different
modes of cancer cell invasion described in ref. 108. The framework
includes agent-based modelling and continuous time Markov processes
applied on Boolean network models. The model is focused on cell
migration considering not only spatial information obtained from the
agent-based simulation but also intracellular regulation obtained from
the Boolean model. It could be expanded to account for more complex

phenotypes and interactions of tumour cells with cells from TME and
immune cells, and also adapted to include clinical features and patient-
derived characteristics. An Onco-IDT could be employed to optimise
treatments and treatment combinations and potentially predict response
to a particular treatment for individual patients.

Input data. Extensive cell phenotyping, genetic testing, and sequencing
of tumourmaterial is possible but requires tissue obtained by biopsy. The
biopsy-based molecular subtyping provides direct data on a tumour’s
current state and microenvironment, and single-cell techniques are
powerful tools to capture natural and pharmacologically induced tumour
immunity109. However, cancer genomics-guided approaches harnessing
or targeting the immune system are still in their infancy, and surrogate
markers are used. Also, biopsies are invasive and usually reserved for
diagnostics, limiting their ability to track tumour development over time
and sample intra- and inter-tumoral heterogeneity. Data and measure-
ments from non or semi-invasive interventions, such as electronic health
records, radiological imaging, and serological (circulating tumour cells
and circulating tumour DNA) ormolecular data that could inform about
the patient’s inflammatory state, can be integrated with the biopsy data
points. In addition, blood samples can provide insights into relevant drug
pharmacokinetic (PK) processes, while wearables can offer additional
information regarding vital signs, body temperature, and physical
activity levels.

Potential impact. An effective Onco-IDTwill provide oncologists with a
dynamic clinical decision-support platform, aiding prognosis and disease
management. More specifically, the Onco-IDT could contribute sig-
nificantly to prognostic predictions regarding disease course, considering
factors likemetastatic capacity and patient survival. Additionally, it could
offer actionable insights concerning therapeutic interventions, involving
selecting the most effective therapy that maximises benefits while mini-
mising side effects and adverse outcomes. Therapeutic decisions might
also be optimised to select effective monotherapies versus combination
therapies, drug doses, and treatment schedules.

These paradigms outline four scenarios where digital twins could be
deployed for treatment optimisation. The sepsis and pneumonia paradigms
takeplaceonvery short time scales, days orweeks,whereas theoncology and
autoimmune paradigms focus on time scales of months or years. Yet, the
implementation of IDTs represents a key enabling technology for the per-
sonalisation and optimisation of treatment. While the pathological char-
acteristics are very different, the technical modelling challenges are similar.
Besides data challenges, from obtaining appropriate data to interpreting
them and turning them into model parameterisations, the modelling scaf-
folds and implementations could follow shared reasoning. For example, for
molecular level simulations: one couldusenetworks, Booleanmodels,ODE-
based models, discrete logic-based models; for cellular level: networks,
Boolean models, ODE-based models, discrete logic-based models, multi-
scale models, hybrid models; for cell-cell communication and tissular level:
Agent-based models, multicellular models, Boolean models, ODE-based
models, discrete logic-basedmodels; for organ level: structural, biophysical,
biomechanical models, ODE models, and for system level: multiscale
models, biophysical models, hybrid models, human physiology engines. In
Table 1we list available software andplatforms for differentmodelling types
and scales.

IDTs in drug discovery
Drug development is costly and slow. The costs include early research and
discovery costs through clinical development, regulatory approval, and
post-marketing surveillance. Most candidate targets and drugs experience
failure in the early stages, contributing significantly to the overall cost of
delivering more successful candidates. Therefore, optimising these earlier
stages holds transformative potential in the pharmaceutical industry. A
strong consensus among experts supports the opinion that the involvement
of digital twins in this transformation can be essential110.
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The introduction of a specialised form of drug development digital
twins (DDDT) has the potential to be a game-changer111. Moreover, we can
envision further specialisation ofDDDTs based on various tasks in the early
drug discovery process. These tasks include 1) identifying targets and their
combinations, as well as determining the most promising treatment mod-
alities (encompassing not only small chemical compounds but also
antibody-drug conjugates, various types of biologics, and gene or cell
therapies); deciding on the level at which the target should be affected
(whether directly, through its RNA, or its involvement in protein-protein
interactions), 2) experimental target and drug validation, aiding in identi-
fying the most informative experimental systems (such as cell lines or
organoids) and experiment designs, 3) repurposing drugs for alternative
indications in case of a failure for the primary one, 4) delivering drugs by
integrating pharmacokinetic models into the global in silico models of
treatment and taking into account safety aspects early in the process, 5)
finally, theremight beflavours ofDDDTs aimed at optimising theprocess of
drug production, with notable examples like Sanofi exploring the use of
digital twins for vaccine manufacturing112.

All these DT specialisations require specific designs, functionalities,
and connections to the existing wealth of public and proprietary data.
Furthermore, virtual populations of patient DTs can be used to run in silico
clinical trials that can accompany or be used to design real-life trials113. One
recent example is the Universal Immune System Simulator (UISS)114. The
EuropeanMedicines Agency (EMA) provided a letter of support for the use
of the UISS as a simulation platform to predict how the circulating
interferon-gamma (IFNγ) changes over time as a function of the treatment
dose in a cohort of virtual patients to select thedoses to be tested in escalating
dose phase IIa trials of new therapeutic whole cell / fragmented based
vaccines against several diseases115. Whereas more work is required before
qualification advice can be given, it does show that EMA believes this is a
genuine possibility. Recently, a book was published focusing on best prac-
tices for using computational modelling and simulation in the regulatory
process of biomedical products, showcasing the need to address policy and
implementation early on in the DT design116.

Regulatory and ethical aspects of IDTs
Regulatory stakeholders like the Food and Drug Administration (FDA),
European Medicines Agency (EMA), and other national agencies have
expressed their acceptance of simulation-derived results, as evidenced in the
submission dossiers. FDA started the Model-Informed Drug Development
(MIDD) pilot program about a decade ago117. Owing to the success it found
in advancingmedicinal product development, the FDAhas now established
MIDD meeting formats for the fiscal years 2023-2027, welcoming model-
ling and simulation applications at various stages of product development,
especially in the domain of rare/orphan and paediatric indications118,119.
EMA has also evaluated the modelling and simulation approaches earlier
through the Modeling and Working Party to increase awareness across
European national authorities.

Moreover, National funding agencies in Europe and the US encourage
the use of innovative digital technologies as alternative methods for animal
experiments.

Table 1 | Computational modelling software and simulation
platforms that can be employed to build models of
different scales

Computational modelling

Scale Tool Type

Single scale
(Molecular/
Cellular)

Aeon Boolean

Bio Model Analyzer Logic-based, multivalued

Biocham Boolean

BioNetGen Rule-based/ODE/ABM

BooleSim Boolean

BoolNetR Boolean

Cell Collective Boolean

CellDesigner ODE

CellNetAnalyzer Boolean

CellNOpt Boolean

COMSOL Multiphysics PDE

COPASI ODE/SDE/Gillespie/steady-
state solvers

GINsim Boolean - genetic
regulatory networks

JWS online ODE

Kappa Rule-based/ABM

MaBoSS Boolean, stochastic

MATLAB toolkit ODE

M-cell ABM cellular spatial

NERDSS ABM spatial

PhysiCell ABM cellular spatial

PyBoolNet Boolean

Smoldyn ABM spatial

SpringSaLaD ABM spatial

Tellurium ODE

Virtual Cell (VCell) ODE/PDE/SSA/ABM

WebMaBoSS Boolean models

Metabolic CellNetAnalyzer Flux Balance Analysis

COBREXA Flux Balance and Flux
Variability Analysis

Escher Flux Balance Analysis

KBase Flux Balance Analysis

Metabolizer Flux Balance Analysis

MetaLo Metabolic analysis of logical
models extracted
from maps

RAVEN Genome scale metabolic
modelling

Multiscale Chaste Molecular + Cellular,
supports CellML

CompuCell3D Molecular + Cellular

Morpheus Molecular + Cellular

NetLogo Molecular + Cellular

PhysiBoSS Molecular + Cellular

Tissue Forge Molecular + Cellular

Vivarium Merging multiple scales

System level BioGears Human Physiology

Physiome Project Virtual Physiological Human

Pulse Human Physiology

Table 1 (continued) | Computational modelling software and
simulation platforms that can be employed to build models of
different scales

Computational modelling

Scale Tool Type

Universal Immune System
Simulator

Generic Immune System
simulator

Additional useful resources, such as pathway editors, databases, visualisation software, simulation
environments and repositories, as well as ML/AI tools, that can be used in various steps of the IDT
building can be found in Supplementary Data 1.
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If IDTs are to form an intrinsic part of the medical decision processes,
theymust be classified as software devices formedical use.Accordingly, they
must undergo a software development process that complies with the IEC
62304 standard, among others120. The FDA has also published guidelines
regarding the credibility assessment of computational modelling and
simulations in medical device submissions121. For a smooth transition from
research-use-only software to medical software devices, meeting these
requirements as early as possible in the development process and at a rea-
sonable cost will be essential. Following established guidelines from the
systems biology community122–125 for model specification, documentation,
data file formats, etc., is the critical first step in ensuring compliance with
regulatory requirements.

Digital twin technology and the AI era also raise ethical questions
regarding the protection of personal data, their use, and their legacy, as well
as the democratisation of such technology for the benefit of humanity126.
The success of these technologies in health care depends on addressing three
main ethical challenges: the right and exhaustive training of AI models;
healthcare data management and respecting the privacy of patients; and
encouraging patient trust in clinicians who use AI-based tools127.

Questions regarding the accessibility of the template and personalised
models, the use of clinical data to train AI algorithms that could be com-
mercialised, employers’ and insurance companies’ access to digital twins of
employees, and the fate of a digital twin after the passing of the actual patient
are open to discussion and debate128.

Limitations and challenges
Digital twin technology for healthcare is advancing at a fast pace. The
numerous scientific articles published in the last two years have tried pin-
pointing the multiple challenges the scientific community faces to bring
DTs into the preclinical and clinical settings4–18. One of the most common
issues is the reconciliation of the different scales in biology. While some
fields have been progressing fast, especially in the cardiology domain20, the
twin is built on the organ level (i.e. modelling the heart), focusing primarily
on biophysical, structural, and biomechanical characteristics derived from
imaging sources, electrocardiogram (ECG) databases and, in some cases,
clinical data, including data from biosensors and wearable technology129,130.
However, pharmaceutical treatments operate on themolecular and cellular
level, and the absence of causal molecular interaction networks underlying
the biophysical processes creates a critical gap. While not all DTs should
span all layers and scales, building the technology and creating repro-
ducible, scalable, and interoperable frameworks to link these scales when
needed is a necessary step for moving forward.

Similarly, digital twins on the cellular or tissue scale often fail to scale up
and provide links to full-body manifestations and clinical measurements as
they focus on a few molecular or cellular processes. Conclusions extra-
polated to an organ or patient level are often made based on a limited
number of biomarkers or phenotypes. In this case, these sophisticated
computational models are complex to implement in the clinical or pre-
clinical setting, as they operate on a different level regarding routine clinical
measurements and patient assessment.

BuildingDigital Twins of thehuman immune systemcomeswith some
additional hardship. The immune system is inherently complex and oper-
ates onmultiple scales, including organs and cells.Moreover, it is difficult to
establish a “baseline” modus operandi that fits a general population.
Focusing on specific pathological conditions, which have distinct localised
and systemic manifestations of the dysregulation, and where the interplay
between resident and immune cells is more straightforward tomeasure and
quantify, might be the best approach for the first “proof of concept” IDT
implementations. Moreover, as inflammation seems omnipresent in most
disease settings, it could be seen as the core immune response that could be
built and modelled in an adaptable way to fit most cases. Figure 6 sum-
marises the challenges associated with DT development and implementa-
tion, especially those related to data, policy, complexity, infrastructure,
application, and modelling paradigms.

Perspectives
A change of mindset is needed to achieve tangible results in IDT tech-
nology. Traditionally, clinicians, immunologists, and experimental biol-
ogists identify hallmarks of the disease, disease biomarkers, and affected
pathways, organs, and systemic manifestations. They also include in the
study measurable factors used in the clinic and employ available experi-
mental techniques to enrich the molecular, genomic, metabolic, and
clinical profile of the patients. Bioinformaticians and computational
biologists then analyse the data available and provide coherent links and
possible abstractions that could capture the essential characteristics of the
system. However, an early inclusion of the bioinformaticians and mod-
ellers in the study design could ensure that the minimal set of measure-
ments for building a reliablemodel is factored in. Likewise, exchanges and
discussions early on in a research project would allow for a maximum
comprehension of the diseasemechanisms and questions at stake. Besides
IDT design and implementation, bioengineers can help identify and
manufacture critical biosensor technologies that could be implemented
into the IDT computational ecosystem. Partnerships with startups could
accelerate the production of prototypes, and the industry could contribute

Fig. 6 | Key challenges in developing and imple-
menting IDTs in pre-clinical and clinical settings.
The implementation of IDTs require a community-
driven approach to tackle challenges in data acqui-
sition, analysis and integration, policy and data
protection, methodological aspects to address
complexity, dedicated infrastructure development.
Tailor-made solutions are also needed to address
specific unmet needs in different fields of applica-
tion, and, lastly, robust and credible scalable mod-
elling approaches for complex human pathologies
that involve characteristic immune responses.
Modified template from https://youexec.com/.

https://doi.org/10.1038/s41540-024-00450-5 Perspective

npj Systems Biology and Applications | (2024)10:141 9



by providing infrastructure for the necessary scaling and support for
bench-to-market pilot studies.

Mechanism-based simulations, AI-enabled data integration, and sub-
sequent experimental and clinical validation will allow for the iterative
improvement of human immune systemmodels. These models will become
increasinglymoreaccurate androbust in their capacity to simulate thehuman
immune system’s reactivity against insults and dysregulation in disease and
predict potential pharmacologic intervention points at different scales.
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