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ARTICLE INFO ABSTRACT
Keywords: We provide theoretical convergence bounds for the variational Monte Carlo (VMC) method as
Variational Monte Carlo applied to optimize neural network wave functions for the electronic structure problem. We study

Gradient descent

both the energy minimization phase and the supervised pre-training phase that is commonly
Unbiased estimator

used prior to energy minimization. For the energy minimization phase, the standard algorithm
is scale-invariant by design, and we provide a proof of convergence for this algorithm without
modifications. The pre-training stage typically does not feature such scale-invariance. We propose
using a scale-invariant loss for the pretraining phase and demonstrate empirically that it leads to
faster pre-training.

1. Introduction

A central goal of computational physics and chemistry is to find a ground state which minimizes the energy of a system. Electronic
structure theory studies the behavior of electrons that govern the chemical properties of molecules and materials. The energy in the
electronic structure is a functional defined on the set of quantum wave functions v, which are normalized #2-integrable functions
determined up to an arbitrary scalar multiplication factor, known as a phase. Equivalently, the wave function can be viewed as an
element of the projective space rather than a normalized function.

The variational Monte Carlo (VMC) algorithm [1-3] is a powerful method for optimizing the energy of a parameterized wave
function through stochastic gradient estimates. The method relies on Monte Carlo samples from the probability distribution defined
by the Born rule, which views the normalized squared wave function as a probability density function.

Historically, the number of parameters used in VMC simulations was relatively small, and methods such as stochastic reconfig-
uration [4,5] and the linear method [6,7] were preferred for parameter optimization. Recently, neural networks have been used
to parameterize the wave function in an approach known as neural quantum states [8]. Subsequent work has shown that VMC with
neural quantum states can match or exceed state-of-the-art high-accuracy quantum simulation methods for a variety of electronic
structure problems, including molecules in both first quantization [9-12] and second quantization [13,14], electron gas [15-171,
and solids [18].
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Due to the complexity of quantum wave functions parameterized by neural networks, it is in general not possible to explicitly
normalize the parameterized wave function. One of the essential properties of the VMC procedure is thus its ability to usean un-
normalized function y to represent the corresponding element in the projective space. This is achieved by pulling back the energy
functional to be minimized from the projective space to a scale-invariant functional on the space of unnormalized wave functions.
This scale-invariant functional is the same as the Rayleigh quotient (y| H |y) / (y|y) where the Hermitian operator H is known as
the Hamiltonian. The scale-invariance of the energy functional is reflected in the VMC algorithm where a scale-invariant local energy
function corresponding to the wave function is evaluated at MCMC-sampled electron configurations. For the ground state problem
considered here it suffices to restrict to real-valued wave functions, so we will take all scalars to be real.

The wave function in the VMC algorithm is often initialized using a supervised pre-training stage [11] where it is fitted to a less
expressive approximation to the ground state, for example given as a Slater determinant. In contrast to the main VMC algorithm
which is trained with an inherently scale-invariant objective, this supervised pre-training typically does not encode the scale-invariant
property [11,19]. We propose using a scale-invariant loss function for this supervised stage and demonstrate numerically that this
modification leads to faster convergence towards the target in the supervised pre-training setting. We further give a theoretical
convergence bound for the proposed scale-invariant supervised optimization algorithm. As an important ingredient in this analysis,
we introduce the concept of a directionally unbiased stochastic estimator for the gradient.

1.1. Related works

Using scale-invariance in the parameter vector to stabilize SGD training is a well-studied technique. Many structures and methods
have been proposed along these lines, such as normalized NN [20-22], G-SGD [23], SGD+WD [24-27], and projected/normalized
(S)GD [28,29]. In these works, the parameter v is stored explicitly and the loss function £ is scale-invariant in the parameter v,
which means L£(Av) =v for any 4> 0.

The setting of neural wave functions differs from typical scale-invariant loss functions in that the scale-invariant functional L is
applied after a nonlinear parameterization 6 — y,, and the function y, can be queried but not accessed as an explicit vector. The
composed loss function L(0) = L(yy) is not scale-invariant in its parameters. We can obtain a relation between the two settings by
applying the chain rule involving a functional derivative, but the resulting expression involves factors that we need to estimate by
sampling, in contrast with the typical setting of scale-invariance in the parameter space.

1.1.1. SGD on Riemannian manifolds

The training of a scale-invariant objective can be seen as a training process on projective space, which is a special case of
learning on Riemannian manifolds. The convergence of SGD on Riemannian manifolds is well-studied; for example [30] shows the
asymptotic convergence of SGD on Riemannian manifolds. Further variations of the SGD algorithm on Riemannian manifolds have
been proposed and studied, such as SVRG on Riemannian manifolds [31], [32] and ASGD on Riemannian manifolds [33]. To the
best of our knowledge, all previous works ensure the parameter stays on the manifold by either taking stochastic gradient steps on
the manifold or projecting them back onto it. This is in contrast to our setting where no projection onto a submanifold is needed.

1.1.2. Concurrent theoretical analysis
The concurrent work of [34] proves a similar convergence result for VMC and also takes into account the effect of Markov chain
Monte Carlo sampling. However, this work does not consider the setting of supervised pre-training.

2. Variational Monte Carlo

A quantum wave function is a square-integrable function y on a space of configurations Q. A typical configuration is Q = R3V for

asystem of N electrons.! The term “square-integrable function” refers to a function y with a finite Z2-norm ||y/|| = 4/ /g lw]?dx < o
with respect to the Lebesgue measure. For any scalar A € R and A # 0, Ay represents the same physical state as y. In the variational
Monte Carlo algorithm, y, is an Ansatz parameterized by 6, and the objective is to find the parameter vector 6 such that y, minimizes
the energy

(w| H |y)
(wly)

The Born rule associates to a quantum wave function y a probability distribution on Q with density p,, given by

Ly) =

P, () =W/ vl )

The norm |[ly|| is unknown to the optimization algorithm, and samples {X;} ~ p,, are generated using Markov chain Monte Carlo
(MCMCQ). We will assume that these samples are independent and sampled from the exact distribution p,,. In practice, the indepen-
dence assumption is tested by evaluating the autocorrelation of the MCMC samples.

1 The spin degrees of freedom are considered as classical and are expressed in the symmetry type of .



N. Abrahamsen, Z. Ding, G. Goldshlager et al. Journal of Computational Physics 513 (2024) 113140

The energy of y can then be expressed as an expectation with respect to p,,: L(y)=E X~p, €, (X), where

(Hy)(x)
w(x)
is called the local energy. We note that the local energy is not well-defined in the case where y(x) =0, but this is not a practical issue
since p,,(x) = 0 by definition at such points and thus the expectation value is still well-defined.

We use L(0) = L(y,) to denote the loss as a function of the parameters.

&, = @

Problem 2.1 (VMC). Minimize

L(0) =Ex..p, Eg(X), 3

over parameter vectors § € R?, where Ep(x) = Hyp(x)/wy(x) and py(x) = |y/9(x)|2/ ||u/9||2. We assume access to samples from
{X;} ~ pg and query access to vy, Vyy,, and & which are assumed to be C* with respect to 6 for any x € Q.

When |[|y,|| < o0, the gradient of the VMC energy functional takes the form (see e.g., equation (9) of [11])

VoL(0) =2Ex..,, | (400 L(®) Vyloglyp (0] @

Notably, the change in local energy does not contribute to this formula, that is, E Xepy [Vg&p(X)]=0. Instead, the gradient of L is
entirely due to the perturbation of the sampling distribution as 6 varies. For completeness, we include the derivation of Equation (4)
in Appendix A. The condition that y, is C* with respect to 0 is typically satisfied by using the logistic sigmoid activation function.

3. Supervised pre-training

In order to stabilize the VMC training, the neural quantum state y, in FermiNet [11] and subsequent works [35,36,19] is
initialized by fitting the Ansatz to an initial guess y at an approximate ground state [11,19]. This target initial state can be taken to
be a Slater determinant optimized using the self-consistent field (SCF) method [37]. We therefore consider the problem of minimizing
the distance from the line {Aw|4 € R} to a target function ¢ € Z2(Q).

That is,

L(y)=min| iy - ol 5
(y) =min|l Ay — o[, 5)

where |||l =4/ fg |p(x)|2dp(x) is the norm in Z2-sense on a probability space (€, p) with probability measure p. In practice the

pre-training may fit intermediate vector-valued features such as orbitals [19] instead of the scalar-valued wave function. As we
note in Section 5.1, this is formally equivalent to fitting a scalar wave function. Moreover, as we show in Section 5.1, exploiting
scale-invariance when fitting the orbitals can improve the convergence of the wave function itself as measured by Equation (5).

Here, p is typically the Lebesgue measure, but in Section 5.1 we will also consider a case where it is defined by the target function.
This loss function is scale-invariant by construction and has a closed-form expression

£w) =llol? = (Ke.w), /v ll,)’. ©®

Note that for normalized target ¢, the second term of Equation (6) is the squared sine of the angle between the vectors, L(y) =
sin® (@, ). Minimizing £(y) is equivalent to minimizing L(y) = —(@.v),/llwll,. Again we write the loss as L(0) = L(w) as a
function of the variational parameters:

Problem 3.1 (Supervised learning pre-training). Given a target function @ € Z%(Q, p), access to samples { X;} ~ p and query access to
@, Wy, and Vyy,, minimize

L(O):—M @
lwell,

over parameter vectors 6 € R?.

3.1. Directionally unbiased gradient estimator

By applying the chain rule we can write the gradient of L(0) as

VoL(0) =10, L1(wy) - Voyy, (8)

where d,, L(yy) is the functional derivative of the scale-invariant loss. This can be evaluated analogously to the gradient derived in
[28] for a scale-invariant loss function. The resulting gradient expression is
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(0. Vowg), (@.wg),{Wo, Vowp),

VoL(©6)=—
lwoll, w3

9)

We cannot compute the infinite-dimensional %2 norms in the denominator of Equation (9) and do not have access to an unbiased
estimator for Equation (9). However, in Lemma 4.5, we propose a directionally unbiased gradient estimator G, which means that E[G]
is in the positive span of V,L. Additionally, we will demonstrate that the directionally unbiased gradient estimator is sufficient for
achieving rapid convergence of SGD as long as the norm ||y ||, can be approximately estimated, see detail in Corollary 4.10.

4. Theoretical results
4.1. Convergence result for VMC

In the VMC setting, we assume that the MCMC subroutine is able to sample exactly from the distribution p,(x) = [y, (x)|?/|lwy %
This sampling oracle makes it possible to construct a cheap and unbiased gradient estimation for the energy functional (3). For

simplicity we use exact real-valued arithmetic.
From the formula (4) for the gradient, we derive the following unbiased gradient estimator for V,L():

Lemma 4.1. Given n > 2 i.i.d. samples {X,} ~ p,, let £(6) = % >iei o (X ,-) and define the gradient estimate

2

n—1 4
1

G6,X)=

n

(& (X;) = L(®) Vo loglyy (X;) I (10)
=1
Then G(60, X) is an unbiased estimator of the gradient of the population energy.

We prove Lemma 4.1 in Appendix A.
Using the unbiased gradient estimator (10) from Lemma 4.1, the VMC algorithm can be formulated as a variant of SGD:

Algorithm 1 Variational Monte Carlo.

: Preparation: number of iterations: M; learning rate 7, ; initial parameter: 6,; number of samples each iteration: n;
: Running:

m <« 0;

: while m < M do

Sample {X["}"_ | independently according to the density pyn o [Wpn 1%

G, < GO, X)= 2 T (&,(X) - LO)V,loglw, (X)) |;

Oy < 0, —1,G,
: end while

: Output: 0,,;

m>

Given any 6, we define || - ”q»Pa as the g-th norm under the measure py(x)dx. The convergence bound for the VMC algorithm
assumes a uniform bound on the following quantities:

Condition 4.2. There exists a constant C,, such that for any 6 € R,
« (Value bound):

||HW9/W9||4,,;9 <C,. an
 (Gradient bound):

||V0HW9/II/9||2,,,H < Cw >

(12)
||V9W9/W9||4,p9 < Cu/ .
* (Hessian bound):
IHowo /woll2,, <Cy a3

where Hyy, is the hessian of y, in 6.

Condition 4.2 is scale-invariant in yy, i.e., if yy(x) satisfies Condition 4.2, then Ay,(x) also satisfies the condition with the same
constant A for any A # 0. We establish new bounds on the Lipschitz constant of VL and the variance of the gradient estimator (see
Lemma C.1), subject to the constraints specified in Condition 4.2. These bounds are crucial in demonstrating the convergence of our
method.

Now, we are ready to give the convergence result for Algorithm 1:
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Theorem 4.3. Under Condition 4.2 there exists a constant C > 0 that only depends on C,, such that, when 7, < é for any m >0,

M M ,72
an[E<|V9L(0m)|2> <L) +C Y 2, 14)
m=0 m=0 n

forany M > 0.

The proof of the above theorem is given in Appendix C. The upper bound (14) is important for us to determine #,, so that the
parameter 6,, converges to a first-order stationary point in the expectation sense when m is moderately large. Theorem 4.3 implies:

Corollary 4.4. Under Condition 4.2:
* Choosing n,, = © (nez) and M =0 (l/(ne4)), we have
oéi‘fé‘M E (|V9L(6m)|) <e.

* Choosing n,, = © ( L ), we have

m+1

OSrPniSnM E(|VoL(®,)|) =0 ((nM)~'/%).

This bound shows that the convergence of Algorithm 1 is the same as the convergence rate of SGD to first-order stationary point
for nonconvex functions, see [38, Theorem 2] or [39, Theorem 5.2.1].

4.1.1. Scale-invariant supervised pre-training
The following lemma shows how we can choose a directionally unbiased gradient estimator. Given samples { X, }, write (v, @), =

1 1
~ Y v(XDe(X) and llyll; =~ X0 w(X)?
Lemma 4.5. Given n > 2 and i.i.d. samples X, ..., X, ~ p, define coefficients

a; =—llwpll2 @(X )+ (@.wy), wp(X;)

and let

n
1 1
=—— — Y a,Vy,X). s)
||wg||,3,n—1,§1 ’ g
Then Ex(G) = V, L(6).

We give the derivation of Lemma 4.5 in Appendix B. Given an estimator Z for [lygll, which is independent of X, ..., X,, we
then choose the following as our directionally unbiased gradient estimator:

n

1 1
GO X) = 23-=7 2,0, Vows(X)), (16)

where {a; };.’:1 are defined in Lemma 4.5.

Remark 4.6. To obtain the independent norm estimate Z we can take 2n samples X;,...,X,, at each iteration and let 7=

n
i=n+1
7= (% >, lwy(X)»)!/? without sampling an additional independent minibatch.

(% T2 lwe(X)1?)2 in (16). However, our numerics in Section 5.1 suggest it is sufficient in practice to estimate [|y,|| , as

Remark 4.7. Some care must be taken when constructing a plug-in estimator for the gradient. For example, given an estimate Z of
llwgll, and samples X, X, ~ p, Equation (9) suggests a plug-in estimate of VL, given by

_P(XDVep(Xy) + QXD (X)W (X )DVow (X))
z z '
However, this estimator is not directionally unbiased and does not achieve the convergence shown in this paper. This is due to the
fact that it is unbalanced in the sense that the exponent of Z is different for each term. More specifically, taking expectation on (17)
gives

a7

_{o- Vo) (0 vo) W Vi)
VA VA

#AVeL(0), VieR.
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The detailed algorithm is summarized in Algorithm 2.

Algorithm 2 Stochastic gradient descent algorithm for supervised learning.

1: Preparation: ¢,; y,(x); number of iterations: M ; learning rate #,,; initial parameter: 6,; n
2: Running:

3: m«0;

4: while m < M do

5 Sample {X["}]_| independently from p;

6: Zm « an estimation of ||1//9m I,

70 g —llyy, II2 </J(X”’)+<</f W, )u Wo, (X"
8 G,<G0O,X)= 7 ﬁ >, a;Vowy (X");
9 0, <0, —anm,

10: end while

11: Output: 0,,;

The choice of learning rate 7, in the pre-training setting and the decay rate of the loss function depends on the ratio |lyy I, / Z.
However, for our results it suffices that this ratio is bounded above and below by fixed constants. As mentioned above we may
estimate Z = (1 Ef’ 1 lwe(X; )|2)!/2 at each iteration using an independent sample X, {,...,X,, 1L X;,...,X,. Alternatively we

may take 1nsp1rat10n from variance reduction techmques [40-42], to update Z using a large batch once every K steps, letting
_( 2 =1 lwe(X)I$)!/? when m/K =0 (mod K) and Z, =Z,_, otherwise.
Our convergence bound for the supervised pre-training assumes uniform bounds similar to Condition 4.2.

Condition 4.8. There exists a constant C,, such that for any 6 € R4
« (Value bound):

will.” vt <<, as)
» (Gradient bound):
[Vowg|"|| ~ /llwell, <C, . (19)
[1¥owol’],”
* (Hessian bound):
HIIHeWeHi”;/Z /lwell, <€, . 20

where Hyy is the hessian of y.

Under Condition 4.8, we establish the Lipschitz property of V,L and provide bounds for the variance of the gradient estimator
(see Lemma D.1). These results play a crucial role in demonstrating the convergence of our method. Condition 4.8 is scale-invariant
in yy, meaning that the same condition holds with the same constant for any Ay, where 4 # 0.

Theorem 4.9. Assume Condition 4.8, |¢,| < C,, and

1 ||V/9 ||p

C, Z "

m

a.s. 2n

for all m € N, where 6,, comes from Algorithm 2. Then there exists a constant C that only depends on C,,C,,,C,, such that, when n,, < %
forany m >0,

M M 2
3 n,E <|V9L(9m)|2) <2C2L(0y) + C Z —'” (22)
m=0 m=0

forall M > 0.

The above theorem is proved in Appendix D. In the proof, we first bound the E|G,,|?> and show that V, L has a uniform Lipschitz
constant. Then, the decay rate of the loss function in each step can be lower bounded by |V, L|?, which finally gives us an upper
bound of |V, L|? as shown in (22).

Using Theorem 4.9 it is straightforward to show the following corollary:

Corollary 4.10. Under Condition 4.8 and (21),
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+ Choosing 1,, = © (ne*) and M =0 (1/(ne*)), we have

0<mm E(|VoL(,)]) <

* Choosing n,, = © (\/:) we have

omin E(|V9L(0,)]) =0 (b))

We note that this bound matches the standard O(M ~'/*) convergence rate of SGD to first-order stationary point for non-convex
functions.

5. Numerical results
5.1. Pre-training with scale-invariant loss

To evaluate the use of a scale-invariant loss during pre-training we modify the training loss used in the pre-training stage of [19]
to be scale-invariant with respect to the trained Ansatz. We tested the scale-invariant loss in a version of the FermiNet code [43]
where the electron configurations were sampled from the target state as in [19]. Specifically, the wave function is given by a sum of
determinants and the target state is a Slater determinant:

d
k
o= Y [N e =det[(@,x0) ]
k=1
where N is the number of electrons and the tensor y is the output of the parameterized permutation-equivariant neural network.
In our experiment we use the standard FermiNet Ansatz [11] for the network architecture. The pre-training of [19] uses the loss
function

Z Z Y — )1 (23)

=1i,j=1

on the matrices. To test the use of a scale-invariant loss function during training we replace the training loss of Equation (23)
with the sum of column-wise scale-invariant sin® distances. We note that in practice we did not find it necessary to estimate the
denominator using an independent sample as in Remark 4.6. Note also that we can view the fitting of a (column) vector-valued
function Q3 x = (y; ,Ii , as fitting a scalar-valued function y(x,i) defined on Q X {1,..., N }.

d N W 0,02
L(O)= Z Z ( W)» 24
i »"
where ¢;() = (¢;(x)). ..., ¢;(x,))", that is,
4N |2 708,612
L=y Yy (1 '—) (25)

k
i Ty R

To evaluate the performance of the modified pre-training procedure we plot the angle between the target Slater determinant-
based wave function and the neural network wave function during each training procedure (Fig. 1). The system shown is the lithium
atom (details in Appendix F).

k=

5.2. Empirical convergence of VMC algorithm

As an example, we demonstrate the convergence of the VMC Algorithm 1 on the Hydrogen square (H,) model depicted in Fig. 2.
This system involves only four particles but is strongly correlated and known to be difficult to simulate accurately. We define v,
using the FermiNet ansatz [11,35] and run 200,000 training steps using stochastic gradient descent with a learning rate schedule

0.05

T = 10000

With this learning rate schedule, Corollary 4.4 implies that the running minimum of E(|V,L(6,,)|) should converge as O(M ~1/4y
as the optimization progresses. To verify this bound, we plot in Fig. 3 the running minimum of |G,,|, which is our numerical proxy
for |V,L(0)| as per Lemma 4.1. We compare two distinct VMC runs using 10 and 1000 walkers, respectively, to explore how the
convergence varies with the accuracy of the gradient estimate. We estimate the convergence rate by measuring the overall slope of the
log-log plot, starting from step 200 to avoid the initial pre-asymptotic period. We find that the gradient of the loss converges roughly
as M %27 when using 10 walkers, closely matching the expected bound. With 1000 walkers the convergence goes as M -3 which
is somewhat faster than the theoretical bound, as might be expected given that the estimate of the gradient is very accurate with
so many walkers. With 1000 walkers, the convergence is M 038, This rate surpasses the theoretical bound given in Corollary 4.4.
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1.0 1 —— standard
scale-invariant

0.8 1

0.6 1

sin(Lg, ) "2

0.2 1

0.0

0 20 40 60 80 100

Fig. 1. Convergence of supervised pre-training using the scale-invariant training loss (orange) vs. the training loss of [19] (blue). For both optimizers the plotted
quantity is the sine of the angle between the target state and the trained state, where the angle is defined in #?(R*", p = |p|?) with respect to the measure induced by
the target state density.

Fig. 2. Atomic configuration for the square H, model.

10? —— 10 walkers
h 1000 walkers
— 10!
S
O
= 10" =
L“‘\_
107! —
100 10! 102 10° 10 10°

Training step

Fig. 3. Convergence of VMC run on the H, square. The running minimum is taken to smooth out the data and match the form of Corollary 4.4.

Although a rigorous theoretical understanding of this phenomenon is currently lacking, we hypothesize that with this number of
walkers, relatively accurate gradient estimates lead to training dynamics similar to (non-stochastic) gradient descent, giving a faster
convergence rate than our theoretical bound in Corollary 4.4.

Since the bounding of the Lipschitz constant of the gradient of the loss function is critical to our convergence proof, we supply
in Fig. 4 a numerical estimate of this quantity during the VMC run. Here we show data only for the case of 1000 walkers, as the
Lipschitz constant estimate is extremely noisy with 10 walkers. The data suggest that the value of the Lipschitz constant is well below
1000 for this simulation.

6. Conclusion

We consider two optimization problems that arise in neural network variational Monte Carlo simulations of electronic structure:
energy minimization and supervised pre-training. We provide theoretical convergence bounds for both cases. For the setting of
supervised pre-training, we note that the standard algorithms do not incorporate the property of scale-invariance. We propose
using a scale-invariant loss function for the supervised pre-training and demonstrate numerically that incorporating scale-invariance
accelerates the process of pre-training.

SGD is only the simplest stochastic optimization method. Over the last two decades, there has been increasing interest in devel-
oping more efficient and scalable optimization methods for VMC simulations [44-46], and our analysis may be a starting point for
analyzing such methods. It may also be possible to generalize this work from a high-dimensional sphere to a Grassmann manifold,
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10*

102.

Lipschitz constant

0 50k 100k 150k 200k
Training step

Fig. 4. Lipschitz constant for VMC run on the H, square with 1000 walkers. The constant is numerically approximated using the formula |G(8,,,,)—G(0,)1/10,,..; —0,,1.

parameterized by a neural network up to a gauge matrix. This setting could be applicable to VMC simulations of excited states of
quantum systems.
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Appendix A. Proofs of gradient estimators

Proof of (4). Let gy(x) = |l//9(x)|2, and Qy = ||y/9||2.
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We write (3) as

L) =(q9.£9)/Qp -
Then by the product formula,

Vo(do:E9)  (49-€0)VQ0

V,L(O) = =:A-B. Al
0 0, Q?) (A1)
Continuing, we have
A=(&y,Voag)/ Qg+ <519,V E9)/Qp
e 4,
= (&. ﬂ —"> < vm) (A.2)
=E,, [59V9 10g qpl + [Epe[vegg],
and
\%
= (2 g0
oy Qy (A.3)
L

= L) g Z0%) = L(O)E,, [Vy log gp].

Substitute (A.2), (A.3) into (A.1) to obtain
VoL(0) =Ex.,, [(€)(X) = L())Vg10g go(X) + VyEy(X)]

(A.4)
=2Ey.,, [(E(X) = L(0) Vg log lwyg(X)| + VGSH(X)] .
It remains to show that Ex._, [0,£,(X)] =0 where 9; is differentiation with respect to ¢;. Write
H 0;Hyy - H 0;
0,6y = 0,0 = U7 Vo Vo~ Vo 0¥ (A.5)

Yo Wg

So, because H is symmetric:

(Hoywy,wy) — (Hyy, 0;yy)

Frep [080] = ol - H
Proof of Lemma 4.1.
G(6.X)=—— ng 1) Volog |y (X,) |

n

2 n
zz ) Sotoeiv ()

Jj=li

Z—de i) Volog lwp (X;) |

Ve log |yy ( ) |
l#/

Here, the terms i = j in the expansion of the rightmost term cancel with the first sum. But now each sum is the average of terms with
the correct expectation (2[E X~py [E0(X)Vl0g [yp(X)|] and 2L,4E ., V,log [ys(X)| respectively ). []

Appendix B. The directionally unbiased gradient estimator for supervised learning

Given n >2 i.i.d. samples { X;} ~ p. We write y; = yy(X,), ¢, = ¢(X)), and Vy; = Vo, (X)).
1 n ] n
(w. o), =~ Yvie.  lwl= - R (B.1)
i=1 i=1

Lemma B.1. Given samples X, ..., X, from p, let

n

1
Gy=— 24V, (8.2)

=

10
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_ 2
a;=—llyll, @; +{o.w), v;. (B.3)

Then G, is an unbiased estimator for G = ||y/9||l3)V9L(9).

Proof of Lemma B.1. We notice

G =~llwgll> (@, Vwg) + (@.wo) (W, V).

For each i # j we have an unbiased estimator for G given by

~ly;I*0; Vy; + 0wy, V.
Taking the average over all pairs i # j gives another unbiased estimator for G:
1 2
—m ;(U/,- oV — 0wy V).

We may add the terms i = j without changing the value because all such terms evaluate to 0. []

Appendix C. Proof of Theorem 4.3

To prove Theorem 4.3, we first show the following lemma:

Lemma C.1. Under Condition 4.2 there exists a uniform constant C’ such that for any 6, feRr,

[VoL©®)| <4C;, (C.1)
|V9L(9)—V(,L(§)' <’y +Dlo-al, (C.2)
and
, , ClCp+D
Epxr, (IG0.0F) < |V, LOF + ——. (C.3)

where G(0, X) is defined in (10).

The above lemma is important for the proof of Theorem 4.3. First, inequality (C.3) gives an upper bound for the gradient estimator.
Using this upper bound, we can show that each iteration of Algorithm 1 is close to the classical gradient descent when the learning
rate x is small enough. Second, (C.2) means that the hessian of L is bounded. This ensures that the classical gradient descent has a
faster convergence rate to the first-order stationary point, which further implies the fast convergence of Algorithm 1.

Proof of Lemma C.1. Define

Zy= /|u/9(x)|2dx.

Q
First, to prove (C.1), using (4), we have

Vowy(X)

V,L(0)| =2E
l o ()| X~po yy(X)

(E9(X) = L(®))

llfe(X)

where we use Holder’s inequality in the first inequality, (11) and the second inequality of (12) in the last inequality.
Next, to prove (C.2). Using the formula of £(0) (equation (2)), we write

1/2
172 Vovp(X) |*
<2(Exsy, |80 - LOI) <[EX~M ~o¥o ) <4c2,

_2|VyZy| 1
[HoL(®)|| = — [Hyy(x)V gy (x)| dx + - Vo Hyy(x)Vawy(x)]|| dx
b Q 0 Q

(. J

O (I1)

1

+?/|Hy/9(x)|||H0y/9(x)|| dx+||Vy ZL/‘L(G)WG(X)VHWB(X)dX
) Q

D o

(1)
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We first deal with Terms (I), (I), (III) separately:

« For Term (I), we notice

Vowy(X)yp(x)d
v, 7| =| [V ereva i <\ [ Wovawras.
lwy()|>dx

where we use Holder’s inequality to bound the numerator in the inequality. This implies

24/ [ IVowg(x)|2dx |Hy/9(x)V9u/9(x)|d
X
2
VJ lwelPdx Zy

2>>1/2 Vo Hwo0Rdx o 1V gwg0)2dx

) ) )

Here, we use the Holder’s inequality in the second inequality, and (11)-(13) in the last inequality.
» For Term (II),

Term (I) <

o
ofen

3
SZCW .

Vowy(X)
yy(X)

Vowy(X)
yo(X)

Huyy(X)
yo(X)

Vowy(X)
yo(X)

VoHwo(X)||Vowe(X)
é/||V9Hy/9(x)V91//9(x)||dxS[EXNPH<| o Hyy(X)| | 2911’9 |>
09 |W9(X)|
Vo Hy,y(X)

2 172 2 1/2
Vowp(X) )
: <[EX~"€ < Vo) )) ([E’“"G ( Vo) )) <C

where we use Holder’s inequality, (11)-(13) in the last two inequalities.
» For Term (III),

Hyy(X)| |[H
Lz / ”HWQ(X)HQWQ(X)” dx < |EX~pg <| We( )| ” GZ'VG(X)H)
V4
09 III/(;(X)|
Hellfg(x)

172 1/2
Hyy(X) |* 2
S<[EX~M<|W )) <E< ey >> <C

where we use Holder’s inequality, (11)-(13) in the last two inequalities.

Combining the above three inequalities, we have

Term (D) +Term (ID + Term (III) < 2C, (C, + 1).

Using a similar calculation, we can also show

%/L(@)We(x)vglI/g(X)dx SC(CS/'H),

09

)

where C is a uniform constant. Thus, we have the hessian of L can be bounded, meaning

4
[HoL(®)]| < C(Ch + 1),

which proves (C.2) by the mean-value theorem.
Finally, to prove (C.3), noticing

2
— Y & (X;) Vologlwy (X,) 1,
i#j

n
GO.X)=2 Y £ (X,) Vyloglwy (X,)| - —
i=1

and

Ex,n (G0.X)=V,L(0).

i=1

12
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we have

Epx,yr, (1GO.X)P)

u 2
<|V,L©O)* + 5—2 > Ex o ()89 (X;) Vologlwy (X;) | — Ex.p, [Es(X)Vylog |1//9(X)|]| )
i=1

2
8
+ m[E <Z & (Xi] ) Vg loglwy <Xj] ) | = LoExp, Vo log |W9(X)|>
i#j
8 2
IV LO)P + =Exop, [€9 (X) Vo loglyig ()] = Ex..p, [E9(X)Vy log lwy(X)1]|

2
8 < > 1>IE(X1,X2)~,)§2|€9(X1)Velog|w9(xz>|—ca[Ex~,,gvelog|wg<X)|(

(n? = n)? =i 0rj1=jp
8 2, C 2
<IVoLOF + 2 Exep, [ € (X) Vologlyy COI + -y o0 | (X1) Valog vy (X2) I

where we use X; and X are independent in the first two inequalities. Using (11) and the second inequality of (12), it is straightfor-
ward to show:

172 4 1/2
Hyy(X) 4 Vowy(X)
Ey., |€(X)V,1 < E — E — <C,
Xepy [€0 (X) Vgloglyy (X) || _< x~p9<‘ 7 (0X) Xpo \ | Ty (X) =Ty
and
2 Hyy(X) 2 Vowe(XO |7 _
oy xar-s8? [ €0 (X1) Vo log g (X2) I S[E’“”f’( W) >E’“”9( w0 | ) =S

This concludes the proof of (C.3). []
Now, we are ready to prove Theorem 4.3:

Proof of Theorem 4.3. Denote the probability filtration

Fp=o(X/ 1<i<n1<j<m).

According to the algorithm, we have

0m+l = Gm - ’1me .
Plugging 0,,,, into L(8), we have
C nfn
2
where we use (C.2) and C is a constant that only depends on C,,. This implies

L(0m+1)sL(9m)_’7mV0L(0m) 'Gm + IGm|2

Cn?
E (L@ Fo1) SLO) = 1 [V LOW[ + 5 EAG, PIF o)

where we use [E(X,- . (G(6, X)) = Vo L(0). Furthermore, using (C.3) and #,, < é, we have

Cn?

E (L(9m+l)|7?m—l) SL(om) - (”m - C”rzyl/z) |V9L(9m)|2 + an
2
M 2 Cr’m

Taking the average in m=1,2,3,-.-, M — 1, we prove (14). []
Appendix D. Proof of Theorem 4.9
In this section, we prove Theorem 4.9. We first show the following lemma:

Lemma D.1. Under Condition 4.8 there exists a constant C' that only depends on C,,,C,,Cy, such that for any 6, 6eRr,

VyL(0)— VyL (5)' <C'o-19, ®.1)

13
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and

Z6 C/
Erxy, (160.0F) < —¢ <|V9L<e)|2 + 7) , (D.2)

where G(0, X) is defined in (16).
Proof of Lemma D.1. The proof is very similar to the proof of Lemma C.1 after setting Hy(x) = g(x) ((g(x), wg(x))). O
Now, we are ready to prove Theorem 4.9.

Proof of Theorem 4.9. According to the algorithm, we have
€m+l = Gm - ”me .
Plugging 0,,,, into L(8), we have

Cr?
L(0m+1) < L(am) - nmvﬂL(om) ) Gm + Tm IGm|2

where we use (D.1). Here C is a constant that only depends on C, - Because

Z3
Exm..xp(Gn) = ~—:V9L(9m), (D.3)
Zy

we obtain

73
E (L@l m1) SLO =1 [Vo L O] 2
Zon (D.4)
Cr>
+ S E1G, Lm0

Using (D.2) and (21),

!’
E(G,* 1L, <C (IVaL(ﬁ’,,,)I2 + %) , (D.5)

where C is a constant depends on Cw’ C,, C¢.
Plugging (D.5) into (D.4), using (21), and choosing #,, small enough, we have

2
Mm 2 Cr]m
E(L(®,41)) < LO,) - 2_C3 [VoL(8,)|” + - (D.6)

Taking the average in m=1,2,3,---, M — 1, we prove (22). []
Appendix E. Lipschitz of the Z,

Lemma E.1. Assume Condition 4.8, let 6,8 € RY, and suppose
0-0|<c..

Then there exists a constant C’ that only depends on C,,,C,, C¢ such that

lwyll
07 <exp(C'C,). (E.1)
llwall,

Proof of Lemma E.1. Fixing 0, 5, we define

2
||‘/’9+t(§—a) “ﬂ
R)=————".
lwoll?

Then

14
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2V 0¥ 1u@-0) Voru@-0) ol ~

IR (1] < 16— 0]

2
w2

2
2<V9‘/’0+r(5—0)’V’9+t(§—9)>p ||W9+t(5—9)H,, 5ol

2 llwoll2
H Vo+1(6-0) ” ) ’

<Cl6 - 61R().
where we use (18) and (19) in the last inequality. Because R(0) =1, using Gronwall’s inequality, we obtain
w1l
llwall,

— R1/2(1) <exp(C|6 - 5|) <exp(CC,). O

Appendix F. Additional details on scale-invariant supervised training

We created a fork [47] of the FermiNet repository [43] and implemented the scale-invariant loss function Equation (24) in the
columns of the backflow tensors. We used the straight-through gradient estimator [48] to train the network using either the standard
loss or our modified scale-invariant loss while plotting the angle between the wave functions in each case Fig. 1.

The commands for each (using the fork [47] of FermiNet) were:

Standard (blue)

ferminet --config ferminet/configs/atom.py \
--config.system.atom Li \
--config.batch size 256 \
--config.pretrain.iterations 10

Scale-invariant (orange)

ferminet --config ferminet/configs/atom.py \
--config.system.atom Li \
--config.batch size 256 \
--config.pretrain.iterations 10 \
--config.pretrain.SI
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