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1 Introduction

The work presented in this paper is at least partially motivated by a remarkable result of

Mikhalkin, established twenty years ago [1]: certain Gromov-Witten invariants of pseudo-

holomorphic maps [2, 3] can be computed by first going to the tropical limit [4-7] of the

maps involved, effectively reducing the problem to counting certain types of piecewise-linear

maps between tropicalized manifolds. The original proofs of this perhaps surprising and

potentially computationally powerful result were rooted in abstract mathematical arguments.



Since Gromov-Witten invariants emerged from quantum field theory (more precisely, a topo-
logical sigma model [3] coupled to worldsheet topological gravity [8, 9]), we would like to
understand this relation between the counting of complex and tropical maps directly in
physics terms, from the first principles of quantum field theory, and in particular to find
its direct path-integral realization. In the process, we are hoping to learn new things about
topological strings, worldsheet quantum field theories, and more generally about the path
integral method extended to the tropical regime.

Over the past twenty years (or much longer, since there were many significant precursors
of tropical mathematics long before the name “tropical” was coined), tropical geometry has
developed into a thriving field, connected to surprisingly many areas of mathematics, physics,
computer science, and more (see [4-7, 10] for an introduction to tropical geometry and its
applications). Much like real and complex geometry deal with geometric objects defined over
the field of real or complex numbers R and C, the natural objects of tropical geometry are
defined over a certain semifield T, known as the “tropical semifield”: roughly speaking, the
field operation of multiplication has been replaced in T by addition, and the field operation
of addition has been replaced by maximization. For example, given a polynomial in real
variable x with real coefficients,

p(x) = a1z® + aga™ + ... 4 a2t (1.1)

with k1 < ... < k,, a sequence of positive integers, its tropicalized version would be given
in terms of standard mathematical operations by

Prop(®) = max{ay + kiz, a2 + ko, ..., an + kpz}. (1.2)

Hence, a nonlinear structure in traditional mathematics has turned into a piece-wise linear
structure in tropical mathematics. Moreover, the coefficients of the linear terms in x are
integers. Such a radical departure from more traditional geometry over fields has profound
consequences: objects of tropical geometry are typically locally modeled by piece-wise linear
polyhedra, and tropical maps between two such geometries respect this structure, including the
integrality of the coeflicients of the linear terms. Calculations in the tropical setting therefore
take on a very different nature compared to those in more traditional areas of geometry, often
taking on a purely combinatorial form. They bring in new and unexpected connections to
other areas of mathematics and computer science, such as combinatorial polyhedral geometry,
dynamical programming, and optimization algorithms. If one can rewrite traditional problems
of enumerative geometry into their equivalent tropical form, one might gain a computational
and conceptual advantage, and solve problems that would otherwise be inaccessible by
more traditional methods. We would like to take this remarkable relation between classical
geometry and tropical geometry and look for its direct manifestations in quantum field theory,
with the hope that such a direct reformulation in the physics language can teach us new
and perhaps unexpected facts about path integrals and quantization.

In their original quantum field theory formulation, the standard Gromov-Witten invariants
first appeared in topological string theory, as certain correlation functions of gauge-invariant
observables in a theory whose fields are maps from the worldsheet ¥ to the target space M



(and referred to as the “topological sigma model” for short)! coupled to topological gravity.
Such quantum theories with topological symmetries can be given a very natural path-integral
representation, using the methods of BRST quantization. Since the maps that the path
integrals of this theory localize to are (pseudo)holomorphic maps

d:% - M, (1.3)

the worldsheet must be equipped with a dynamical complex structure — or, equivalently, a
conformal class of dynamical metrics — and the target space must carry an almost complex
structure, which may or may not be integrable. The underlying worldsheet quantum theory
is then an example of a relativistic topological theory of the cohomological type [12], and the
Gromov-Witten invariants appear among the gauge-invariant (or BRST invariant) observables
of this topological theory. How do we formulate the analog of this topological field theory
framework, when the pseudoholomorphic maps are replaced by tropical maps?

This question has many ramifications: do the topological worldsheet theories that define
the Gromov-Witten invariants have a tropical analog which would be accessible to the
traditional methods of quantum field theory? Is there a tropical analog of the path integral
formulation of such field theories? Do the techniques of the BRST quantization of gauge
theories naturally extend to the tropical case? These questions need to be answered before
one can offer a purely path-integral-based proof of Mikhalkin’s results.

We will see that constructive answers to these questions will take us outside of the limits
of traditional worldsheet theories with relativistic invariance. The worldsheets will no longer
carry complex structures, nor will they be equipped with nondegenerate metrics. Yet, the
resulting theories are consistent, and correlation functions of their physical observables are
calculable. The worldsheet theories that we will encounter turn out to belong to the class
of theories with Lifshitz-like behavior [13, 14], sensitive to a worldsheet foliation structure.
Clearly, explorations of any such extension of string theory beyond its traditional scope could
be valuable even outside the realm of topological theories.

In fact, our second motivation for the present work originates from questions about string
theory in the broader context, beyond topological, with propagating degrees of freedom.
Historically, the formulation of fundamental string theory was deeply rooted in the theory of
the S-matrix in Minkowski spacetime, and therefore attached to the implicit assumption of
the existence of a stable, static, eternal vacuum. In order to study non-equilibrium systems
using string theory, it would be highly desirable to relax this assumption, and formulate the
string-theory analog of the Schwinger-Keldysh formalism, which is suitable for the study
of systems far from equilibrium. This formalism is based on a doubled time contour, in
which the system is first evolved from the remote past into the far future, and then to the
past again. But what would string perturbation theory look like, when extended far from
equilibrium? This question was addressed using the techniques of large- N dualities [15-17],
leading to a perhaps surprising prediction: the genus expansion of string perturbation theory,
familiar from the study of equilibrium states, should undergo a refinement, whereby the

"More precisely, they correspond to the observables in the topological sigma model known as the A-
model. Throughout this paper, we focus entirely on the tropicalization of the A-model, leaving the analogous
consideration of the B-model (see [11] for a review) outside of our scope.



string worldsheets ¥ contributing to the such should decompose into three parts: one, X, at
least roughly corresponds to the evolution forward in time, another — ¥~ — corresponds to
the evolution backwards in time, and finally the “wedge region” ¥ connecting 7 to ¥,
corresponds to the time in the far future where the two branches of the Schwinger-Keldysh
time contour meet. It is this wedge region ¥ whose hypothetical worldsheet description
remains quite enigmatic. The large-N arguments have shown that X" does not represent
simple Cutkosky-like cuts of the worldsheets, but it has its own topological expansion, with
higher-genus X" contributing to string perturbation theory. Thus, ¥/ is at least topologically
two-dimensional, exhibiting the full topological complexity of two-dimensional surfaces. On
the other hand, the structure of the ribbon diagrams in the large- N analysis indicates that
the geometry of ¥" is highly anisotropic [16]: the worldsheet distances in the directions
connecting the boundaries with 1 to the boundaries with ¥~ are effectively scaled to zero
(when the distances in the transverse worldsheet direction are held fixed). As we will see
below, very similar anisotropic features in the worldsheet path integral will emerge in the
study of tropical topological theories, as well as for their non-topological cousins.

In this paper, and its sequel [18], we will construct — at least in the controlled setting of
a topological theory — an example of a string theory which does not require the existence of
a nondegenerate metric or a complex structure on the worldsheet. We will see how such a
construction naturally emerges when we try to make sense of path integrals for topological
theories of tropical maps.? We will formulate and study the topological quantum field theories
describing the matter sector, defined on a surface 3, whose path integrals localize to the
solutions of the appropriately defined tropical limit of pseudoholomorphic maps from ¥ to a
target space M. For the lack of a better term, we refer to such tropical topological sigma
models as tropological sigma models.> Throughout this paper, we will treat the appropriate
version of worldsheet gravity as a fixed, nondynamical background. The construction of the
appropriate worldsheet tropicalized topological quantum gravity that our tropological sigma
models can naturally couple to will be presented in the sequel paper [18]. In the final parts
of this paper, we will apply the lessons learned from the topological sigma-model case in a
broader context, and explore some aspects of this type of theories without the restriction
that the worldsheet theory be topological.

The present paper is organized as follows. In the rest of §1, we provide a lightning
overview of some central features of tropical geometry, focusing on those directly relevant
for this paper. Then we discuss some of the first obstacles and potential pitfalls that we are
facing in an attempt to give a path-integral representation to a tropicalized sigma model,
and propose our candidate for the tropical version of the localization equations. In §2, we

2There are other known examples of string theories whose worldsheet path integral description involves
more exotic mathematics compared to the conventional critical (super)strings; perhaps most notably, the cases
of p-adic strings and non-Archimedean strings have been studied in considerable detail [19-23].

3To the uninitiated, the word “tropological” may appear to be a random amalgam of the words “tropical”
and “topological”. However, a closer inspection reveals that the word tropological has an esteemed history
going back almost two thousand years, having referred to “the use of a Scriptural text so as to give it a moral
interpretation or significance apart from its direct meaning” [24] (see also [25]). Coincidentally, this word has
already been used in mathematical physics recently, in a different context for the tropical version of topological
theory constructions, in [26]; and it also appeared previously in [27]. (We thank Yoav Len for bringing ref. [27]
to our attention.)



study the worldsheet and target-space geometric structures associated with these tropicalized
localization equations, clarifying their symmetries and highlighting the differences from the
standard relativistic case. In §3 we construct the tropical version of the topological sigma
model, using the traditional method of BRST quantization in the path integral formulation.
We specifically address some of the novelties compared to the relativistic case, in particular
in the structure of antighost and auxiliary BRST multiplets, and explain how to deal with a
residual gauge symmetry that did not appear in the relativistic case. In §4, we consider the
example with the tropicalized CP! as the target space, solve for all its topological correlation
functions of point-like observables at any genus, and confirm that the results match the
correlation functions of the relativistic CP' topological A-model. In §5 we depart from the
limitations of topological theories, and study the simplest bosonic sector of the tropical sigma
models as a theory with propagating degrees of freedom. We focus on the question of a
proper analytic continuation of the theory to real worldsheet time. In §6 we conclude with
some remarks about possible generalizations.

1.1 Tropical mathematics and Gromov-Witten invariants

For two real numbers, a,b € R, define a one-parameter family of two operations, labeled
by A > 0: the product ®p and the addition &y, by

afh . bih, (1.4)
ea®nb/h — galh 4 cb/h, (1.5)

ea@nb/ﬁ —¢

For & real and positive, these operations equip the real numbers with the structure of a field
Ry, which is canonically isomorphic to the field R. However, as i — 0 (and denoting ®
and @ simply by ® and @), the rules contract to

1 (a+b)/h | _
a@b—%lg(l)ﬁlog{e }—a,—f—b, (1.6)

a, if a > b;

1.
b, if b > a. (1.7)

. a/h | b/h
a®b= %%hbg{e Ih 4 b }:{
Since @ is now idempotent, Ry itself contracts to the tropical semifield, Ry—g = T, with
a®b=a+band a ®b=max(a,b). (More accurately, T = R U {—oc}, with the role of
tropical unity played by 0, and the role of tropical zero played by —oc.) This procedure has
been known as the Maslov (or sometimes Litvinov-Maslov) dequantization [4, 7, 10, 28].

With this tool at hand, tropicalizations of complex manifolds can be generated, roughly
speaking, as follows. Consider a complex manifold M, of complex dimension n. Choose a
suitable system of complex coordinates Z! on M, with I = 1,...,n. Then take the absolute
values |Z!|, and apply the & — 0 tropicalization to each of these absolute values individually.
This yields a piece-wise linear object Miyop, locally in generic points of Mjyop of real dimension
n. Such objects are naturally parametrized by tropical coordinates, consisting of X! ~ log |Z I |
for I =1,...,n in the h — 0 limit (and with the phases of all Z! forgotten). The tropical
coordinates X! then satisfy the tropical algebraic rules in T. This procedure works particularly
nicely for simplest and most symmetric complex manifolds which are essentially covered by
one privileged coordinate system. CP™ would be an example, leading to tropical projective
spaces TP™, which carries the linear structure of a real n-dimensional polygon.



1.2 Reminder: origins of tropical geometry in superstring theory and M-theory

Historically, one of the stronger streams that contributed to the formation of the field of
tropical geometry came from string theory and M-theory. Tropicalizations of complex curves
have naturally emerged in several different corners, mostly in the context of considering
dualities of various extended BPS objects. In this § 1.2, we remind the reader briefly of
some of the historical context, as an additional motivation for our own treatment of the
tropicalization of topological sigma models below. Although this historical string-theory
perspective reviewed in § 1.2 will provide heuristic insights that we will find useful for our
further approach, it is not strictly necessary for the rest of this paper, and the reader not
interested in the superstring/M-theory context can skip this section.

One of the first instances where it was understood how piece-wise linear supersymmetric
BPS configurations of various branes ending on other branes can be lifted to a smooth
holomorphic brane in M-theory was the case of Type IIA D4-branes ending on infinite
NS5-branes (and possibly also with D6-branes present) [29]. Consider Type IIA superstring
theory on the flat Minkowski spacetime R'Y, with coordinates X, ... X?, first at very weak
string coupling. We will place parallel NS5-branes at X7 = X® = X° = 0 and at various
fixed values of X6. The worldvolume of the NS5-branes is thus parametrized by coordinates
X0 X1 ..., X5 We connect the NS5-branes by D4-branes which are at some fixed values
of X* and X°®, stretching along X% between two NS5-branes. The D4-brane worldvolume
is thus parametrized by X°,... X3 and X6, with X% a compact interval. This piece-wise
linear network is a 1/4 BPS state in Type ITA superstring theory.

A useful vantage point can be gained by lifting this configuration of intersecting D4-branes
and NS5-branes to strong coupling, described by M-theory on R'Y x S'. The radius R of the
extra dimension of M-theory plays the role of the Type ITA string coupling. We will denote
by X!© the coordinate on this M-theory S!. In this picture, D4-branes and NS5-branes
have the common origin, a single smooth M-theory M5-brane; depending on whether the
M5-brane wraps the S* or not, it gives rise to the D4-brane or the NS5-brane at weak string
coupling. Such an M5-brane can again be viewed as located at X7 = X® = X9 = 0. Its
worldvolume will again be parametrized by X, ..., X°. For such an M5-brane, the condition
of 1/4 BPS supersymmetry simply requires that the worldvolume should be embedded into
X6 + iX19 holomorphically, with the corresponding boundary conditions at infinity. In
particular, the configuration corresponding to the M-theory lift of our D4- NS5-system is
described by the holomorphic map

X0 4ix10 = RZlog(U—ai) —RZlog(U—bi); (1.8)
in terms of the complex coordinate
U=X"+ix° (1.9)

parametrizing in the directions transverse to the D4-branes. (The first sum is over all the
D4-branes that end on the NS5-brane from the left, and the second sum over those D4-branes
that end on the NS5-brane from the right; a; and b; are the locations of the D4-branes inside
the NS5; see [29] for details). In the limit of R — 0, which corresponds to the weak string



coupling, this smooth single holomorphic curve degenerates into the network of piece-wise
linear flat branes that we started with in the Type ITA theory. Mathematically, this relation
is very reminiscent of tropicalization; indeed, the relation between U and X6 +iX10 that
follows from (1.8) can be characterized as

(1.10)

XG 'XIO
U ~ exp{ﬂ},

R

and we see the limit of zero radius R — 0 of the M-theory circle corresponds to the Litvinov-
Maslov dequantization limit. The role of the Litvinov-Maslov % is thus played by the Type
ITA string coupling, the tropical limit corresponding to the limit of zero string coupling.

Yet another prime example of tropicalization emerging from string and M-theory is
given by BPS objects in Type IIB superstring theory in R!?. There are two antisymmetric
2-form gauge fields B and B in the spacetime supergravity description of this system.
Consequently, this theory contains half-BPS strings, labeled by two co-prime integers (p, ¢) and
referred to as (p, q)-strings. p and g are the charges under the two B-fields. At weak coupling,
one can interpret say the (1,0)-string as the fundamental string, and the (0, 1)-string as
the corresponding D-string.

Naively, one expects that the fundamental string is allowed to end on a stretched D-string;
however, the rules for joining strings in this case turn out to be more sophisticated [30-34],
as they require that when a string juncture is formed, the total p and ¢ charges must be
separately conserved,

Yopi=0, > q=0, (1.11)

at each junction. Thus, a (1,0)-string can join a (0,1)-string, but the third leg in this
junction must be a (1,1)-string, with the appropriate orientation. For the configuration
to be 1/4 BPS supersymmetric, the strings must lie in a two-plane, and their directions
in the plane are correlated with their (p,q) charges. Thus, not only must the charges be
conserved at the junction, the strings must also come in under specific fixed angles. This
procedure can be iterated, with many individual junctions conforming to the same rules, and
leading to BPS objects known as string networks. The geometry of this network consists of
piecewise-linear segments connected at vertices subjected to the charge and angle conservation
rules. As it turns out, the resulting geometric object is mathematically just a tropical curve
in the tropicalized CP? (which itself is essentially the two-dimensional flat plane, modulo
the compactification locus).

The lift of this Type IIB string network configuration to M-theory is again very illuminat-
ing [35]: all the different (p, q) strings originate from a single object, the M-theory M2-brane.
Type IIB superstring theory on R' is dual to M-theory compactified on a two-torus 7.
The complex structure of the T2 determines the complexified Type IIB coupling constant;
and we denote this modulus by

T =T +iT0. (1.12)
Our coordinates X° and X'9 on the T2 will satisfy the periodicity conditions

(X2, X119 ~ (X2 +27R, X1 ~ (X® + 27R7y, X0 4 27 R1y), (1.13)



with R indicating the overall size of the T2. It is this radius that will be taken to zero to
recover the Type IIB superstring limit. The Type IIB S-duality symmetry group SL(2,7Z)
acts naturally on this modulus by modular transformations, giving a geometric explanation
of S-duality via M-theory.

In this picture, the various (p,¢)-strings simply correspond to the unique M2-brane
wrapping various corresponding (p,q) cycles inside the T2?. On the M-theory side of this
duality, the M2-branes which preserve the same degree of supersymmetry as the Type IIB
string networks if their worldvolume is again embedded into the spacetime holomorphically.
Take the (p, q)-string network to lie in the X', X2 plane. It is then useful to pair up these two
coordinates with the two compact coordinates on the T2 and use the complex coordinates

zl = X' +ix°, Z? = X2 +ix10 (1.14)

Further changing the variables to

A 1 72
= _— —— V: _—— 1_1
v eXp{R TQR}’ eXp{TQR ’ (1.15)

one finds that the condition for the M2-brane to satisfy the same 1/4 BPS condition as
the Type IIB (p, ¢)-string network simply reduces to the single condition of a vanishing
holomorphic function

FU,V) =0, (1.16)

defining a smooth holomorphic embedding of the M2-brane into the compactified spacetime
of M-theory, with boundary conditions at infinity set by the choice of the (p, q)-strings in
the corresponding Type IIB network. Importantly, the Type IIB superstring limit results
from taking R — 0 in (1.15), again essentially reproducing the steps of the Litvinov-Maslov
dequantization. This connection between the string networks and tropicalization was later
highlighted again in [36].

In the limit of the small radius of the M-theory circle, the holomorphic surface 3 projects
onto an amoeba [37] in the Type IIB dimensions, which in the strict zero-radius limit becomes
the piece-wise linear tropical curve describing the geometry of the string network. Thus, the
limit of small radius is equivalent to the Litvinov-Maslov dequantization, the role of £ is
being played by the radius of the M-theory compactification torus.

In the descent from M-theory to Type IIB theory, the size of the T2 shrinks to zero;
however, one of the main lessons from string/M-theory dualities has been that it is very
beneficial to keep the shape of the T2 (or the M-theory S! in our Type ITA example above)
as a part of the spacetime geometry, instead of dropping it altogether. In the case of Type
IIB string theory, such an extended formalism is known as F-theory [38], and it has lead
to many original insights. We will keep these string-theory lessons in mind, when we ask
how we should treat the tropicalized manifolds in our proposed path integral for tropical
topological sigma models.

1.3 Tropical topological sigma models: search for the localization equation

In order to specify a topological field theory of the cohomological type [12], we need three
basic ingredients: a choice of the primary quantum fields, a list of symmetries that act on



them (which will typically include some class of topological deformations of the fields), and
the equations that we can use to gauge-fix the underlying symmetries. The path integral
for the theory is then constructed using the methods of BRST quantization, which adds
to the list of our primary fields the corresponding ghosts, antighosts and auxiliaries. The
action is designed to be BRST exact modulo possible topological invariants, and the BRST
symmetry can be used to show that the path integral localizes to the moduli space of the
solutions of those chosen equations.

In our tropical case, none of the three choices that we need to make to specify our path
integral are quite obvious. First, let us consider the choice of fields in the path integral.
Should our fields be maps from the worldsheet to the tropicalized manifold? And, more
importantly, should the two-dimensional worldsheet on which these quantum fields live be
replaced by its real-one-dimensional tropical limit? With such tropical maps as fundamental
integration variables, the hypothetical path integral would then likely have to be interpreted
as a tropical integral. While we are agnostic as to whether such notions of tropicalized
quantum field theory and tropical path integrals can be made sense of, in this paper we will
choose a more traditional way, and will find a conventional path-integral definition of the
tropical topological sigma models in which the fundamental fields are still the same maps

&8> M (1.17)

from a two-dimensional worldsheet 3 to a 2n dimensional target space manifold M. We
interpret the tropicalization of M not as a reduction to a real n dimensional tropical variety
Mirop, as would be common in the mathematical literature on tropical geometry; instead, we
keep the same topology of the original complex n dimensional manifold M as a differentiable
manifold of real dimension 2n. The tropical limit will then come from taking a singular
limit of various geometric structures on M.

We use local real coordinates Y on M, i =1,...,2n. A suitable choice for Y* would be,
for example, the real and imaginary parts of the n complex coordinates on M,

Zh =2 iy, I=1,...,n, (1.18)

setting

Vi {a: , fori=2I -1, (1.19)

y!, for ¢ = 21.

On the worldsheet, we will use general real coordinates denoted by ¢, with @ = 1,2. Using
this local parametrization, the map ® is then represented by specifying Y as functions of
the worldsheet coordinates, Y?(c®). These will be our quantum fields on X.

Next, we must address the symmetries. We will allow the theory to be gauge invariant
under the standard topological deformations of ®. In our local coordinates, these are
represented by arbitrary gauge transformation functions fi(aﬂ ), acting simply via

SYi(0%) = fi(o®). (1.20)

Our goal is to gauge-fix this topological symmetry by choosing the appropriate localization
equations as gauge-fixing conditions, and applying the standard BRST formalism.
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Figure 1. The tropicalization of the complex projective space CP!. (a): the original complex
manifold CP'. The standard coordinate Z € C covers the CP! except at the point at infinity, and
the coordinate W = 1/Z covers all CP! except the point at Z = 0. (b): the standard tropicalization
TP, with two coordinate systems indicated: X € T and X’ € T. The X coordinate system covers the
entire TP! except the point at X’ = —oco, while the X’ coordinate system covers TP! except the point
at X = —oo. They overlap along their open subset R, and on this overlap the transition function must
be a linear function with integer coefficients, in this case X’ = —X. (c): the representation of TP!
that we find suitable for our construction of the topological sigma model with TP! as the target space.
The underlying differential topology is the same as in CP', while the anisotropy between X and the
angular dimension parametrized by © results from the deformation of the geometric structures on this
manifold.

In many topological theories (such as Yang-Mills or gravity), there is also a secondary
gauge symmetry, which then requires the introduction of ghost-for-ghosts in the BRST
formalism. This secondary gauge symmetry does not occur in the standard relativistic
topological sigma models, and as we will see below, no such symmetries will be required
in our tropical case either.

Finally, the central subtle point is the choice of the localization equations themselves.
Consider maps from a worldsheet ¥ to a target space M, first in the well-studied case of a
relativistic topological sigma model, with M which we will assume to be a complex manifold.
In this paper, we focus on the tropical version of the relativistic A-model. In this case, the
worldsheet carries a complex structure, and it is convenient use local complex coordinates
2,z on ¥, and n complex coordinates Z!, Z1 on M. (A convenient choice for the 2n real
coordinates Y used above would then be the real and imaginary parts of Z!.)

Localization equation in topological sigma models: holomorphic maps, i.e., locally
satisfying the Cauchy-Riemann equations

o:21 = 0. (1.21)

In traditional algebraic geometry over the complex numbers C, one can get many examples
of holomorphic maps into suitable target spaces by satisfying polynomial equations, i.e.,
identifying the zero loci of polynomials over C (or over some other field F) in some ambient
space (such as the projective space CP™). In contrast, tropical curves are not easily defined
as “tropical zeros” of tropical polynomials over the tropical semifield: indeed, in our example
of a tropical polynomial in (1.2), we see by inspection that setting it equal to the tropical

— 10 —



zero (whose role is played by —oo)

ptrop(l') = —0 (1.22)

does not have any meaningful solutions. Instead, tropical geometers use peop(z) to define
the corresponding tropical variety in a rather more indirect (and somewhat cumbersome)
way: it is the subspace consisting of all points where the polynomial is nondifferentiable; or
alternatively, all points where the value of the polynomial is achieved by at least two distinct
linear terms appearing under the maximization operation.

If we wish to apply the algorithmic construction of a cohomological field theory, it would
seem absolutely vital to be able to define tropical curves as objects that satisfy a certain
equation. The apparent deficiency of the tropical semifield T to allow a definition of tropical
varieties in terms of solutions of an associated tropical equation was particularly stressed by
Oleg Viro [10, 28], who suggested an intriguing resolution: the tropical semifield T (and its
cousins in similar tropical constructions) should be replaced by an object that satisfies all the
standard axioms of the field, except the operations in this field are sometimes multivalued.
Such generalized fields are known in the literature as “hyperfields”.

Let us refine the discussion by considering the complex case of the appropriate hyperfield,
as introduced and studied in [10, 28]. Following Viro, we define the following subtropical
deformation of the field of the complex numbers. First, introduce a map from C to C,

22 if z # 0;
Sp(z) = || (1.23)
0 if z=0.
Then define
z@cw =Sy (Sp(2) + Sp(w)) . (1.24)

(As pointed out by Viro [10], a similar deformation of the complex torus (C\ {0})™ was also
originally proposed by Mikhalkin in [1].) If we choose to parametrize the complex numbers as

z=e (1.25)
the Si(z) map takes a particularly intuitive form in the new real variables r, 0:
Sh<er+i9) _ er/hy+i6' (1.26)

The limit of this operation as & — 0 then defines the complex tropical limit of the addition of
complex numbers, ®¢ . The tropical multiplication ®¢ ¢ will again be the standard addition.

There are two distinct ways how to interpret the i — 0 limit of ®©¢ . The first one
follows the traditional strategy used in tropical geometry, which in the real case has lead to
the semifield T, and interprets this limit as yielding univalued operation of addition, given by

21, if |z1] > |2al;
29, if |29| > |21;
21 B 22 = ™ 21+ 22 ? if |21] = |22] and 21 # —2; (1.27)
|21 + 2]
0, if Z1 = —Z9.
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These addition rules again become more intuitive if we use the parametrization of complex
numbers (1.25). In particular, the meaning of the third line is as follows: if r; = ry and
01 # 05 + m(mod 27), the result of their addition is a complex number with » = 1 and the
phase 6 which is at the midpoint between 6; and 65 along the shortest arc connecting them
along the circle of constant r. The meaning of the remaining three lines is self-explanatory.

While this single-valued operation has many good properties, it does not satisfy the
axioms required of a field addition; in fact, it is not even associative. This has lead Viro to
the second interpretation of the A — 0 limit, in terms of multivalued operations leading to a
hyperfield. The result of such a multivalued tropical addition of two complex numbers z;
and zo will now be given by specifying a set of values, as follows:

{21}, if z1] > [2a;
{22}, if |z2] > |z1;
_ ‘ 1.28
FECOZ TN e 6 € (01,02}, i || =] and 6 — 61 < e
{zeClzdslal}),  ifa=-z

Thus, if two complex numbers have equal magnitude but are not opposites of each other,
their addition is the shorter closed arc segment connecting them along the circle of constant
magnitude; and the addition of z and —z is the entire closed disk of radius |z|. With these
rules, the addition together with the tropical multiplication satisfy the axioms of a hyperfield.
Over this hyperfield, the defining relations of a tropical variety can take the form of satisfying
an equation, analogous to the polynomial equations known in classical complex geometry.

The use of hyperfields may have solved the mathematical problem of finding candidate
equations whose solutions are the tropical curves, but it may have created a much greater
difficulty for our formulation of the path integral: are we now supposed to define path integrals
for quantum fields that are multivalued, and satisfy multivalued algebraic relations under
addition or multiplication, and invent a hypothetical new discipline of “quantum hyperfield
theory”? Fortunately, the answer turns out to be more prosaic, at least in the present context
of the topological sigma models: we will be able to avoid any use of hyperfields (such as Viro’s
hyperfield shown in 1.28) altogether, and will find a path-integral realization of our theory
using the conventional theory of univalued functions, and with the appropriate localization
equations. After this construction is completed, can one still find some signs of multivalued
operations in our path integral? As we will see throughout this paper, the resulting theory will
exhibit a new kind of residual gauge invariance, absent in the standard relativistic topological
sigma models for complex target manifolds. We suspect that the apparent need for the
multivalued operations in Viro’s mathematical treatment of this problem is related to the
existence of this gauge symmetry in our physical formulation.

Having been educated by the two sources — F-theory on one hand, and the Mikhalkin-
Viro treatment of the tropicalization of the complex numbers on the other — we will keep the
angular variables while performing the tropicalization of the classical geometric structures,
both on the worldsheet and in the target space. Since we found the tropicalization to be
most intuitive in the parametrization of complex numbers given in (1.25), our starting point
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will be to define similar new variables both on ¥ and on M,

I
z:exp{%—i—iﬁ}, Z[:exp{);;+i@[}. (1.29)

From now on, we will suppress the index I on Z, since as we mentioned above, the standard
tropicalization of complex manifolds is applied individually on each Z?, index value by index
value. In fact, we can simply consider this equation as describing a map from the punctured
complex plane z (with z = 0 removed) to the punctured complex plane Z (with Z = 0
removed). In the new variables, the holomorphicity condition becomes

_Z

=7 —
0 2z

{@X—@@+%@%¥+#@@}=a (1.30)

Since we are not interested in the overall normalization while looking for a suitable
localization equation, we will drop the overall normalization of the left-hand side, and keeping
the leading terms in the h expansion both for the real and for the imaginary part. Thus,
we are led to propose

8, X — 350 = 0, (1.31)
9pX =0, (1.32)

as our tropical localization equations.

This proposed form of the localization equations also suggests the natural use of adapted
coordinates, both in the target space and on the worldsheet. From now on, we will often use
the adapted worldsheet coordinates (r,6), and the adapted target-space coordinates

(1.33)

vi_ el fori =21 —1,
1 ef for i = 21,

instead of the coordinates (1.19) that would have been more suitable for the standard
relativistic case. Since the tropicalization treats each X, © pair independently of all the
others, we will often consider the simplest case of just one such pair, described by the
coordinates X, © which we will often collectively refer to as Y, with i = 1,2, or Y! = X
and Y2 = ©.

Let us first examine the proposed localization equations, to see if they deliver the desired
solutions. Locally, the general solution of the system (1.31), (1.32) is given by

X('I“, 9) = XO(T.)’ (134)
O(r,0) = Oo(r) + 00, Xo(r), (1.35)
where Xo(r) and Og(r) are arbitrary (differentiable) functions of their argument. However,

globally, both 6 and © are periodic with periodicity 27, which restricts 9, Xo(r) to be an
integer, restricting the global solutions to

X(r,0) = xo + nr, n €z, (1.36)
O(r,0) = Og(r) +nb, (1.37)
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with ©g(r) still an arbitrary function. Recall now that in the standard description of its local
neighborhood, a tropical curve is described by a piece-wise linear map X = xg 4+ nr whose
slope is an integer, n € Z. Thus, the solutions of our localization equations describe correctly
the ingredients from which tropical curves are built, when we simply apply the forgetful
map (X,0) — X to our pair of fields (X, ©). Thus, we see that at least locally in generic
coordinate neighborhoods, the proposed equations indeed contain the information about the
local structure of tropical maps. We will return to the matching conditions at junctions
of several local neighborhoods once we establish a covariant formulation of the localization
equations, applicable to more general maps from more general surfaces ¥ to the tropical limit
of the target space M. While the mathematical investigations in tropical geometry are often
described in the language of solely X, we find it useful to keep both X and © as fundamental
fields in our field theory formulation: this will not only allow a more-or-less conventional
path-integral representation of the tropical theory using ordinary quantum fields, but also
lead to various clarifications, such as the origin of the quantization of n (which in the reduced
definition using X needs to be postulated axiomatically, but which in the (X, ©) language
is simply explained as the topological winding number around ©).

Note that there is an apparent hierarchy between the two equations in (1.31), (1.32):
Oy X appears at one lower order in the A expansion than 0,X — 0y©. We will encounter
various intriguing consequences of this hierarchy in our investigations below.

1.4 Symmetries of the tropicalized target spaces

Here we make a few additional clarifying remarks about the structure and symmetries of
the target spaces, which will be useful during the rest of this paper.

While many complex manifolds have large continuous Lie groups of symmetries (for
example those constructed as homogeneous spaces, such as CP™), tropical manifolds exhibit
only discrete symmetries [4, 6]. This is related to the fact that if they are constructed by the
tropicalization limit of a complex manifold M, a preferred coordinate system Z! is chosen on
M, and tropicalization is applied to each component of Z! individually, leading to a tropical
coordinate system with real X' coordinates, which is adapted to the piece-wise linear and
integral structure of the resulting tropical manifold. Transition functions to another such
local tropical coordinate system X! is then restricted to be piece-wise linear, with the strictly

linear terms having integer coefficients n!”’,

X' =nX’ 44l (1.38)

As a result, those geometric symmetries of tropical manifolds that mix two or more X7’
coordinates can be at most elements of the discrete symmetry group

G C GL(n, 7). (1.39)

This factorization thus provides another, symmetry-based reason why we focus in the bulk
of this paper on just one X, and its associated angle dimension ©. Each such pair enters
the description of the tropical manifold essentially independently of the others, and they are
mixed together only by a subgroup of the discrete symmetry (1.39).
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These simple observations will have important consequences in our construction of the
path integral for tropological sigma models and its symmetries. In particular, one can question
whether it is strictly necessary to formulate the theory in a fully covariant form in the target
space, allowing arbitrary coordinate transformations of the Y coordinates, or restrict only to
those that respect the actual geometric symmetries of the tropical target space. For now, we
will attempt a construction which is fully covariant, and return to this issue as needed below.

Besides reducing rotational symmetries to discrete subgroups, the piece-wise linear
structure of tropical geometry has another important consequence for our construction: the
reader will find that throughout this paper, the worldsheet theories we deal with are mostly
free-field theories, at least when described in local adapted coordinates. In contrast, most
interesting relativistic topological sigma models correspond to targets with nonlinear geometric
structures, described by highly nonlinear Lagrangians. This is not an essential simplification
on our part: rather, this is a feature of the tropical universe, in which nonlinear geometric
structures of classical geometry have been replaced with the combinatorics of piece-wise linear
structures [4-6], and are therefore amenable to a description by free quantum fields.

2 Geometry of the tropical limit of pseudoholomorphic maps

We wish to be able to write our localization equations (1.31) and (1.32) in a covariant form,
in arbitrary coordinates. In traditional relativistic topological sigma models, the localization
equation is usually written in the covariant form as follows. Consider maps from X to
M, at first viewed as real differential manifolds, with arbitrary real coordinates o® on X,
and Y? on M. First, one introduces a complex structure £,° on ¥ and an almost complex
structure jij on M. (In this paper, we denote complex and almost complex structures &
and J with a hat, reserving the symbols € and J for their tropicalized limits that will be
introduced below.) Then one demands

BaY' + 2,2 T 10577 = 0. (2.1)

We would like to rewrite our proposed localization equations in a similarly covariant form.
In order to do so, we must first understand what happens to the complex structures & and
J in the tropical limit.

2.1 Tropicalized complex structures and Jordan structures

Consider first the standard complex structure £,7 on a relativistic ¥, which is a section
of the tensor product of the tangent and cotangent bundle, T @ T*X. Starting with the
complex coordinate z = u + iv on X, € is simply given by

0 0 0
el do® — = du— — dv—. 2.2
S 968 T Moy T o 22)
Next, we substitute our tropicalization change of variables (1.29), and express £ in terms
of (r,0) coordinates,
0 0 0

1
e Pdo— = —dr— — hdf—. 2.
S0 508 T 1 o0 ar (2:3)
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As we perform the tropical contraction, i — 0, in order for the complex structure £,” to
have a finite limit in our favorite coordinates (r,6), we need to multiplicatively renormalize
it by one power of A, holding fixed

0 0
By~ — Jdp—
Eol do 908 drae. (2.4)

Similarly, we perform the tropical contraction of the target-space almost complex structure
J, leading to

D )
Ay —dx . 2.
JIAY' o = dX o o (2.5)

Note that these renormalized limits of the original complex structure do not themselves
represent almost complex structures; instead, they satisfy

e2=0, J?=0. (2.6)

As we will see in the rest of this paper, the worldsheets and target spaces in topological
quantum field theories that correctly represent localization to tropical maps will carry such
structures ¢ and J that square to zero (without vanishing, except perhaps at point-like
singularities). Note also that in the natural coordinates r,6 or X I @1, the resulting matrices
representing ¢ and J take their Jordan normal form, with zero eigenvalues; therefore, from
now on, we will refer to such structures € on the worldsheet and J on the target space
as Jordan structures.

Next, we need to write our localization equations covariantly, in terms of € and J. Simply
using (2.1) with the tropicalized ¢ and J will not work: these tensors are now degenerate,
and imposing (2.1) would lead to four independent equations, not two. Instead, we first
rewrite (2.1) in a form which would be equivalent to (2.1) in the relativistic case,

Eo' = 8,205 — J;i0,Y7 = 0. (2.7)

We can now replace the relativistic almost complex structures in the relativistic localization
equation (2.7) with the Jordan structures ¢ and J, proposing the localization equations
in the covariant form

B, =, 05" — J10,YT = 0. (2.8)

We observe that in coordinates (r,0) and (X, ©), these covariant equations reduce to our
desired tropical equations (1.31), (1.32):

EX = 9yX, E.® =90 —0,X, Ey* =0, E® = -9y X. (2.9)

2.1.1 Self-duality and Jordan structures

In the relativistic case, the holomorphicity condition (1.21) can be viewed as a self-duality
relation in two dimensions. Note that, similarly, the expression E,’ that we intend to use
to define our localization equation also satisfies a condition that reduces its number of
independent components from four to two. In adapted coordinates, we find

EsX =0, E°=-E7, (2.10)
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with E,.© unconstrained. These relations are the Jordan-structure analogs of the self-duality
equations. Can they be written in a covariant form? The answer is yes, they are equivalent to

ca B’ = —Ji'Eu". (2.11)

Similarly, as in the relativistic case with the complex structure, one could define an anti-self-
duality condition for generic sections &,' of T*Y ® ®*(TM) by

P& = TIELS . (2.12)

While there are some similarities with the standard notion of self-duality on ¥ with a complex
structure, there are also significant differences. For example, while in the case of the complex
structure the self-duality and anti-self-duality conditions decompose the corresponding tensors
into the sum of their self-dual and anti-self-dual parts, in the case of the Jordan structure
such a decomposition does not occur. To understand this phenomenon better, let us first
investigate more carefully the structures induced on a tensor algebra by the existence of
a Jordan structure on a vector space.

2.1.2 Jordan structures on vector spaces

Consider a two-dimensional vector space V, such as the tangent space T, of the two-
dimensional worldsheet surface Y at some general point p. We define the Jordan structure on
V as a nonzero element ¢ of V* ® V which satisfies, when interpreted as an endomorphism
of V, the condition

g2 =0. (2.13)

A choice of a Jordan structure € induces various unique structures on the tensor algebra
associated with V.
It is natural to represent such a Jordan structure in an adapted basis, in which it takes

£’ = (8 é) : (2.14)

Vectors v € V annihilated by ¢ form a one-dimensional vector subspace, F'V C V. It is

the following canonical form,

natural to view this subspace as defining a natural filtration structure on V', consisting
of subspaces

FoV=0c F'VcFV=V. (2.15)

On the dual vector space V*, the Jordan structure also induces a unique filtration. Define
F1V* to consist of all the elements w € V* which annihilate the elements v € F'V,

w(v) =0. (2.16)
This naturally defines a filtration

RV*=0C RV* C BV =V* (2.17)
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(a) (b) (© (d)

Figure 2. Examples of worldsheets with Jordan structures. (a): a local open simply-connected
neighborhood with a non-singular foliation (see § 2.2.1 and § 2.2.2). (b): the open cylinder with the
standard non-singular foliation, referred to as “the sleeve” in the body of this paper (see § 2.2.3). We
expect that at the boundaries of the cylinder, the sleeve is connected to other sleeves via a singular
leaf of the foliation. (c,d): two examples of Jordan structures with a singular leaf, connecting several
sleeves to form pieces of higher-genus geometries of ¥. The singular leaf and therefore the Jordan
structure in (c) is more generic than the one in (d), since the singular leaf in (d) comes from that in
(c) by collapsing one of the three segments of the singular leaf to a point.

Of course, these filtrations of V' and V* naturally induce the corresponding filtrations of
the full tensor algebra over V. Note that the vector space naturally dual to F'V is not a
subspace of V*; instead, it is the coset space V*/FjV*.

This filtration structure on the tensor algebra is to be contrasted with the standard
Hodge decomposition of the (complexified) tangent space of a ¥ that carries a complex
structure, and the subsequent Dolbeault decomposition of the tensor algebra over such vector
spaces with a non-degenerate complex structure. In our case, 3 will not be equipped with a
complex structure, and the standard language of Riemann surfaces so familiar from relativistic
(topological) sigma models and string theory would be unnatural. Instead, we will develop
an understanding of the natural structures and symmetries that are induced on various
geometrical features of 3 simply by postulating the existence of a Jordan structure.

2.2 Worldsheets with Jordan structures

Our intention is to construct topological sigma models, and later on topological strings,
without having to introduce conventional complex structures (or conventional conformal
structures) on the worldsheet, replacing them with the Jordan structures instead. In order
to prepare for this construction, we need to examine the consequences of the existence of a
Jordan structure on ¥ and its symmetries, at first locally and then globally.

2.2.1 Jordan structures in a local neighborhood on X

Consider an open, simply connected neighborhood U of a generic point p on the worldsheet,
with a non-degenerate Jordan structure defined on .* The filtration on 7,3 extends smoothly

“Non-degenerate” here means that ¢ is chosen smoothly and is nonzero everywhere in 4. When we later
consider compact ¥ of arbitrary genus, we will be naturally led for global topological reasons to allow Jordan
structures over compact worldsheets ¥ that require point-like “degenerations” of €, i.e., €’s that exhibit isolated
zeros or poles at a finite number of points in ¥. Here we first focus on the non-degenerate case in simply
connected open neighborhood U.
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over U, and defines a distribution (in the sense of vector-space subspaces) of the tangent
bundle to ¥ over /. Since this distribution is one-dimensional, it is automatically integrable,
and therefore induces a natural unique foliation structure of U. The leaves of this foliation
are open intervals. It also makes sense to require that the leaves are compact, given the
fact that our construction originated from the tropical limit of a local complex coordinate
system, in which the leaves of the foliation were naturally compact and parametrized by
the periodic coordinate 6. Ultimately, which types of foliation should be allowed globally
is an important dynamical question, which however belongs to the discussion of dynamical
gravity. In this paper, we will simply take the fixed foliation of ¥ as fixed, and given a
priori, without yet making gravity dynamical.

2.2.2 Symmetries of the Jordan structure in a local neighborhood on X

Consider again an open, simply connected neighborhood U of a generic point p on the

worldsheet, with a coordinate system r, 8 adapted to the preferred foliation induced by the

Jordan structure e. (In this adapted coordinate system, ¢ takes the canonical form (2.14).)
The group of symmetries that preserve the choice of € is given by

7 =7(r), (2.18)
0 = 6o(r) + 00,7(r), (2.19)

with 6o (r) an arbitrary differentiable function of its argument, and the condition 07/dr # 0
separating the group into two disconnected components, labeled by the sign of 97/9r. Both
connected components of the symmetry group preserve the orientation of . We will focus
on the Lie algebra generators of the infinitesimal symmetries,

dr = f(r), (2.20)
00 = F(r)+00,.f(r). (2.21)

Thus, the local symmetries of the Jordan structure are generated by the infinite-dimensional
Lie algebra whose elements are parametrized by two real, arbitrary projectable differentiable
functions f(r) and F(r) on the foliation. The Lie algebra takes the natural form of a semi-direct
sum, with a very clear geometric interpretation: while f(r) generates all diffeomorphisms of r,
the infinitesimal transformations of 6 are r-dependent affine transformations along the leaves
of the foliation, with the coefficient of the term linear in 6 being uniquely determined by the
infinitesimal reparametrization of r and indicating how the infinitesimal diffeomorphisms of r
act on the Abelian subalgebra of the r-dependent translations of 6 generated by F(r).?
Now we are ready to discuss the transformation properties of our proposed localization
equations (2.8). That equation is already in a manifestly covariant form under all worldsheet
diffeomorphisms generated by any £%(c?), if (as we are assuming) £,” transforms as a tensor
of rank (1,1), and X and © transform as a scalar. As a consequence, the localization

5The reader should be warned that such a Lie algebra and its corresponding Lie group are only formally
defined: when the range of r is R, there are many inequivalent definitions that make the group at least a
Fréchet space. They depend on the precise conditions imposed on the allowed functions f(r) on R, see for
example [39]. In this paper, we will not attempt to identify which one of these mathematically more precisely
defined groups should be the best candidate for the symmetries of our path integral.
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equations will take the same special form (1.31) and (1.32) in all coordinate systems in
which the Jordan structure takes the canonical form (2.14), if we postulate that X and ©
transform under (2.20), (2.21) as scalars,

5X = F(r)O.X + (F(r) + 00, f(r)) DX, (2.22)

56 = f(r)0,0 + (F(r) + 00, f(r)) 940, (2.23)

From now on, we will assume such transformation properties for any pair X, © representing
a tropicalized (complex) target-space dimension.

The infinite-dimensional symmetry algebra of the Jordan structure has some interesting
finite-dimensional subalgebras. First of all, the rigid translations along r and 6 together
with the nonrelativistic boosts

00 = Ar, or =0, (2.24)

form a three-dimensional nilpotent Lie algebra, well-known in the literature as the Heisenberg-
Weyl algebra (generated by a canonical p and ¢ pair). Note that the role of the central element
[q,p] = ih is played by the generator of translations in 6, along the leaves of the foliation.

In fact, the algebra of all affine symmetries of the Jordan structure (i.e., symmetries
acting up to linearly on r and 6) is not three-dimensional, but four-dimensional; it is
generated by the generators of the Heisenberg-Weyl algebra, together with the isotropic
constant rescalings of r and §. All four-dimensional real Lie algebras were fully classified
in 1963 by Mubarakzyanov [40, 41]; our algebra of all affine symmetries of £, appears on
Mubarakzyanov’s list as A4g. It is an indecomposable, solvable Lie algebra. In fact, this
algebra belongs to a family, parametrized by a real parameter —1 < b < 1, with our case
corresponding to b = 0. In our physical interpretation, the deformations away from b =0
would correspond to the possibility of making the constant rescaling anisotropic, with a
dynamical critical exponent

2 =1/(1+b). (2.25)

This means that in such a deformed theory, one would be assigning an anomalous, nonzero
scaling dimension to €. From now on, we will focus on the b = 0 case. Note that the central
element of the Heisenberg-Weyl algebra is no longer central in Ayg.

2.2.3 Symmetries of the Jordan structure on a cylinder

We will be particularly interested in the foliations by compact S! leaves, which take locally
the form of a I x S', with I an open interval. We will refer to such a portion of ¥ that
respects this I x S' foliation structure as a “sleeve”.

When we take into account the global topology of the sleeve, it is natural to restrict our
class of adapted coordinates such that the 6 coordinate (along the compact S* leaves of the
foliation) is always periodic with periodicity 27. This additional normalization condition
will restrict the infinitesimal symmetries of the Jordan structure just to

or = ro, (2.26)
00 = F(r), (2.27)
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the Lie algebra generated by global translations of r (if the sleeve is infinite and the range
of r is R), together with r-dependent rotations of ©.

One can also ask what happens if the requirement that the map from the sleeve to
itself be an isomorphism is relaxed, and one simply requires it to be an endomorphism, not
necessarily one-to-one; the endomorphisms of the sleeve that preserve the Jordan structure
must respect the periodicity of 6, and are therefore given by

¥ = nr+ro, n €z, (2.28)
0 = Oy(r) + nb. (2.29)

This is again matching the intuitive expectations from the mathematicians’ treatment of
tropical manifolds: after applying the forgetful operation of dropping #, morphisms between
tropical manifolds are realized by piece-wise linear maps in r, with the coefficients of the
terms strictly linear in r restricted to be integers.

Note that since we have restricted our coordinate systems on the sleeve to respect the
periodicity of # with the period of 27, this now allows us to associate an invariant length
to the sleeve along the r direction, without having to introduce any additional metric. This
length is simply defined as [ dr, between the two endpoints of the sleeve. Thus, our foliation
carries a natural measure along the tropical direction; this construction is closely reminiscent
of Thurston’s definition of “measured foliations” [42] of two-dimensional surfaces, which plays
a central role in Thurston’s theory of the geometry of two- and three-manifolds.

2.3 Anisotropic conformal symmetries

Simply by asking what are the symmetries of a Jordan structure on 3, we have found infinite-
dimensional symmetry algebras quite reminiscent of nonrelativistic conformal symmetries in
two dimensions. In order to clarify in what sense these symmetries should be interpreted in
our tropical context as “conformal”; we will now relate the symmetries of the Jordan structure
to the scaling symmetries of the appropriately defined degenerate metric structures on X.

2.3.1 Tropicalization of the metric

Just as we studied what happens with the standard complex structure on ¥ under the
tropicalization limit, one could play the same game with a nondegenerate worldsheet metric
Jap- (Again, we denote nondegenerate Riemannian metrics by symbols with the hat, reserving
symbols such as gng for their degenerate tropicalized limit, which we are about to introduce.)
Let us begin with the simplest case, of the flat metric with components g,g = dag on 3,

Gopdo®do? = du® + dv?, (2.30)
and switch again to the tropical coordinates r and 6,

1
Gapdo®do? = ﬁdﬂ + db?. (2.31)

In order to keep the resulting object finite as 7z — 0, we must renormalize g,z by a mul-
tiplicative h? factor, obtaining

Japdo®da® = dr®. (2.32)
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This object is still a symmetric tensor, but it is no longer nondegenerate — instead, it is of
rank one on X, and it is the natural tropicalized candidate for replacing the relativistic metric
in our nonrelativistic environment of tropicalized worldsheets. What are the natural conformal
symmetries associated with such a degenerate metric, and are they related to the symmetries
of the Jordan structure? The appropriate notion of (anisotropic) conformal symmetry on
spaces with foliations was defined in [43]). Given a (degenerate or nondegenerate) metric g its
conformal symmetry algebra simply corresponds to those allowed diffeomorphisms that map
g to itself up to a (possibly anisotropic) Weyl transformations. In our case, we do not need
anisotropic scaling with a dynamical exponent z # 1, and will simply restrict our attention
to isotropic Weyl transformations. The infinitesimal diffeomorphisms £% that map (2.32)
to itself up to an infinitesimal Weyl rescaling by w(c®) satisfy

9oy 05E" + 954 00€” = w(07)gap- (2.33)
In our simplest degenerate case (2.32), these equations reduce to
B =0, 20,6 = wlrb). (2.34)

The solutions give the algebra isomorphic to the algebra of all foliation-preserving diffeo-
morphisms of X,

& = f(r), ¢ = F(r,0), w =20, f. (2.35)

a symmetry strictly larger than the symmetry of the Jordan structure defining the foliation.

While it is somewhat intriguing that the algebra of all foliation-preserving diffeomorphisms
can be interpreted as the conformal algebra associated with a degenerate metric, and isotropic
Weyl transformations, this is not the end of the story. The original metric g, had its inverse
metric, which we will denote by heb, Writing the inverse metric in the tropical coordinates,

~.5 O 0 9\? o\?
ap_~¥ Y _p2 (2 il
M e gom = (ar) * (89) ! (2:36)
we see that h in the tropical limit becomes also degenerate,
pos 0 9 _ (5)2 (2.37)
do>doB  \96) '

in such a way that g and h are no longer inverses of each other, but instead satisfy the
“mutual invisibility” condition

Gaph® =0,  h*Pgs, =0. (2.38)

We can set up an analog of the natural definition of conformal symmetry for h*?: which
diffeomorphisms of ¥ map this degenerate inverse metric to itself up to a z = 1 Weyl
transformation? This condition in the covariant form is now given by

—h*70,6% — hP19,6% = &(a7)h*P, (2.39)
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for some infinitesimal Weyl rescaling parameter w. In components, these conditions reduce to

Dpt" =0,  —20p¢% = &(r,0). (2.40)
They are solved by
r 0 1 ~
&=10), & == [0, (241)

with @(r, #) arbitrary. This symmetry algebra is again adapted to the foliation, and again
larger than the symmetry algebra of the Jordan structure.

2.3.2 Weyl transformations and symmetries of the Jordan structure

The symmetries of the Jordan structure will emerge as conformal symmetries of our degenerate
metric structure when we allow for the presence of both g,z and h®? and require that they
transform under the Weyl rescalings with the opposite weight. This last condition requires
W(eY) = —w(o?), and one can show that under this requirement, the intersection of the
conformal symmetry algebras of g and h treated separately results precisely in the symmetry
algebra of the Jordan structure. This gives a clear geometric interpretation of the symmetry
algebra of the Jordan structure as a nonrelativistic conformal symmetry associated with
isotropic Weyl rescalings of a pair gqg, h®? satisfying the mutual invisibility condition
mentioned above.

In retrospect, this result is in fact not geometrically very surprising. Consider a Jordan
structure € on X. In the preferred local coordinates, ¢ takes the form

0

Here dr is an eigenvector (with eigenvalue zero) of € acting as an automorphism on 7*X, and

el do®

0/00 is similarly an eigenvector of € acting as an automorphism of TX. This eigenvector dr
is determined by & uniquely, up to a Weyl transformation dr — Q(r, 8)dr, and d6 is similarly
determined up to the Weyl transformation with the opposite weight, 8/90 — Q~1(r,6)0/06.
In turn, dr and 9/00 define degenerate symmetric tensors

2 2\*
which are uniquely determined by e precisely up to the Weyl rescalings g — Q%g and h — Q~2h,
respectively. Thus, we see that the Jordan structure uniquely determines the degenerate
pair g and h up to the Weyl transformations, and therefore the conformal symmetries of this
pair coincide with the symmetries of the Jordan structure itself.

2.4 Symmetries of the localization equations

As we have seen in § 2.2.2, the localization equations are invariant under our anisotropic
conformal transformations, if X and © transform as conformal scalars, as in (2.23). Besides
this conformal symmetry, the localization equations as written in a preferred conformal
coordinate system (r,6)

0.X — 090 =0, 0pX =0, (2.44)

~93 —



(a) (b) (©)

Figure 3. Defects in the Jordan structure lead to singular leaves in the associated foliation.

exhibit an additional important symmetry, independent for each (X,®) pair. The first
equation is clearly invariant under

0X(r,0) = Oga(r,0), (2.45)
dO(r,0) = Ora(r,0) (2.46)

for arbitrary a(r, ). Requiring that the second equation also be invariant restricts a to be
at most linear in 6, and we obtain an intriguing symmetry

0X(r,0) = ai(r), (2.47)
dO(r,0) = ao(r) + 00ray(r), (2.48)

with ag(r) and «a;(r) arbitrary projectable functions on the foliation, i.e., functions of only r.

At first glance, the precise status of such a symmetry appears a bit mysterious. It
looks like a hybrid between a linear shift symmetry in 6, while it still exhibits an arbitrary
dependence on r. If we interpret r as a time variable, this would perhaps suggest an underlying
gauge invariance, and associated constraints on the momenta in the canonical quantization.

2.5 Admissible singularities in the foliation

When we attempt to define the path integral for the tropological sigma model on a higher-genus
worldsheet X, inevitably some leaves of the foliation induced by the Jordan structure must
be singular. This signals the presence of controllable topological defects in the gravity sector
of the worldsheet theory. In this paper, we consider the Jordan structure as a non-dynamical
given. This still allows us to consider several natural types of defects in the Jordan structure
and investigate whether the localization equations continue making sense in the vicinity of such
singularities of the foliation. For this, it is important that we have our proposed localization
equations written in the covariant form, which does not require the existence of the adapted
coordinates (r,0) around the singular points, where no adapted coordinate systems exist.

Some of the simplest examples of the singular leaves in the foliation, and the associated
topological defects in the Jordan structure, are depicted in figure 3.

In physics terms, the singularities in our foliations of the worldsheet should be viewed as
topological defects of the dynamical Jordan structure. While the full analysis of the allowed
defects and their dynamics would require a more detailed description of the dynamics in the
worldsheet gravity sector (which will be developed in the sequel [18]), in this paper we can
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at least consider the topological classification of such defects, and check to what extent are
the localization equations for the sigma model still satisfied near such defects.

First, note that the natural order parameter that classifies singular leaves in the foliation
is essentially the same as the order parameter in two-dimensional nematic liquid crystals: it
is represented by an unoriented direction in the tangent space to the two-dimensional surface.
In our case, it is natural to orient this order parameter along the leaves of the foliation. In
the nematic liquid crystal case, the order-parameter manifold is an S, implying that the
corresponding homotopy groups classifying stable defects are such that the point-like defects
on the plane are labeled by one integer, the winding number of the unoriented direction as
we circumnavigate around the point-like defect. In our worldsheets with foliations, these
types of defects have been also encountered frequently in the mathematical literature on
foliated manifolds. Consider a candidate Jordan structure on a compact surface 3, of genus
g > 1. The induced foliation will inevitably have some singular leaves. We will choose
the Jordan structure such that the number of such singular leaves is finite, and such that
the rest of X consists of a finite number of sleeves ending with their boundary components
on the singular leaves.

2.5.1 Junctions of sleeves

A typical such configuration is locally depicted in figure 3(a), with four sleeves meeting at the
singular leaf. We will focus for simplicity on discussing this simple case, but the construction
is analogous for any finite number of sleeves meeting. In figure 3(a), nonsingular leaves
inside each sleeve are indicated by the curved lines. We wish to investigate suitable junction
conditions that such sleeves must satisfy at the singular leaf; this is going to be important
for our ability to count the number of instantons contributing to the path integral of the
tropological sigma models on higher-genus worldsheets 3. We will describe the local geometry
near the singular point of the singular leaf using an atlas containing five coordinate charts.
We will introduce coordinates x,y such that the singular leaf is locally described by x = +y,
and in particular the coordinate system is well-defined at the singular point of the foliation at
x =y = 0. These are not adapted coordinates to the foliation, but are a perfectly legitimate
coordinate choice on ¥ interpreted as a differentiable manifold, with x = y = 0 a smooth
point. Next, on the internal portion of each of the four sleeves we introduce natural adapted
coordinates. We label the four sleeves by >, <, A,V correspondingly (see figure 3(b)). On
the first sleeve, we choose adapted coordinates r., 0., such that r- is negative inside the
sleeve, and approaches zero as we approach the singular leaf. Similarly, §. will represent
a coordinate along the leaves of the sleeve, chosen such that . = 0 along the y = 0 axis.
Analogous adapted coordinate systems are chosen on the remaining three sleeves. Fach
of these coordinate systems can be naturally continued inside the neighboring two sleeves,
leading to the natural transition functions between them. For instance, r~ can be continued
to positive values, which for 6. positive extends smoothly into the neighboring V sleeve (and
for 6. negative into the A sleeve), with natural transition functions

rv =T« Oy = —0<,
™" = —T<, 9/\ = —0<, (249)

and similarly for all the other neighboring pairs of sleeves.
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These four adapted charts cover the open domain of 3 around the z = y = 0 singular
point, with this point removed. In order to complete the description around the singular
point, we must specify the transition functions from the four adapted coordinate systems
inside the sleeves to the x,y coordinates. On the overlap with the r., 0. coordinate system,
one can for instance take

re = yZ — 22, 0. = 2xy, (2.50)

and similarly for the remaining overlaps. (The lines of constant . are indicated in figure 3(b)
as dotted lines.)

This establishes an atlas of smooth charts in the vicinity of the defect in the Jordan
structure.

A few comments are in order:

(i) Note that the open portions of the singular leaf of the foliation away from z =y =0
look locally smooth, and indistinguishable from local neighborhoods in regular S* leaves of
the foliation. The entire singular feature of the singular leaf is associated with the juncture
point at x = y = 0.

(ii) Having found a suitable coordinate description of the vicinity of the singular point,
we can now evaluate the Jordan structure in the coordinates x,y suitable for taking the

z,y — 0 limit. We get:
1 xy a2
h= : 2.51
Ty (—y2 —wy) (250

We see that this Jordan structure is indeed singular at the origin in the z,y coordinate system:
while the values of the components e,” obtained as z and y are taken simultaneously to zero
are finite, the result depends on the angle with which the singular point is approached.
(iii) Fortunately, for the calculations in the path integral of the tropological sigma
model, we do not need the Jordan structure to be nonsingular at the singular point of its
foliation, it is sufficient if the localization equations are unambiguously defined, and satisfied,
near such singular points. The localization equations in the x,y coordinate system take

1 vy 2%\ (0.0 0. X
a? +y? (—y2 —xy) (ay@> - (GyX> 0 (2:52)

1 ry x? 0. X
p— 2»
x2 + 12 <—y2 —:Ey) <6yX> 0, (2.53)

and they are naturally solved by maps that have a second-order zero at x = y = 0,

the following form,

X =Ck*—-12%), ©=20Cuzy, (2.54)

for some constant C. This compensates for the singularity of the Jordan structure, and
makes the continuation of the solutions of the localization equations unambiguous at the
juncture point in the singular leaf. Thus, it appears natural that such mild singularities in the
worldsheet Jordan structure should be admissible; they are indeed inevitable for constructing
solutions of the localization equations on higher-genus surfaces.
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The construction is easily generalized to the case with other values of the defect quantum
number around a juncture in the singular leaf. An example with three sleeves meeting at a
singular leaf is depicted in figure 3(c). The main novelty in the case when an odd number
of sleeves meet at the singular point of the singular leaf is the fact that X and © are then
antiperiodic as one circumnavigates the singular foliation point. In general, any number of
sleeves greater than two can meet at a singular leaf.

Having understood the local geometric structure of worldsheets near singular points of
the foliation, we can now construct global solutions of the localization equations, by gluing
together the sleeve solutions that we found in (1.36), (1.37) (or their more general, local
form (1.34), 1.35)) at the singular leaves where several sleeves meet. This is accomplished
with the use of the a symmetries discovered in § 2.4. Take for example the global solutions
on two neighboring sleeves,

X< =ncre, O< = O«(r) + nbe, (2.55)
X\/ =nyry, @v = (‘)\/()(7') -+ 71\/0\/. (256)

We will consider the nondegenerate case, when n. and ny are both nonzero integers. To
match such solutions on the coordinate patch where they overlap, one can use the ag(r)
symmetry to set ©«9 = Oy on the overlap, and then use the a;(r) symmetry to rescale
r such that n. = ny in the local vicinity of the singular point. (If one of the integers n.,

.., is zero, the corresponding sleeve is entirely mapped to a marked point modulo an «
transformation, and can therefore be collapsed to a worldsheet point.)

Tterating this process for all pairs of neighboring sleeves, one constructs a global solution
of the localization equation, assuming that a single global topological constraint is satisfied
for each singular leaf of the foliation: the map from ¥ to M will be continuous (and, indeed,
smooth) if at each singular leaf the total winding numbers of all the attached sleeves sum up
to zero. Thus, for example, when four leaves meet at one singular leaf (as locally depicted
in figure 3(a)), they must globally satisfy

ne +na+ns +ny =0. (2.57)

If the target space has more than one X', ©f pairs of coordinates, there is one such condition
for each pair, at each singular leaf. This precisely reproduces our topological expectations, and
matches for example the analogous charge conservation conditions at Type IIB string junctions.

2.5.2 Punctures

Finally, one last type of singularity in the worldsheet Jordan structure should be discussed: a
puncture (see figure 4). We use it to simply indicate the presence of a semi-infinite sleeve,
whose natural adapted r coordinate goes to co (or —oo). We find it useful to depict it
simply as a marked point on 3 (which one can think of as representing a singular leaf of the
worldsheet foliation, “at infinity”), with the understanding that the coordinates that would be
smooth around such a marked point do not belong to the class of adapted coordinates of the
Jordan structure. For example, one can relate the adapted coordinates (r,6) to coordinates
(z,y), well-defined at the puncture at r — —oo, via

x =e" cosb, y =€ sinf. (2.58)
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Figure 4. It is often convenient to depict the half-infinite sleeve as a punctured disk, even though
the local coordinates around the marked point on the disk are not adapted to the Jordan structure.

Then one finds that the standard Jordan structure on the semi-infinite sleeve is given in

I
e’ ! < . ) (2.59)

the (x,y) coordinates by

T2+ \—y? 2y

In these non-adapted coordinates at the puncture, these components of the Jordan structure
look superficially similar as those at the singular leaf where four sleeves meet, (2.51). However,
despite this superficial similarity, the solutions of the localization equations in the (z,y)
coordinates around the puncture do not exhibit zeros, but instead they diverge at the puncture,

X(z,y) = glog(af2 +4%), (2.60)
O(z,y) = narctan (%) , (2.61)

indicating that the end of the sleeve (when n # 0) is indeed at infinity.

Does this singular behavior of X and © at the puncture mean that punctures should
be treated as singularities not belonging to the worldsheet 37 In fact, the opposite turns
out to be true: the punctures can be consistently treated as smooth points in the compact
worldsheet 3, mapped smoothly to the singular foliation leaves of the target space. In order to
see that, one needs to switch not only to the (x,y) coordinates near the worldsheet puncture,
but also to similar non-adapted coordinates (X', Y) that cover a neighborhood of the singular
leaf at X = —oo in the target TP'. We define

X = eXcos®, (2.62)
Y = eXsino. (2.63)

In such non-adapted coordinates defined in the vicinity of the singular leaf at X = 0, the
standard Jordan structure on the TP! takes the form

: 1 —Xy X2
Jf = pE <_y2 X))) . (2.64)
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When expressed in this pair of non-adapted coordinate systems (z,y) on the worldsheet and
(X,Y) on the target space, the localization equations

1 —xy 22\ (0,X 0, 1 0. X 0\ [—XY X2
2 2 2 32 b} 9 =0 (265)
2 +y? \ -y~ zy) \OyX 0, X2+ Y2 \o,X 0,Y) \ =Y° XY
look quite complicated, but they and their solutions can be successfully continued through

the puncture at x = y = 0. In fact, there is an infinite sequence of natural solutions to these
nonlinear equations, given by simple monomials in « and y of arbitrarily high degree n,

n=1: X =z, Y=y,
n=2: X =2 — 2 Y = 2xy, (2.66)
n=3: X:x3—3xy2, y:—y3+3x2y,

At higher integer values of n, the structure of these monomial solutions can best be illustrated
as follows. Combine the worldsheet and target-space coordinates into complex coordinates,

z =z + iy, Z=X+1). (2.67)

(This is not meant to imply the existence of any standard complex structure near the
worldsheet puncture or near the singular leaf of the TP' target space — these complex
coordinates are introduced merely for convenience.) In these complex coordinates, the
localization equations (2.65) boil down to

z

20:2 — 20,2+ 29-2 = 0, (2.68)
z - Z
z Z. -
20:Z2+ 20,2 = 0. 2.69
S0 2t = (2.69)

Clearly, these nonlinear equations are not the equations for holomorphicity in standard
complex geometry; yet, remarkably, they have an infinite sequence of solutions given simply
by holomorphic monomials,

Z(n)(z, z)=2z" (2.70)

These monomial solutions labeled by n represent smooth continuations of the standard sleeve
solutions (1.36), (1.37) with winding number n through the puncture. As we see from this
analytic form, the localization equations are again smoothly extended through the singular
leaf of the foliation at the puncture, and we have a good notion of smoothness at the puncture
for the maps to the target space.

2.6 Tropical limit as a nonrelativistic limit

In the context of the Litvinov-Maslov dequantization, the idea of the tropical limit emerged
in attempts to make sense of the classical asymptotics of quantum systems and their ob-
servables. In our two-dimensional topological sigma model context, we have found that
the “dequantization” of the tropical geometry does not correspond to the classical limit of
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our system; instead, the iz — 0 limit of the Litvinov-Maslov dequantization corresponds
to a nonrelativistic limit, in which the worldsheet theory undergoes a ¢ — oo contraction,
with ¢ the worldsheet speed of light. In this limit, the leaves of the foliation represent the
worldsheet spatial dimension, and the direction transverse to the leaves is the worldsheet
time. As a result, the symmetries of the tropical geometry naturally acquire a field-theoretical
interpretation as nonrelativistic symmetries of the worldsheet theory.

Our quantum topological field theory of the tropological sigma model will of course
have its own Planck constant, which will be denoted by e below. This Planck constant has
nothing to do with the A of the Litvinov-Maslov dequantization. Based on the standard
BRST arguments, the semiclassical approximation e — 0 will be exact in the path integral
of our tropological sigma models.

3 Tropological sigma models

Having understood the basic geometric features of Jordan structures, and its symmetries, we
are now equipped to construct a path integral formulation of our theory using the methods
of topological field theories of the cohomological type [12]. In this theory, the worldsheet
path integral for the correlation functions of physical observables will localize to the solutions
of our localization equations representing tropicalization.

3.1 Cohomological BRST construction from the localization equations

We follow the standard logic of cohomological field theories, and use the traditional methods
of BRST quantization to construct the path integral [12]. All fields of the BRST quantization
fall into multiplets of the BRST charge @, which satisfies Q2 = 0 and defines physical
observables through its cohomology.

3.1.1 Ghosts

Our basic BRST multiplet reflects the underlying bosonic topological symmetry (1.20),
transforming Y into the corresponding ghost v

Q.Y =", (3.1)

When we use the adapted coordinates X and © on the target space, we will use the following
simplified notation for the individual components of the ghost field,

VX =, v = 0. (3.2)

Thus, in the adapted coordinates the basic BRST multiplet associated with each tropicalized
complex dimension of the target space is given by

(Q,0] =1, {Q, ¥} =0. 3.4
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3.1.2 Antighosts and auxiliaries

In order to perform the gauge-fixing of the topological symmetry using the localization
equation E,' = 0, we introduce the trivial BRST multiplet

{Q,x%} = B, (3.5)
Q,B%] =0,

containing the bosonic auxiliary field B%; and its antighost superpartner x®; which must
be chosen such that the integral

/E 20 B Byl (3.7)

is covariantly well-defined. In addition, it is often customary to introduce another BRST
exact term in the action, which is quadratic and nondegenerate in the auxiliaries B%;, so
that they can be integrated out by Gaussian integration. This in turn leads to the bosonic
part of the action that is nondegenerate and quadratic in E,’.

When we try to repeat this strategy in the tropical case, we encounter several intriguing
subtleties, which we now address. Note first that since E, is a section of T*% @ ®*(T M),
B%; must be a density-valued section of the dual bundle TY ® ®*(T*M). In addition, since
E," satisfies (2.11) and therefore has only two independent components, only two out of the
four components of B%; will couple. How can we formulate this reduction of B in geometrical
terms, and can it be done covariantly?

In the relativistic case, one uses the fact that every tensor B%; can be decomposed into
its self-dual and anti-self dual part, and simply restricts B%; to be (anti)-self-dual. This
reduces the number of independent components to two, which are the appropriate ones that
couple to the two components of the localization equation. In our case, one can again define
the natural tropicalized limit of (anti)-self-duality equations,

Eﬁalgii = :l:JikBik. (3.8)

However, declaring the auxiliary field to be self-dual or anti-self-dual in this way does not
solve our problem: a quick inspection in adapted coordinates shows that either of the two
choices throws away one of the components of B%; that needs to couple to E,’. This is
again related to the observations about vector spaces with Jordan structures that we made
above: the structures induced on the vector spaces are often filtrations, not direct-sum
decompositions. As a result, tensors of the type B%; do not decompose into a sum of BYi
and B?; that satisfy (3.8) for the two corresponding sign choices. The reasons can be seen in
the adapted coordinates — first of all, both equations in (3.8) require B"g = 0, so only those
tensors that have this component vanishing can be written as a sum of solutions of (3.8).
But even then, such a decomposition will not be unique: the Bﬁ@ and B? g components are
completely unrestricted by (3.8), and setting their sum equal to B?g leaves an ambiguity. In
addition, B"g is precisely one of the components that we need to keep around, since E,©
is one of the two nonzero components in the localization equation.

A fully covariant way how to achieve the desired reduction of B%; does exist, but it
requires the introduction of an additional gauge symmetry. Observe that our action (3.7)
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exhibits a gauge invariance under
0B%; = fi(a%), Y=o, (3.9)

where f¢;(0”) satisfies the tropicalized self-duality condition (3.8) with the plus sign choice.
Thus, the covariant reduction of the four components in B%; cannot be achieved as a reduction
to a two-dimensional subspace, but instead, it is covariantly represented as a two-dimensional
coset space, defined modulo the gauge transformations (3.9).

The next question to ask is whether — at least in the adapted coordinates — there is
a natural gauge-fixing choice for our new gauge symmetry (3.9). One simple choice would
seem to suggest itself:

B'x =0, B'x=-Bg. (3.10)

This is certainly a fine gauge-fixing choice for (3.9), and it appears to mimic the symmetry
structure of F,’ that the auxiliaries are coupling to. However, perhaps somewhat surprisingly,
this gauge choice turns out to violate the worldsheet conformal invariance!

In order to find another gauge choice that is consistent with our worldsheet conformal
invariance, we must abandon the full covariance in the target space. Recall that tropicalized
target spaces have no continuous symmetries that would mix various coordinates; in particular,
there is no continuous symmetry that would transform the preferred coordinates X and
© into each other. Until now, we often used more general coordinates Y, and implicitly
required invariance of our formulas under arbitrary coordinate changes of Y?. Once we
are willing to use the adapted coordinates X and © on the target space, it turns out that
there is a unique natural gauge-fixing condition, which is still fully covariant under arbitrary
coordinate changes on 3,

B =0. (3.11)

As we will see below, this condition is also uniquely determined by requiring the consistency
with worldsheet conformal transformations. From now on, we adopt this gauge-fixing
condition, and formulate the theory using the adapted coordinates X, © on the target. When
we also use the adapted coordinates 7,0 on X, we will simply refer to the two remaining
components of B%; using the following simpler notation:

B'e=B Bl = —5. (3.12)

)

One additional subtlety appears when we attempt to add a term to the action quadratic
in B and S, to integrate them out. In the worldsheet covariant form, such a term would
be given by

1
-5 / P20 75 HOOB o Bl o, (3.13)

Here H®® is the component of the degenerate inverse metric on the target in the tropical
limit, which we have indeed found to be non-zero. Finally, Since each B%g transforms
under worldsheet diffeomorphisms as a tensor density, v,3 must itself be a tensor density
of weight —1.
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In the relativistic case, there would be a natural candidate

PR 3.14

YaB = ﬁgaﬂ’ ( . )
where gns is a nondegenerate worldsheet metric, and g its determinant. This relativistic 7,z
is sensitive only to the relativistic conformal structure defined by g,g. In our tropical case,
we do not have a nondegenerate worldsheet metric, only its degenerate limit g,g. Similarly,
there is a degenerate limit v, of (3.14), whose only non-zero component is v,, = 1, much as
the only nonzero component of g,g in the adapted coordinates is g,.. This v, can be used
to covariantly square one component of B%g, but not the other. Thus, we can add a BRST
invariant and conformally invariant term to our action, given in adapted coordinates simply by

1
S = —i/dtdeBz. (3.15)

B can then be integrated out by the Gaussian integral, to simplify the action; however, 8
cannot acquire a conformally invariant quadratic term, and therefore the action will stay
linearly dependent on S if we wish to maintain our nonrelativistic conformal invariance of
the full BRST quantized theory.

The structure of the antighosts x“; now follows the same pattern as that of the auxiliaries.
Only two components of this fermionic tensor will couple to the ghosts ¥'. In the fully covariant
formulation, there is a fermionic superpartner symmetry acting on the antighosts,

5X% = ¢%i(0?), (3.16)

where 9 ; is a fermionic analog of f¢'; satisfying the same equation (3.8). It can be uniquely
gauge-fixed in a way consistent with worldsheet conformal invariance by setting

X“x =0, (3.17)

again using the adapted coordinates X and © on the target.
If we in addition choose to use the adapted coordinates r, 0 on the worldsheet, the two
remaining components of the antighost will be simply denoted by

Yo=%  xle=-x (3.18)

(We suggest pronouncing the symbol for the antighost X as “capital chi”.)
Having sorted out the structure of our BRST multiplets, we are now ready to construct
the path integral using the standard methods of BRST quantization.

3.1.3 Lagrangians

We will define the tropological sigma model in terms of a path integral,
/DX DO DY DY DY DX DBDBe?, (3.19)

with the action S being a worldsheet integral of a local Lagrangian which is BRST exact,
modulo possibly adding topological terms:

S = é/dr do {Q,x(age -9,X-1iB)+ X&QX}

== [ arao {B(@e@ 0. X) 606X — B — X (0¥ — 0,0) - Xaew} . (3.20)
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As promised, we have introduced the Planck constant of our quantum theory, e. By the
standard BRST arguments of cohomological field theories, the semiclassical one-loop approx-
imation in e will be exact, leading to the localization of the path integral to the solutions
of the localization equations.

We can integrate out B, to bring the action to a more standard form,

S= % / dr do {% (050 — 0,X)° + BOpX — X(0pT — Oy) — Xaw} L 321

This action is invariant under the BRST transformations

Q, X] =1, {Q, v} =0, (3.22)
Q.0] =V, {Q, ¥} =0, (3.23)
{Q, X} = 0,0 - 0, X, (3.24)
{Q.x} =25, Q. 8] =0. (3.25)

Both actions are also invariant under the nonrelativistic conformal transformations. Before
B has been integrated out, the conformal symmetries act via

50X = F(r)OX + (F(r) + 00, f(r)) X, (3.26)
50 = F(r)o.0 + (F(r) + 00, f(r)) 940, (3.27)
5B — [(r)0,B + BoLf(r) + (F(r) 4 earf(r)> 9B, (3.28)

58 = F(r)OB + O, f(r) + (F(r) + 9arf<r>) 90 + B, (F(r) + eaT.f(m) . (3.29)

Note that B and f transform in a way reminiscent of a Jordan pair, with B transforming
through terms involving only B, while 8 transforms via terms involving both 5 and B. When
B is integrated out, the transformation rule for g becomes dependent on X and O,

56=f(r)0,8+ BOf(r) + (F(r) 4 earﬂr)) 90 + (900 — 0, X)0), (F(r) 4 earfm). (3.30)

The action (3.21) is then consistently invariant under these reduced conformal transformations
not involving B.

For completeness, we list the conformal transformation properties of the remaining two
components of BY; that we dropped by our gauge choice BYx = 0 for the gauge symmetry
generated by f¢; in § 3.1.2:

5B x = f(r)O. B x + B x0,f(r) + <F(r) + 00, f(r)) B,
5By = F(r)0,Bx + B’ x 0, f(r) + <F(7") + 00, f@«)) 0B’ x — B x0, (F(r) + 60, f(r)) .
We see that they transform into each other, again as a Jordan pair: B"x into itself, and B x

into itself and B" x. By inspection of these transformation rules, one can now explicitly confirm
several points we made above: (i) It is consistent with worldsheet conformal invariance to fix
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the fi gauge symmetry by setting B®x = 0; (ii) our naive first choice for the gauge-fixing
condition, (3.10), would be inconsistent with conformal invariance, and (iii) while the B>
term in the action is conformally invariant, no linear combination of 32 and $B is consistent
with the conformal symmetries.

Compared to the standard relativistic case, the action of our tropological sigma model
exhibits one additional novelty that needs to be addressed. Unlike its relativistic counterpart,
our action has residual gauge symmetries, closely related to the residual symmetries of the
localization equations that we found in § 2.4. Consider a local simply-connected neighborhood
U, with adapted coordinates r, . The bosonic sector of (3.21) is invariant under

5X = dya, (3.31)
50 = da, 8 =0, (3.32)

if the gauge parameter «(r,#) is further constrained to satisfy
o’ = 0. (3.33)

Similarly, the fermionic sector is invariant under a fermionic gauge transformation with
Grassmannian gauge parameter ((r,6),

S1b = 9, 5X =0, (3.34)
5 = 9,(, Sy =0, (3.35)

if ¢(r,0) is constrained by
dp%¢ = 0. (3.36)

The constraint equations on the gauge parameters are solved by r-dependent affine func-
tions of 6,

a=ap(r)+0ai(r), ¢="{(r)+0¢(r), (3.37)

yielding the gauge symmetries in the unconstrained form

0X = Oél(T)7
00 = 87«&()(7') + 96r051(r)7
5 = Gulr), (3:38)

oV = 9,Co(r) + 00,1 (r),
53 = 6% = 6y = 0.

First, a few comments about the nature of these symmetries:

(i) The « and ¢ symmetries are a hybrid between a genuine gauge redundancy with an
arbitrary dependence on worldsheet coordinates (here exhibited only along r), and a
global linear shift symmetry (along 6): the independent parameters ag, a; and (g, (1
are projectable functions on the worldsheet foliation, a phenomenon that has no analog
in relativistic theories.
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(ii) If we interpret r as (imaginary) worldsheet time — and that is the interpretation here,
in the topological context — then « indeed represents a true gauge redundancy, with
constraints on the canonical variables in the canonical quantization along 7, and a
non-uniqueness of the time evolution of a classical solution given fixed initial conditions.
If we studied the theory in the cross-channel, using 6 as time, the interpretation of the
«a symmetries would be less clear.

(iii) If & were not constrained to be linear in 6, its action on X and © would be as the gauge
symmetry in relativistic electromagnetism in two dimensions, with X and © playing
the role of the components of the electromagnetic gauge field. However, this analogy is
incomplete for two reasons: first, our action also contains the 8-dependent term (which
in the electromagnetic analogy looks a little like a gauge-fixing term), and perhaps
more importantly, our © is a periodic variable with periodicity 2.

How should these residual gauge symmetries be treated, and do they require a secondary
BRST gauge fixing, leading to a second generation of “ghosts-for-ghosts”? If we decided to
treat these symmetries as secondary, in addition to the original topological symmetries (1.20),
it would be natural to implement them equivariantly, as for example is the case with the
ordinary Yang-Mills gauge symmetries in topological Yang-Mills theories. This would in
turn lead to second-generation bosonic ghosts.

A closer look at the topological symmetries (1.20) and our gauge-fixing conditions shows
that this is not the case. In the relativistic topological sigma models, the holomorphicity
conditions fix the gauge of the topological symmetry (1.20) almost perfectly, leaving only
a finite-dimensional space of moduli. On the other hand, in the tropicalized case, our
localization equations fix the topological symmetries (1.20) less perfectly, leaving an infinite-
dimensional space of classical solutions, with the residual o symmetries. Indeed, recall that
on a simply-connected neighborhood U, in the local coordinates, we found that the classical
solutions of the localization equations,

X = Xo(r), (3.39)
0 = O(r) + 00, Xo(r), (3.40)

contain arbitrary functions of r, which are precisely acted on by the residual, unfixed «
Symmetry.

Similarly, the remaining auxiliary field 5 exhibits its own a-type symmetry: the action
is invariant under r-dependent constant shifts of 3,

08 = ap(r), (3.41)
with all other fields invariant. The equations of motion for § are solved by
B = Po(r). (3.42)

While it is not inconceivable to have a path-integral localization to an infinite-dimensional
space of solutions, this is not the strategy we wish to pursue here — our intention is to
construct a tropical version of topological sigma models which is dependent only on the
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Jordan structure, but otherwise it is as close as possible to the standard relativistic topological
sigma models. Therefore, in a way which will become clear below, we will aim to gauge-fix
the residual o gauge symmetry in a simple way, simply by using them to set locally Xq(r),
Oo(r) and Fy(r) to zero (or some other convenient fixed value). This step will again leave
behind only a finite-dimensional moduli space of solutions, and without any need for any
secondary ghosts, due to the simplicity of this additional gauge-fixing condition for «.

When we ask the same questions on a sleeve ¥, the a gauge transformation will now have
to respect the periodicities of # and ©. That reduces the gauge transformation parameter
aq(r) to be a constant av g. This is in turn consistent with the fact that the classical solutions
of the localization equations on the sleeve take the form

X = z¢ + nr, n € 7, (3.43)
© = Oy(r) +nb, (3.44)
B = Bo(r). (3.45)

Oo(r) and Sy(r) can be set to zero (or other convenient fixed values) using the ag(r) and
ap(r) gauge symmetries, and ¢ can be set to zero (or another convenient constant value) by
the constant residual gauge transformation aq . The integer winding number n is a gauge
invariant under all a gauge transformations.

3.2 Observables

Having clarified that our BRST multiplets do not lead to ghost-for-ghosts, it is now clear
that the BRST invariant observables of the theory are exactly as in standard, relativistic
topological sigma models. With any differential form on M,

Wiy, dY AL A Y (3.46)
we associate a local operator
OO = wy, 4 9. Y. (3.47)

Since no secondary ghosts-for-ghosts were required by the a symmetries, ¢ is BRST invariant,
therefore (’)U(JO) is BRST invariant if w is closed, and BRST trivial if w is exact.

The Stora-Zumino descent equations then yield a hierarchy of 1-form and 2-form ob-
servables on X,

dol)) = {Q,0), (3.48)
Aoy = {Q,0%], (3.49)
do? = o, (3.50)

(Here as usual the symbol “{@Q, ]” denotes a commutator or anticommutator, depending
on the statistics of the object in its second entry.)
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4 Example: the tropical CP! model

In the case of relativistic topological sigma models, CP! was used as an early test example
in [44] to probe the viability and self-consistency of the BRST construction of the path
integral. In our case, the tropicalization of this example precisely corresponds to keeping
just one pair (X, ©) in our tropological sigma model, and thus this example enjoys a more
privileged status than it did in the relativistic case: it represents the basic building block
from which tropicalizations of higher-dimensional manifolds are naturally built.

4.1 Observables and correlation functions at tree level

The fundamental observables of the TP! theory are given by the BRST cohomology of local
operators; just as in the relativistic CP! case [44], this space is two-dimensional, spanned
by the identity operator and the operator of ghost number two associated with the top-
degree cohomology class [w] on CP!, which we will simply refer to as O,. Consider first
the relativistic case: we will choose a representative two-form w in the cohomology class
[w], and normalize it such that

/Cpl” _1, (4.1)

in which case
/ (W)= ke (4.2)
)

is the instanton number of the map ®, corresponding to the topological winding number of
maps S! — S1. The most natural choice of w is the covariantly constant volume element
on CP! viewed as a round S2.

In the tropical case, while the BRST cohomology that we have found is identical to that
of the relativistic case, we must be a bit more careful with the choice of a representative
of [w]: we cannot simply choose w to be dX A dO multiplied by a suitable normalization
constant, since the standard integral [;p1 dX A dO is infinite. The natural choice is to pick a
two-form which is translationally invariant along © but not along X, such that the integral
converges and can be normalized to 1. The simplest natural choice is to pick a reference
point Xy € R, and to choose

wp = 2i5(X — X0)dX A dO. (4.3)
e

This representative is then correctly normalized, giving

/ wr =1, (4.4)
TP

where we interpret the integral of a two-form over TP! in the classical sense of integrals of
classical two-forms over the underlying topological space S2. The choice of the reference point
X is immaterial, as changing it is cohomologically trivial and thus preserves the cohomology
class [w]. Note that the role of the instanton number & in the tropical case,

1 /290
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is played by the winding number of the worldsheet periodic coordinate 6 around the periodic
target space dimension O.

It is intriguing that one can take an alternative (but essentially equivalent) perspective
on how to choose and interpret the representative of [w] in the tropical case: we can insist
that [w] be represented by the translationally invariant form

1
Wy = 5-dX N d6, (4.6)

if we simultaneously change the interpretation of what it means to integrate this form over
TP! (and of its pull-back via ® over ¥) — the integral must now be interpreted in the
tropical sense [4-6] along the tropicalized dimension X,

D 1 D 2T
/ W 7/ ax [ de=1. (4.7)
TP! 2m 0

Indeed, the tropical version of the integral of a differential form f(X)dX along the one-
dimensional tropical variety parametrized by X is simply defined by finding the maximum
value of f(X) over the range R of integration,

/R ¥ F(X)dX = max{f(X), X € R}. (4.8)

Since our form has f(X) = 1, a constant, our result (4.7) follows from the definition of
the tropical integration. Similarly, the instanton number k would result from the tropical
integration along the worldsheet dimension r of the pull-back ®*(w/).

Now we wish to calculate the correlation functions of the local observables, first on the
worldsheet with genus zero. Let us first recall how the evaluation of the correlation functions
of O,’s proceeds in the standard relativistic case with the CP! target [44]. Instantons for
worldsheets of genus zero are rational complex curves, described by

(z=0b1)...(z = bg)

Z(z):a(z—cl)...(z—ck)' (49)

Here Z € C is the standard coordinate on CP! with the point at infinity removed, and z
is the standard worldsheet coordinate on ¥ = S? with the point at infinity removed. The
integer k is the instanton number, and the moduli space of instantons with the instanton
number k is complex 2k + 1-dimensional, parametrized by the complex parameters a,b;, ¢;,
with ¢ = 1,...%k. We will introduce a coupling A, designed such that the contribution from
the instantons of instanton number k& to any correlation function is weighted by a factor of

PL (4.10)

The generic correlation function will then vanish (for example, due to the existence of
unsaturated ghost zero modes), unless we select 2k + 1 points Py, Pi,... Py on ¥ and
calculate the correlation function of 2k + 1 observables O, inserted at these points. Each
insertion of O, (Fy) is equivalent to the restriction of the value of Z(z) at z = Py to equal a
fixed prescribed value Zp; the simplest and most convenient choice for these values is to take
Zy=0forl=1,...,k, Zy=oc0for £ =k+1,...,2k, and finally Zy = 1. This leaves precisely
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one rational function of instanton number k, with the prescribed structure of zeros and poles
and with the fixed overall normalization. The correlation function at genus g = 0 thus is

0, if n =2k — 1;

\F if n = 2k. (4.11)

(Ow(Py)Oy,(P1) ... Ow(Pn)>g:0 = {
(The BRST cohomology of point-like operators in this model of course contains also the
operator O1(P) that corresponds to the zero-form constant cohomology class [1]; but its
effect in the path integral is trivial, in the sense that it does not restrict the instanton at
point P in any way, and therefore can be inserted any number of times inside the correlation
functions without changing their values as given in (4.11).)

In the tropical case, we also wish to evaluate the family of correlation functions of
any number of O, ’s, inserted at points P, of the worldsheet. As we discussed above, the
solutions of our localization equations (which one could refer to as “tropical instantons”) are
also assigned an instanton number k, now defined via (4.5), or equivalently with the use of
tropical integration (4.7). For virtually identical reasons as in the relativistic case, for such
an instanton of instanton number k to give a nonzero contribution to the correlation function,
we need an insertion of 2k + 1 judiciously placed observables O, so that the instanton is
an isolated solution without nontrivial moduli.

While we will see that the result for the correlation functions in the tropical case
reassuringly coincides with the relativistic result (4.11), the steps of the evaluation in the
tropological sigma model are intriguingly different from the standard relativistic theory. Our
instantons will be globally well-defined solutions of our localization equations, mapping X
(which is topologically a sphere, with a number of marked points where the observables are
inserted), to the TP! target space. As a starting point, we need to choose a fixed, generic
Jordan structure on ¥ = S2, capable of supporting an instanton of instanton number k. In
order for such solutions to exist and to be isolated with no moduli, a certain number of
insertions of O, is again needed. It is easy to see that for a generic Jordan structure, the
instanton of instanton number k again requires the insertion of precisely 2k + 1 operators
Ou(FPy), just as in the relativistic case. We wish to mimic the relativistic evaluation as
possible, to stress the parallels and to see the differences in the construction. Thus, following
the relativistic example, in order to get a unique instanton with no moduli we will require
points P, ... Py to be mapped to the tropical zero, X = —oo; similarly, points Pyy1,... Pk
will be mapped to the tropical infinity, X = +o00; and the remaining point Py will be mapped
to any finite point in the target, say X = 0, © = 0.

The generic Jordan structure on ¥ for which such an isolated tropological instanton
solution of instanton number k exists is depicted in figure 5(a): it is given by a foliated
surface with 2k punctures Pi,... Py and one additional marked point Py on one of the
nonsingular leaves of the foliation. Moreover, the 2k punctures (which represent semi-infinite
sleeves) are naturally divided into two groups of k, one group considered “incoming” where
the natural value of the adapted coordinate r = —oo and the other group “outgoing”, with
r = +00. Generically, such a surface contains junctions of three sleeves at a time. Consecutive
singular leaves are connected by finite sleeves, whose lengths represent moduli of the Jordan
structure; since gravity is still non-dynamical, these moduli are fixed numbers, chosen to
have generic nonzero values.
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(b)

Figure 5. The instanton contributing to the 2k + 1-point function. (a): a map from the worldsheet
with a generic Jordan structure. (b): the same instanton on a worldsheet with a non-generic Jordan
structure.

The unique instanton solution on this surface is constructed as follows. First, the
placement of O, at Pi,..., P, constrains the values of the instanton solution to be

X(r=—00) = —o0, (4.12)

with © on the individual half-infinite sleeve around each of these k punctures exhibiting
the winding number n = 1. Similarly, the insertions of O, at the “outgoing” punctures
at Pri1,..., P constrain the values

X(r=o00) = +00, (4.13)

for each of these half-infinite sleeves, again with © exhibiting winding number one around
each such sleeve. The rest of the instanton is simply constructed by the matching construction
at singular leaves where three sleeves meet, as presented in § 2.5. The winding numbers
are conserved at each such junction, assuring that the map from X to the target space is
globally well-defined (and in fact smooth). A quick check shows that such a map exhibits the
desired instanton number k, defined simply by the worldsheet integral of the pull-back of the
two-form w, either in the conventional or the tropical sense as discussed at the beginning
of this subsection.

Is such an instanton solution unique? Not quite yet; as we construct the global surface
map by starting at points with » = —oo on the worldsheet and following the globally defined
function r on ¥ towards r = 400, we encounter singular sleeves where two incoming sleeves
form one outgoing sleeve, or one incoming sleeve splits into two outgoing ones. Using the «
gauge transformations to match the values of X, © of the sleeves that meet at a singular leaf,
the continuity of X (r) can be maintained throughout the entire construction of the global map,
but we are still left with one undetermined zero mode: this instanton still has one modulus

— 41 —



X, corresponding to the unfixed freedom to shift the target space coordinate by a constant,
X(r) = X(r) + Xo, (4.14)

globally everywhere throughout the surface ¥. This remaining modulus will then be eliminated
simply by choosing our bulk point Py on some generic nonsingular leaf of the foliation, and
requiring

X(Ry) =0, (4.15)

yielding a unique isolated instanton. Thus, the correlation functions in the tropological TP!
model at string tree level match exactly the relativistic result, (4.11).

What if we choose a different Jordan structure, with a different number of incoming and
outgoing punctures? We claim that the standard BRST arguments (whereby the deformation
of the Jordan structure can be viewed at least formally as a BRST-exact operation) suggest the
correlation functions will not change. This can be tested and further supported by considering
various examples. Consider for example the Jordan structure depicted in figure 5(b), with
only one incoming and one outgoing puncture. Again, a unique instanton of instanton number
k can be constructed: now we are forced to put all the O, (P1),...,O0u(P) at the unique
incoming puncture, so we must set

P=..=P, =P (4.16)

The winding number around the unique sleeve must therefore be k. Similarly, all O, (Pg11), - . -,
O, (Psx) must be placed at the unique outgoing puncture,

Pop1=...=Py=" (4.17)

(otherwise no solution would exist). As on the generic surface from figure 5(a), we must fix
the overall zero-mode of X the instanton by setting X (P,) = 0, thus leading to the unique
nontrivial instanton solution and hence the same correlation functions that we first obtained
with the generic choice of the Jordan structure.

Similarly, if you start with a Jordan structure on S? which has more than 2k punctures,
any solution of the localization equations with instanton number k would have some of these
punctures describing sleeves whose winding number must be zero. Such sleeves can then
be collapsed to a point, and since they do not restrict the value of the instanton at that
point, they correspond to the harmless insertion of the O; operator which as we know does
not change the value of the correlation functions.

4.2 Correlation functions to all loop orders

Having completed the evaluation of correlation functions of BRST invariant point-like
operators at genus zero, it is natural to extend the analysis to all string loop orders. In
the relativistic case, the structure of topological theories without gravity can be usefully
encoded in the axiomatic approach initiated by Atiyah [45] and Segal [46]. In the case of our
tropological sigma models, one can similarly anticipate that an appropriate refinement of
the Atiyah-Segal axioms will be valid: our theory turns out to be defined by a more-or-less
standard path integral (albeit nonrelativistic), and the theory is not yet coupled to dynamical
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Figure 6. The handle operator W whose insertion raises the genus of X by one.

gravity; therefore, it should exhibit similar axiomatic properties as the relativistic theories
before coupling to gravity.

In this section, we will not assume the validity of such axioms, and instead derive the
desired all-loop correlation functions for our TP example by direct arguments. The main
tool needed to extend our tree-level correlation functions to higher orders is the inclusion
of a handle into the foliated worldsheet. Such a handle should be equipped with its own
consistent foliation, such that there exists a unique nontrivial instanton at the corresponding
instanton number, contributing to the correlation function as in the tree-level case. In analogy
with the relativistic case [44], one can then expect that the addition of such a handle would
correspond to the insertion of a local “handle operator” W.

It appears that the only such foliated handle represented by a nontrivial YW operator is
the torus with one finite sleeve attached, and equipped with a generic foliation structure, as
depicted in figure 6. The instanton solution on such a handle can be constructed as follows.
The finite sleeve that closes onto itself to form the torus will support a general solution,
specified by the winding number n. But to ensure that the loop can be closed in the direction
transverse to the foliation requires that X (r) be periodic along that closed loop, forcing n = 0.
Thus, the entire loop formed by the closed finite sleeve is mapped to a single point in TP?!.
Similarly, by the winding-number conservation at the singular sleeve of the handle in figure 6,
the winding number of the finite sleeve attached to the torus must vanish, and the sleeve can
also be collapsed to a point. Thus, the entire handle will be represented on the rest of the
worldsheet by an insertion of a local operator W, without any need to invoke a factorization
property of the path integral. As in the relativistic case, this local operator must be given by

W =20,,. (4.18)

(This follows simply from the matching to the one-loop partition function, interpreted as the
torus one-point function of O;. Since the two-point function (O, O1)o = 1, this means that
W is proportional to O,. Since the same one-loop partition function can also be interpreted
as the trace over the two-dimensional space of physical states, the overall normalization
must be equal to two, just as in the relativistic case. Finally, the handle operator must
be proportional to A°, since the winding number through the handle is zero, and therefore
adding the handle does not change the value of the instanton number.)

With this handle operator W at hand, we can add additional handles, as long as the
singular leaves of the worldsheet foliation at which these handles are inserted are generic
with respect to each other. This again reproduces the relativistic result for higher-genus
correlation functions. In particular, the partition function — summed to all orders in the
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string coupling g, — gives

2

2929 2 01 2929 2 (91W9 1> m, (419)

again matching the well-known relativistic result of the CP' model [44].

Should there be nontrivial handle operators associated with more complicated ways how
to insert topological handles on foliated surfaces? Consider for example inserting a handle by
replacing a finite sleeve in a tree-level diagram with a torus with two finite sleeves attached —
a foliated surface with two boundaries that would follow from gluing the two surfaces depicted
in figures 2(c) and 2(d) along two of their boundary components. A generic Jordan structure
on this surface would contain the lengths of the two internal sleeves inside the loops as fixed
moduli. In the generic case, the ratio of these lengths is a generic real number, generally not
a rational number. But for the solutions along the sleeves to have the correct periodicity
along ©, X (r) along the two sleeves must be fixed to be nir and nor, with n; and ns both
integers. The condition of periodicity of X as the loop is getting closed would then require
n1/n9 to be equal to the generic real ratio of the two lengths of the sleeves, and therefore is
not possible to satisfy if the Jordan structure is indeed generic, and if ny and ny are both
nonzero. If, on the other hand, one of the ny and ns is zero, the corresponding sleeve can be
contracted to a point, reducing the construction to the W operator discussed above. With ny
and no both nonzero, there is no instanton supported by this handle, and no need to invent a
corresponding representation of such a handle by local operators. We are satisfied to see that
the correlation functions of the tropological sigma model, to all string loops, appear to have
just enough content to reproduce precisely the results for its relativistic cousin.

5 Continuations to real worldsheet time

In the relativistic case, the topological sigma models represent much simpler and controllable

cousins of the physical theories with propagating degrees of freedom, which could be either

the untwisted supersymmetric sigma models, or the sigma models truncated to their bosonic

sector. One can naturally ask whether a similar relationship exists between the nonrelativistic

tropological sigma models, and theories with propagating local degrees of freedom.
Consider the bosonic sector of our tropological sigma model, with action

S— /drdﬁ{ (950 — 9, X)? +ﬁ89X}. (5.1)

The invariance of the action under constant translations in r and 0 and the Noether theorem
imply the existence of a conserved energy-momentum tensor 7%g,

1 1
7, = §(GTX)2 - 5(519(9)2 — BOpX, (
Ty = (0,X — 950)p X, (5.
T, = —(8,X — 90)8,0 + £, X, (

1 1
T = 5(30@)2 - 5(3rX)2- (
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worldsheet time

Figure 7. The worldsheet foliation in the cross-channel.

Note some similarities and a few slight conceptual differences compared to the relativistic
case: this energy-momentum tensor is conserved, 9,13 = 0, but because of the absence of
any non-degenerate metric on ¥, it is not natural to raise or lower the indices on T%3. The
lower index indicates which translation symmetry this conserved current is associated with,
while the upper index labels the components of this current. (One could use g,z and h8 to
lower or raise indices, but after this operation, some information contained in 7“g would be
inevitably lost.) Note that the trace of the energy-momentum is still well-defined,

T, — 85X, (5.6)

It vanishes on-shell, confirming that our theory exhibits isotropic scaling with dynamical
exponent z = 1. Note that despite the isotropic scaling, the theory is still sensitive to the
worldsheet foliation structure, and the symmetries generated by the energy momentum tensor
are indeed in accord with its underlying nonrelativistic conformal symmetry.

5.1 Looking for real time in the cross-channel: conformal symmetries

We would like to understand whether this theory can be appropriately formulated in real
worldsheet time, with propagating degrees of freedom, not just as a bosonic sector of a
topological theory. For reasons we explain below, we find it more interesting to consider
the real worldsheet time to run along the leaves of the foliation, and not in the direction
transverse to the foliation (as was the case for the imaginary time in the tropological sigma
models).® We would like to identify a real-time interpretation of the theory described by (5.1),
perhaps by a suitable analytic continuation of the fields and coordinates, such that it satisfies
sensible physical requirements, including unitarity, and positivity of energy.

A naive Wick rotation 8 — it to candidate real time ¢ would not work: S as given in (5.1)
is real (for real fields, and real coordinates r,0). A continuation § — it would make the action
complex-valued for real ¢. In real-time physical theories, one can ensure unitarity by requiring
the real-time action to be real. When such a theory is Wick-rotated from real to purely
imaginary time, the original condition of unitarity is reformulated as “reflection-positivity”:
the imaginary-time action can have a non-zero imaginary part, which is constrained to be
odd under the time reversal transformation. We will impose the same restrictions on the
expected behavior of S in our nonrelativistic case as well.

Now that we have decided that we would like to interpret the direction along the leaves
of the foliation as time, it is natural to compactify r on a circle. In addition, we will choose

5Such theories can then be coupled to a suitable version of nonrelativistic gravity, which would correspond
in this channel to the ¢ — 0 nonrelativistic limit, often referred to in the literature as the Carrollian limit.
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the coordinate r such that it is periodic with periodicity 27. In this channel, we can study
in some more detail the worldsheet conformal symmetries generated by f(r) and F(r), as
found above in the tropological context: unlike the case of noncompact r, there is now a
natural countable basis that spans the Lie algebra of conformal symmetries, obtained simply
by decomposing the infinitesimal generators f(r) and F'(r) into Fourier modes,

fr) = Lpe™, F(r) =Y Jme™. (5.7)
VA Z

At the classical level, they satisfy a Lie algebra with a clear geometric interpretation: L,
form the Virasoro algebra of the infinitesimal diffeomorphisms of » € S, while J,,, represents
an Abelian algebra, transforming under the Virasoro as the Fourier components of a spin-two
field. Quantum mechanically, this algebra admits two central charges ¢ and cy,

c
U%th]:(n1—7ULm+n+iEnﬂwﬂ——D5m+mm

[va Jn] = 0) c

[Lin, Jn] = (m —n)dmin + ém(m2 — 1)dmn,0- (5.8)

Note that the Abelian commutation relations between J,,,’s do not allow a nonzero central
extension consistent with the commutation relations involving the L,, generators (see also [47]).

This algebra has been recognized and studied in the literature, in several contexts [48-51].
It is also recognized as the Bondi-Metzner-Sachs (BMS) algebra of asymptotic symmetries
of the Minkowski spacetime at infinity [52-56], in the special case of the 2 + 1 dimensions,
and it has been studied extensively in that context [57-63].

5.2 Quantizing with 0 as the real time

Since S in (5.1) is already real, we can try to interpret 6 itself as real time, and see whether
its canonical quantization (using methods of Dirac quantization [64]) gives consistent results.
Interpreting now @ as time, the canonical momenta P,II and 7 conjugate to X, © and (3 are

P =3, (5.9)
Il = 30 — 0, X, (5.10)
m=0. (5.11)

The system can be quantized straightforwardly. The vanishing of 7 is a constraint, which
is very easy to deal with: X and f simply represent an unconstrained canonical pair. The
Hamiltonian density and the Hamiltonian are

1
H = ST 4110,X, H:/MH. (5.12)

This is of course a Hamiltonian of some free theory. The individual degrees of freedom can
be identified by performing a canonical transformation that diagonalizes the Hamiltonian.
This canonical transformation is given by

I=101+0,X,
P=P-0,0,

ol
[
@
S @
— =
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(Here the first line is suggested by completing the square in the Hamiltonian, and the
second is required to make the full transformation canonical, since the new momentum II
does not commute with the old P.) After the canonical transformation, the Hamiltonian
density becomes

1

H:§

~ 1 -~

HQ-i(a%X)2, (5.15)
and we see a problem: this theory with 6 interpreted as real time has a real action and is
formally unitary, but its energy is not bounded from above or below.

5.3 Conformal reductions

Having found that the system represents two decoupled free degrees of freedom, one with
a positive-definite energy and the other with a negative-definite energy, it is natural to ask
whether we can consistently truncate the system (without violating conformal invariance)
to keep only one or the other subsystem.

This should not be done in an ad hoc manner, but more systematically — perhaps by
invoking a suitable gauge symmetry. We have found that our theory has a subtle gauge
invariance represented by the a symmetries, which depend arbitrarily on r but only linearly on
f. In the Lagrangian formalism, it is not quite clear whether or how such hybrid symmetries
can be used to reduce the number of degrees of freedom from two to one. We will therefore fall
back on the canonical quantization in the Hamiltonian formalism for systems with constraints.

The decoupling of the two subsystems is manifest in the X , ]5, é, II coordinates on the
phase space. We first attempt to eliminate the X, P canonical pair. There are two paths
how to do so, leading to the same result: first, we choose to impose

X=0 (5.16)

as a primary constraint. Since the constraint commutes with the Hamiltonian, there is no
secondary constraint. Our constraint generates a gauge symmetry, acting via the commutator
with the constraint. In particular, under this gauge symmetry, with gauge parametrer a;,
P transforms simply via

5P = ay. (5.17)

Setting P =0 is then a good gauge choice, yielding the desired reduction to just one degree
of freedom, which can be described by the reduced action

S = /dr d %(09@)2. (5.18)

The second path leading to the same result starts instead by imposing the primary constraint

P =0. (5.19)

The commutator with the Hamiltonian reveals that there is now a secondary constraint,
X =0, and no gauge symmetries. The constraints form a second-class pair, which when
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treated via the Dirac bracket simply eliminates the X , P canonical pair, leading to the same
reduced theory described by (5.18).

If we instead wish to eliminate the é, II canonical pair, we again have two paths: we
can choose the primary constraint

© =0, (5.20)

which will imply a secondary constraint ﬁ, forming a second-class pair; the Dirac bracket
quantization of the system then eliminates the ©,II pair, leading to one degree of freedom
described by the reduced action

Sy — /dr d {%(&X)Q + ﬁaex} . (5.21)

(Now of course the energy of the system would be negative-definite, which we can simply
compensate for by reversing the overall sign in front of the original full action and repeating
the reduction steps.)

The second path starts with imposing

=0 (5.22)

as our primary constraint. There is no secondary constraint. The primary constraint is again
first-class, generating a gauge symmetry with gauge parameter as, acting as

60 = ay. (5.23)

Setting IT = 0 is a good gauge-fixing condition, reducing the system again to (5.21).

Note that the action of the gauge symmetries a; and as in the Hamiltonian quantization
is quite reminiscent of the a gauge symmetries that we found in the Lagrangian formalism.
How such symmetries should be correctly implemented in the Lagrangian quantization is
somewhat obscure, since they are a hybrid between a local and a global symmetry; however,
the Hamiltonian quantization with constraints has provided a natural guidance how to
interpret and implement such symmetries in the bosonic theory.

Are the two truncations to a system with just one degree of freedom consistent with
conformal invariance? A closer look at the conformal transformation rules for all fields reveals
a happy fact: the same split into the X , P and (:), I pairs that resulted from our canonical
transformation in the Hamiltonian framework would also result if we instead required that
the split is conformally invariant in the Lagrangian formalism. Thus, our Hamiltonian
quantization has produced two consistent conformal truncations of the original system, to
subsystems with Lagrangians (5.18) and (5.21).

5.4 Another analytic continuation to real time

Having seen that the original system (5.1) has two consistent conformal truncations, one can
naturally wonder whether one can consistently analytically continue the theory so that (i)
both X and © degrees of freedom are kept, (ii) the theory has a suitably continued conformal
symmetry, and (iii) it is unitary, with energy bounded from below. If such a continuation
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exists, it would also be interesting to see whether it comes from a suitably continued theory
in imaginary time, which satisfies the reflection positivity condition on the action.

In the original variables X, ©, 8 appearing in (5.1), it is not immediately obvious how
to perform such a desired continuation. Wick rotations of r or § and analytic continuations
to some of the fields from real to purely imaginary values do not work. In order to find the
correct analytic continuation, let us first compare the theory before and after the canonical
transformation to X , ]5, (:), I variables, and ask how this transformation manifests itself in
the Lagrangian formalism. From the known Hamiltonian (5.15), we can reverse-engineer the
Lagrangian and express it in the original Lagrangian variables,

L = PoyX + 11940 — H (5.24)
= S(OO) + L(0,X) + (3 0,0)3pX. (5.25)

This Lagrangian differs from the original Lagrangian in (5.1) simply by adding what is locally
a total-derivative term; more precisely, the actions differ globally a topological invariant,
given by the integral of the pull-back of dO A dX to X:

L=1L+0,00hX — 800,X. (5.26)

Perhaps more importantly, in this representation we see a hint how to perform the
desired analytic continuation to real time, with positive-definite energy and real action:
we need to Wick rotate 6 to real time ¢ while keeping X and © real, and then we must
rotate the shifted field

B =p-66 (5.27)

from real to purely imaginary values, 3’ = 1%, with 4 real.

Is such an analytic continuation consistent with the appropriately analytically continued
conformal symmetries? After the Wick rotation 6 = it, we must make sure that the conformal
transformations maintain the reality of r and ¢. This is achieved by keeping f(r) real,
and rotating F(r) = i®(r) to be purely imaginary. Such analytically continued conformal
transformations act naturally on X and ©, while preserving their reality. In addition, on
B’ they act via

58" = f(r)0.B8 + B0, f(r) + (cp(r) + 10, f(r)) 8B — i0, X0, (CP(T) + 10, f@«)) . (5.28)

This is indeed consistent with analytically continuing 8’ = i%. The conformal transformations
with parameters f(r) and ® transform % consistently with the reality of & while X and
© are kept real. In contrast, note that the original auxiliary field 8 transforms after the
Wick rotation in a slightly more complicated way than 3,

58 = F(r)0.3+ B F(r) + (cp(r) 10, f@«)) 0,8+ (0,0 — 10, X)d, <<I>(r) 10, f(r)). (5.29)

The term that contains 9;© in this transformation represents an obstruction against an-
alytically continuing 5 to purely imaginary values while keeping X and © real — such a
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continuation would not be consistent with conformal invariance. This observation makes it
clear why the proper analytic continuation of the original theory (5.1) was rather obscure
from the perspective of its original variables.

Note also that our analytic continuation will make the topological term in (5.26) purely
imaginary; if we desire the real-time action to be fully real including the topological term,
we need to analytically continue the coupling constant of this topological term (i.e., its
“theta angle”) accordingly.

5.5 Motivation from nonequilibrium string perturbation theory

Our preference to interpret the direction along the leaves of the foliation as the worldsheet
time originates from broader considerations in physical string theory, concretely from our
expectations about the structure of string perturbation theory when the system it describes
is not in equilibrium. In quantum field theory, systems out of equilibrium are most naturally
formulated with the use of the closed, doubled time contour (known as the Schwinger-Keldysh
contour), in which the system is first evolved from the far past to the remote future, and then
again de-evolved into the remote past. It is an intriguing open question whether the covariant
formulation of string perturbation theory can also be extended to the Schwinger-Keldysh
time, and if so, how.

In the absence of a direct worldsheet construction, this question was addressed in [15-17]
with the use of expected holographic duality to gauge theories in the large- N expansion, for
which the formulation away from equilibrium using the Schwinger-Keldysh contour is known.
The result found in [15-17] strongly suggests that in nonequilibrium string perturbation
theory, the standard expression for observable amplitudes in terms of a sum over contributions
from worldsheets %, of genus g, weighted by the appropriate power of the string coupling
constant gs,

A= i 922 F(3,), (5.30)

g=0
will be refined in an interested and perhaps unexpected way: on the Schwinger-Keldysh time
contour, each worldsheet 3, carries a natural triple decomposition,

Y,=Xr uxr ux; 5.31
g g gn 9—

+

where EL corresponds to the part of the worldsheet on the forward branch of the time
contour, X~ corresponds to the backward part of the time contour, and the “wedge region”
ZQA is the portion of the worldsheet that connects them, and corresponds to the turn-around
late time where the forward and backward branch of the time contour meet. Topologically,
the wedge region is connected to the other two parts of this decomposition along a collection
of S! boundaries, but geometrically, there are hints that these connecting boundaries should
be interpreted as nodes in 3 4. Of course, the total genus g is uniquely determined in terms
of the three genera g, gn and g_, such that the Euler number x(X,) matches the Euler
number obtained from the triple decomposition.

The interesting point is that for the matching to the expectations from the large- N
expansion on the dual gauge theory side, not only are ¥+ and ¥~ expected to be of arbitrary
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genus, but also the wedge region must be allowed to be of any genus g,. Thus, the perturbative
sum (5.31) is refined into a triple sum over nontrivial topologies of £*, ¥~ and also X"

Consider now the specific case of critical string or superstring theory. While the worldsheet
path-integral description of the theory in regions 3% might be expected to reproduce the
standard Polyakov-like path integral, the connecting X" region remains quite mysterious
from the point of view of the worldsheet dynamics. The robust arguments from the large- NV
duality to nonequilibrium gauge theories are not refined enough to predict clearly a worldsheet
description. However, they do provide one strong hint: while the topology of ZQA can be
arbitrary (i.e., its genus gy = 0,1,...), its geometry is expected to be highly anisotropic on
the worldsheet [16]: the parts of the ribbon diagrams that generate X" equip this region
with a coarse-grained foliation structure; the leaves of the foliation are segments connecting a
point on the boundary with the £ region to a point on the boundary with the ¥~ region.
Moreover, the worldsheet geometry undergoes an anisotropic limit, such that the lengths along
the leaves of the foliation go to zero while the lengths in the transverse directions are held
fixed. This type of anisotropy expected from the holographic duality of the mysterious wedge
region is extremely reminiscent of the geometric structure we have seen on the tropicalized
worldsheets in this paper, with the coordinate # along the foliation leaves now interpreted
as the worldsheet time.”

6 Conclusions and outlook

In this paper, we focused on the tropicalization of the topological A-model, and developed
the theory and its symmetries from first principles of the BRST gauge-fixed path integral
formulation. It is natural to ask how the process of tropicalization of the path integral
influences various dualities that have been well studied in the relativistic case, such as
the relationship with the B-model. We leave the study of possible generalizations of our
construction of A-model tropological sigma models open for future study.

Even in the case of the A-model, we contented ourselves in this paper with finding the
standard point-like BRST invariant observables of the relativistic A-model (the “quantum
cohomology” of the relativistic target) embedded as observables in our tropological sigma
model. This leaves an open question of whether our nonrelativistic theory could contain
additional, more subtle observables whose existence would solely be possible only as a result
of the worldsheet foliation structure. A closely related question, also open for future study,
has to do with generalizations to tropological sigma models with worldsheet boundaries, and
the classification of topological D-branes in this class of models. In relativistic topological
sigma models, topological D-branes and the corresponding worldsheet boundary conditions
were first studied in 1990 in [68],% in the context of constructing orientifolds of the topological
sigma model, not long after the closed-string topological sigma models were first introduced
in [3]. The basic class of worldsheet boundary conditions describing topological D-branes was
shown to involve the choice of a Lagrangian submanifold of the target space. It should be
intriguing to analyze how this construction withstands the process of tropicalization.

"Tropical geometry has already made its appearance in the study of equilibrium string amplitudes, first in
the o’ — 0 limit [65] and more recently at general o’ [66, 67).
8See remarks in section 3.1 of [69].
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Staying within the context of the tropological sigma models constructed in this paper,
there are several important open directions to study further. One is the formalization of the
amplitudes in the context of an appropriate generalization of the Atiyah-Segal axioms. This
question actually has two distinct facets: first, it can be phrased in the context of topological
field theories, as studied in sections 1 to 4 of this paper, and the answer would represent
a generalization of Atiyah’s axioms [45] for two-dimensional topological field theories. The
worldsheet bordisms should correspond to two-dimensional worldsheets with boundaries,
carrying the structure of a foliation; the bordisms should respect this foliation structure, in
particular the individual boundary components should be identifiable with individual leaves
of the foliation. The novelty stems from the fact that, unlike in the relativistic case, we
have two different kinds of foliation leaves where states can be studied: the nonsingular
leaves of the foliation, and the singular leaves corresponding to the “location along the sleeve
at infinity”, represented by worldsheet punctures. Perhaps the smoothness property that
we discovered around the punctures in § 2.5.2 will be useful in clarifying the question of
operator product expansions and factorization when a mixture of nonsingular leaves and
punctures is involved in the process.

Alternatively, one can ask this question of axiomatization in the broader context of
nonrelativistic conformal theories, as discussed in section 5. The answer would then provide a
generalization of Segal’s axioms of relativistic CF'Ts [46] to nonrelativistic CFTs on worldsheets
with foliations. Having such a formalized set of axioms might be useful for extending the
list of theories that generalize the construction presented in this paper in ways consistent
with the general principles of quantum field theory.

Nonrelativistic limits of relativistic topological sigma models. Since we found
that the physical interpretation of taking the tropical limit of the relativistic sigma models
corresponds to a certain nonrelativistic version of the relativistic topological sigma models,
one may naturally wonder whether our Lagrangian path-integral construction simply follows
from taking a direct nonrelativistic limit of the standard relativistic topological theory. In
the particular example of TP! that we focused on in this paper, the answer is yes, although
the limit is somewhat subtle — for example, it requires that the standard auxiliary fields that
impose the localization to pseudoholomorphic maps must not be integrated out before the
nonrelativistic limit is taken (similarly as in the recently studied case in [70]). However, we
believe that the direct first-principles construction of the tropological path integral that we
followed in this paper has several strong advantages over attempting to take a nonrelativistic
limit of the relativistic topological sigma model:

(i) In the case of more general target spaces, to find a prescription for taking a nonrelativistic
tropical limit of the topological sigma model is not unique, as it requires a choice of
preferred coordinates on the target space. The tropicalization limit then proceeds
dimension by dimension, leaving only a discrete group of target-space symmetries (1.39)
that we discussed in § 1.4. In the process, the general curved metric on the target space
becomes piecewise flat, giving the underlying manifold a piecewise linear polyhedral
structure in the tropical limit. Different choices of preferred coordinate systems on the
target space will lead to a priori different nonrelativistic theories.
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(ii) As we will see in the example presented in § 6.1 below, not all tropological sigma
models (as defined in this paper) originate from a nonrelativistic limit of a relativistic
topological sigma model. (In the example below, the target space will be of an odd
real dimension, and thus not obtainable as a limit of a complex target space.) An
attempt to classify all possible tropological sigma models thus goes clearly beyond the
classification of the relativistic sigma models, and it is useful to develop their path
integral intrinsically, based on their nonrelativistic symmetries, without relying on
nonrelativistic limits of the relativistic theories.

(iii) With the tools developed in this paper, it is also possible to ask what marginal
deformations do our worldsheet theories have, and what kind of nontrivial backgrounds
in the tropological target space they correspond to. Again, the classification of possible
nontrivial backgrounds in the target space is likely to be wider than the subclass of
backgrounds that can be obtained from nonrelativistic limits of backgrounds known in
the relativistic case.

6.1 Generalizations: targets with more general Jordan structures

Throughout this paper, we have limited our attention to tropological sigma models whose
targets are standard tropicalizations of complex manifolds. However, once we have understood
the path integral formulation of such theories and their symmetries, it is natural to ask whether
the same formalism can be directly extended to a broader class of target-space geometries,
going beyond the idea of tropicalization. Here we will indicate some such generalizations,
without any attempt at completeness.

The Jordan structures J;/ on tropicalized complex manifolds have a special form: they
decompose into two-by-two diagonal blocks, each given in adapted coordinates by (2.5).
This limitation is non necessary in our path-integral formulation: we are free to consider
target spaces whose Jordan structures contain on the diagonal indecomposable p x p Jordan
blocks with zero eigenvalues,

010...000
001...000
: : 1, (6.1)
000...010
000...001
000...000

of arbitrary higher order p, not just the lowest-order p = 2 that appeared in tropicalizations
of complex manifolds.

Intriguingly, this means that we are not limited to target spaces whose real dimension is
even. The simplest example M3 of such a target space that goes beyond the limits imposed by
tropicalizations of complex manifolds is of real dimension three. On M3z, we will use adapted
coordinates W, X, ©, calling them collectively Y, with i = W, X,0. In these coordinates,
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the Jordan structure takes the form

010
Ji=1o001]. (6.2)
000

As a result of this higher-order Jordan structure, Mg carries a natural structure of a nested,
double foliation: one-dimensional leaves of constant X and W are embedded into two-
dimensional leaves of constant W.

The localization equations for this system are again given by (2.8), which in the adapted
coordinates reduces to

X —0,W =0, 90-08,X=0, 0W=0, 0pX=0. (6.3)

They naturally respect the structure of the nested foliation of the target space. The solutions
of the localization equations are locally given by

I/V(T7 9) = W(),
X(r,0) = Xo(r), (6.4)
O(r,0) = O¢(r) + 00, Xo(r).

Thus, the solutions look just like those for the (X, ©) system studied in the bulk of this
paper, with each map lying entirely within a two-dimensional leaf of constant . However,
a richer structure emerges when we look at all the classical solutions of the bosonic action
for the sigma model.

To construct this action, take for simplicity the degenerate metric on M3 such that
GXX = G%® =1 and zero otherwise. The rest of the construction then closely parallels
that in § 3.1.2: first, we introduce the auxiliary fields B%;, and write the action using

these auxiliaries as
g 1 »
S = / Rl (B?Eal - EyaﬁGHB%Bﬁj> . (6.5)

Because the number of components of B%; is again redundant, this action exhibits a gauge
invariance similar to that generated by f¢; in § 3.1.2. This gauge symmetry can be simply
fixed by setting By, = 0, at the cost of abandoning the full covariance in Y. Of the remaining
four components of B{*, two enter the action quadratically, and we can integrate them out.
The remaining two enter the action linearly, and we relabel them (1 and (2, leading to the
simplest form of our conformally invariant action

S = /dr do {%(&;X —0,W)* + %(89@ — 0, X)? + B1OpW + 5289)(} . (6.6)
The classical equations of motion of this system are locally solved by
W (r,0) = Wo(r),
X(r,0) = Xo(r),
O(r,0) = BOy(r) + 00,01(r), (6.7)
Bi(r,0) = Bro(r) — 00" Wo(r),
Pa(r,0) = Bao(r) +0 <37«@1(7“) — 0, Xof )) :
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Note that the general classical solutions are no longer confined to the individual leaf of the
codimension-one foliation of fixed W, in contrast to the solutions of the localization equations.

6.2 Generalizations: coupling to gravity

In this paper, we focused on the construction of the tropical version of the simplest class
of matter systems, the topological sigma models. In the process, we have uncovered a long
list of intriguing differences and similarities of the path integral formulation in this class of
two-dimensional field theories, in comparison to the standard relativistic topological sigma
models, and its close connections with nonrelativistic quantum field theories on surfaces
with nondynamical foliations.

On the way towards constructing a full-fledged tropicalized version of the path integral
for the topological string, the next step would be to couple such matter systems to the
appropriate types of worldsheet topological gravity. Such a coupling is likely to teach us
new lessons about the scope of applicability of string theory, perhaps extendable beyond
the strict limit of the topological string. Similarly, on the mathematical side, one of our
original motivations came from the work of Mikhalkin, which shows an intriguing isomorphism
between the results of the standard evaluation of certain Gromov-Witten invariants in the
relativistic setting on one hand, and the tropical analog of this enumerative problem on the
other. The goal has been to shed new light on this result using the worldsheet path-integral
methods. When the result of Mikhalkin is rephrased in the physics language, it is a statement
about correlation functions of BRST invariant operators in topological sigma models coupled
to topological gravity. Hence, in order to examine this tropicalization of the Gromov-Witten
invariants and Mikhalkin’s results from the perspective of the path integral, we also need the
matter systems studied in this paper to be coupled to a suitable version of topological gravity.

Since the tropicalization of the matter sector on the worldsheet is represented by de-
scending from relativistic surfaces with complex structures to the more singular Jordan
structures and their associated worldsheet foliations, it is natural to expect that the coupling
of such matter systems to topological gravity should be equivalent to making the Jordan
structure (and the worldsheet foliation) dynamical. This will take us to the well-studied
realm of nonrelativistic quantum gravities of the Lifshitz type [13, 14], which naturally
live on spaces with foliations, albeit without requiring anisotropic worldsheet scaling. This
construction of the tropicalized version of topological gravity and its coupling to tropicalized
matter systems brings a host of its own challenges, and we will present the results in the
sequel to this paper [18].
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