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ABSTRACT
Although enrollments in introductory computing courses are ris-
ing, many students still struggle to learn programming. Previous
research has found that students’ perceptions of the programming
process may be one factor that contributes to this problem. Students
often assess their own programming abilities overly harshly when
experiencing low-level programming moments that are considered
normal and expected parts of learning to program. For example,
many students think they are doing poorly if they need to stop
coding to plan. Research has also shown that students who self-
assess negatively in these moments tend to have lower self-efficacy,
defined as one’s belief in their ability to achieve a particular out-
come. In turn, students with lower self-efficacy tend not to persist
in their computing studies. While the criteria that students use
to assess their ability have been studied extensively, we have a
limited understanding of the origins of these criteria and students’
reasons for adopting them. To address this gap, we conducted a
total of 36 interviews with seven introductory computer science
students throughout an academic quarter. In each interview, we
asked students to think aloud and explain their reasoning while fill-
ing out a self-assessment survey. Through a qualitative analysis of
the data, we identified the most common reasons students gave for
negatively assessing their performance, including having high ex-
pectations for their abilities and feeling like they cannot overcome
a struggle. We also identified common reasons why students do not
negatively assess their ability in these moments, including believ-
ing an experience is “normal” or feeling like they can learn from
or overcome a struggle. These findings contribute valuable new
knowledge about the underpinnings of students’ self-assessments
of ability, and suggest that interventions that explicitly emphasize
best practices and normalize struggles in the programming learning
process are needed to increase student self-efficacy and persistence
in computing.

CCS CONCEPTS
• Social and professional topics → CS1; Computer science
education.
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1 INTRODUCTION
Enrollments in introductory computer science courses at the un-
dergraduate level are rising, but retention rates for these courses
are still low [42–44] and failure and drop rates are high [6]. Re-
cent research in computing education has shown that students’
perceptions of the programming process may contribute to their
decisions around whether or not to persist [17, 18, 22, 30]. Students
frequently self-assess their programming abilities negatively in low-
level programming moments that are considered common or best
practices by their instructors [18]. For example, a student might
think that they are doing poorly if they need to use resources to
look up syntax [18], even though this is considered good practice
[16, 20, 31, 38].

Prior research has shown that students who tend to self-assess
more negatively in these programming moments also tend to have
lower self-efficacy [18], defined as one’s belief in their ability to
achieve a particular goal [3–5]. Students who have lower self-
efficacy are also less likely to persist in undergraduate computing
programs [30]. Furthermore, women tend to be more critical of their
own programming abilities [19, 22] and exhibit lower self-efficacy
than men in computing [2, 8, 33], which may exacerbate the gender
gap in undergraduate programs.

Given the prevalence of negative self-assessments and their re-
lationship to student self-efficacy, researchers have argued that
we need to support students in developing more accurate beliefs
and expectations about themselves and the process of learning to
program [18, 22, 24, 25, 30]. However, while we have a good un-
derstanding of the low-level programming moments that may lead
students to negatively assess their programming abilities, we do not
yet know why students use these particular moments to evaluate
themselves, or how these are impacted by students’ experiences.
Gorson and O’Rourke found that inaccurate perceptions of profes-
sional practice may explain some negative self-assessments, but
these perceptions did not fully explain their results, so they call for
more research into the reasoning behind students’ overly negative
self-assessments [18].
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To address this gap, we conducted a longitudinal study to un-
derstand the reasoning behind students’ self-assessments. We con-
ducted biweekly interviews with seven students during one aca-
demic quarter, with the goal of capturing how their evolving ex-
periences motivated and grounded their self-assessments. During
each of the 36 interviews, students talked aloud while completing
a survey adapted from [18] that captured whether they negatively
assess their ability in response to common programming moments,
and were then asked to explain their responses. Through a qualita-
tive analysis, we found that students often negatively self-assess
when they think they should not encounter a particular situation
or cannot recover from a struggle. In contrast, students opt not to
negatively self-assess when they believe the moment is a normal
experience, is expected for novices, or is a struggle they can recover
and learn from. Finally, we found that some students ground their
reasoning in specific sources, including observations of instructors
and peers, course policies, and conversations with professionals.

Our findings deepen our understanding of the underlying rea-
sons behind students’ self-assessments, and show that perceptions
of professional practice are only a small piece of the puzzle. In our
discussion, we argue that researchers and practitioners can help
students develop more accurate expectations about the learning
process by making evaluation criteria explicit, supporting students’
reflections on their self-assessment criteria, and helping students de-
velop the skills they need to recover from struggles. Implementing
these suggestions could lead to increased self-efficacy and retention
in undergraduate computing courses.

2 RELATEDWORK
2.1 Self-efficacy
Self-efficacy, or one’s belief in their own ability to achieve a goal [3–
5], has a large impact on student behavior. Studies have shown that
having high academic self-efficacy predicts higher performance, re-
silience, and persistence [11, 21, 28, 33, 37, 39]. Self-efficacy has also
been shown to impact major [7] and career [29] choices. Increasing
student self-efficacy has the potential to help improve retention in
computing majors, which is important as computing-related skills
are increasingly needed in everyday life and many careers [9].

Self-efficacy is well-studied in computing education. Researchers
have found that students make frequent judgements about their abil-
ity to succeed in computing [18, 24, 25, 30], and that they interpret
their present context (e.g., classroom environment), measurements
of ability (e.g., experience, speed, and grades), and mindset (e.g.,
fixed or growth [14]), as factors when determining whether they
should persist in computing [30]. Furthermore, students do not
always make positive self-efficacy judgements after successful pro-
gramming sessions, nor negative judgements after failed sessions
[24, 25], which may be explained by students’ expectations for
themselves, particularly in comparison to peers [25].

Self-efficacy is also a factor that exacerbates the gender gap in
computing, with studies reporting that women exhibit lower com-
puting self-efficacy than men [2, 8, 33]. This gap can be attributed
to differences in prior experience and computer self-efficacy [2].
Especially as the participation gap for women and Black, Latine,
and Indigenous students widens [27], we must understand how to
support students’ self-efficacy equitably.

2.2 Self-assessments
Previous work has identified a connection between students’ self-
efficacy and self-assessments. Bandura stated that people make
momentary self-efficacy appraisals, which influence how they be-
have, particularly whether they will attempt and how long they will
persist at a task [3]. For example, students may avoid programming
assignments if they feel they cannot complete them successfully.
To make self-efficacy appraisals, people call upon four sources of
self-efficacy information: enactive attainments, or past successes
and failures; vicarious experiences, or observations of others; ver-
bal persuasion, such as encouragement or discouragement; and
physiological state, such as feeling stressed or anxious [3–5].

Self-assessments are an important part of self-regulated learning
[10], and the accuracy of a self-assessment is important for help-
ing students draw accurate conclusions about their progress [40].
However, not all student self-assessments are accurate. For example,
novices tend to be overly optimistic in their self-assessments of abil-
ity [40]. Computing education research shows that novices tend to
overestimate their performance on harder tasks and underestimate
their performance on easier tasks [12]. Furthermore, cognition is
often implicit, so students are left to regulate their learning based on
potentially inaccurate information [45]. Researchers have warned
that when students rely on internal feedback [10], they cannot
assess the accuracy of their self-assessments or understand the
negative impact of inaccurate self-assessments [40].

2.3 Self-assessments in Computing Education
Previous work in computing education has drawn connections be-
tween self-assessments and self-efficacy [18, 24, 30], specifically
a correlation between the frequency of negative self-assessments
and lower self-efficacy [18]. Self-assessments can also predict per-
sistence [22] and interest in computing [32]. Studies show that
women tend to be more self-critical than men when making self-
assessments [19, 22] because they are more critical when comparing
themselves to peers, have higher standards for their performance,
and are more likely to be disrespected when speaking with a peer or
instructor [22]. This gender gap makes it important for researchers
and practitioners to study the underlying causes of self-assessments
so that we may equitably support students.

Gorson and O’Rourke studied students’ self-assessment criteria,
and found that students often assess their programming abilities
critically in response to low-level programming moments that are
typical parts of the programming process (see Table 1) [18]. For
example, a student may believe they are doing poorly because they
need to plan before writing code [18], even though planning is
good practice [26]. While this study identified the moments when
students may be overly critical of their programming abilities, we
do not yet know why students adopt these criteria. To address
this gap, this paper explores the reasoning behind student self-
assessmentswith the goal of understandingwhy students think they
are doing poorly in response to natural and expected programming
experiences.

3 METHODS
In this study, we aim to understand the reasoning behind students’
self-assessments in response to a set of programming moments
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that have been shown to elicit overly critical judgements of pro-
gramming ability. To achieve this goal, we conducted biweekly
semi-structured interviews with students, during which we asked
them to fill out a survey about their self-assessments while thinking-
aloud about their answers to capture their reasoning.

3.1 Data Collection
To elicit students’ reasoning for their responses to the surveys,
the first author conducted semi-structured, think-aloud interviews.
These interviews were conducted in weeks 3, 5, 7, 9, and 11 of the
fall 2023 quarter. Two students (P3 and P6) opted to participate in a
sixth interview after grades were published, and P1 missed one in-
terview, resulting in 36 interviews. We choose a longitudinal design
with repeated interviews to understand how students’ evolving
experiences with computing influenced their self-assessments. This
design also allowed us to build rapport with students and design
individually-tailored follow-up questions based on our analysis of
early interviews. The students’ instructors were not involved in the
research, and were therefore not aware of which students partici-
pated nor the content of the interviews. As a result, it is unlikely
that instructors made adjustments to their teaching practices in
ways that would have affected student responses during the quarter.

We video, audio, and screen-recorded all interviews. We asked
students to fill out the survey and explain their reasoning as they
responded. If a student’s response was unclear or required more
context to understand, the interviewer would follow up with ques-
tions to clarify their reasoning. In the weeks between interviews,
the first author open-coded the interview transcripts to generate
hypotheses and formulate new questions for the participants based
on those hypotheses (see Section 3.4).

This protocol was approved by our university’s Institutional
Review Board. Students signed consent forms for their participation
and were compensated with gift cards for their time.

3.2 Survey Design
We adapted Gorson and O’Rourke’s self-assessment survey for this
study [18]. The survey captures self-assessments in response to
fourteen moments when students are often overly critical of their
programming abilities. We describe these moments and present
evidence that each is considered typical practice in Table 1. We
grouped moments that are topically similar (e.g., both related to
simple errors), especially if participants tended to confound the
questions in interviews.

Each survey question presents a vignette that tells a story about
a hypothetical student (e.g., “Nadia is working on a hard homework
problem. She plans out a solution. She writes a few lines of code. She
realizes that her approach to the problem will not work. She decides
to start over. Nadia feels frustrated that she wasted time. She erases
all her code and starts again.”). The vignette is followed by two
questions that use a six-point Likert-scale (strongly disagree to
strongly agree), which ask if the character is doing badly in that
situation and if the student thinks they would be doing badly if
they encountered that situation. The names and pronouns of the
characters and the ordering of the questions were randomized.
While questions are all framed from a negative perspective, we
found that students felt comfortable disagreeingwith the characters’

negative self-assessments. More details on the survey design are
available in [18].

While we adopted the vignette questions from [18] without
modifications, we designed new questions about students’ prior
programming experiences to capture more details, including timing
(i.e., did the experience occur in elementary, middle, high school,
or college?) and modality (e.g., was this a course in school, an
extracurricular experience, an online resource, or a job?). The goal
of these new questions was to better understand how different types
of prior experiences provide context for students’ self-assessments.
While we did not formally validate these modified questions, we
often confirmed students’ past experiences by comparing with the
interview data. Our survey also included questions that are not
included in the analysis for this paper.

3.3 Participants
Since we were interested in studying the self-assessments of stu-
dents in introductory courses, we recruited students who were
enrolled in CS0, CS1, and CS1.5 at a highly-selective private uni-
versity in the United States. Students who took either CS0 or CS1
can take subsequently take CS1.5, which introduces object-oriented
programming. CS0 is a course designed for non-majors and CS1
is designed for computing majors. CS0 and CS1.5 are taught in
Python, while CS1 is taught in Racket.

First, we invited students to complete the survey described above
via email and an in-class verbal announcement during week 2 of
the quarter. This served as a screening survey. Since we were most
interested in understanding why students are overly critical of
themselves, we invited the students who had the most negative
self-assessments to participate in our interviews. Concretely, we
invited students who assessed themselves as doing very poorly
(i.e., answered “strongly agree” on the six-point Likert scale) in any
of the fourteen vignettes, or assessed themselves as doing poorly
to any degree (i.e., answered “strongly agree,” “agree,” or “slightly
agree”) in nine or more of the moments.

Twenty-three students filled out the filtering survey, eleven met
our criteria, and seven opted to participate in the study. Table
2 outlines students’ background information. We use their self-
reported pronouns throughout the paper.

3.4 Data Analysis
We sought to build a grounded understanding of students’ reasons
for their self-assessments. For this reason, we formed hypotheses as
we iteratively engaged with the data, then connected the concepts
that emerged to existing theories and literature to better under-
stand how they are situated within prior research. We followed the
qualitative data analysis process as outlined by Miles et al. [36].

The first author conducted bi-weekly interviews and, between
interviews, performed inductive, descriptive coding on the inter-
view transcripts to understand students’ responses. The first author
also wrote memos, consulted with the other authors, and generated
hypotheses and questions for the students, such as:

• What are your post-college plans, and how does taking this
class help? We sought to contextualize students’ claims that
engaging with certain strategies would help with their goals
and understand concerns about peer competition.
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Moment type Description of moment Typical practice

Simple errors Getting a simple error Novices often make simple syntax errors and take a long time to fix
them [13]Taking a long time to fix a simple

error

Complex errors Not understanding an error Programmers will look up error messages that they do not understand
[31]

Struggling with an error Programmers can to take a long time to fix errors [15], and it is a
significant portion of professionals’ workload [41]

Restarting Restarting on a problem Practices like commenting out code are a common debugging strategy
for novices [16]

Planning Stopping to plan and think This is a common debugging strategy for novices [16]

Planning at the beginning Professionals take time to understand problems and plan high-level
solutions [26]

Understanding
the problem

Not knowing how to start Students can struggle to understand an assignment specification or
how to start [23–25]Not understanding the problem

statement

Time Taking a long time to finish a problem Students often make negative judgements on their performance when
it takes longer than they or their instructors intended [25]Taking more time than expected to

finish a problem
Help Getting help from an instructor or TA Seeking help is a common problem solving strategy for students [34]

Resources Using resources to look up syntax Students frequently use resources [16], which is good practice when
stuck [20, 31, 38]Using resources to research an

approach

Table 1: List of moments when students commonly negatively assess their programming ability.

Gender Started in Other experience Major Year Class

P1 Man College Other classes Biology 2 CS1.5
P2 Woman High school AP Computer Science Principles Cognitive science 1 CS1
P3 Man College Other classes, internship Computer science 2 CS1
P4 Woman College Other classes Journalism 2 CS1.5
P5 Woman College Second time in CS0 Theatre 3 CS0
P6 Man College None Computer science 1 CS1
P7 Man High school Coursera Computer science 1 CS1

Table 2: Each participant’s demographics and computing experience.

• How is class going? We asked this weekly starting in the
second interview to contextualize moments students were
recalling, such as saying that planning was helpful for a
recent topic.

• What does "doing well" mean? Often, students gave answers
that simply cited criteria for doing well, so we used their
definitions of the term to contextualize their responses.

We also generated questions for specific participants. For exam-
ple, we asked P6, “what is considered a simple problem, versus a

complex one?” to clarify what he meant when he made this distinc-
tion in his responses.

After completing data collection, the first and second authors
conducted two rounds of qualitative coding on the transcripts. All
coding was conducted collaboratively, with discussion until con-
sensus. We wrote memos throughout to document our process and
changes in our understanding of the phenomena. We adopted this

4



Understanding the Reasoning Behind Students’ Self-Assessments of Ability in Intro CS Courses ICER ’24 Vol. 1, August 13–15, 2024, Melbourne, VIC, Australia

analysis approach with the goal of producing a robust understand-
ing or our data through deep discussion and continual testing of
our emergent theories against the data.

First, we conducted a round of inductive, descriptive coding. This
generated codes that reflected the reasons, sources, and criteria that
students used when completing the survey. Then, we conducted
a second round of coding to identify similarities and differences
among the reason and source codes generated during the first round
with the goal of refining our definitions of the concepts. During this
process, we grouped codes that arose from the data to create topical
categories. For example, we grouped the codes "I am a novice" and
"this is new" to capture the expectation that students should not
know something because the content is new. Then, we merged
that group with the code "expectation of human capability," or
a students’ expectation that people make mistakes, to define the
category "I do not expect to know this". During and after the second
round of coding, the first author generated possible theories to
explain patterns in the data, and then discussed and refined these
in collaboration with the second and third authors.

While we originally planned to use our longitudinal data to ana-
lyze changes to student self-assessments over time, a preliminary
analysis showed that there were often no stable patterns in the
changes in students’ responses. That is, students’ self-assessments
often fluctuated from week to week, or they used different rea-
sons and sources to justify the same self-assessment over time. We
did not have additional data to identify possible causes for these
changes. As a result, we focused on identifying and characterizing
the reasoning behind individual self-assessments.

4 RESULTS
Through our analysis of students’ think-aloud interviews, we de-
veloped a model for describing students’ self-assessments and the
reasoning behind them. In reaction to a low-level programmingmo-
ment (the vignette questions), a student will make a self-assessment
of their programming ability (either "I think I am doing poorly" or
"I do not think I am doing poorly" in this moment) on the Likert-
scale. Then, students justify the usage of this particular moment as
evidence of their ability with a reason. These reasons, such as be-
lieving that a particular behavior is normal, are identified through
students’ think-alouds. At times, students attribute their reasons
to sources during the think-alouds, for example hearing about best
practices from a professor. Students can share one or more reasons
and sources.

We consider the following think-aloud by P3 as an example
of how these four components appear and interact. In response
to a vignette about not understanding an assignment description
(the moment), P3 responded with “agree” on the survey (his self-
assessment), indicating that he would self-assess his programming
ability negatively. When asked to explain his reasoning, P3 says:

I do get very stressed when I don’t understand any-
thing. I feel like we have such an expectation, espe-
cially with the job market right now [...]. It’s not very
good. So it feels like we’re competing with some ge-
niuses and [...] people who have been coding their
whole life and there’s a lot of imposter syndrome. So I

feel like those people sometimes in my head I’m think-
ing like, "oh, those people who try this assignment,
they would understand it right away. Why am I not
doing that?"

P3 explains that he would self-assess negatively because he
would expect himself to understand the problem statement (his
reason). Unprompted, he cites imposter syndrome due to peer com-
parison when explaining why he has this expectation (his source).

While there is a source in this example, in many cases, students
do not attribute sources to justify their reasons, even when asked.
For example, consider P1’s response to a vignette about struggling
to fix an error. P1 responded “agree” to the survey, indicating that
he would self-assess his programming ability negatively. He says,
“for the same reason from the previous question [where] I don’t
master the contents, I always feel that I’m not doing well when I’m
not able to go through a code and go deeper, etc.” He refers to his
answer to another question where he was disappointed that he had
to restart, which indicated to him that he did not understand the
content as expected (his reason). When asked why errors indicate
a lack of understanding, P1’s explanation was, “I dunno. I just feel
like [the character] tries to run [the program] and he doesn’t know
how to fix it. I actually dunno.” When pushed, he expresses that he
does not know why he uses this criteria.

There are also cases where students refer to a similar past expe-
rience. For example, when reacting to a story about a student not
being able to finish solving a problem in the time they had expected,
P5 self-assesses her performance negatively due to how she reacted
in a past experience.

I thought I could get it done the night before it was
due and then it randomly started having a lot of errors
[...] so that made me feel like I wasn’t doing well. [...]
I still had made good headway into the assignment
but since it wasn’t working that made me feel like I
was doing bad.

In the past, P5 encountered a bug and could not produce a work-
ing program in the time she had expected. Because she self-assessed
negatively in this past experience, P5 responded to the survey simi-
larly. This is neither a source nor reason because it does not explain
why she used the criteria nor where it comes from. However, an-
swers like these suggest that students connect the stories in the
vignettes to their own experiences, which supports the claim that
the vignettes accurately elicit students’ self-assessments [18].

In Sections 4.1 and 4.2, we illustrate the most common reasons
that students cite when explaining their responses to the self-
assessment survey. Students’ reasons for self-assessing negatively
were distinct from their reasons for not self-assessing negatively.
We do not consider these to be positive self-assessments; since
the survey questions are posed negatively (do you agree that you
are doing badly in this moment?), we call these non-negative self-
assessments. In Table 3, we present a summary of the most common
reasons students give, as well as a list of each participant who uses
that reason at least once for each category of moment. In Section
4.3, we discuss the common sources that students use to justify
their reasoning. We outline the sources and list the participants
who use them at least once in each moment in Table 4.
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4.1 Reasons for Self-Assessing Negatively
After reading the vignettes presented on the survey, students often
agree that they would be doing poorly if they experienced that
moment. The most common negative reasons that students cited
were that they believe they should not encounter this problem, that
they have to be struggling to be in this situation in the first place,
and that they do not have the skills to overcome this setback.

4.1.1 I should know this. Students often negatively self-assess their
performance if they do not meet their expectations for themselves.
Many students express that they ought to know something or
should not encounter a particular setback. This reason appeared
for at least one participant in response to every category of mo-
ment except for asking for help. Below, we describe the ways this
expectation appears in students’ explanations.

One way that students’ expectations manifest is through believ-
ing that they should be able to overcome the setback easily. For
example, when reacting to a vignette where a character did not
understand the error message they encountered, P3 self-assessed
negatively. His reasoned that he should know how to fix the error,
especially since he perceives his peers would be able to:

You think to yourself, "oh, I should be understanding
how to fix this. My friend would just do this right
away." Especially in computer science, when you’re
surrounded by so many intelligent people. [...] I end
up comparing myself a lot to them as well. I think,
"oh, my friend here, he wouldn’t get this error."

P3 views not understanding the error as a hindrance to resolving
the bug. He expects that he should be able to understand how to
fix the bug, especially when he thinks his peers are able to fix the
bug quickly or perhaps not encounter the bug at all. This peer
comparison is the source for P3’s reason.

Another type of expectation manifests as students’ desire to not
encounter the issue. For example, P3 self-assesses negatively in
response to a story about having a simple error, saying that, “It
can be discouraging [...] I think, ’that shouldn’t have happened. I
shouldn’t do that.’” P3 expresses how he should not have caused
this bug, implying that he should be skilled enough to avoid this
error. Echoing P3, P4’s negative self-assessment in reaction to a
story about taking a long time fix a simple error also emphasizes
what “should” happen given her skill level. She says, “I feel like I
should have detected the error more quickly. I feel like I’m stuck
in one logic for a long time and that fixed perspective didn’t allow
me to see my simple error.” Her expectation is that she should be a
more efficient debugger.

Similarly, students express that, even if they struggle with other
setbacks, they should at least be able to overcome this. For example,
consider P6’s negative self-assessment in reaction to a vignette
about not understanding an assignment description. He says, “I
would expect from myself [...] to at least know what the question
is asking me [...] to do.” P6 expects that he should at least be able to
understand the question, even if the rest of the problem has other
challenges.

Students also call upon their preferred practices and express
disappointment when reality does not align with their plans. For
example, when reacting to a vignette about not being able to finish

within the time allotted, P3 self-assesses negatively. He describes
his time-blocking strategy, saying:

I’m like, I’ll finish this until six today, and then I’ll
take a break for myself. And then I really look forward
to taking a break, but then it’s 6:30 and [...] I’m not
where I want to be and it makes me frustrated because
I really just wanna put this down, but at the same time,
I told myself I was gonna finish it today and that really
stresses me out.

P3 highlights how he would feel disappointed when he does not
meet his goal for how long a task would take, leading to a negative
self-assessment. He sets these expectations based on his practices
and priorities.

Importantly, we found that students who do not have prior expe-
rience hold high expectations for their programming performance.
P5 illustrates this through her negative self-assessment in reaction
to a vignette about planning; she is the only student who used this
reason in this category of moment. She reasons that “if I really was
doing well, maybe I would just be able to figure it out as I’m cod-
ing and not have to stop.” P5, who has no prior experiences, holds
herself to this very high standard of being able to code without
stopping.

Through our analysis of students’ expectations as reasons for
their self-assessments, we see that students often hold high expec-
tations that lead to negative self-assessments when the outcome
does not match. These are not in line with instructors’ expecta-
tions for students, which suggests a need to help students better
align their expectations with what is possible given their learning
progress. Interestingly, students use this reason in all moments
except help-seeking, suggesting that they may view help as an part
of the learning process.

4.1.2 I have to be doing badly to do this. Another reason why
students feel like they are doing poorly in response to a moment is
because they feel like they have to be doing badly to experience it in
the first place. This reason mostly appears in response to moments
related to help seeking and using resources, but also appears for
planning and time-related moments. P1 expresses this reason when
agreeing that he would be doing poorly in reaction to a vignette
about asking for help, saying, "Yes. He’s not doing well. So he’s
asking for help." Here, P1 expresses the belief that you would never
seek help unless you were doing poorly, so almost by definition,
seeking help leads to a negative self-assessment.

For P5, this reason manifests as a barrier to seeking help, al-
though she knows it would be beneficial for her progress. She says,
"I have to feel a certain extent of like I’m doing badly to be able to
muster up the energy and courage to go to a TA or professor. But
it’s not really bad. [...] Once I meet with them I’ll feel much more
confident." While she ultimately does not self-assess negatively
in this moment because it would be helpful, she does qualify this
self-assessment, saying that she needs to feel badly to seek help.

This reasoning is troubling as it suggests that some students
view moments in the programming process, like seeking help from
resources or others, as a sign of existent poor performance, which
may discourage beneficial learning behaviors.
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4.1.3 I cannot recover. Students also express concern that they do
not have the skills or resources to overcome their setback. This
appears in moments related to complex errors, not understanding
the problem, and spending a long time on a problem. For exam-
ple, consider P2’s self-assessment in reaction to a vignette about
not understanding an error message. She self-assesses negatively,
reasoning, "If I’m not able to ask for help right away and I have
an error message, then it [...] makes me get stuck in the problem.
’cause then [...] I won’t be able to fix it without knowing what it is."
Here, P2 demonstrates a reliance on help and feels she would not
be able to overcome this error if she could not find assistance.

This reason also arises when students get derailed from their
typical programming process and cannot recover. For example,
P2’s reaction to a vignette about not understanding the problem
results in a negative self-assessment because "understanding the
assignment to begin with is the most important, first step." Because
she is unable to complete this step, she worries about her ability
to finish the assignment. This is similar to how students cite their
expectations of their performance, but differs because P2’s primary
reaction is that she feels unable to move forward.

When students feel that they cannot overcome a setback, it some-
times results in avoidance behaviors. For example, P5’s negative
self-assessment when not knowing how to start working on a prob-
lem leads to procrastination. She says, "I feel stressed when I don’t
know how to start on something and [...] I end up either procrasti-
nating it or feeling I can’t do it instead of taking the steps needed
to start." She expresses that this moment would lead her to react
in a way that deters her from taking productive actions towards
resolving her issue and exacerbates her inability to recover.

Students self-assess negatively when they feel they cannot move
past an issue in their programming processes, leading to feeling
stuck or procrastinating. This suggests the need to equip students
with debugging and self-regulation skills that they can use inde-
pendently to resolve these situations.

4.2 Reasons for Not Self-Assessing Negatively
In this section, we explore cases where students disagree with
the questions posed on the survey, indicating that they do not self-
assess negatively in these moments. These responses are interesting
because these beliefs about ability and the learning process are more
aligned with instructors’ expectations. By understanding why these
students do not self-assess negatively in certain cases, we can learn
about how current teaching practices support accurate expectations
about learning and where improvements are still needed.

4.2.1 I do not expect to know this. While we saw that some stu-
dents self-assess negatively due to high expectations for their per-
formance, students can instead use their expectations to justify not
self-assessing negatively when they do not expect to know some-
thing. In this case, students set more reasonable expectations of
their abilities based on their perceptions of what is expected of them
as learners and, more generally, people. At least one participant
uses this reason in all moments except planning and restarting.

For example, when responding to a vignette about seeking help,
P4 would not self-assess negatively. She explains, "that’s the point
of having a professor or TA [...] if you master the homework from

the beginning, why are you taking that course?" Since she is a
student, she expects to seek help during the learning process.

Similarly, students also refer to their perceived level of expertise
as a reason for their self-assessments. For example, consider P5’s
decision not to self-assess negatively after reading a vignette about
making a simple error. She says, "I would feel bad for not putting
that parenthesis. And maybe I didn’t know to put it because I have
so little knowledge of coding, but I wouldn’t feel like I’m not doing
well." P5 expresses that because she has "so little knowledge of
coding," she might not have known to put the parenthesis that she
missed. Similarly, students also do not self-assess negatively when
they encounter new content. For example, when self-assessing in
reaction to not knowing how to start on a problem, P6 expresses
that he does not necessarily feel badly in this moment "’cause it can
be something completely new that I haven’t encountered before."
As a novice learning new content, he believes that not knowing
where to start is expected.

Students also feel like they cannot make accurate estimates of
how long it will take them to complete a task with new content.
For example, P6 does not self-assess negatively when tasks take
longer than he expects. He says,

I would say it depends on the scenario. If it’s some-
thing new [...], it’s pretty tough to also estimate how
long is something gonna take you if you haven’t really
worked with it yet. So I wouldn’t say I or somebody
else shouldn’t feel bad, but of course in some cases
if you know the type of an exercise and it takes you
way longer than you imagine, then I would feel that
I’m not doing that well.

He says that with newer content, it can be difficult to know how
long it will take, but for more familiar content, he would expect
himself to make those judgements accurately.

Students also do not self-assess their programming abilities nega-
tively because of more generic expectations of themselves as people.
For example, P4 does not self-assess negatively when reacting to
a question about taking a long time to find and fix a simple error.
She says, "People make mistakes. It’s the same with when you are
writing an email [...] and you just had a typo [...] That doesn’t mean
something [does or] doesn’t relate to your writing ability."

In these cases, students’ expectations for themselves are more
aligned with instructors’ expectations for novice behavior, suggest-
ing that instructors may need to make their expectations for their
students’ processes more explicit.

4.2.2 This is normal or expected. Our analysis shows that students
often try to determine if their behavior is normal within the com-
puting discipline. Students who perceive that their behaviors align
with the behaviors of others, or feel that there is no standard in
the computing community, tend to not to self-assess negatively.
Students call upon others’ behaviors as reasons in all moments on
the survey.

For example, students may perceive that "everyone" in the com-
puting community behaves a particular way. Consider P5, who
does not self-assess negatively in reaction to a question about using
resources to research her approach. She says, "I think everyone
uses resources. I’ve seen my professor use resources." P6 provides
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another example when prompted to clarify why he thinks "every-
one" encounters simple errors during the programming process and
thus why he would not self-assess negatively during this moment.
He explains, "You even see when the teacher is programming on
the board and he is trying to show something and he runs the code,
there is a parenthesis missing. He is like, ’oh, oops.’ And he is a guy
with a PhD." For P5 and P6, their professor’s actions (the source)
show that someone with a lot of experience and qualifications uses
resources or makes simple mistakes, signalling that this is typical.

Students also consider what is a normal part of the programming
process. For example, P7 does not self-assess negatively in response
to a vignette about not understanding the problem. He reasons that
this is typical, saying, "Part of the challenge is just thinking where
to start. [...] So that’s gonna be a hard part. And so you’re obvi-
ously gonna struggle doing that. It’s pretty natural." Alternatively,
students also observe that there is no "standard" practice among
programmers. P6 uses this reason to explain why he doesn’t think
that taking a long time on a problem means he is doing poorly on it.
He says, "I would say if you take really long to solve something that
shouldn’t take that long, it kind of means you’re not doing well. But,
as long as you finish it, I think it’s okay. Everybody has a different
pace and everybody is good at something else." While he would
potentially feel poorly if he were taking too long, he prioritizes
finishing the problem and notes that everyone can take different
amounts of time to do so.

However, it’s important to note that believing that a particular be-
havior is normal does not always prevent a negative self-assessment.
Consider P3’s negative self-assessment in response to a question
about struggling with an error:

So the ability to fix the errors is something very im-
portant [...] for CS. I think there was a saying where
80% of the time it’s just debugging as a software engi-
neer. But I mean the scope of a CS class too, I think
it applies. Once you have the fundamentals down,
once you go to class, pay attention, pick up the ma-
terial, you know how to write the problem, it’s just
the [...] way you translate your words ideas into code.
That’s where errors can come up and you need to
know how to. Once you have the fundamental idea,
it’s not that hard to fix errors [...] ’cause it usually
comes down to [small syntax errors]. It’s not usually
a fundamental thing where you know you have the
completely wrong idea. [...] You should be able to look
out for them and fix them pretty easily. So I would
say, I would say errors are pretty important knowing
how to fix it.

Despite knowing that debugging is typical and takes a long time,
P3 believes that he should solve errors with ease, especially since
most errors are simple mistakes, not conceptual misunderstandings.
Although solving bugs takes a majority of professional program-
mers’ time, P3 wants to be able to solve each error quickly.

While P3 poses an interesting case, most students do not self-
assess negatively when calling upon typical behavior (or the lack
thereof) as a reason for their self-assessments. They perceive them-
selves to be performing on par with others and thus think they are

not doing poorly. This suggests that normality is an important met-
ric for students, so it is important for instructors to help students
build an awareness of what to expect in the programming process.

4.2.3 I can learn or recover. Finally, we found that some students
also consider whether they feel like they have the skill to recover
from a setback or learn from the situation. When asked if she would
self-assess negatively when encountering a simple error, P4 stated,
"No, I just fix that, it’s not a big deal." In our data, at least one
student mentioned this reason across all categories of moments.

Another example is P4’s self-assessment regarding seeking help.
She does not self-assess negatively, saying, "I find getting help from
TA [or] professor really helpful. You not only fix the problem but
also understand why you have this problem in the beginning. I feel
like that’s most effective way of learning." P4 finds help-seeking
beneficial for her learning, and sees it as an opportunity to overcome
the struggle she encountered. Similarly emphasizing learning, P7
explains why he does not self-assess negatively in reaction to a
survey question about taking a long time to solve a problem, saying,
"I don’t think [...] you’re not doing well in the assignment if you
took a long time. You probably understand it better if you took a
long time too." P7 reasons that taking longer would better support
his understanding.

However, some students self-assess negatively even when they
feel like they have the skills to recover. For example, consider P3’s
reaction to taking a long time to fix a simple error. Although he
thinks these errors are "quite easy to fix," he self-assesses negatively,
saying:

It is very discouraging. A lot of errors can be very
hard to fix because, there’s some simple errors are
very easy to overlook, like [several types of syntax
errors]. These little things, can really, really mess up
your code. It’s pretty discouraging. But they’re quite
easy to fix, I think, because we get like the line number.
If we’re a little more careful, then we can figure it out.

Despite feeling that he can fix the error, he feels discouraged and
like he is doing poorly. P3 presents a rare case of students feeling
like they are doing poorly even when they can recover.

We found that students who think they can overcome a setback
tend to feel less negative about their programming abilities, which
highlights the importance of helping students build skills to unblock
themselves either independently or by using resources.

4.3 Sources for Reasons
While the sources for students’ self-assessments were not a fo-
cus of the interviews, students often attributed their reasons to
sources of information, unprompted. Since we did not ask students
for the sources behind their reasoning directly, we do not make
claims about the absence of sources when interpreting our results.
However, our analysis shows that there is value in understanding
patterns in the sources that were attributed.

Four categories of sources arose from students’ answers: instruc-
tors’ actions, instructors’ policies and designs, peer comparison, and
hearing from professionals. The majority of references to sources
occur when students explain why they did not self-assess nega-
tively in response to a moment. Among the cases when sources
were provided while explaining a negative self-assessment, most
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are due to peer comparisons when taking a long time and more
than half come from P3. In this section, we discuss students’ sources
in their answers to the survey questions (see Table 4).

4.3.1 Instructors’ actions. Students’ observations of their instruc-
tor’s behavior is influential in two moments: using resources and
encountering simple errors. For example, when responding to a
question about taking a long time to fix a simple error, P2 cites
her professor when explaining why she believes simple errors hap-
pen to everyone, saying, "Everyone makes typos. My professor
makes typos and then he has to go back and change them." While
this may not have been an intentional act by the professor, this
demonstration informed P2’s reason.

4.3.2 Instructor policy & course designs. In addition to observing
their instructors, students also infer their professor’s intentions by
interpreting course policies. At least one student uses this reasoning
in every category of moment except restarting and simple errors.

In some cases, students are told by instructors what behaviors
are acceptable. For example, P1 cites his professor when explaining
why he would not self-assess negatively in response to a question
about using a resource to look up syntax. He says, "My [CS1.5]
instructor encourages us to use ChatGPT to solve assignments. So
it [is] a really important resource, especially with the rise of AI. So I
think that yes, I really enjoyed this approach of using resources and
yes, I don’t feel I’m doing bad ’cause I’m looking to ChatGPT. I just
feel like having some support besides the one that I can get in class."
Because the CS1.5 professor encourages him to use ChatGPT as a
resource (with attribution), P1 does not feel that doing so reflects
poorly on his ability.

In other cases, we found that students infer their instructor’s
intentions from their designs. For example, P7 cites a course design
choice when explaining why he is not doing poorly when using a
resource to look up syntax.

You’re not gonna memorize [...] all the functions, or-
ders, and stuff like that. [...] Especially ’cause they’re
not asking us to memorize all these functions and
they’re giving us glossaries with functions on the ac-
tual tests. I don’t think they’re expecting us to memo-
rize all of the syntax.

P7 infers from the presence of a glossary that students are not
expected to have all of the syntax memorized. So, he does not
feel poorly about his programming abilities when he needs to use
resources.

However, course policies can instead reinforce students’ negative
self-assessments. For example, consider P3’s reaction to a vignette
about struggling with an error:

[You] need to fix these errors in order for code to
work [...] I feel like a lot of my classes this quarter
really emphasized, if your code doesn’t run, even if
it has all of this stuff right, it’s not good code. [...]
It’s important to turn in a complete, running product
over something that’s partially complete and [...] full
of errors. [CS1] was pretty unforgiving with errors.
I feel like in quizzes, I would miss one parentheses
and then I was wondering why I only got half credit
because my code is fundamentally correct. I should

have only [...] 2-3 points off. Instead, why did I get 5-7
points off? And the professor always tells me, your
code wouldn’t run if you [had ...] one parenthesis
mismatch. And that’s really important that it runs. So
I kind of learned that errors are actually really critical.

P3 observes that he is getting half credit on his quiz when he
makes small syntax mistakes because his code would not run and
thus is incorrect. So, P3 places value on small errors and extrapolates
that to include all errors. He thinks he is not doing well if he is
struggling with an error because it would mean that he is unable
to turn in fully-functional code. It is likely that this policy was an
artifact of large class sizes and automated grading, and was not
meant to insinuate that error-free code is essential. Regardless, P3
interpreted the policy to mean he is doing poorly whenever his
code has errors.

The frequency with which students cited instructor policies
suggests that this is a highly influential source of information for
determining what behavior is expected in their courses.

4.3.3 Peer comparison. In addition to observing the behaviors of
their instructors to determine what is normal and expected, we
found that students also look at their peers’ actions. This source
arose in our interviews across all categories of moments except
planning, using resources, and restarting.

In some cases, peer comparison results in students not self-
assessing negatively. For example, when presented with a vignette
about not understanding an error message, P2 says, "Even like [the
undergraduate TAs] when I would show them an error message,
they’re like, ’oh I don’t know what that is.’" Because her more ex-
perienced near-peers encounter this issue, P2 does not feel poorly
about her performance.

In contrast, we see P3’s self-criticality arise when he uses peer
comparison in a negative self-assessment. When presented with a
question about taking a long time to solve a problem, he says,

It does frustrate me. [...] Especially if my friends finish
it faster, they’re telling me, "oh, I’m done with the
homework. I’m gonna like relax. I’m gonna go hang
out with my friends," and I’m stuck here just doing the
homework until [the due date]. And it does make me
frustrated and it feels like I’m a worse programmer
than them.

P3 compares himself to his peers and perceives that he is not
doing as well as they are. He feels like he is a "worse programmer"
because he takes longer than his friends. These cases highlight how
students observations of their peers influence their self-assessments
and how students will make self-assessments based on their percep-
tions of their peers’ behaviors, even if they do not have a complete
picture of their peers’ processes and experiences.

These examples show that observations of peers can lead to
both negative and non-negative self-assessments, highlighting the
importance of helping students develop accurate pictures of their
peers’ ability and identify assumptions they may be making about
their peers’ practices, so that they may, in turn, make accurate
self-assessments in comparison.

4.3.4 A professional told me. Finally, only two students cite a pro-
fessional as source. P3 and P5, who know professional programmers,
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Sources Help
seeking Planning Using Re-

sources Restart Simple
Errors

Complex
Errors Time

Not
under-
standing
the
problem

Instructors’ actions P3, P5 P2, P6

Instructor policies &
designs P2, P6

P1, P2,
P3, P4,
P6, P7

P1, P2,
P3, P4,
P7

P1, P2,
P3 P2, P3 P2, P3,

P4

Peer comparison P2 P1 P2, P3
P1, P2,
P3, P4,
P5

P3, P6

A professional told
me P3 P3 P5

Table 4: In this table, we list the participants who used a source at least once across all interviews in their self-assessments
in each category of moment. This table does not show how often sources are cited by students nor used overall, but shows
patterns in source usage. We see that instructors’ policies are the most cited source, but other sources are common in particular
categories of moments.

cite professionals in moments related to planning, using resources,
and simple errors. In reaction to a vignette about taking a long time
to fix a simple error, P5 says, "I recently had a problem like this and
it was a simple little mistake and I was getting help with it from
someone who is a professional programmer and he said that he
does that all the time. [...] So I think it’s pretty common." While this
is a rarer case in our dataset, we draw similarities to how students
observe and listen to their instructors to see that the behaviors of
professionals can be an influential source for students.

5 DISCUSSION
The most common reasons that students gave when explaining
their responses to the self-assessment survey were based on their
expectations of themselves, perceptions of their abilities, and beliefs
about others’ practices. When we compare the reasons students
gave for negative and non-negative self-assessments, we notice
that many are opposites of each other. For example, many students
self-assess negatively because they feel like they should know some-
thing, and many do not self-assess negatively because they feel that
they shouldn’t be expected to know something. Similarly, we see
that students negatively self-assess when they believe they cannot
recover, and do not self-assess negatively when they think they
can. This suggests that the underlying difference between students’
responses are related to their knowledge of what to expect when
learning to program and their confidence in their skills.

When we examine the programming moments when students
apply certain reasons, we also notice interesting patterns that may
have implications for instructional and intervention design. For ex-
ample, we saw multiple instances of students thinking they should
not need to restart because they should know how to solve the
problem, but we did not see corresponding instances of students
expecting that they may need to restart because they do not expect
to know how to solve the problem. This suggests that while at least

some students are aware of expected practices in many moments,
this is not true for all moments.

Furthermore, when we examine the sources that students pro-
vided, we notice that students gave many more sources in cases
where they did not self-assess negatively than where they did. This
suggests that interactions with professionals, instructors, course
policy, and peers can help students understand what experiences
are expected while learning to program, while the absence of these
interactions may lead to negative self-assessments due to a lack
of accurate information about what to expect. This finding high-
lights an important opportunity for instructors to provide explicit
sources that set student expectations about the programming pro-
cess, especially since we found evidence that course materials may
(unintentionally) embed implicit standards that reinforce negative
self-assessments.

Research has shown that students’ self-assessments can be im-
plicit [45], meaning that students may make inaccurate assessments
of their abilities without being aware of it. Our study reveals the
potential value of making students’ self-assessments explicit so they
are more aware of their self-assessment criteria. In an unprompted
comment about taking part in our study, P3 said it “was a good
thing to reflect, like in my perspective as well,” showing that he
found it helpful to talk about his beliefs. This suggests that struc-
tured reflections around self-assessment criteria may help students
develop more accurate expectations about the learning process.

Research on formal self-assessments has also shown that making
the criteria that students should use explicit and providing feed-
back on self-assessments can be helpful for increasing assessment
accuracy [1]. While in-moment self-assessments differ from formal
self-assessments, providing students with explicit knowledge about
what are (and are not) signs that they are doing poorly would likely
be helpful. Our findings provide two suggestions for information
that we could make more explicit. First, we could be clear about
what we expect students to be able to do as learners. The most
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common reason for negative self-assessment in our data was high
expectations that did not align with the student’s skill levels (e.g.,
feeling like they should not have bugs). Second, we could provide
more explicit sources of information to ground students’ expecta-
tions. Our data revealed the power that instructors have to model
practices such as debugging and to set course policies that are in
line with accurate expectations about the learning process. Being
more intentional could go a long way towards reducing overly
negative self-assessments.

In addition to making appropriate self-assessment criteria ex-
plicit, instructors can help students build skills to recover from the
setbacks they encounter. We found that students often self-assess
negatively when they do not have an immediate path to a solution.
While help-seeking is a good strategy, help is not always avail-
able, as P2 noted in her self-assessment when not understanding
an error message. Equipping students with more problem-solving
strategies and techniques for referencing resources may help to
resolve this issue. Research on debugging education suggests that
explicitly teaching debugging strategies is necessary [35], and our
data provides further evidence to support this claim.

Finally, we want to highlight our finding that, in the absence
of explicit information about what to expect while learning pro-
gramming, students are interpreting all of the information they can
access, including the words, actions, and policies of their instruc-
tors, to formulate their expectations. This can be positive in some
cases, like when students see their instructor make mistakes, but
detrimental in others, like when grading policies reinforce negative
self-assessment criteria. To avoid the latter case, instructors must
be conscious that they are conveying messages through their words
and actions, even those that are unintended.

5.1 Limitations
While our study provides valuable new insights into the reasoning
behind students self-assessments, it has a number of limitations.
First, we worked with a self-selected group of students from the
same university, and our data only represents the perspectives of
seven students. As a result, we do not make claims about the gener-
ality of our findings, but rather seek to illustrate the phenomena we
observed. While we expect that our findings may translate to other
students and contexts, future research will need to confirm this.
Also, we chose to interview students who gave the most negative
self-assessments on the filtering survey since we were most inter-
ested in understanding and supporting these students. While all of
our participants responded with both negative and non-negative
self-assessments each week, future work should study whether
there are differences in the reasons and sources used by students
who tend not to negatively self-assess.

Another limitation is that we did not observe students’ self-
assessments in-situ; rather, we interviewed students about their
responses to hypothetical vignettes. We found that students often
drew on their past experiences when responding, which gives us
confidence that their statements reflect how they react to these
situations, but we cannot be certain without observations. Finally,
our results may be biased by the negative framing of the vignettes,
which all describe cases of students feeling badly about their abil-
ities. Our participants disagreed with the vignettes often, stating

that they do not feel badly in similar moments, which suggests that
the framing does not necessarily bias students towards negative self-
assessments. However, further research is needed to understand
how students would react to positively-framed vignettes.

6 CONCLUSION
In this paper, we explore the common reasons for students’ self-
assessments. We found that students often rely on their perceptions
of their capabilities, their expectations, and their observations of
"normal" behavior in the computing community to self-assess their
performance. Furthermore, we identify unprompted sources for
these reasons, such as the behaviors and policies of instructors
and the actions of peers and professionals. By understanding the
reasons and sources for students’ self-assessments, we gain a better
understanding of what interventions are needed to support accu-
rate self-assessments. In future work, we look to further analyze
the role of identity and motivation in students’ self-assessments
through case studies, explore the impact of students’ interpreta-
tions of course policies, directly investigate the sources behind
self-assessments, and design interventions to help students make
more accurate self-assessments.
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