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Demonstration of a programmable optical lattice atom interferometer
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Performing interferometry in an optical lattice formed by standing waves of light offers potential advantages
over its free-space equivalents since the atoms can be confined and manipulated by the optical potential. We
demonstrate such an interferometer in a one-dimensional lattice and show the ability to control the atoms by
imaging and reconstructing the wave function at many stages during its cycle. An acceleration signal is applied,
and the resulting performance is seen to be close to the optimum possible for the time-space area enclosed
according to quantum theory. Our methodology of machine design enables the sensor to be reconfigurable on the
fly, and when scaled up, offers the potential to make state-of-the art inertial and gravitational sensors that will
have a wide range of potential applications.
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I. INTRODUCTION

In this paper, we utilize machine learning and optimal con-
trol methods to manipulate atoms confined in an optical lattice
to sense accelerations. Atom interferometry is well estab-
lished as a means of measuring inertial forces with exquisite
sensitivity [1,2]. Scientifically compelling endeavors that can
be advanced through precision interferometry often present
constraints or environments that are challenging for typical
atom interferometric systems to accommodate. These include
low orbit monitoring of the gravity field of Earth [3–5], and
spaceborne searches for dark matter [6,7], both of which
are constrained by size and weight limitations and present
harsh vibrational and thermal environments. In another preci-
sion measurement context, timekeeping systems that confine
atoms in optical lattices have achieved stunning levels of
precision—displaying a fractional frequency uncertainty of
3.5 × 10−19 [8] for shallow lattices, and 7.6 × 10−21 [9] for
deep lattices. Timekeeping experiments have established that
an optical lattice can provide a pristine environment for preci-
sion metrology [10], even while the forces imposed on atoms
correspond to the range of tens to hundreds of g’s, where g is
the acceleration due to the gravity of Earth. From a practical
standpoint, therefore, optical lattices can be used to confine
and manipulate atoms in the face of a dynamically harsh
environment [11]; the question then arises whether this system
can be used for matter-wave interferometry. The answer lies
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in machine-learning methods, which can be used to discover
how an atomic wave function associated with a lattice can be
manipulated by changing the relative phase of the optical lat-
tice to achieve interferometric measurement precision [12,13],
see Fig. 1(a).

Optical lattices have been used to enhance the perfor-
mance of atom interferometric inertial sensors in a variety
of ways, such as to demonstrate the high sensitivity of a
sensor based on Bloch oscillations [14], to capitalize on long
atomic coherence times by holding separated atoms in place
[15], and as a means to impose large momentum transfer to
atoms [16,17]. In this paper, we demonstrate an interferometry
sequence where the atoms are confined within the optical
lattice potential during the entirety of the measurement se-
quence. Unlike other optical lattice based sensors, our device
efficiently transfers atoms into the conduction band of the
optical periodic potential, enabling the atoms to enclose an
extended enclosed area for enhanced sensitivity to inertial
signals. We call this method Bloch-band interferometry (BBI)
due to the fact that, during the free propagation of our sensing
sequence, the lattice remains stationary, and the atomic wave
function can be described as being in a superposition of Bloch
states. BBI combines the approach of the shaken-lattice in-
terferometer [18,19], where the lattice is dynamically shaken
to enable atoms to move through the valence band of the
lattice via dynamic tunneling [20], and that of lattice-based
interferometry, where atoms are held stationary in a lattice
during phase accumulation. In BBI, the lattice is only shaken
during application of interferometery protocols, i.e., beam-
splitters and mirrors, and is held stationary during propagation
steps, allowing atoms to traverse the lattice as essentially
free particles rather than through tunneling. The power of
this optical lattice approach combined with optimal control
methods to generate a nearly arbitrary quantum state was illus-
trated in Ref. [21]. Motivated by these earlier works, here, we
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FIG. 1. Experimental system: (a) The lattice is shaken to implement the interferometer components. (b) Condensates are created in two
crossed 1064 nm dipole laser beams (blue) that intersect inside a science cell (purple). The atoms are then loaded into a one-dimensional
852 nm optical lattice (red), whose position can be altered by applying frequency shifts to two acousto-optic modulators (AOMs; not shown).
After time of flight (TOF), an absorption image of the cloud is taken by a 780 nm probe laser (green). (c) A TOF absorption image of the
optical density (OD) of the cloud after lattice load. Also shown is the integrated momentum distribution (lower) overlaid with the theoretical
histogram anticipated for the lowest Bloch eigenstate at that lattice depth. Machine-design methods: (d) Reinforcement learning, where an
agent (neural network) chooses an action, the environment responds to the action, and a reward is given as feedback based on the observed
state. (e) Quantum optimal control using the PRojection Operator Newton method for Trajectory Optimization (PRONTO) algorithm [22]. For
each iteration, given the control input φ(t ), PRONTO first computes the trajectory ξ based on the Schrödinger equation, then the algorithm
uses the second-order approximation of the cost, which is a function of ξ , to find an updated trajectory ξ�

demonstrate a machine-designed optical lattice atom interfer-
ometer and evaluate its performance as a sensor.

II. EXPERIMENTAL PROCEDURE

As shown in Fig. 1(b), we produce 2 × 104 Bose-
condensed 87Rb atoms via all-optical evaporation of atoms
in a 1064 nm crossed dipole trap (CDT) [23]. At the end of
evaporation, the dipole beams are maintained at their final
setpoint to offset gravity while the optical lattice beams are
adiabatically ramped on, leading to the transfer of condensed
atoms into the ground-state wave function with the momen-
tum distribution shown in Fig. 1(c). The lattice is formed by
two counterpropagating 852 nm laser beams, whose intensity
and phase are each controlled by independent acousto-optic
modulators (AOMs) before entering the science cell. The
atoms are subject to an optical potential at point r and
time t :

V (r, t ) = VL(r⊥) cos[2k · r + φ(t )] +VD(r), (1)

where wave vector k points along the lattice direction (with
magnitude k = 2π/λ given by the wavelength λ of the light),

andVL(r⊥) is the depth of the lattice with k · r⊥ = 0. We refer
to φ(t ) as a control or shaking function. The potential from
the CDT, VD(r), which remains present during the shaking,
gives rise to an ellipsoidal trap [24] with frequencies of 36.5,
132.3, and 144.8 Hz, defined along the principal axes and
measured via parametric heating [25]. Total atom numbers
are calibrated by means of time of flight expansion and fitting
to the Thomas-Fermi scaling ansatz [26,27]. To measure the
momentum distribution, all confining beams are rapidly ex-
tinguished, and the atoms are allowed to expand via TOF for
15 ms. Normalized atom numbers for each momentum state
are extracted from the integrated optical density of the probe
image. To accurately calibrate our lattice depth, we either
perform Kapitza-Dirac diffraction [28,29] and fit with theory
or measure the frequency of momentum state oscillations
following a small sudden shift of the optical lattice position
[30].

A. Reinforcement learning and optimal control methods

The problem of quantum design has been recast in re-
cent years by the developments in machine-learning methods,
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which can be extremely effective at finding efficient strategies
for accomplishing complex tasks [31]. These computer-based
approaches are capable of being decoupled from human
intuition and consequently have often proven effective at
uncovering solution spaces that have never been previously
explored. When naïve brute force searches are prohibitive,
sophisticated algorithms, such as those used in reinforcement
learning, have been able to perform at a level that exceeds
human capacity, as demonstrated by the strength of com-
puters playing games such as chess and Go [32–34]. The
quantum domain is strongly connected with this paradigm
due to the analogous exponential complexity underpinning
quantum evolution when the system is composed of many
constituents [35–41]. Examples are finding protocols for
quantum communication [42], improving quantum sensors
[43], and engineering quantum currents [44].

As schematically illustrated in Figs. 1(d) and 1(e), we
employ two distinct machine-design approaches: reinforce-
ment learning (RL) and quantum optimal control (QOC), to
find lattice position profiles, i.e., control functions, to realize
desired momentum transformations. In this paper, all control
functions are produced by simulating the one-dimensional
Schrödinger equation for an infinite lattice, with constraints
on the lattice depth and total integration time. RL involves the
application of an agent which is implemented using a deep
neural network. This agent repeatedly proposes a sequence
of actions chosen from a predetermined set to discover a
sequence that leads to a high terminal reward based on the
quantum state fidelity. QOC adopts a different strategy that
assumes a Hamiltonian model of the wave function evolution
and computes the control sequence that minimizes a given
cost function.

The two approaches differ in that RL iterates through many
shaking sequences and typically arrives at a different solution
in every run, while for the same control seed and design
parameters, QOC will always return the same optimal control
shaking function. It is not particularly useful to compare the
two methods per se, as they operate in different design spaces.
In the case of QOC, the model is fully specified, and the al-
gorithm is deterministic, while in the case of RL, the learning
is model free. In model-free learning, it is possible, at least in
principle, to perform closed-loop learning on an experimental
system whose dynamical equations are completely unknown.
Notwithstanding these considerations, both learning methods
have proven to be outstanding at finding high-quality solutions
in our design landscape. Acceptable simulated solutions for
beamsplitters and mirrors typically achieve >97% fidelity and
are often >99%.

B. Beamsplitter design

We apply both RL and QOC methods to implement offline
machine-designed solutions for interferometer components.
The first component in the interferometer sequence is an
atomic beamsplitter, which places each atom in a superpo-
sition of traveling in both directions at the same time. The
protocol that we implement was previously developed in
Ref. [12] using a 10ER deep lattice, which is the lattice depth
used exclusively for all the experimental sequences presented
here. The lattice depth is expressed in terms of the recoil
energy ER = h̄2k2/2m, where m is the atomic mass of 87Rb.

With this depth, we realize an approximate beamsplitter by
targeting the third excited Bloch state |n = 3, q = 0〉 ≡ |3〉,
where n is the band index and q is the quasimomentum
of the periodic lattice. This target state was chosen since
it is simultaneously an eigenstate of the lattice and is pri-
marily composed of the two ±4h̄k momentum states with
equal weight (∼47% in each). An additional motivation for
selecting this target state is that the atoms are excited into
the conduction band, enabling them to cover large distances
during the transport segment of the interferometer sequence.

Figures 2(a)–2(d) show the outcomes following the appli-
cation of the machine-designed beamsplitter shaking function.
Although the shaking functions produced by RL and QOC
are dramatically different, the measured fidelities to the target
beamsplitter are both >95% [21]. Both RL and QOC can pro-
duce beamsplitters having total shaking times much shorter
than than the recoil period, τR = 2π/ωR ∼ 316 µs. We note
that these are very short component time scales, of the order
of the vibrational period of the atoms in the potential wells of
the lattice.

C. Mirror design

Designing a shaking function that serves as a mirror is
a substantially different problem than the beamsplitter case.
For the latter, the design seeks to transform an initial wave
function into a final target wave function. In the mirror case,
the target is a unitary operation [12] rather than a state. Math-
ematically, this means a mirror unitary UM is designed to
perform the following transformation:

UM (α |p0〉 + β |−p0〉) �⇒ β |p0〉 + α |−p0〉 , (2)

where |±p0〉 = 1√
2
(|3〉 ± |4〉) are the approximately pure

±4h̄k momentum eigenstates, and channel fidelity [45] is
used as the metric of performance. Using channel fidelity
restricts the unitary optimization to the subspace spanned by
{|p0〉 , |−p0〉}, which is the only part of the quantum space
that is important for this mirror.

To validate mirror performance, we first design a shaking
sequence that produces a 100/0 beamsplitter (sending all the
atoms to the |p0〉 state) or a 0/100 beamsplitter (sending all
the atoms to the |−p0〉 state). This allows us to observe the
quality of the momentum reflection directly. Figure 3 presents
the experimental evolution from the ground state to a 100/0
beamsplitter state and the subsequent mirror action.

D. The Michelson interferometer

Equipped with beamsplitter and mirror protocols, a full
interferometer sequence is stitched together, effectively split-
ting, propagating, mirroring, propagating, and finally, recom-
bining for phase readout, as shown in Figs. 4(a)–4(c). We
impose time-reversal symmetry so that only the first half of
the interferometer sequence need be designed.

Following the entire interferometer sequence, the atoms are
largely returned to the ground state of the lattice. This is an-
ticipated if the components are implemented accurately since,
ideally, in the absence of an externally applied acceleration
signal, the initial state should be perfectly recovered at the
end of the sequence. The fact that we observe this, as shown
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(a) (c)

(b) (d)

FIG. 2. Beamsplitter sequences: (a) and (b) Sequence learned by reinforcement learning (RL) with the resulting time of flight images
from experiment. Similar measured momentum distributions for quantum optimal control (QOC) are depicted in (c) and (d). The experimental
fidelities for these sequences to the target solutions F , as defined in Ref. [21], are as indicated. In (b) and (d), color bars denote the optical
density.

in Fig. 4, indicates not only that the devices are operating
very close to what was intended in terms of both phase and
amplitude wave function evolution but also that any effects
not modeled by the design equations do not adversely affect
solutions on these time scales.

E. Interferometer response to acceleration

In a standard interferometer, the output is dependent upon
an applied acceleration. The sensitivity to this acceleration
is proportional to the enclosed spacetime area. The shaken
lattice approach allows us to adjust the enclosed area by

(a) (b)

(c)

FIG. 3. Mirror sequences: Shaking sequences for the 100/0 beamsplitter and mirror for (a) quantum optical control (QOC) and (b)
reinforcement learning (RL). Red dashed lines indicate the start and end of the mirror sequence. (c) The cascaded time of flight images
for RL, as seen in experiment, with popouts showing the initial Bose-Einstein condensate (BEC) loaded into the lattice, then after the 100/0
beamsplitter, and finally, after the mirror is applied. The momentum transfer from −4h̄k to 4h̄k by the mirror is apparent. Analogous results
are observed for sending the atoms along the other path, and/or using QOC control functions.
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(a)

(c)

(b)

FIG. 4. Interferometer sequences: (a) Experimental momentum probability distributions as observed from time of flight expansion and
cascaded together to give a representation of the interferometer evolution. The color bar is expressed in units of normalized population
percentage, and red lines indicate the boundaries between the beamsplitter, mirror, and recombiner sequences, which are sandwiched together
with no propagation delays. The design problem specifies the desired wave function only on these boundary lines. (b) Same depiction as (a)
but for the theoretical quantum evolution. (c) Raw experimental TOF images stitched together. Note that the observed asymmetry between
positive and negative momenta is anticipated since shaking solutions immediately break the inversion symmetry by initially shifting the lattice
in one direction.

incorporating transport stages between the interferometer
components, see Fig. 1(a). During the transport stages, the
lattice position is held fixed in space. Here, we allow the
atoms to propagate for 100 µs in each direction. We keep
this time relatively short to ensure that any potential effects
of transverse diffusion of the atoms, walk-off from the CDT
intersection, and atom-atom interactions will not significantly
impact the sensor performance. An acceleration is imposed
onto the atoms via a frequency chirp applied to one of the
lattice AOMs. Although both design methods produce com-
parable results, we display only the QOC results for the sake
of brevity, with the control function shown in Fig. 5(a). The
resulting momentum state interference fringes as a function
of acceleration are shown in Fig. 5(b). The experimental mo-
mentum populations measured over the applied acceleration
range compare well with the theory presented in Fig. 5(c).
Note that the only fitting parameter is a small overall shift of
the zero value in the applied accelerations which is accounted
for in the data presented in Figs. 5(d) and 5(e). This shift
is caused by a slight tilt (<1◦) in our lattice beams, which
induces an acceleration offset.

There are several significant aspects of the resulting
fringes, as illustrated in Fig. 5(d), that we draw attention
to. The output of our accelerometer is the momentum state
population fractions p ∈ {−6h̄k,−4h̄k, . . . , 6h̄k} viewed af-
ter recombination and TOF, rather than the interference signal

of two recombined clouds as in conventional Bragg interfer-
ometry. The fraction of the total population in these seven
momentum states P(p|a) provides a unique fingerprint for
each acceleration a, which allows the value of the acceleration
to be determined from the measured momentum populations
using statistical methods. The populations are not symmetric
about the applied accelerations, enabling the discrimination
of the direction of the applied signal. The fringe periodicity,
which determines the dynamic range of the device, can easily
be tuned by simply changing the transport time, with longer
times giving higher sensitivity and smaller bandwidth and
shorter times giving lower sensitivity and higher bandwidth.
This ability to modify the system performance metrics at will
is particularly attractive for applications in which the measure-
ment scenario is dynamic.

F. Sensitivity

The performance of the atom accelerometer can be charac-
terized by the the Jensen-Shannon (JS) divergence illustrated
in Fig. 5(e). The JS divergence quantifies the degree of
consistency between the simulation and the experimental
measurements [46]. An unbiased estimator for the measured
acceleration is the maximum likelihood, which corresponds
to the minimum of the JS divergence [47] at each measured
data point and is shown as white circles. The degree to which
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(a) (d) (e)

(b) (c) (f)

FIG. 5. Accelerometer measurements: (a) The quantum optical control (QOC) interferometer control sequence, where red lines separate
interferometer components. Full interferometer sequences were conducted over a set of equally spaced acceleration values from −0.125g to
+0.125g, and time of flight momentum populations were measured and stitched together to generate the contoured scan depicted in (b). The
expected result from the theory calculation is shown in (c). Fringes for each momentum component are depicted in (d). The experimental
data points (dots) compare well with the anticipated theory (solid lines). The theory lines shown are not fits to the data and contain no free
parameters with the exception of the overall shift in the zero acceleration. Analysis of bias offset and sensitivity: (e) Jensen-Shannon divergence
shown on a logarithmic scale. Low values ∼0 correspond to almost perfect coincidence of the measured distribution with theory (light regions),
and high values ∼1 correspond to poor coincidence (dark regions). The minimum at each recorded data distribution is the maximum likelihood
estimator for acceleration (white circles). (f) Single-atom sensitivity (smaller values are more sensitive) from theory for this shaking sequence
compared with the ideal (instantaneous component and perfect momentum splitting) limit with the same total time (blue dashed line).

the calibrated points lie in proximity to the diagonal line is
a measure of sensitivity. To quantify this, we compute the
single-atom sensitivity 1/

√
I (a), where I (a) is the classical

Fisher information:

I (a) =
∑

p∈{−6h̄k,...,6h̄k}

1

P(p|a)
[
∂P(p|a)

∂a

]2

, (3)

which is shown in Fig. 5(f). For reference, we bound this
by the ideal single-atom sensitivity that would result if the
beamsplitter and mirror components took zero time and the
device operated in free space with exactly ±4h̄k splitting,
thereby giving a perfect two-arm interferometer.

III. DISCUSSION AND CONCLUSIONS

In this paper, we have demonstrated the application of
advanced machine-design methods to find a class of quantum
design solutions for phase modulation, that is, the shaking of
an optical lattice. We have shown the ability to produce a vari-
ety of beamsplitters (50/50, 100/0, and 0/100), mirrors, and
recombiners, all of which have been realized experimentally.
When the designed components were cascaded, the resulting
interferometer protocols were analyzed through the applica-
tion of a lattice acceleration and the subsequent measurement
of the output diffraction pattern.

The interferometer demonstrated here has a round-trip time
of <500 µs. The transport time in the lattice (100 µs) implies
that the atoms only move on the order of 2.5 µm. This is
important because the sensitivity of an accelerometer scales

with the area enclosed in spacetime. If the transport time
were increased from 100 µs to, say, 0.1 s, the atomic wave
packets would be displaced by ∼2.5 mm; this would increase
sensitivity by a factor of order (103)2. According to Fig. 5(f),
this implies a possible single-atom sensitivity of ≈6 × 10−8g.
This value is not a sensitivity limit since each fringe can
be more precisely determined by statistical averaging using
multiple atoms, multiple passes, and multiple trials [48]. The
anticipated performance at the shot noise limit can, in general,
be computed from the single-atom sensitivity by dividing by a
factor of

√
N for N independent measurements. Also note that

what we present here is a classical limit, so that entangling and
squeezing the atomic quantum state could potentially improve
the sensitivity further.

It should also be noted that, because we use machine learn-
ing for design, protocols can be constructed to mitigate the
adverse effects of laser noise and atom interactions [49]. This
can be done by including each of these effects in the reward
function used during learning, a process that involves applica-
tion of the multiparameter quantum Fisher information matrix
[50]. This leads to design protocols that are extremely sen-
sitive to acceleration, while being simultaneously insensitive
to imperfections, such as lattice depth and/or atom number
fluctuations, commonly classified as nuisance parameters. The
ability to design around imperfections is a feature that can
be used to make optical-lattice interferometry attractive for
deployment in environments where robustness is needed.

In summary, in this paper, we have realized one of a
class of atom interferometers that are real-time reconfigurable,
have a compact form factor, and the potential to extend the
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application domain of atom interferometry. For more details,
see the Supplemental Material [51].
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