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——— Abstract

The class MIP* of quantum multiprover interactive proof systems with entanglement is much more
powerful than its classical counterpart MIP [7, 29, 28]: while MIP = NEXP, the quantum class
MIP* is equal to RE, a class including the halting problem. This is because the provers in MIP*
can share unbounded quantum entanglement. However, recent works [46, 47] have shown that this
advantage is significantly reduced if the provers’ shared state contains noise. This paper attempts
to exactly characterize the effect of noise on the computational power of quantum multiprover
interactive proof systems. We investigate the quantum two-prover one-round interactive system
MIP* [poly, O(1)], where the verifier sends polynomially many bits to the provers and the provers
send back constantly many bits. We show noise completely destroys the computational advantage
given by shared entanglement in this model. Specifically, we show that if the provers are allowed to
share arbitrarily many EPR states, where each EPR state is affected by an arbitrarily small constant
amount of noise, the resulting complexity class is equivalent to NEXP = MIP. This improves
significantly on the previous best-known bound of NEEEXP (nondeterministic triply exponential
time) [46]. We also show that this collapse in power is due to the noise, rather than the O(1)
answer size, by showing that allowing for noiseless EPR states gives the class the full power of
RE = MIP” [poly, poly]. Along the way, we develop two technical tools of independent interest.
First, we give a new, deterministic tester for the positivity of an exponentially large matrix, provided
it has a low-degree Fourier decomposition in terms of Pauli matrices. Secondly, we develop a new
invariance principle for smooth matrix functions having bounded third-order Fréchet derivatives or
which are Lipschitz continuous.
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1 Introduction

The power of entanglement in computation has been a central topic in the theory of
quantum computing. In particular, the effect of entanglement in multiprover interactive
proof systems has been studied for decades [33, 32, 25, 27, 54, 53] leading to the seminal
result MIP* = RE [29, 28] due to Ji, Natarajan, Vidick, Wright, and Yuen, which states that
all recursively enumerable languages can be decided by multiprover interactive proof systems
empowered by quantum entanglement. More precisely, the system only has two provers, one
round of interaction between the provers and the verifier, and the provers share arbitrarily
many copies of the EPR state.

Given the appearance of intractable complexity classes like RE in the previous result, a
natural question is to what extent the body of results on MIP* are relevant to the physical
world. Of course, in reality, devices do not have access to unbounded numbers of perfect
EPR pairs; in a sense, what MIP* = RE means is that the power of two entangled grows
unboundedly as the number of shared EPR pairs increases, even when the message size is
constrained to be polynomial. In fact, using a finite number of iterations of the “compression”
procedure from MIP* = RE, one can show that the class NTIME[T'(n)] for T'(n) any finite
tower of exponentials has an MIP* protocol, where the provers need only share a finite
number of perfect EPR pairs scaling roughly with logT'(n). However, the requirement that
the EPR pairs be perfect seems essential to these protocols. The question naturally arises
whether similar complexity results can be obtained even when the provers have access to
imperfect entanglement only.

To isolate the role played by noise, in this work we ask the following question: what is the
power of MIP* when the provers are given access to an unbounded number of imperfect EPR
pairs, where each EPR pair is independently perturbed by a constant amount of depolarizing
noise? (We choose this noise model because it is mathematically elegant and also physically
relevant, as recent experiments suggest that the dominating noise is the localized depolarizing
noise in the neutral atom platform [11].) On the one hand, known MIP* protocols all break
down with states of this form. On the other hand, according to standard measures of
entanglement such as distillable entanglement and entanglement of formation, such states
have entanglement that grows unboundedly as the number of copies goes to infinity. Thus,
it seems a priori reasonable that the corresponding MIP* class may also have unbounded
power.

It is worth noting that this question is orthogonal to fault tolerance in quantum devices.
As usual in MIP*, we assume that the provers are computationally unbounded, and may
perform any quantum operation of their choice with no error. Nevertheless, this does not
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mean they can use techniques from fault tolerance to simulate provers with noiseless entangled
states. This is because the provers cannot jointly correct their shared entangled state, since
they are not allowed to communicate in this model.

This question is closely related to the quantum information primitive of self-testing.
Self-tests are essentially MIP* protocols that certify physical properties of quantum states,
rather than computational statements. The protocols in MIP* = RE all rely on highly
efficient self-tests for EPR pairs, but these tests are not at all tolerant of noise. Designing
self-tests that are tolerant to noise, and certify some useful measure of entanglement, is a
current research question [5, 3], and studying the power of MIP™ in the presence of noise gives
us insight on this question from a different angle. In particular, for an entangled state p, one
can think of the power of the complexity class MIP*[p] where the provers are restricted to
sharing copies of p, as a particular operational measure of the amount of useful entanglement
in p. In passing, we remark that recent work of Vidick, Arnon-Friedman and Brakerski
has studied “computationally efficient” measures of entanglement from somewhat different
perspective [4].

The first partial answer to this question was given by Qin and Yao [46]. They investigated
two-player nonlocal games' when the states shared between the players are arbitrarily many
copies of a maximally entangled state (MES) with an arbitrarily small but constant amount
of noise on each copy, which is termed as noisy MES in their paper. They showed that
the supremum winning probability over all strategies using these states can be computably
approximated to any finite precision. In fact, they showed that for any e, there is a number
of copies of the noisy MES, which is a computable function of only ¢ and the size of the
nonlocal game, that is sufficient to achieve winning probability within ¢ of this supremum.
This implies that any language in MIP* restricted to such states is decidable, meaning that
this class is strictly smaller than RE.

This result was later generalized to nonlocal games that allow quantum questions and
quantum answers [47]. To put these results in the language of complexity classes, let
MIP* [q,a, ] be the set of languages that are decidable in the model of two-prover, one-
round quantum multiprover interactive proof systems, where the provers share arbitrarily
many copies of 1, the messages from the verifier are classical and ¢-bits long, and the
messages from the provers are also classical and a-bits long. If the messages are quantum,
the complexity class is denoted by QMIP [g, a,]. Thus, the prior work implies that both the
class QMIP [poly, poly, |[EPR)] and the class MIP™* [poly, poly, [EPR)] are equal to RE [49,
29, 28], while both the complexity classes MIP* [poly, poly, /] and QMIP [poly, poly, 4] are
computable if ¢ is a noisy MES state [46, 47]. Moreover, [46, 47] showed explicit, though
very large, time bounds for computing approximations to the game value for noisy states.

Although these results show that the full power of MIP* is not robust against noise
in the shared entanglement, it is still possible that multiprover interactive proof systems
gain a finite but very large computational advantage by sharing noisy maximally entangled
states, since the time bounds from the previous work are much larger than for the classes
with no entanglement. Thus, it was consistent with prior work that MIP* [poly, poly, ¢] is
contained in nondeterministic quadruply exponential time complexity class for noisy ¢ [46],
which is much more powerful than MIP [poly, poly] = NEXP. This paper attempts to answer
this question by investigating the complexity classes MIP* [poly, O(1),4] (i.e. protocols
with constant-size answers) when v is a noisy MES, whose local dimension is a constant.
Classically, it is known that MIP [poly, poly] = MIP [poly, O(1)] = NEXP [7]. Our main
result, stated in the language of nonlocal games, is the following.

1" An MIP* protocol is essentially a uniform family of two-player nonlocal games, with efficent algorithms
for sampling pairs of questions and for evaluating the game decision predicate.
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» Theorem 1 (Informal). Given a nonlocal game in which the players share arbitrarily many
copies of a noisy MES 1, and the size of the answer sets is constant, then approximating the
value of the game up to any sufficiently small constant precision is NP-complete.

The runtime in Theorem 1 is measured in terms of the size of a description of the nonlocal
game as a table containing the distribution over question pairs and the verifier’s predicate
for every tuple of questions and answers. Translating this result to the MIP* world requires
parametrizing the runtime in terms of the number of bits in the questions and answers.
Thus, Theorem 1 shows that MIP* with O(log(n))-bit questions and O(1)-bit answers is
NP-complete. Scaling our result up to MIP* protocols with O(poly(n))-bit questions and
O(1)-bit answers, we get the following.

» Corollary 2. MIP*[poly, O(1), ] = NEXP, where v is a noisy MES.

Intuitively, Theorem 1 says that for any nonlocal game, if the shared MES has constant noise,
the players’ optimal strategy has a concise classical description which is also easy to verify. It
is interesting to compare such nonlocal games with their classical counterparts. Hastad in his
seminal work [23] proved that it is NP-hard to approximate the value of a classical nonlocal
game to a constant precision even if the size of the answer set is a constant. It is also worth
noting that sharing entanglement does not always strengthen the hardness of nonlocal games.
It may weaken the hardness of certain games as well. For example, the quantum XOR games
and quantum unique games are easy [15, 33], while the classical XOR games are NP-hard,
and the classical unique games are conjectured to be NP-hard as well [34]. Thus introducing
noisy quantum states doesn’t introduce any quantum effect to the hardness at all.

One may wonder whether this surprising collapse in complexity is caused by the restriction
to noisy states or the restriction to O(1)-size answers. We give strong evidence that it is
the former, by showing that MIP* with noiseless states and O(1)-sized answers is still equal
to RE.

» Theorem 3 (Theorem 36). RE is equal to MIP*[poly, O(1), |[EPR)] with completeness 1
and constant soundness.

To put this in context, the original work [29, 28] proves that nonlocal games with noiseless
EPR states are RE-complete to approximate if both the question set and answer set are of
polynomial size. Very recently, Natarajan and Zhang [40] proved, by repeatedly applying the
“question reduction” technique from [28], that it is still RE-complete if the question length is
O(1) and the answer length is polylog(n), respectively. Here, we achieve constant answer
length by one application of an “answer reduction” transformation: the error-correcting
code-based scheme of [39], instantiated with the Hadamard code.

Theorems 1 and 3 give us strong evidence that the computational power of MIP* will
vanish in the presence of noise. So for any complexity class slightly larger than NEXP, we
cannot hope for an MIP* protocol robust against noise. They also suggest that the key
resource behind the computational power of MIP™ is specifically copies of the MES state, not
just entanglement. This is because as we remarked above, as n tends to infinity, n copies of a
noisy MES contain an amount of entanglement going to infinity under standard entanglement
measures. Alternately, using the power of MIP*[¢)] as a measure of entanglement for v,
we show that an MES and an e-noisy MES are sharply separated by this measure for any
constant €.

Since efficient self-tests for large entangled states are the key technique behind the proof of
MIP* = RE, our result puts some limitations on the design of self-tests robust against noise.
More specifically, our results suggests that to noise-robustly self-test larger entangled states,
the numbers of questions and answers must grow with the dimension of the tested state. For
comparison, if we don’t need a self-test to be noise-robust, this is not necessary [19].
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1.1 Proof Overview
1.1.1 Approximating the Values of Noisy Games is NP-Complete

The harder part is to show that there is an NP-algorithm for this problem, so we give an
overview of this algorithm first.

Given a nonlocal game sharing arbitrary copies of a noisy MES ¢, Qin and Yao [46]
showed that it suffices for the players to share D copies of 1) to achieve the value of the game
to an arbitrarily small precision, where D only depends on the size of the game and the
precision.

We first improve the upper bound D to make it only depend exponentially on the length
of the questions instead of doubly exponentially as in [46]. To prove this upper bound, we
use ideas from Fourier analysis. For illustration, let’s assume ¢ = p |[EPR)(EPR| + (1 —
p)12/2 ® 15/2 is a depolarized noisy EPR state for simplicity. Given a strategy S, let P be
a POVM element from the strategy, which acts on n qubits. We are going to show the upper
bound is independent of n, so in the rest of the section by “constant” we mean independent
of n. Let the Pauli expansion of P be

P: Z ﬁ(O’)Pg7

0€{0,1,2,3}"

where P, = ® Py, and Py = I,P1 = X, P2 = Y,P3 = Z are the single-qubit Pauli
operators. The degree of a term P (¢) P, is the number of nontrivial Pauli’s in it, denoted
by |o|. First, we adapt the smoothing technique in [46], which applies a depolarizing channel
with small noise to P and removes the high-degree part of P, i.e. terms with |o| > d where
d is a constant. After smoothing, S only contains degree-d operators

P(Smooth) — Z P(S/x-na;h) (O’) P07
o:|lo|<d

so we denote the new strategy by S™m°°th) Using the argument in [46], the probability of
winning the game with this new strategy changes at most slightly, i.e.

val*(@, Smeoth)y ~ val*(@, S).

Let 7 be a small constant independent of n. Since the degree of P(5mooth) ig d using a
standard argument in the analysis of Boolean functions, the number of registers having
influence that exceeds a given small 7 is at most d/7. Notice that d is independent of n, so is
d/7. Assume without loss of generality that H = {1,...,|H]|} is the set of all registers whose
influence exceeds 7. We apply the invariance principle from [46] to replace all the non-identity
Pauli bases in the registers with low influence by Gaussian variables while maintaining the
strategy value. Let

P (Apprx) _ Z P(Sn/:oth) (U)P01®Paz®---Pa‘m®Z(|H|+1)12®Z(|Hl+2)12®-~~®Z(n)12»

O|H|+1 O|H|+2 Tn
o:|o|<d

)
7| H|+1<i<n,1<5<3
and Z(()\H\+1) = . z((]”) = 1. Denote the new strategy by SAPP™) then

where 15 is a 2 x 2 identity matrix; { are independent Gaussian variables

val*(G, SUAPP)) & val*(G, §meoth)),
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Notice that this process significantly reduces the dimension of P(APP™) to a constant. To
round such a randomized strategy back to a valid POVM strategy, we first need to reduce
the number of Gaussian variables from O(n) to a constant, which is the most difficult step.
In this paper, we avoid the use of a crude union bound as in [46], by taking the distribution
of the questions into account. Furthermore, we manage to ensure that the expectation of
the distance from a random operator in the intermediate step to positive matrices after
the dimension reduction step is independent of the question size. Then the inverse of the
invariance principle allows us to round the randomized strategy back to a valid POVM
strategy only acting on constantly many qubits. The improvements in the Gaussian dimension
reduction step give us the improved bound.

This upper bound has already yielded an NEXP algorithm, where the certificate is an
exponential-sized description of the strategy. To design a more efficient nondeterministic
algorithm, we need to further compress the certificate to polynomial length. To compress
the certificate, we first smoothen again the strategy by introducing additional noise as in the
proof of the upper bound of D to remove all the high-degree terms. Such a transformation
exponentially reduces the length of the certificate. The smoothed strategy only contains a
polynomial number of coefficients since the maximal degree is a constant. Nonetheless, the
smoothed strategy is only a pseudo-strategy, probably not a valid strategy because these
smoothed operators may not form valid POVMs. The prover sends the description of a
pseudo-strategy to the verifier, which is of polynomial length. The verifier performs a test
on the given certificate to see if it is close to a valid strategy that gives a high winning
probability with the following steps:

1. Check that the pseudo-POVM elements contained in the pseudo-strategy still sum up to
the identity.

2. Compute and check the winning probability of the pseudo-strategy.

3. Check that all the operators in the pseudo-strategy are close to being positive semidefinite.

Ttem 1 is straightforward. For item 2, notice that Tr (P; ® P;) ) = d; jc;, where ¢g = 1 and

c1 = ¢cg = c3 = p. Thus for any degree-d operators A, B, we have

Tr(A® B)¢®P = Y A(0)B(0)co, (1)

o:lo|<d

where ¢, = ¢4, - - 5, . This computation can be done in polynomial time. The winning
probability is simply a linear combination of a polynomial number of the terms in the
form of Eq.(1), which, therefore, can also be computed in polynomial time. Item 3 is the
most challenging. Notice that the dimension of each operator in the pseudo-strategy is
still exponential. Thus, the verifier cannot directly compute its eigenvalues and check its
positivity. Instead, we need an efficient positivity tester for large matrices.

The key component of our efficient positivity tester is a derandomized invariance principle,
which enables us to further reduce the dimension of the operators to a constant and maintain
the distance between the operator and the set of positive operators. To be more specific, let
us define the real function ¢ to be

{12 if <0

¢ () = (2)

0 otherwise

Then Tr ((P) is the distance from P to its positive part. As before, when the degree of
an operator is bounded by a constant d, the number of quantum registers having influence
that exceeds a given small constant 7 is at most d/7, which is also a constant. To further
reduce the dimension of the operators, we prove a more general invariance principle for all
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smooth functions compared with the one in [46]. It states that if all non-identity Pauli bases
in the registers with low influence are substituted by Rademacher variables or Gaussian
variables, the expectation of the distance to the set of positive semidefinite matrices is almost
unchanged. We replace all such registers with Rademacher variables, which significantly
reduces the dimension of a constant-degree operator to a constant, making it possible to
compute its expected ¢ function value efficiently. However, the invariance principle introduces
poly (s)-many random variables, where s is the size of the question sets. This only leads to a
randomized positivity tester. To reduce the randomness, we further apply the well-known
Meka-Zuckerman pseudorandom generator [36] to obtain a derandomized invariance principle,
which only uses a logarithmic number of independent bits to simulate these variables?. This
gives a deterministic algorithm to approximately compute the expected ¢ function values of
all the measurement operators .

To prove the approximation problem is NP-hard, we can compile any MIP[log, O(1)]
protocol for 3-SAT into a family of noisy nonlocal games one for each 3-SAT instance such
that if a 3-SAT instance is satisfiable, the corresponding game has value 1 and if not, the
value of the corresponding game is below some constant. In the compiled nonlocal game,
the verifier checks with equal probability, if the provers can give consistent answers for the
same question or if the provers can give valid answers for queries of their assignment of
the instance. Using Fourier analysis, we show that when the provers share noisy MESs,
winning the consistency checks with high probability implies that their strategy is essentially
deterministic. Then we can relate the classical completeness and soundness of the MIP
protocol to the values of the noisy nonlocal games.

1.1.2 Hardness of Noiseless MIP*[poly, O(1)]

To show hardness of MIP*[poly, O(1)], we start from the known result MIP*[poly, poly] =
RE [28], and apply an answer reduction transformation to the protocol to get answer length
O(1). Answer reduction is essentially PCP composition adapted to the MIP* setting, and
was already an essential component in [39] and [28]. Intuitively, the idea of answer reduction
is to ask the two provers in an MIP* protocol to compute a PCP proof that their answers
satisfy the verifier’s predicate. The verifier will check this proof rather than checking the
answers directly. In order to instantiate this, one requires a PCP of proximity that remains
sound when implemented as a two-player quantum game. Showing this soundness condition
is technically challenging and usually involves showing that the local tester for a locally

testable code, when converted to a two-prover game, is sound against entangled provers.

In [28], the code that was used was the Reed-Muller code, which has superconstant alphabet
size, ultimately yielding poly-sized answers.

In order to obtain O(1)-sized answers, we use the Hadamard code, which is a locally
testable code over the binary alphabet. Fortunately for us, it is known that the local tester
for this code is “quantum sound” [26, 38]. Moreover, the answer-reduction protocol in [39] is
modular: it was shown in that work that any code with sufficiently good parameters and a
quantum-sound tester can be combined with an off-the-shelf PCP of proximity to achieve
answer reduction. Our main challenge is to show that the Hadamard code (or a slight variant
of it) has a tester meeting the conditions of this theorem. Our new tester for the Hadamard
code allows us to reduce the answer length from poly to O(1) directly.

2 An alternate approach is using Gaussian variables and derandomizing the Gaussian variables as in [30],
which discretizes the Gaussian variables via the Box-Muller transformation and further derandomizes
the discrete random variables.
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1.2 Technical Contributions

1.2.1 Invariance Principle and Derandomized Invariance Principle for
Matrix Functions

The invariance principle [37] is a generalization of the Berry-Esseen Theorem, which is a
quantitative version of the Central Limit Theorem, to multilinear low-degree polynomials.
Before illustrating the invariance principle, we need to introduce the notion of influence, a
fundamental notion in the analysis of Boolean functions. Given a real function f: R"™ — R
and i.i.d. random variables X1, ..., X,, the influence of i-th coordinate is

Inf; (f) =E Uf ()= f (X(i)) ﬂ ’

where x(® is obtained from x by resampling the i-th variable. Hence, it captures the effect of
the i-th variable on the function in average. Given a multilinear low-degree polynomial f in
which all variables have low influence, the invariance principle states that the distributions
of f(Xy,...,X,) and f(Y3,...,Y,) are similar as long as the first and second moments of
the random vectors (Xi,...,X,) and (Y7,...,Y,) match, and the variables X;,Y; behave
nicely®. The invariance principle is a versatile tool that allows us to connect the distribution
of a function on complicated random variables to the distribution obtained by replacing
these random variables with simpler ones, such as Gaussian variables or Rademacher random
variables. The proof of the classical invariance principle in [37] is via Lindeberg’s hybrid
argument, which is also a classic method to prove the Central Limit Theorem.

In [46], Qin and Yao started investigating the invariance principle on matrix spaces.
Suppose that P is a m™ x m™ matrix, viewed as an operator acting on n registers, each
of dimension m. Let £ : R — R be a smooth real function. Suppose all registers have low
influence in P, where the influence is a generalization of the influence for functions. When
substituting all registers with independent standard Gaussians or Rademacher variables
multiplied by an identity matrix, we expect that the change of Tr £(P) is small in expectation.
The most challenging part of extending Lindeberg’s argument to matrix functions is computing
the high-order Fréchet derivatives, which are complicated and difficult to analyze in general
[50]. Qin and Yao [46] established an invariance principle for a specific spectral function by
directly computing the Fréchet derivatives and applying many complicated matrix-analytic
techniques. Hence, the first obstacle we face is to prove an invariance principle for more
general functions.

To overcome it, we adapt the theory of multilinear operator integrals [52], which provides
a unified way to compute and bound the Fréchet derivatives. With such a tool, we establish
an invariance principle applicable to a broader class of functions, including those that are
smooth with a bounded third derivative and those that are Lipschitz continuous.

The invariance principle reduces the dimension from poly to constant but introduces a
poly number of independent random variables. Thus, the second obstacle is that the size of
the overall probability space is exponential. To improve the computational efficiency of our
invariance principle, we use the ideas of [36, 22, 44] to use a Pseudorandom generator (PRG) to
reduce the number of independent random variables. We apply this derandomized invariance
principle to our positivity tester introduced below. Derandomized invariance principles build

3 To be more specific, x;,y; need to be hypercontractive. Informally speaking, the p-norms ||x;||, =

E[|xi‘p]1/p lyill, = E [\yi|p}l/p do not increase drastically with respect to p. Many basic random
variables, such as uniformly random variables, and Gaussian variables, are hypercontractive.
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upon the crucial observation that the highest moment of variables involved in the proof is
at most 2d, where d is the degree of the operator, which is a constant. Thus, it suffices to
use 4d-wise uniform random variables instead of polynomially many independent random
variables when we replace the Pauli basis elements in the low-influence registers, which saves
the randomness exponentially. To this end, we employ the well-known Meka-Zuckerman
pseudorandom generator [36] to construct 4d-wise uniform random variables.

As the invariance principle has found numerous applications, we anticipate that the
invariance principle for spectral functions is interesting in its own right. The positivity
testing for low-degree matrices introduced below is an example of its applications.

1.2.2 Positivity Tester for Low-degree Matrices

A Hermitian matrix A is said to be positive semidefinite (PSD) if all the eigenvalues of A
are non-negative. This testing problem has received increasing attention in the past couple
of years [35, 21, 8, 41]. In this work, we present an efficient PSD tester for low-degree
matrices, where the input matrix is given in terms of its Fourier coefficients. Given an
m" x m' matrix, viewed as an operator acting on n-qudits, each of which has dimension
m, if the degree of the operator is d, then the number of Fourier coefficients is bounded
by 3icq (7)(m* = 1)" = O(dn?m>?). Hence, this allows for a compact description of a low-
degree, exponential-dimension operator. If m,d are constants, the input is of size poly(n),
and we work in this setting when we explain how the tester works below.

Given the Fourier coefficients of a matrix P, our tester estimates the distance between
P and the set of positive semidefinite matrices measured by Tr¢ (P), where ¢ (-) is defined
in Eq. (2). Estimating Tr¢ (P) involves applying the derandomized invariance principle
introduced above. More specifically, our tester enumerates all the possible seeds of the
Meka-Zuckerman PRG to estimate this distance. For each seed, the computation time is
O(1) because the derandomized invariance principle has effectively reduced the dimension
of P to a constant. Hence, our tester runs in time poly(n), because there are only poly(n)
seeds. Its guarantees are summarized below.

» Theorem (informal). Given as input the Fourier coefficients of a degree-d operator P
acting on n qudits, each of dimension m, and error parameters § > § > 0, there exists an
algorithm that runs in time exp(m?/§) - poly(n) such that
the algorithm accepts if there exists a PSD operator Q such that |P — Q% < (8 — §) m™;
the algorithm rejects if |P — Q||% > (8 + d)m™ for any PSD operator Q.

This approach completely differs from all previous works on positivity testing [41, 21, §],
where they only consider polynomial-sized matrices and the testers are randomized. In
contrast, our tester is deterministic, and the dimension of the testing matrix can be exponential
in input size if the degree is constant.

1.2.3 Answer Reduction with the Hadamard Code

As mentioned above, we obtain O(1)-sized answers in the noiseless setting by applying the
code-based answer reduction of [39], with the code chosen to be the Hadamard code. To
implement this required two new technical components. First, we showed a quantum-sound
subset tester for the Hadamard code: essentially, an interactive protocol that forces the
provers to respond with the values of a subset F' of the coordinates of a Hadamard codeword,
where F is sampled from some (not necessarily uniform) distribution. Our proof of this
result is essentially a generalization of the Fourier-analytic proof of the quantum soundness
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of the BLR test [10, 38]. Secondly, the answer reduction procedure in [39] only works if
the code has a relative distance close to 1 (i.e., distinct codewords differ on almost all
locations), whereas the Hadamard code has a distance 1/2. To overcome this, we slightly
modified the answer-reduced verifier’s protocol of [39] by querying a large constant number
of “dummy coordinates” from the provers. It is worth mentioning that the answer reduction
procedure from [39] is different from the procedure used in [28]; the former works for any
error-correcting code satisfying certain properties but does not yield protocols that can
be recursively compressed, whereas the latter is specialized to the low-degree code but is
compatible with recursive compression. In the end, we are in effect using both versions of
answer reduction: the [28] version inside the recursive compression to obtain a protocol for
RE, and then one layer of the [39] version to bring the answer size successively down from
polynomial to constant, using the Hadamard code.

We remark that it might be possible to achieve constant answer size by repeatedly
applying the answer reduction technique of [28], but we decide to proceed with the current
approach for a one-shot solution, which is easier to analyze and gives better soundness.

1.3 Discussions and Open Problems

Our result characterizes the effect of noise on the computational complexity class MIP*.
To our knowledge, this is the first example of a quantum computational complexity class
whose quantum advantage over its classical counterpart completely vanishes in the presence
of noise. For comparison, noise causes no collapse in the BQP model, or in general, for
BQTIME because the algorithms in these classes can be implemented fault-tolerantly. Even
for algorithms with bounded space, it seems that the same reasoning still applies because
all the intermediate measurements to achieve fault tolerance can be eliminated without a
large space overhead [18]. Hence, our work raises the natural question of which quantum
complexity classes are truly fault tolerant. In contrast, for complexiy classes like MIP*, the
fault-tolerance theorem [1] cannot be applied as the model of computation disallows the
operations needed to perform error correction. For the specific case of MIP*, our result
further shows that no form of fault tolerance is possible.

More broadly, we know other examples where constant noise destroys the quantum
advantage. Random circuit sampling has been proposed to demonstrate the quantum
advantage offered by near-term quantum devices [12]. However, when the random circuits
are subject to constant noise, this sampling task becomes classically easy [2]. We have more
of such examples in quantum query algorithms. For example, if the oracle is noisy or faulty,
no quantum algorithm can achieve any speed-up in the unstructured search problem [48].
In a setting closer to the near-term devices, where each gate in the circuit is subject to
independent noise but the oracle is perfect, the authors of [14] showed that no quantum
algorithm could achieve any speed-up in the unstructured search problem either. For a
more detailed survey about the effect of noise on quantum query algorithms, we refer to [14,
Section 3].

Our result also raises some natural but intriguing questions. We list some of them below.
1. For MIP* protocols with more rounds of interactions and larger answer sets, it is unclear

how big the effect of noise is. Hence, we ask: Does the vanishing phenomenon for

computational advantages occur for general MIP* protocols?

2. What is the computational power of MIP* with unbounded copies of a pure (noiseless)
non-EPR state? Will MIP* = RE still hold for any noiseless non-EPR state? The MIP*
protocol for RE of [28] requires EPR states for the provers to succeed, and in general,
it is known that any protocol which is symmetric and synchronous requires the provers
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to use an MES [56, 45]. Moreover, the question reduction technique of [39, 28] first
certifies that the provers share many copies of the EPR state, on which they sample their
own questions. Hence, to accommodate any non-EPR state, we need to redesign MIP*
protocols.

3. What non-computational capabilities of the MIP* model remain in the noisy setting?
Specifically, it is known that nonlocal games and correlations can be used to self-test
entangled states. In the noisy setting, can we certify any properties of the provers’ shared
entanglement? Previous work on this question has studied entanglement of formation [5]
and one-shot distillable entanglement [3], but the general picture remains unclear.

4. Invariance principle has found applications in designing various pseudorandom generators
and counting algorithms [22, 44, 43, 6, 31]. Will our invariance principle lead to new
pseudorandom generators?

5. Testing whether a matrix is positive has played an important role in the study of algorithm
designs for linear algebra problems, community structure detection, differential equations,
etc (see [8] and references therein). Multiple studies have been devoted to designing
efficient algorithms for positivity testing [41, 21, 8]. Will our algorithm of positivity
testing find new applications?

2 Nonlocal Games and MIP* Protocols

In this paper we use the standard notations for matrix spaces, random variables etc. For a
detailed description see Appendix A. Two-player one-round MIP* protocols are also nonlocal
games. We follow the notations of [28] for nonlocal games.

» Definition 4 (Two-player one-round games). A two-player one-round game G is specified
by a tuple (X, Y, A, B, u, V) where
X and Y are finite sets, called the question sets,
A and B are finite sets, called the answer sets,
W is a probability distribution over X x Y, called the question distribution, and
V:XxYxAxB—{0,1} is a function, called the decision predicate.

» Definition 5 (Tensor-product strategies). A tensor-product strategy S of a nonlocal game
G=(X,V,AB,u, V) is a tuple (¢, A, B) where
a bipartite quantum state v € Ha @ Hp for finite dimensional complex Hilbert spaces H A
and Hp,
A is a set {A*} such that for every x € X, A* = {AZ | a € A} is a POVM over Ha, and
B is a set {BY} such that for every y € Y, BY = {B} | b€ B} is a POVM over Hp.

» Definition 6 (Tensor product value). The tensor product value of a tensor product strategy
S = (¢, A, B) for a nonlocal game G = (X, Y, A, B, 1, V) is defined as

val*(G,S) - Z M(l’»y)V(l‘v?J»a»b)Tr (Ai ®B[Z)j) 1/)

z,y,a,b

For v € [0,1] we say that the strategy passes or wins G with probability v if val* (G, S) > v.
The quantum value or tensor product value of G is defined as

val*(G) = supval*(G, S)
s

where the supremum is taken over all tensor product strategies S for G.

CCC 2024



30:12

The Computational Advantage of MIP* Vanishes in the Presence of Noise

When we prove the quantum soundness of an MIP* protocol, we focus on projective strategies,
where the measurements A* and BY are all projective, following Naimark’s Dilation theorem
[29, Theorem 5.1].

» Definition 7. A game G = (X, YV, A, B, u,V) is symmetric if X = Y and A = B, the
distribution p is symmetric (i.e. p(x,y) = p(y,x) for all x and y), and the predicate V treats
both players symmetrically (i.e. V(z,y,a,b) = V(y,x,b,a) for all x,y,a,b).

We call a strategy S = (|¢) , A, B) symmetric if |¥) is a pure state in H @ H, for some
Hilbert space H, that is invariant under permutation of the two factors, and the measurement
operators of both players are identical.

A symmetric game is denoted by (X, A, pu, V), and a symmetric strategy is denoted by
(|) , M) where M denotes the set of measurement operators for both players.

» Lemma 8 (Lemma 5.7 in [28]). Let G = (X, A, 11, V) be a symmetric game with value 1 —¢
for some € > 0. Then there exists a symmetric and projective strategy S = (|1}, M) such
that the val*(G,S) > 1 —e.

Hence, for symmetric nonlocal games, it suffices to only consider symmetric strategies.

3 Invariance Principle for Matrix Spaces

This section will present an invariance principle for general functions on matrix spaces.
Hypercontractivity is crucial in the proofs of all previous invariance principles [37]. We also
need to establish a new hypercontractive inequality before proving the invariance principle.
The proofs of the results in this section can be found in Appendix B.1.

3.1 Hypercontractivity

In this subsection, we adopt the concept of orthonormal ensembles as introduced in [37].

» Definition 9. Given m,n € Zso, a collection of n real random variables {z1,...,z,} are
orthonormal if E(z;z;] = §; ;. We call a collection of m orthonormal real random variables,
the first of which is constant 1, an m-orthonormal ensemble. We call x an (m,n) ensemble if
X = (X1,...,Xp), where for alli € [n], x;, = {X;0 = 1,Xi1,...,Xim—1} 1S an m-orthonormal
ensemble.

» Definition 10. Given m,n € Z~g, T € [m]’;0 and an (m,n) ensemble x, denote x, =
[T, xir,- Define a multilinear polynomial over x to be Q(x) = Zre[m]’;o Q (7) x,, where
the Q (7)’s are real constants.

For ~ € (0, 1], we define the operator T, acting on multilinear polynomial Q(x) by

T,Ox) = Y 2"Q(r)x.

‘rE[m]g0

» Definition 11. For 1 < r < oo, let y be a random variable with E[|y|"] < co. Define
Iyl = (E[|y|T])1/T. Given 1 <p<g<oo, 0<n<1, mné€Zsy and an (m,n) ensemble
x, we say that x is (p,q,n) -hypercontractive if for any multilinear polynomial Q, it holds

that ||(T,Q) (¥)|lq < |Qx)|l,-
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Consider an (m,n) ensemble x. If for all ¢ € [n], j € [m — 1], x; ; are either independent
standard Gaussians or independent Rademacher variables, then x is (2,q, (¢ — 1)~1/?)-
hypercontractive. These two types are represented as significant examples of hypercontractive
ensembles. Readers can refer to [37] for an extensive treatment on hypercontractive ensembles.

We then introduce the noise operator I'y for random matrices, which is a hybrid of T, in
Definition 10 and A, in Definition 47.

» Definition 12. Given 0 < v < 1, h,n,m € Zso, m > 2, an (m?,n) ensemble x, and
2
a random matriz P(x) = Zae[mi’]go Do (X) B, where {Bi}go_l is a standard orthonormal

basis and p, is a real multilinear polynomial for all o € [mQ]
defined to be

Iy (P(x)) = Z (Typs) (x) Ay (Bs) -

ae[mz]gn

>07 the noise operator I, is

The main result in this subsection is stated below.

» Theorem 13 (Hypercontractivity for random matrices). Given h,n,m € Zso, m > 2,
0<n<1,0<~<min {n, (9m)_1/4}, a (2,4, n)-hypercontractive (m?,n) ensemble x and
a random matriz P(x) = ZJE[mQ]go Do (x) B, where {Bi}?ﬁo_l is a standard orthonormal

basis, and p, is a real multilinear polynomial for all ¢ € [m? ]>0, it holds that

2
E[IT, (Peo)lI;] < (E[IP&)IE])
where 'y is defined in Definition 12.

The following is an application of Theorem 13.

» Theorem 14. Given h,n,m,d € Zso, m > 2, 0 <n <1, a (2,4,n) hyperconfm(‘fwe

2

(m?,n) ensemble x, and a random matriz P(x) = ZUG[mzlio Do (x) B, where {B;}!", o1

a standard orthonormal basis and for all o € [mﬂio and py is a real multilinear polynomial
satisfying deg (p,) + |o| < d, it holds that B

E[JIPGIIL] < max {om. 1/} (E[1PGo)E] )

3.2 Invariance Principle

We are now prepared to introduce an invariance principle on matrix space applicable to
general functions. Initially, we establish the proof for functions in C*.

» Theorem 15. Given 0 < 7,9 < 1, d,h,m,n € Z~qo, H C [n] of size |[H| = h, £ € C? satis-
fying ||€®) ||oe < B where B is a constant, and a (2,4, n)-hypercontractive (m?,n) ensemble
x, let P € HE™ be a degree-d operator satisfying Inf; (P) <7 foralli ¢ H. Suppose that P
has a Fourier expansion P =3, )z, P(0)B,. Let PH(x) = Zae[mQ]gn P(0)xo_Bo, . If

ZJ;&OP( 0)* <1, we have
m~"Tr £ (P) - m_hE[Tl" 13 (PH(X))]‘ < CBmax {9m, 1/774}d V7d

for some absolute constant C'.
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For those functions that are not sufficiently smooth, if they have a mollifier, which is a
smooth approximator with a bounded third derivative, then the invariance principle still
holds. The following lemma proves an invariance principle for ¢ (-) defined in Appendix A.2.4,
which has a mollifier ) (-) guaranteed by Fact 57.

» Lemma 16. Given 0 < 7,n < 1, d,h,m,n € Zso, H C [n] of size |H| = h, a (2,4,n)-

hypercontractive (m?,n) ensemble x and a degree-d P € HE™ satisfying Inf; (P) < 7 for

alli ¢ H. suppose that P has a Fourier expansion P = de[mﬂg P(0)B,. Let PH(x) =
>0

Zoe[wﬂ]go ]B(U)xgﬁBgH. If Zo;ﬁoﬁ(a)Q <1, we have

m T ¢ (P) = m M E[Tr ¢ (PH(x)]| <3 (CBy max {9m,1/n"}" ﬁd)z/g

for some universal constants C and Bs.

» Remark 17. It is possible to prove an invariance principle for a broader class of functions.
For example, we can prove it for Lipschitz continuous functions using the argument in [24,
Lemma 3.5]. However, it is out of the focus of this paper. We will leave it for further research.

3.3 Derandomized Invariance Principle

From Theorem 15, it is not hard to see that the non-identity basis elements can be substituted

by independent Rademacher variables. In this section, we will replace those Rademacher

variables with pseudorandom variables to save the randomness. It is worth noting that

there is a large body of research on derandomization through invariance principles (readers

may refer to[44] and the references therein). We adopt the pseudorandom generator (PRG)

introduced in [36]. The PRG is constructed by pairwise uniform hash functions as follows.
For F = {f : [n] — [p]}, define G : F x ({~1,1}")" — {~1,1}" by

G (f,zl, ...,2P) =z, where z; = sz(i) for i € [n]. (3)

We define the influence of a random variable in a random matrix using the notation VarInf ()
to distinguish from the notation for the influence of a register in Definition 38.

» Definition 18. Given n,p € Zsq, let P(b) = ngn] bsPs be a random matriz with b
being drawn uniformly from {£1}" and bg = [[,.qbi. Then the influence of i ’th coordinate
of b is defined to be

icS

Varlnf; (P(b)) = Y [IPslll.

S3i

We also define the influence of a block of coordinates. Let j € [p] and f : [n] — [p] be a
function, define the influence on the block f=1(5) C [n] to be

2
Varlnfy; (P(b)) = > [|Ps]l3-
S:SNf=1 () #0
The following is the main theorem in this section.
» Theorem 19 (Derandomized invariance principle for ¢). Given d,h,m,n € Z~q, m > 1,
and a random matriz P(b) = ng[n] bgPs, where b ~, {—1,1}", Ey [|HP(b)|HZ} <1,

bs = [[;cs bi and Ps € HE", they satisfy | S|+ deg (Ps) < d and Varlnf; (P(b)) < 7 for all
i€ [n].
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Let p be the smallest power of 2 satisfying p > d/7; F = {f : [n] = [p]} be a family of
pairwise uniform hash functions. For any i € [p], define z* to be a 4d-wise uniform random
vector drawn from {£1}", and z' are independent across i € [p]. Given f € F, denote
xf=G (f7 zl, ..., zp) as in Equation (3). Then it holds that

Z X

%@mamwrgﬂwﬂammMSQWW%z

where £ is drawn uniformly from F and C is a universal constant.

We first prove a derandomized invariance principle for the functions with bounded fourth
derivative.

» Theorem 20 (Derandomized invariance principle). Given d,h,m,n € Zsg, m > 1, and
a random matriz P(b) = ngn] bsPs, where b ~, {=1,1}", Ey [|||P(b)|||§} <1, bg =
[Tics bi and Ps € HE", they satisfy that |S| + deg (Ps) < d and Varlnf; (P(b)) < 7 for all

Let p be the smallest power of 2 satisfying p > d/7; F = {f : [n] = [p]} be a family of
pairwise uniform hash functions. For any i € [p], define z* to be a 4d-wise uniform random
vector drawn from {£1}", and z' are independent across i € [p]. Given f € F, denote
xp=G (f,zl, .. .,zp) as in Equation (3). Then for any & € C* with ||€¥ || < Co where Cy
is a constant, it holds that

LB [Ty £ (P(xe)]| < 4C1Co(9m)dr,

1
T E(PO)] - - B

where £ is drawn uniformly from F and C; is a universal constant.

» Remark 21. It is also possible to generalize Theorem 19 to Lipschitz continuous functions
using the argument in [24, Lemma 3.5].

Assuming Theorem 20, Theorem 19 is straightforward.

4 Positivity Tester for Low Degree Operators

In this section, we will present an algorithm deciding whether a low-degree operator is
(8 — d)-close to a positive semidefinite matrix or (f + §)-far from all positive semidefinite
matrices, for error parameters 8 > § > 0. The input operator is given in the form of a Fourier
expansion. The algorithm and the proofs can be found in Appendix B.2.

» Definition 22 (Positivity testing problem). Given d, D,m € Z~o, m > 1, and real numbers
B >8>0, the input is a degree-d operator in HEP given in the form of Fourier expansion

P= > P(o)B,.
ae[m2}§0
o:|lo|<d

Distinguish the following two cases.

Yes: if m~P Tr ((P) < 8 - 6.

No: if m~P Tr ((P) > f+94.
Notice that the number of Fourier coefficients is Z;i:o (? ) (m2 — 1)2. If we are concerned
with constant-degree operators, then the dimension of the operator is exponential in the
input size.
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» Theorem 23. Given d, D, m € Z~qg, m > 1, and real numbers 3 > § > 0, there exists a
deterministic algorithm for the positivity testing problem that runs in time

exp (poly (md, 1/(5)) . DO,
In particular, if m,d,d are constants, then the algorithm runs in time poly(D).

The algorithm applies the invariance principle Lemma 16 to reduce the dimension of the
matrices and then Theorem 19 to derandomize, while the distance to positive operators is
approximately preserved.

5 Noisy Nonlocal Games are NP-complete

» Definition 24 (Noisy Nonlocal Game Value Problem). The input consists of the description
of a nonlocal game, which is a tuple & = (X, Y, A, B, n, V), and real values p,§ and . X
and Y are question sets and assume |X| =|Y| =s. A and B are answer sets and assume
|A| = |B| =t. Let p be a distribution on X x Y and V : X x Y x A x B — {0,1} be the
predicate.

Let v = val* (8,9 4p) be the value of the nonlocal game, where Alice and Bob share
arbitrarily many copies of a noisy MES ¥ ap with the maximal correlation p. Let 1 > 3 >
e > 0. The task is to distinguish the following two cases.

Yes: v> f +e.

No: v< f—e.

In this section, we show:

» Theorem 25. The noisy nonlocal game value problem is NP-complete.
It follows from the two propositions below, whose proofs can be found in Appendix B.3.

» Proposition 26. There exists a nondeterministic algorithm that runs in time

1 1
poly (s,eexp (t,log (7> , 7>>
p) €

that solves the noisy nonlocal game value problem. Here eexp(-) means doubly exponential.
In particular, if t, p,e are constants, then the problem is in NP.

» Proposition 27. For each 3-SAT instance ¢, there is a nonlocal game G(¢) such that its
noisy game value is 1 if ¢ is satisfiable, and below some constant c if ¢ is not satisfiable.

5.1 The Nondeterministic Algorithm

We first present an upper bound on the number of noisy MES sufficient to approximate
the value of a nonlocal game to an arbitrary precision. The upper bound from [46] is
D = exp(poly(s), exp (poly(t))). The follow-up work [47] studied fully quantum games in
which both questions and answers are quantum and proved a better upper bound D =
exp (poly(s), poly(t)) using a refined Gaussian dimension reduction. We observe that this
upper bound can be further improved to D = poly (s, exp (poly(t))) for nonlocal games.

» Theorem 28. Given parameters 0 < €,p < 1, n,m € Zsg, m > 2, a noisy MES state
Yap, i.e., g = Yp = %’f with the mazximal correlation p = p(Yap) < 1 as defined in
Definition 41, let & be a nonlocal game with the question sets X,) and the answer sets
A, B. Suppose the players share arbitrarily many copies of Yap. Let w,(8,9ap) be the
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highest winning probability that the players can achieve when sharing n copies of Yap. Then
there exists an explicitly computable bound D = D (|X|,|Y|, |Al, |B|,m,¢€,p), such that for
anyn > D, w,(B,Yap) —wp(&,vap) < €. In particular, one may choose

11
D = poly (IXI, | V[, exp (poly (IAI, IBl, - ip) ,IOgm>> :

The proof largely follows the framework in [46] with several refinements.*

Next we present the algorithm, which is deterministic provided with a certificate. By
Theorem 28 we know that sharing D copies of 145 is sufficient to approximate the game
value. However, outlining a strategy that shares D copies of ¢ 4p requires exp (D) bits,

rendering it excessively costly. Despite this, we’ve devised a more affordable certificate.

Interpreted as a degree-d pseudo-strategy, this certificate is presented through its Fourier
coefficients. By pseudo-strategy we mean two sets of operators {P,*} and {Q/} that may
not be a valid quantum strategy. However, we can still define the winning probability on a
pseudo-strategy, mathematically. The algorithm is given in Appendix B.3.

5.2 NP-Hardness

In this subsection, we first show that if L € MIP then L € noisy MIP*. Then Proposition 27
directly follows from the fact that 3-SAT € MIP[log, 1] [7].

» Proposition 29. Let V = (Algg,Algy) be an MIP protocol for a language L with perfect
completeness. Then there exists a verifier V* that is a noisy MIP* werifier for L with the
following conditions:

Completeness. If input € L, there is a value-1 strategy for V*.

Soundsness. Given input, if there is a strategy for V* with value 1 —¢, then there is a strategy

; 16€
for V' with value 1 — 2e — i—p

6 MIP* Protocol for RE with O(1)-size Answers

In this section, we prove that there is an MIP* protocol for any language in RE with poly-size
questions and constant-size answers. The key step is to develop a new answer reduction
technique that can reduce the answer size of an MIP™ protocol from O(logn) to O(1) while
maintaining other parameters of the protocol. We achieve it by modifying the answer
reduction technique from [39]. Natarajan and Wright’s answer reduction follows a modular
design with two major components: Probabilistically checkable proofs of proximity (PCPP)
and a tester of the low-degree code. Hence, to achieve constant answer size, it suffices to
change the code to the Hadamard code, and derive a new tester for the Hadamard code
that allows a verifier to test multiple bits of a codeword at the same time. Then in our
final construction of the MIP* protocol for RE, we apply our new answer reduction with the
Hadamard code to the MIP* protocol for RE from [28]. The proofs of the results of this
section can be found in Appendix B.4.

4 One may wonder why the upper bound in [47] is still exponential in the size of the question set with
the refined Gaussian dimension reduction. This is because of the different treatment of the questions.
When the questions are classical, we take into account the distribution of the questions. However, if the
questions are quantum as considered in [47], the question registers are expressed as a linear combination
of matrix basis elements, where an extra factor on the size of the question sets is introduced.
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Note that [28] doesn’t use the answer reduction technique of [39]. The authors of [28]
use a specific PCPP tailored to the low individual-degree code in their answer reduction
technique so that it fits the recursive compression framework. However, the answer reduction
technique of [28] is more difficult to modify due to its less modular design.

6.1 Subset Tester for the Hadamard Code

To use the [39] answer reduction procedure with a particular error-correcting code, one must
show that this code satisfies certain efficient testability properties. Here we show this for the
Hadamard code. Specifically, we show that the Hadamard code has a subset tester in the
sense of [39, Section 16], which ensures that the provers have a global Hadamard encoding of
some bitstring.

First, we recall the definition and key properties of the Hadamard code.

» Definition 30. The Hadamard code encodes x € F5 as Enc(z) = (z - Y)yers - Moreover,
For x # y € F5, Enci(z) and Ency(y) have normalized Hamming agreement at most
e = 3.

There exists an embedding py, - [k] — [2F] such that for each i € [k], up(i) = 2°~' and
Tr; = (Enc(:t))#k(i).

There exists a decoding algorithm Decy, such that Decg(Encg(x)) = x and, for every w not
in the range of Ency, Decy(w) =L.

The decoding algorithm Decy, on input w, first computes & = (w, (x), - - -, Wy, (1)) outputs

x if w = Enck(z) and L otherwise. Note that both Ency and Decy, run in time exponential

in k.

» Proposition 31. For the subset F = {z1,...,xx} C Fy sampled according to a distribution
D and a uniformly random y € F2, if a quantum strategy with |¢) € Ha @ Hp and
measurements

{MF’y |a,a’eF§,celﬁ‘2},{N{|be]F’;},{Ng\deF2}

a,c,a’

can pass the subset tester with probability 1 — €, then there is a Hilbert space H'y @ H'g, a
state |aux) = lauz ) @ lauzp) € H'y @ Hy and a projective measurement {Gu | ue IFQ} on
Hp ® Hlg such that if we write |¢') = |[¢) ® |auz)

F / A 12 2
E SN @y @lp)—1a® > Gult)|? < (2k—1)°(45 + 12VE)VE.
a€Fk UL ;=04
2 Vie[k]

6.2 Answer Reduction Protocol

The subset tester of the Hadamard code implies that we can replace the low-degree code of
the answer reduction technique in [39, Section 17.4] by the Hadamard code. The other key
ingredient of Natarajan and Wright’s answer reduction is probabilistically checkable proofs
of proximity, so we recall its definition and key properties that we will use later.

» Definition 32 (Probabilistically checkable proofs of proximity (PCPP)). For functions r,q :
7t = 7%, t: ZY xZt — ZF, and constants s, € [0,1], a pair language L C {0,1}" x {0,1}"
is in PCPP, ,[r, ¢, t] if there exists an (r,q,t)-restricted PCPP wverifier V with the following
properties:
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Completeness: If (z,y) € L, there exists a proof m such that Prg[V¥™(z,|y|; R) = 1] =1
where VY™ (x, ly|; R) denotes the decision V' on input (z,|y|), oracle access to (y, ) with
q(|z|) queries, and randomness R from r(|z|) coin tosses.

Soundness: Let L, = {y | (xz,y) € L}. If (z,y) is such that y is y-far from L, N {0, 1}|y|,
then for every m, Prp[V¥7™(x,|y|; R) = 1] < s.

We work with the PCPP such that when L is an NTIME(T') pair language,

Randomness complexity: r(m) = logy T'(m) + O(log, logy T'(m)),

Query complexity: ¢(m) = O(1), and

Verification time: t(m, K) = poly(m,log, K,log, T(m + K)).

We are going to apply the PCPP defined above to the following language.

» Definition 33. Let V = (Alg,Algy,) be an MIP™ verifier, where Algg, is his algorithm to
sample the questions and Alg 4 is his algorithm to check the answers. Suppose on inputs of
length n it has question length {g(n) and answer length £4(n). We define

Lenc={(input, 2o, 1, Ency,, (jinput|) (40)> ENCey (jinput)) (¥0)) | Alg 4 (input, zo, 21, 90,y1) =1},
which are all the accepted tuples with the answers encoded by Ency,, (jinput|)-

Note that when |input| = n, the running time of the decider of Lgnc is the maximal of
the running time of Alg, and Decy,(,) as pointed out in [39, Proposition 17.7]. Suppose
v < nmg/2=1/4. Then by [39, Proposition 17.8], if (input, zg, x1, 20, 21) does not correspond
to the encoding of any assignment accepted by Alg 4, for every proof 7

Pl’zr[Vlfg’l?P’”(input, %o, %1, |20 + |21; R) = 1] < s

where s is the soundness of Vpcpp.

» Definition 34. We instantiate the answer-reduced MIP* protocol with the following com-

ponents and notations.

1) Let V = (Algg,Algy) be an MIP* werifier for a Language L. Suppose on inputs of size n,
the verifier V has question length {y,qg(n), answer length {y, 4(n).

2) Let G1(T) be the subset tester from Section 6.1 for the Hadamard code of F§ with the
embedding px, and for the subset T sampled according to some distribution D.

3) Let Lgnc be the language defined in Definition 33, and let Vpcpp be its PCPP wverifier with
~v < 1/4 and constant soundness s. Suppose on inputs of size n it has proof length £, (n).

4) We write {1 == Ly, a(n) and £y = l(n).

Next, we give the protocol of the answer reduced verifier VA%, which requires the provers

to encode their proof m by the Hadamard code of IF?. The protocol is very similar to the

protocol presented in [39, Figure 15], and can be found in Appendix B.4.

» Theorem 35. Let V = (Algg,Alg,) be an MIP™ protocol for a language L. Suppose the

PCPP wverifier is chosen so that v < 1/4. Suppose further that V' has the following property:

for any input € L, the prover has a real commuting symmetric EPR strategy with a value 1.

Then VAR obtained by applying the the answer reduction procedure to V is also an MIP*

verifier for L with the following two conditions:

Completeness. If input € L, there is a value-1 strategy for VAE,

Soundness. Given input, suppose there is a strategy for VAE with value 1 —e. Then there
exists constants K1 and Ko such that there is a strategy for V on input with value
1 — Ky — Kqe'/9.
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» Theorem 36. RE is contained in MIP*[poly, O(1)] with completeness 1 and a constant
soundness.

Alternatively, we can first apply the answer reduction technique from [39] to the oracu-

larized protocol to reduce its answer size to O(log(n)) and then apply our answer reduction

to further reduce it to O(1). Compared with the approach above, this approach gives us an
MIP* protocol for RE with shorter questions but worse soundness.
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A  Preliminary

For n € Z-, let [n] and [n]>( represent the sets {1,...,n} and {0,...,n — 1}, respectively.
Given a finite set X and a natural number k, let X* be the set X x --- x X, the Cartesian
product of X, k times. For any o € Z¥, we define |o| = |{i: 0; # 0}|.

In this paper, the lowercase letters in bold x,y,--- are reserved for random variables.
The capital letters in bold, A, B, ... are reserved for random operators.

A.1 Quantum Mechanics

A quantum system is associated with a complex finite-dimensional Hilbert space, denoted
by A. A quantum state in A can be completely described by a density operator, a positive
semidefinite operator with trace one. If the dimension of A is m, we denote the set of
Hermitian matrices in A by H,,. The identity matrix is denoted by 1,, or 1 4. The state of
a composite quantum system is the Kronecker product of the state spaces of the component
systems. An important operation on a composite system A ® B is the partial trace Trp ()
which effectively derives the marginal state of the subsystem A (denoted by t4) from the
quantum state 14 5. The partial trace is given by

Ya=Trppap =Y (1a® (i) Pap (La®]i)),

i

where {|é)} is an orthonormal basis in B. A linear map from a system A to a system B is
unital if it maps 14 to Ip. A quantum measurement is represented by a positive operator-
valued measure (POVM), which is a set of positive semidefinite operators {My, ..., M,}
satisfying Z?:l M; = 1, where n is the number of possible measurement outcomes. Suppose
that the state of the quantum system is 1, then the probability that it produces i is Tr M;).

N
We use M= (My,...,M,) to represent an ordered set of operators.
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A.2 Matrix Analysis
A.2.1 Matrix Spaces

Given m € Zsg and M € H,,, we use M;; to represent the (¢,j)-th entry of M. For
1 < p < oo, the p-norm of M is defined to be

m 1/p
[ M]], = (Z& (M)p> ;

where (s1 (M), s2(M),...,s$m (M)) are the singular values of M sorted in nonincreasing
order. || M| = ||M||s = s1 (M). The normalized p-norm of M is defined as

1/p
Mﬂh=z@i§:auwf> 4

i=1

3

and [|M[]| = [[[M]]., = s1 (M).
Given P, Q € M,,, we define

(P.Q) = T PIQ. o)

It is easy to verify that (-,-) is an inner product. ({-,-),H,,) forms a Hilbert space. For any
2
We say that {Bo, ..., Bn2_1} is a standard orthonormal basis in M, if it is an orthonormal
basis with all elements being Hermitian and By = 1,,.

» Fact 37 ([46, Lemma 2.10]). For any integer m > 2, a standard orthonormal basis exists
n Mp,.

2
Given a standard orthonormal basis B = {B;}/";"" in H,,, every matrix M € HE" has a
Fourier expansion with respect to the basis B given by

M= Y M(o)B,,

oe[m?]2
where B, = @, Bo,.

» Definition 38. Let B = {Bi};fo_l be a standard orthonormal basis in H.,, P € HE™.
1. The degree of P is defined to be

degP:max{|a| : P (o) 760}.

Recall that |o| represents the number of nonzero entries of o.
2. For any i € [n], the influence of i-th coordinate is defined to be:

Inf;(P) = ||P — 1,, ® Tr; P||2,

where 1, is in the i ’th quantum system, and the partial trace Tr; derives the marginal
state of the remaining n — 1 quantum systems except for the i’th one.
3. The total influence is defined by

Inf (P) =Y Inf; (P).
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> Fact 39 ([46, Lemma 2.16]). Given P € HZ", a standard orthonormal basis B = {l’:»’i};f(f1

m 7

in Hy, and a subset S C [n], it holds that

L Inf; (P) = Y., 40| P ()%

2. Inf (P) = ¥, [o||P (o) < deg P+ ||P[[3.

The inequality in item 2 follows from Parseval’s identity, which is immediate by the Fourier
expansion of P (Fact 37).

» Fact 40 (Parseval’s identity). For any P € H&"™,
5 ~
1Pl =D 1P (o).

Quantum maximal correlations introduced by Beigi [9] are crucial to our analysis.

» Definition 41 (Maximal correlation [9]). Given quantum systems A, B of dimension m and
a bipartite state Yap with ¥4 = Y = L=, the mazimal correlation of Yap is defined to be

m 7
P7Q G(mem7 }

pa) = s {1 (P& Q) van)| * oy 07 1Pl = 1l = 1.

» Fact 42 ([9]). Given quantum systems A, B and a bipartite quantum state Yap with
Ya=1,,/ma and Yp = 1,,, /mp, it holds that p (Yap) < 1.

» Definition 43. Given quantum systems A and B with dim (A) = dim (B) = m, a bipartite
state Yvap € D(A® B) is an m-dimensional noisy mazimally entangled state (MES) if
Ya =Yg =1, /m and its mazimal correlation p = p (Yap) < 1.

An interesting class of noisy MESs is the isotropic states, which are the states obtained
by depolarizing MESs with arbitrarily small noise.

> Fact 44 ([46, Lemma 3.9]). For any 0 < e < 1 integer m > 1, it holds that
]]‘m ILm
1— UV +e2@—")=1-
p(a-alm+ezele) 1

where |V) = Tlfn Z;’;Bl |r, m) is an m-dimensional MES.

» Remark 45. Fact 44 indicates the maximal correlation of an isotropic state is strictly less
than 1. The class of noisy MES also contains other states. It is not hard to prove that any

mixture of at least three out of the four orthogonal EPR states is a 2-dimensional noisy MES.

» Fact 46 ([46, Lemma 7.4]). Given m € Zso, m > 2, and a noisy m-dimensional MES

2 2
Yap. Then there exist standard orthonormal bases A = {Ai};’lo_l and B = {Bi}?;o_l in
H.n such that

T (A © B,) tas) = {Ci ifi=j (6)

0  otherwise,
where co = 1> c¢1 = p(Yap) > c2 > ...cpm2—1 > 0 and p(Yap) is defined in Definition 41.

» Definition 47. Given m € Zq, p € [0,1], a noise operator A, : Hy — Hy, is defined as
follows. For any P € H,,

A, (P) = pP+ 2P (Tt P) . 1,..
m

With a slight abuse of notations, the noise operator A%’" on the space HE™ is also denoted
by A,.

30:25

CCC 2024



30:26

The Computational Advantage of MIP* Vanishes in the Presence of Noise

» Fact 48 ([46, Lemma 3.5]). Given integers d,n,m > 0, p € [0,1], a standard or-
2
thonormal basis of Hy: B = {Bi};zo_l, then for any P € HE™ with a Fourier expansion
P = Zae[mg]; P (o) B,, it holds that
>0

A, (P)= Y PP (0)B,.

06[7712];_‘0

A.2.2 Random Matrices

For integer n > 1, =, represents the distribution of an n-dimensional standard normal
distribution. For any 0 < p < 1, G, represents a p-correlated Gaussian distribution, which is
a 2-dimensional Gaussian distribution

= ((5)-G 1)

Namely, the marginal distributions X and Y are distributed according to v, and E[XY] = p.

» Definition 49. Given h,n,m € Zq, we say P(g) is a random matriz if it can be expressed
as

Pe)= Y. po(8)Bs, (7)

cre[mQ]’iO
where {Bi}?j(;l is a standard orthonormal basis in Hp,, ps : R* =R for all o € [mQ]go and
g ~ Yn. Moreover, we say P(g) € L? (H%h,vn) if j;Rn pg(x)'yn (dz) < oo for all o € [mz]go.
We define the degree of random operators:

» Definition 50. Given integers n,h > 0,m > 1 and random operator P € LP (H?lh,'yn),
the degree of P, denoted by deg (P), is

max deg (p,) .

oe[m?)h

We say P is multilinear if py (+) is multilinear for all o € [mQ]’go.

A.2.3 Fréchet Derivatives and Spectral Functions

The Fréchet derivatives are derivatives on Banach spaces. In this paper, we only concern
ourselves with Fréchet derivatives on matrix spaces. Readers may refer to [16] for a detailed
treatment.

» Definition 51. Given a map f : H,y — Hy and P,Q € H,y,, the Fréchet derivative of f at
P with direction Q is defined to be

Df (P)[Q) = 4f (P +1Q) =0

The k-th order Fréchet derivative of f at P with direction (Q1,...,Qy) is defined to be

d

DY f(P)[Qu,...,Qk] = I (DML (P +1Qp) [Q1, - - -, Q1)) li=o-

To keep notations short, we use D* f (P)[Q] to represent D*f (P)[Q, ..., Q).
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In this paper, we are concerned with spectral functions, a special class of matrix functions.

We say that the function F Hm — Hm is a spectral function if there exists a function
f R — R such that f(P) = >, f (M) |vi){vi|, where P = >~ A; Jv;)(v;] is a spectral
decomposition of P. With shght abuse of notation, we use the same notation f to represent
the function on R and the corresponding spectral function, whenever it is clear from the
context.

Given n € Z~g, we denote C™ to be the space of functions continuously differentiable n
times.

» Definition 52. Let \,...,\, € R and let f € C". The divided difference fI" is defined
recursively by

[n—1] 3y pln—1] - ‘
F (o, Aty A) = ! ()\O,))\\sff\c1~ QuA) i N # Aq,
D0, N) i Ao = A,

where X = (Mg, ..., \n).
It is well known that £ is a symmetric function.

» Fact 53 ([52, Theorem 5.3.2], [50, Theorem 6.1]). Given m,n € Z~q, P,Q € H,,. Suppose
that P has a spectral decomposition

P= Zm: N1, (8)
=1

where Ay > -+ > A\, {Hi}z‘e[m] are rank-one projectors satisfying that y.;* II; = 1 and
ILII; =0 for allt # j. Let f € C™. Then

an(P) [Q]: Z f[n] (Alovv)‘zn)l—[loQHhQQHln
» Fact 54 (|52, Theorem 5.3.12]). Given m,n € Z~q, P,Q € H,,. Let f € C™. Denote

Anf(P,Q)=f(P+Q)— Zlek Q]

then there exists a constant ¢, depending only on n such that

T [An, s (P, Q)] < enll o< QU

where || f™) ||« denotes the supremum of f).

A.2.4 The Distance from PSD Matrices

Define the function ¢ : R — R as follows.

0 otherwise

<<x>={‘” el o)

The function ¢ measures the distance between a given matrix and its closest positive
semi-definite matrix:
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» Fact 55 ([46, Lemma 9.1]). Given an integer m >0, M € H,,, A ={X € H,,, : X > 0},
let

R (M) =argmin {|M — X|]2: X € A}
be a rounding map of A with respect to the distance ||-||2. It holds that
Tr ¢ (M) = [|M =R (M)]3.
» Fact 56 ([46, Lemma 10.4]). For any Hermitian matrices P and Q, it holds that
[Tr (C(P+Q) =< (P < 2(IPl:lIQll2 + 1QIF) -
We will need to let ¢ to be mollified® to get a smooth function:

» Fact 57 ([37, Lemma 3.21]). Given A > 0, there exists a C™ function (5 satisfying
L [I6x = Clleo <207,
2. For any integer n > 2, there exists a constant B, independent of \ such that

160 ™M [loo < BuAZ™,

A.3 k-wise Uniform Hash Functions and Random Variables

» Definition 58. A family F = {f : [n] — [p]} of hash functions is k-wise uniform if for any
Y1, .-, Yk € [p] and distinct xq, ..., 2 € [n]:

Pr [f(z)=wi A A flog) =yi] = Z%

fe€uF
» Definition 59. A random vector z € [p|™ is k-wise uniform if for any y1,...,yx € [p] and
distinct ©1,. ..,z € [n]:
1
Priz,, =g\ Nzg =yl = o

» Lemma 60. Let p be a power of 2. There exists an efficient construction of k-wise uniform
hash functions F = {f : [n] — [p]} of size |F| = O(max(n, p)¥).

Proof. For k = 2, efficient constructions of size |F| = O(np) are well known (see, e.g., [13]).
For general k, let ¢ be the minimal integer satisfying 2¢ > max(n,p) and consider the finite
field Fo:. We can construct an irreducible polynomial in Fy of degree ¢ in polynomial time,
using, for example, the algorithms of Shoup [51]. Thus, the basic operations in Fo: can be
carried out efficiently. Then the k-wise uniform hash functions F : { f:Fo — th} can be
efficiently constructed, for example, using the construction in Section 3.5.5 in [55], which
has size |Fq:|¥ = O(max(n,p))*. Then k-wise uniform hash functions from [n] to Fq: can be
constructed by restricting the input domain to [n]. k-wise uniform hash functions from [n]
to [p] can be further constructed by cutting the output to logp bits. <

» Corollary 61. There exists an efficient construction of k-wise uniform random variables
z ~ {—1,1}", which can be enumerated in O(n*) time.

Proof. Construct k-wise uniform hash functions F = {f : [n] = {—1,1}}, and then define
z=(f(1),..., f(n)). By the definition of k-wise uniform hash functions, z is k-wise uniform
random variables. Moreover, the construction of F is efficient. Finally, the enumeration of z
takes time O(n*) since we only need to enumerate the set F. <

5 A mollified function ¢y is a smooth function that is close to the original function C.
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A.4 Lemmas for Noisy MIP*
Smoothing

The following lemma reduces the degrees of the POVMs of an MIP* strategy.

» Lemma 62. [/6, Lemma 6.1F Given parameters 0 < p < 1,0 < § < 1, n,m € Zso,
m > 2, and an m-dimensional noisy MES Y sp with the mazimal correlation p = p (Yap),
there exists d = d (p,d) and a map f: HE™ — HE™, such that for any positive semi-definite
matrices P,Q € HE" satisfying ||P|l, <1 and ||Q||, < 1. The matrices P = f (P) and
QW = f(Q) satisfy that

1. PO gnd QW are of degree at most d.

[Pl <1 and [ Q] < 1.

|Tr (P ® QW) ¥35) — Tr (P ® Q) ¢35)| < 0.

LT ((PW) <6 and L Tr ((QW) < 6.

the map f is linear and unital.
C log? %
0(1—p)

aRreN

In particular, we can take d = for some absolute constant C.

» Remark 63. It is easily verified that for the above lemma, for each o € [mQ]’ZLO, we have
PO(0)] < |P(0)] and [QW (0)] < 1Q(0)]

This is because in fact f applies depolarizing noise on P and then eliminates the high degree
parts. So the Fourier coefficients are non-increasing in absolute value.

Regularization

The following lemma allows us to identify high-influence registers, and the number of such
registers can be upper-bounded.

» Lemma 64. [/6, Lemma 7./] Given 0 < 7 < 1, d,n,m € Zsg, m > 2, and a degree-d
matriz P € HE™ satisfying || P||, < 1, there exists a subset H C [n] of size h = |H| < £ such
that for any i ¢ H,

Inf; (Pgd) <T.

Rounding

The following lemma shows that we can round a given set of matrices that sum up to 1 to a
close-by POVM.

» Lemma 65. Given ?G (H%")t satisfying that 22:1 X; =1, define
— — —12 —
R (X) = argmin{’” X - P ‘H P isa POVM}
2

It holds that

t t 1/2
H\R(?) 7 }wz 3+ ST G(X) +6 (njn ZTr g(xg) .

mTL

6 The statement is slightly different from that in [46, Lemma 6.1]. The difference arises due to our
relocation of the truncating step, which was in [46, Lemma 10.5].
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Miscellaneous Lemmas

The following lemmas are used throughout Appendix B.3.

» Fact 66 ([46, Fact 2.1]). Given registers A, B, operators P € H(A),Q € H (B) and a
bipartite state P ap, it holds that

1/2

T (P Q)van)| < (Tr P2a) "2 - (Tr Qvp)

zeX

cx Y YEY =
> Lemma 67. Let {P"};5% AQ) Yocs 1P }oca s

acA> beB’
If for all (z,y,a,b) € X x Y x A x B,

~ c ‘
{Ql;y ZEZJ; - H%" be fOUT sets Of matrices.

Tr (P @ Q) v35) — Tr (B @@)) v53)| < dllP L@,
for some 6 > 0. Then

1/2 1/2
val, ({P7} QYY) — valn ({P} . {Q2}) <5t<ZuA o)IPs |||2> (ZuB(mHani) .

y,b

Proof.

[valn ({7} {Q)}) — valn ({7}, {Q)'})]
< Y ey T ((PF @ Q) viE) — Tr (B Q) vi3)]

z,y,a,b
<5 3 ule IR ILNQ,

z,y,a,b

1/2 1/2
<5 3wl PP 3 ()l (Cauchy Schwarz)
z,y,a,b z,y,a,b
1/2 1/2
2
= 4t (ZM IPF ||2> S s - «
y,b

> Lemma 68 (Truncation). Let {P*},{Q¢} be two sets of operators satisfying
1. Forallz,y, >, P¥=>,Q) =1.

2. For all z,a,y,b,0, Aa’(a)‘ <1 and ’Qg/(a)’ <1.

Let sy, = Dlogm + log (%) Then there exist operators {Pf’(z)} , {Qf’@)} satisfying

1. For each x,y,a,b,o, the Fourier coefficients of Pf’@) and Q;"’@) consists of at most sy,
bits.

Forallz,y, Y, Po® = > Qy’(z) =1.

For all z,y, P (2)‘ ‘ <1 and H‘Qy (Z)H‘ <1.

For all z,y,a,b,

Te ((PE® @ Q™) wip) - Tr (P © Q) v53)

<4.

o kR N

For all z,y,a,b,

(Pr®) = —5Te ¢ (P) <6

<& and ’—T 4(@“2)) 1DTr (@)
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Proof. Let a = 27%v = §/(2mP). For each z,y, o, define Igf’m(a) = |P2(0)/aa. For
each x,0 # 07| define integer k, . as

- Z ﬁaz’(l)(o') = k'z,tr e
and for ¢ = 0P, define

1= PrW(0) =k, oo - o

Let ty,, = Ha cA: ﬁaz’(l)(rr) # ﬁaz(o)} , we can see that 0 < kg, < t5, always holds
because ), P* =1 and by the fact that ]3(11’(1)(0) > P?(0) — a. Let Sz,0 be an arbitrary

subset of {a eA: ﬁaw’(l)(g) # ﬁam(ff)} of size k; . Define PP as

Hx,(1 .
ﬁaw}(Z) (U) = ﬁafﬂ’(l)(a) lf @ ¢ SZ70
PPW(o)+a ifac Sy,

Then item 1 and item 2 hold for Pf"@). Also, since for a € S, we have 13@9“(1)(0) <
]3(1”(0) < 1, we have ]3(1”’(1)(0) <1— a. So, it can be verified that ’ﬁf’(z)(a)‘ < 1 always
holds, which implies that item 3 also holds. To prove the remaining items, we need

oz =il = 32 (e et < e <

We can apply the same operations to {Q7} and get {Qf’(z) } Then for all x,y, a,b,

(P e Q@) uih) - T ((Pr @ @) )|

< (re 05 ) (7 ) )|

+ |1 ((Po® 0 Q) vin) - T (B2 © Q1) v3h)|
(e (@) (-0 ) )
<l Jlor gzl « [l 22| oz, s 2nec=s

and item 4 follows. Then item 5 follows from Fact 56. <

A.5 Lemmas for the Answer Reduction of MIP*

This section introduces several lemmas to prove the hardness of MIP*(poly, O(1)). We use
the following notations for approximation in this section and Section 6.

For complex numbers a and b, we write a ~; b if |a — b| < 0.

With respect to a distribution D on X and state [¢), we write

Az~s By it E le - B <o
aEA

With respect to a distribution D on X and state [¢)), we write

Z ~ x : T x > — 4.
AL~ By if xgED;<w|Aa®Ba|¢>_1 0
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In the rest of the section, the distribution on X is implicit.

» Lemma 69 (Fact 4.13 of [39]). Let {A%} and {BZ} be POVM measurements. If A @1 ~;
1® B, then A7 @ 1 =25 1 ® Bj.

» Lemma 70. Suppose {AZ} and {BZ} are two measurements such that one of them is
projective, and that

A @1 ~s 1® By

with respect to some distribution D of x and the quantum state ). Then
EY (W A;®1-1&Bj[)| <2V6.
a
Proof of Lemma 70. We assume {A?} is projective. Then
EY (1o B;[v) 2EY (4|1 (Bi) |v) 20,
a a
which implies that
EY (WlAT@1l) - @1 BI W) < EY (A7 @ 1Y) - (¢]1® (B:)? [¥)].
a a

We can bound the second quantity in two steps.

[EY (0147 @ 1]y) — (4] A7 ® B [v)]

< \/IanAz; w>|2\/152||<A3 ®1-1® B7) |92 < V5,

and similarly

B (047 ® By ) — (9| 1@ (BS)? [v)] < V6.

By the triangle inequality, the second quantity is at most 2v/8. So is the first one. <
» Lemma 71 (Fact 4.14 of [39]). Suppose {AZ} and {BZ} are two measurements such that

A? ® 1 =5 1 ® BY. Suppose that either A or B is a projective measurement and the other is
a POVM measurement. Then A7 @ 1~ 51 ® By.

» Lemma 72 (Proposition 4.26 of [29]). Let {C(f,b} C L(H) be a set of matrices such that
Zb(nyb)TC;b <1 for all z and a. Then

A =5 By implies that  Cg Ay =5 CF By

» Lemma 73 (Proposition 4.28 of [29]). Suppose A; = {(A4;)%} be a set of matrices such that
(A:)E =5, (Aig1)E fori € [k+1]. Then

(A1)g Rk +.t60) (Akt1)g-
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» Lemma 74 (Fact 4.33 of [39]). Let k > 0 be a constant. Let {AZ .} be a projective

measurement. For 1 < j <k, let {(Bj)ij} be a projective measurement, and suppose that

Ag @1~ 1@ (By),

(lj'
Define the POVM measurement {Jclfl,.“,ak} as

Jivan = Br)a, -+ (B2)a,(B1)g, (B2)a, - - (Bi)a, -
Then

A% ®1 R (2k—1)268 1® J;l,w a

A1 yenes Ak Ak "

Proof of Lemma 74. We start with

x _ x x x x x
A a, = An AL AL AL - AT

A1yeeey

Because A ® 1 =~ 1 ® (By);,, To apply Lemma 72, we can set Cj,

Az o AT AT AT - Az @1 witha=agand b= (a1,...,a5-1). Then 3, (CZ,)TCZ,
1. Hence by Lemma 72

IA |

A © L5 AG, - AG AG AT, - Ag, @ (B,

ak—1

We can apply Lemma 72 again with C7 , = A7 -+ A7 A7 Ag, - Ag ®B,(€a’“) with a = ap_1

ag—2

and b = (a1,...,ax—2,ax). Because A* @1 ~;1® (B;c_l)(“k‘—1>, we can get that

Ap—1

AZ AT AT AT, AT

A —1

® (Br)a, ~s Aay - AayAay Aay - Ady_y ® (Br)ay, (Br—1)ay,_, -
Continuing similarly, we can get that

AL, - AL AL ® (B, - (Ba), s AL, - AL, © (B, -+ (BUS,.
With another (k — 2) steps we can get that

AG, @ (Bi)a, -+ (B2)a, (B1)a, (B2)a, - (Bk-1)a,_, ®s 1@ (Bi)a, -+ (B2)a, (B1)a, (B2)a, - (Bk)a, -

Combining all the steps above with Lemma 73
AGy v @ L R p—1)25 1@ (Bi)g, -+ (B2)a, (B1)g, (B2)a, - (Bi)a,»
which completes the proof. <

» Lemma 75 (Fact 4.35 of [39]). Let k > 0 be a constant. Let D be a distribution on
questions (x,y1,...,Yk), where each y; € Y;. For each 1 <1i <k, let G; be a set of functions
gi Vi = Ri, and let {(Gl)g | g € Gi} be a projective measurement. Suppose that the set G;
has the following distance property: fiz a question z = (Z,Y1,...,Yi—1, Yi+1,---,Yk), and let
D, be the distribution on y; conditioned on z. Then for any two nonequal g;, g; € G;, the
probability that g;(y;) = ¢;(y:), over a random y; ~ D, is at most «.

Let {Ai’l"{}.";é;}"‘} be a projective measurement with outcomes a; € R,;. For each 1 <i <k,
suppose that

Agr i @1 5 1@ (Gi)f,
(Gi)

(yi)=ai] (10)

o1 (yi)=as) @ L =5 L@ AGEoE, (11)
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Also suppose that

Agre VU @ 1 ovs 1@ Agivi vk, ”
Define the POVM {JZ 1 as

Toiseoan = Gy (Ga)g, - (G, - (Ga)g, -+ (G
Then

AT y1, ,yk Q1 R poly (exp(k),51/4k &1/2k) 1® J[z1(y1),...,gk(yk)=a1,...,ak,]'

This proof is the same as the original one, but we rewrite it to keep better track of the
approximation errors.

The original proof. We first show the & = 2 case. Notice that

J[fhy(ly’ffgfz(m) ar,as] — Z (G2>;2 Z (Gl)zl (G2)§2

92:92(y2)=ax g1:91(y1)=a1

Our goal is to bound

o Z ¥l Azlz{é;yz ® ngly(ly,ly)z%(yz):ahaz] [¥)
ai,a

T,Y1,Y2
=EEWEZMM%£f® PR CEACY AMBRICY AT
' g2:92(y2)=az

=B 2 OIATLG, © G (G )=l (GG V)
ai,92

First notice that

T,Y1,Y2
a1,92 ai,a2

E Z (¥l Ailyézizyz) ® (G2);2(G1)fgl<yl):al] %) ~avas x,yllE,w Z Widafe” @ 1ly) =1

This is because

LB, 2 WAL, © (G, 1)~ WAL, © (G2 nyma )

a1,92

=K Z VAL gt © (Go)gp (AT @1 =18 (G1)fy, (y)=ar)) V)]

Tyl y2

Z,Y1,Y nie.
< \/T yﬂ?w Z HAal 112(2@12) ® ) ‘ >||

S (01U 81 =10 (61— ALl A 8118 (G0 o)1)

Tyl Y2 f 91(y1)= dl]) a1,92(y2)

EREART

\/z yllEyzz Wl (Aa™ @1 =10 (G, ()= aﬂ)Z A oalon (Aa” ©T = 1@ (G, )=a) 19)

<1 Z“ (AZ" 2 @ 1= 1@ (G, (yymar) 0112

11J1 Y2

<V2
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and

E,, 2 WAL © (G, 1) = W 455, © 1)

®
1 Y1z lll gz(yz) a1,92(y2

~I,E S A (1 @y~ AT 6 1))
ay,a2

< ]E A17J1J2 2.
\/ 3 A )

ai,a2

S WL (G) )y — AT @ DALY (10 (G — AL 1) [4)

ay,az

Z | AG;%as" 1)1
ay,a:

x, yl Y2 [92(y2)=az2]

‘Tvylvyl

ay

\/1 yH? Y2 Z wlae (Gz)[gz(n)—az —Au" @ 1) Z Aallar” (1 ® (Gz)[gz(Jz)—(lz —Au" @ 1) )

- \/IullEy Z”(ﬂ ® (Gz)fgz('yz):az] — A" e D)2
2Y1,Y2 as

< V24,
Hence, we focus on proving

E,, 2118 (G =2V = (G (G1)fs ) W < €1+ e

Z,Y1,Y2
1,92

(13)

for some constants C; and Co, which will imply that

LE D @laste ) © (G, ()= (G2 — (G2 (G1)i )z )

a1,92

< LE STl © (G, )]

a1,92

SOOI @ (GO, 1y (G2 = (G230 (G, 1)) 12

ai,g2
<A\ C1V3 + Cae

and

1y1 Y2

x, SY1LY: — RV4 A/
z yI?yz Z (V] Agfer” ® J[91(1£/1)292(y2) =a1,az] V) -1l <2v20 + C1V3 + Cae.

ay,a2
To prove Equation (13), we start with Equation (10)

& ZII (A7 © 1 =18 (Gi)fy, (y)=a) 1O)I* < 26

Z,Y1,Y2
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for ¢ = 1,2. Then by Lemma 72

1® (Gl)[zgl(yl):al](Gz)[z92(92)=a2] [¥)

~as A" @ (G1) [y, (y1)=an) [¥)

Rigs ALYV ATV @ 1 o))

_ AgiyuyzAg;yuyz ®1 W))

25 Ai;y17y2 ® (G2)ﬁ12(yz):a2] [¥)

~os 1 ® (GQ)é[EQQCUQ):aQ](Gl)[xgl(yl):al] [¥)-

Chaining the inequalities together using Lemma 73 gives

x T x x 2
E Z 1 <(G1)[91(y1):a1](02)[92(?42):&2] - (Gl)[gl(yl):all(GQ)[92(92):‘12]) [ < 326.

z,Y1,Y2
ai,a2

Let

Si = Z’yIIE’yZ Z”ﬂ ® ((Gl)ﬁH(yl):al](GQ)gz — (G2)g, (Gl)ﬁh(m):al]) |¢>H2
a1,g

T T T x 2
Sp = . yIIEyz E : I1® ((Gl)[gl(y1)=a1](G2)[92(y2)=a2] - (Gl)[gl(yl):ll](Gz)[ga(y2)=a2J> [
al,a2

We are going to show that S; is close to S3. Expanding S; — Sa, we get |S; — Sa| <
Al —+ AQ —+ Ag —+ A4, Where

Al = | E Z <1/)| 1® (GQ)f;z (Gl)[zgl(yl):al](Gl)[zgl(yl):al](GQ)§2 |1/)>

Z,Y1,Y2 a1.92
= 2 WL ® (G2)fy (=0 (CDy, ()=ar (G (1) =a0) (G2 g ) =as) 1)
P
Ay = |Iy]?y2 Z (WL @ (G1)y, (g1)=ar] (G2)g, (G2) g, (G1) Ty, (y1)=ar] [¥)
a1,92
- Z Wl1e (Gl)ﬁh(yl#al](GQ)[zgz(yz):zz](Gz)[mgz(yz)=a2](Gl)ﬁh(yl#all )]
Az=| E > W1 (G5 (G) =0 (625 (G =0 V)
bt
= > W18 (G2 (=0 (CDyy ()21 (G2 ()= (G gy (1) =ar) 1))
P
Aa = |ZUIIE1/2 Z Wlle (Gl)fgl(y1)=a1](G2)$2 (Gl)fcgl(yl)=a1](G2)gz l¥)
a1,92
= 2 WIL® (1), ) =an) (GDga0m)=a2 GV (1) =a1) (G g 21 =az) [0

First of all

Ar=1- E Z (Wlte (Gz)@z(m):@](Gl)rgl(yl):al](Gz)ﬁ?z(@m):aﬂ ).

Z,Y1,Y2
a,az

By Equation (11),
1@ (G2){ga (y2)=a21 (G g1 (1) =11 (G2) o (ya) =az) [¥) 185 AT @ LY,

then Lemma 70 implies that
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| E Z <1/)| Azﬁlll;y‘z ®1 "l[)> - <"/)| 1® (G2)[Z‘92(y2):a2](Gl)%‘gl(:ﬁ/l):al](GQ)[ZQQ(Z/Z):(ZQ] "l[)>| < 6\/%'

Z,Y1,Y2
Since Eq y,,y D0, .a, (W11 @ AG¥a2 [9) = 1, Ay < 6V20. Next, observe that Ay = 0 as
(G2)j, and (G2)fg2(y2)=a2] are projective measurements. Lastly, observe that Az = Ay, so we

focus on bounding Ajz. First notice that

B Z <,¢)| 1 ® (Gz)gQ (Gl)[zg1<yl>:al](G2)§2(Gl)fgl(yl):al] |,l/)>
1,92

Z,Y1,Y2
a

%3\/5 z,yH::,yz Z <¢| (Gl)[xgl(yl)=al] ® (GZ)agcz (Gl)ﬁll(yl):al](GQ)gz |w>
ai,92

A Z <¢‘ 1 ® (Gz)f%(yz):az](Gl)ﬁh(yl)=a1]<G2)ﬁ72(y2)=az](Gl)Fgl(y1)=01] "¢'>

T,Y1,Y2
ai,a2

~3v2s x,yH::7y2 Z (¥l (Gl)fm (y1)=ar] ® (G2)f92(y2)=azl(Gl)fgl(ylhal](G:))ng(yz):az] ¥)

The reason why 1 ® (Gl)mél(y1)=a1]
Lemma 69 to Equations (10) and (11) we get

~185 (G1)f’gl(y1):al] ® 1 is the following. Applying

TyYLseney

E S (G gymay ® T — 1@ ATV [1)]|? < 23,

TYL Yk
Notice that for any ¢ € [k],

E 3 (bl Az @ Az y)

@;

> E Y (AT @ ATV e [g) > 1 — 6
ZTyY1s---s Yk a an

because Ag:¥1:. ¥ ®A§£f{ff;i)zyk > 0 for any aq,...,a,bi,...,b,. Then Lemma 69 also implies
that

E Y j(Azp v @1 - 10 ALy ) [p)]? < 25
T,Y1y--Yk - i 4

Hence, Lemma 73 implies that for all ¢ € [k].

© ylE Yk Z”((Gi)?gi(yz):ai] ®1 = 1@ (Gi)lg, (y)=ai)) [)* < 180.

Also, notice that

‘x yIlE va Z (¥l (G2)ﬁ72(92):a2](Gl)ﬁ]l(yl):all(G2)f92(y2):az] ® (Gl)ﬁn(yl):aﬂ ¥)
ay,a2

T, yIIEyQ Z (¥l (G2)Zz (Gl)fgl(yl):al](G2);2 ® (Gl)?gl(yl):all )
a1,92

=1LE DY WHG)5 G wn=a(G2)g, € (Gl =) [9) Llg2(92) = 95(32)]
T a1 gag)

< 5|IIE;1 Z (1] (Gl)[z91<y1):a1] ® (Gl)ﬁn(yl):aﬂ )|
ay

<e.
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Therefore, Az = Ay < 6126 + ¢, and
4
‘Sl - Sz| < ZAj < 18\/%-‘1-267
j=1

and
Sy < 320 4 18v/268 + 2e.

In conclusion,

Z,Y1, ZT3Y1,5Ys _
‘z,y]lEA,yz Z (U] A5 ® J[gl(yl)z,gz(yz):auaz] [¥) — 1]
ai,a2

< 2v26 + \/325+ 18V/26 + 26 < 116'/% + 2/z,

and equivalently

Am-,yl7y2 ® 1 %2261/4-{—4# 1 ® Jzyyhyz

a1,a2 [91(y1),92(y2)=a1,a2]"

Switching the roles of Alice and Bob, the same proof gives us that

Z,Y1,Y2 ~ . z,Y1,Y2
Tig1 ()92 (va)=an,a2) @ 1 F2251/44aye 1O A0,
For the general case, assume
TyY1s--5Yi s &
A a" O L R0 1O T, 41,0 w)=ar,.n.ar] 30

1@ ATV

sYi
A1,..,Q5

~15) Tgr(yr),ongiti=ar e @ 1o

which imply that

L® Jig (y1)somngs (w) 32642(.6.)) Tgr(1)snngn(ys) @ 1

Since ¢ and ¢ are fixed, we write f(i,0,¢) as f(¢) in the rest of the proof and proceed to the
i+ 1 case. As in the base case, our goal is to bound

E Y @I @ wien) 1)

T,Y1, Uit 1 [91(¥1),--,9i+1 (Wit1)=a1,...,

_ TyYlseees Yi+1 . T T, Y1y Yi X x
_,’ ’]E Z <w| Aal ai,git1(Yit1) ® (Gl+1)91+1j[91(y1) 9i(yi)=a1,..., ai](Gl+1)9i+l |'¢> .

by relating it to

TyY15--Yit+1 X T TyY1ye-Yi
Z <"/}| Aa1,~~~,ai791+1(yi+1) ® (GZJrl)gi-HJ[gl(1111)7~~791(yi)=a1A,m’ai] W)>

ZyY1s--3Yit1
A1 yeeey@iyGit1

~ TY1,enYi _
N VTP e By 2 WAL @) = 1
ai, )
So the central step is bounding

E E 1 J%ylw-;yi G T
TyY1yer Vit 1 ” ® [gl(yl))"')g‘b(yl):al7"'7ai]( ZJr1)91-%—1
A1;.--,Q5,9i+1

x TyY1s--5Yi 2
- (G“'l)gwrlJ[gly(lyl)»~1-j-79i(yi):0r1w-»fli]) I
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As in the base case, we can use similar arguments to show

Al,.04,Q5,9i+1

< 4(21(1) + 49),

and
|Z».1/17»H-£-7yi+1 " ;g H]l® (J[gl(ljl'.) ....... ,9i (yi)=a1,...,a; ](Gl+1)g7+1
Tseees isGi+1
..... ; 9
B (G”l)gwl‘][gl(yl),y,gb(y) atyee a,,]) lo)I"—
TyY1yeeey Yi
x yl,.]}.;,y”l Z HIL@ (J[gl(lyl)Pu‘l"gL(y?) ai,...,a; ](Gl+1)[gt+l(yz+l) aiy1]
A1 yeney ai\git1
,,,,, Yi 2
a (GhLl)[g +1(¥it1)= a1+1]'][gl(y1) ,,,,,, gi(yi)=ai,..., }) |1/)>|| |
< 2v/2f (i) + 40+2+/6 £ (i) + 40 + 2¢.
Therefore,
..... y . T
m,y1,-1?,l/z‘+1 Z (R ( [91(1/1) »»»»» gi(yi)=ai,..., ai](Gl+1)gi+1
a1,..,Qi,9i+1
s 2
- (Gl+1)91+1 J[Zly(lyl),y ,gz(y,) A1 yenny a,]) |1/)>||
A(2£ (i) + 46) + 2¢/2F (i) + 46 + 24/6 (i) + 46 + 2,
and
1 1y Yit1 TyY1yeens Yi _
e D WA @ T e ) = 1
1yeeey @41
< V26 4+ f(i) + \/16\/]‘(@') +24V6 + 2¢
That is f(i + 1) = 5f(i)1/* + 761/ + \/2¢. Then the lemma follows. <

B Proofs of Theorems

B.1 Invariance Principle for Matrix Spaces

» Fact 76 ([37, Remark 3.10]). If x is (p, q,n)-hypercontractive, then it is (p,q,n')-hyper-
contractive for any 0 <n' <.

» Lemma 77. Given m,n € Zso, 0 <n <1, a (2,4,n)-hypercontractive (m,n) ensemble x,
it holds that

| (Smwor) < (fEmest)

for any multilinear polynomials p1, ... pk-
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Proof of Lemma 77. Let ¢; = T;)p;. Then

. 2
E (Z (Tnpi)(x)2> = ZE[% (x)* g (X)Q]

i=1

< Z laill3llg; 13 (Cauchy-Schwarz inequality)
i,J

IN

> lpill3llpill3 (s (2,4, m)-hypercontractive)
i,

2

(Zi:lpillg)2 = <E[§;pi(X)ZD - «

The lemma below follows directly from Definition 10 and Fact 48.

» Lemma 78. Given 0 < v < 1, hyn,m € Zwg, m > 2, an (m?,n) ensemble x, and a
random matriz

P(x) = Z Do (%) B,

oe[m?]h,

2
where {Bi}?q:'(;l is a standard orthonormal basis and p, is a real multilinear polynomial for

all o € [mﬂzo,

Pe(X)= > Pa(r)x..
TE[mQ]gU
It holds that
L (Px)= Y. Y A%, B,. (14)

oe[m?]L, Telm]L,

suppose that for all o € [mz] Zo’ ps has an expansion

We need the hypercontractivity inequality for Hermitian matrices.

> Fact 79 ([46, Lemma 8.3]). Given h,n,m € Zsg, m >2,0<~ < (9771)71/4 and P € HE",
1t holds that

A3 P, < 1P,
where A, (+) is defined in Definition 47.
Proof of Theorem 13. Set Q(x) =
Ly (P(x) = Ay (Q(x)) -
Using Fact 79,
E (1A, (QG)II;| < E[lQGl;] - (15)

Denote g, = T,,p,. Notice that

T,ps) (x) Bo. Then by the definition of T',

selm?]k, (

2 2

E[lQels] =mE|| > @®’| [<m ™ |E| > pex)

oelm?]h oe[m?]L

= (E[lIPel])”.

where the inequality follows from Fact 76 and Lemma 77. We conclude the result by
combining it with Equation (15). <
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Proof of Theorem 14. Suppose that for all o € [mQ]go, Do has an expansion

Pe(x)= > Bo(r)x..

Tem?]3,

Pi(x) = > Po (7) %, B,.

oe[m?]go,‘re[mz]gu:
lo|+|r=i

Set v = min {77, (9m)_1/4}. Applying Lemma 78 and Theorem 13,

4 2 2

E[IP&)Il] = E < (E

d
Ly (Z ’Y_iP:i(X)>

By the orthogonality of x and B, if i # j, we have

d
Zv‘iP:i(X)

4 2

E[Tr P='(x)P~/(x)] = 0.
Therefore,

d

E[JIPGoll3] < (Zv"“E[|||P="<X>|||§D2

<vu (Selii]) - elieen]) -

Proof of Theorem 15. Without loss of generality, we assume H = [n — h]. We prove this by
a hybrid argument. For any 0 < i < n — h, define the hybrid basis elements and the hybrid
random operators as follows.

X0 = Xg., By, for o € [m?%; (16)

PO(x)= 3 Plo)xl, (17)
ae[mz]go

where X,_, = Xo, - Xo, and B, = B5,,, ® ... ® B, . Then P = PO (x) and P (x) =

P(=h) (x). Note that

POGx)= > Px+ Y Po)xl,

c:0;41=0 o:0; 4170
PO )= 37 P+ 37 Po)xith,
o:0i41=0 o:0; 4170
Set
A= Z ﬁ(o)Xg(i); B= Z IS(U)XU@);
o:0i41=0 o:0i417#0
C= Y Po)xi, D= > P(o)xith.
o:0;41=0 o:0;4170

30:41
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Then we have

P9 (x) = A +B; PU*D (x) = C+D.
Notice that A = 1,, ® C, where 1,, is placed in the (i + 1)-th register. Thus,

Tr&(A)=m-Tr £(C). (18)
From Fact 54 and then Equation (18),

‘m“‘l_" E [Tr ¢ (P(“'l) (x))] —m"E [Tr ¢ (P(i) (x))] ’
B ‘ {m”l" (Tr €(C) + Tr DE(C) [D] + 3 Tr D¢ (C) [D] + A ¢(C, D)) — ‘
mi=" (Tr € (A) + Tr D¢ (A) B] + %Tr D26 (A) B] + Az ¢ (A, B))

Both the first-order and second-order derivatives cancel out because of the following claim.
> Claim 80. It holds that
E[Tr D¢ (A) [B]] = mE[Tr D¢ (C) [D]];

{m”l_" (Tr D¢ (C) [D] + 3Tr D% (C) [D] + Az ¢(C, D)) —
mi=" (Tr D& (A) [B] + 1 Tr D2¢ (A) [B] + A3 ¢ (A, B))

E[Tr D*¢(A) [B]] = mE[Tr D*¢(C) [D]].
By Fact 54, there exists a universal constant c3 > 0 such that
o[- (260 0) -1 (0 )|
esB (E|IIBII3| +E[IDII] )
¢sB (E[IIBIIIBII| + E[IDILIDIG]) ~ (Hlders)
ot ( (e [1mE] & umii]) "+ (= [4o0] = [121]) ™) (Coucty-Setmare)
o’ ((2[iB3])" + ([ID1])")  (Pheorem 19)
where § = max {9m,1/n*}. Notice that

E[IBIZ] =E[IDIZ] = 3= |P(0)?| = nfis ().

o041

IN

IN

IN

IN

Therefore,

E [mi*l*"Tr £ (P(Z'Jr1> (x)) —miT"Ty € (P(i) (x))] ’ < 2¢3BO%Inf ;4 (P)B/Z.

Summing over i € [n — h]>g, we have
‘nf"Tr EP)-m™"E [Tr ¢ (PH(X))] ’
< 2¢3B6? Z Inf; (P)g/2
i¢H
< 2c3B0*V/7 Y Inf; (P)
i¢H
< 2e3B0%7d Y P(0)?
o#0
< 2c3B0%\/7d. «
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Proof of Claim 80. Note that A, B, C and D can be expressed as

A=1,,8C; B= Z B; ® Xq; D= Z Xit+1,0Xo

o€[m?]>0:0#0 o€[m?]>0:0#0

for some random matrices X,’s which are independent of x;41 ,’s, where 1,, and B,’s are
in the (i 4+ 1)-th register.
Suppose that C has a spectral decomposition

C= i aiHi,
j=1

where m/ is the dimension of C, a; > -+ > a,,, {1I; }

that Z:’il II; =1 and ILIT; = O for all ¢ # j.
By Fact 53, we have

[TrD&( ) [B]
E (¢ (aj,a0) Tr (L@ TL,) B (1 © IL)|

icm/] a1 rank-one projectors satisfying

JkG[m’]

- [ (aj,ap) Tr ((1 ®Hjnk)B):|
JkE[m’]

- Z E[¢' (a;) Tr (1 ® II;) B)]
jelm’]

= E[Tr ¢’ (A) B]

= Y Bk 1.e€(0)(BeX,)

0€[m?2]>0:0#0

— Z E[Tr B, - Tr £ (C) X,] = 0,

o€[m?]>0:0#0

m?—1

where the last equality follows from the orthogonality of {B;};” ;.
E[Tr D¢ (C)[D]] = E[T & (C) D
= Z E[Xi+1,a -Tr 5/ (C) XU}

o€[m?2]>0:0#£0

> Elxipre]  E[Tr & (C)X,] =0,

o€[m?2]>0:0#£0

where the last equality follows from the orthogonality of x.
By Fact 53, we have

E[Tr D*¢ (A) [B]]

> E[¢” (aj,a00) Tr (19 T1) B(1& ) B (1 T1,))|
j,kLe[m’]

> Y E [gm (a;, a5, a¢) Tr (B,B,) - Tr (njxgnkxfm)]

0,7#0 j,k,Le[m’]

oy E[g aj,ak,ag)Tr(HjXUHkX(,m)},
o#0 j,k,Le[m’]
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where the last equality follows from the orthogonality of {Bi}?jofl.

E[Tr D?*¢(C) [D]]

Y E [5[2} (a;,ap,a) Tr (HjDHkDm)}
J.k,ee[m’]

-y ¥ E[gm(aj,ak,ag)xm,l,xm,r-Tr(njxankx,m)]
0,770 j,k,Le[m’]

= Z Z E[Xi+1,axi+1,7] E |:§[2] (aj, ag, ag) -Tr (HngHkXTHZ)}
0,770 j,k,L€[m’)

=2 2 E[S[Q] (aj,a, ar) Tr (HanHanHe)} )
o #0 j,k,Le[m’]

where the last equality follows from the orthogonality of x. <

Proof of Lemma 16. Let A\ > 0 be determined later, and (, be defined as in Fact 57. By
Theorem 15 and Fact 57,

’m_"Tr & (P) = m™"E[Tr ¢ (PH(X))]‘ < CBymax {9m, 1/7*} /7d/,
where C, B3 are universal constants. By Fact 57 we also have

|m™"Tr ¢ (P) —m™"Tr {5 (P)| < 2X°
and

[T ¢ (P 0)] - m™" E[Tr ¢, (P )] < 2%

By the triangle inequality, we have

’m_”Tr C(P)—m™"E [Tr ¢ (PH(X))] ‘ < 4\* + CB3 max {9m, 1/774}d VTd/ .
p 1/3
Choosing \ = (CBg max {9m, 1/n*} ﬁd/8) , we have

’m‘”Tr C(P)—m "E[Tr ¢ (pH(X))]‘ <3 (033 max {9m, 1/774}d \Ed>2/3~ <

Proof of Theorem 19. Let A\ > 0 be determined later and let () be defined as in Fact 57.
By Theorem 20 and Fact 57,

1 1 -2 d
5 BT G (POb))] — 5 B [T G (P < 4081 2(om)
where C7, By are universal constants. By Fact 57 we also have

LBIT C(P(b))] — 5 BT <P<b>>]\ < op2

and

1 B [T G (PO = 1y B [T ¢ (Pl < 20
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By the triangle inequality, we have
1

PTG (PO))] -~ B [T (P(xe)]| < 432 +4Ci B\ (9m)dr

Choosing \ = (0184(9m)dd7')1/4, we have

—FEITrC(PO))] -~ B [T ¢ (P(xe)]| <8 (CBa(om)ar) /.
Let C = 8y/C1 By, we conclude the result. <
» Lemma 81. Given d,n € Z~q, and a random matriz
P(b)= > bsPs,
SCln):|S|<d

where b is a 2d-wise uniform random vector from {£1}" and Ey, [|||P(b)|||§] <1, it holds
that

iVarInfi (P(b)) <d.

Proof.
> Varluf; (P(b)) = 373 "I Pslll
i=1 =1 S>5¢
=Y ISPl
SCn:|S|<d
<d > |IPsl;
SCn):|S|<d
o 2
— dE[IPBIE] <d -

The following lemma is crucial to our proof. The proof follows closely to the proof of [36,
Lemma 5.4].

» Lemma 82. Given d,n,p € Z~o, and a random matriz
P(b)= > bsPs,
SC|n]:|S|<d
satisfying By, H|P(b)\||§ < 1, where b is a 2d-wise uniform random vector drawn from {£1}",
let F={f:[n] — [p]} be a family of pairwise uniform hash functions. Then for £ ~, F,

i=1

P n 2
E | Varlnfe ; (P(b))*| <> Varlnf; (P(b)) +%
j=1

Proof. Fix j € [p] and for 1 < i < n, let X; be the indicator variable that is 1 if f(i) =
and 0 otherwise. For brevity, let 7; = VarInf; (P (b)) for ¢ € [n]. Now,

Varlnfe; (P(b)) = Y |IPsll < Z I1Ps I3 (ZX )

S:8Nf-1(5)#0 =

SX D Pl = Xom

i€[n] S3i i€[n]
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Thus

2
Varlnfe ; (P(b))? < | Y Ximi | =Y X374+ XiXpmim.

i€[n] i€[n] i#k

Note that E[X;] = 1/p and for i # k, E[X;X,] = 1/p?. Thus

E [Varlnfy,; (P(b))’] < ZT +ka72§ Z 0l (ZT>2

1#k

The lemma follows by using Lemma 81 and summing all j € [p]. <
We are ready to prove Theorem 20.

Proof of Theorem 20. We prove this by a hybrid argument.
Denote b = b = G (f,b,...,b). For j € [p], define b¥) = G (f,2',...,2/,b,...,b), ie,
substituting b(j_1>|f71(j) with z;,l(j). Then b® = x¢, and

PBU) = Y bY U+ S bYTUps
S:SNf=1(5)=0 S:SNf—1(5)#0
Pb) = Y bdPs+ > bPs
S:SNf-1(5)=0 S:5Nf=1(5)#0

Note that for SN f~1(j) = b(j D= b(]) Denote
A= Y bYps, B= > by Vps, c= > bdps.
S:5nf=1(5)=0 S:8nf=1(5)#0 S:8Nf=1(5)#0
We have

e )] -k [ (pon)]

mh £, b(J 1 mh g, b(;)

E [Tr&(A+B)—

— A
‘mh £b0—D mh £b0) B [Tre(adt C)]‘

3
3 klﬂ DFE(A)[B] + Tr Ase(A,B)
k=0

mh fb(J )

- #f‘b(ﬂ [Z T DFE(A)[Cl+Tr Age(A, C)

By Fact 53 and the fact that z; is 4d-wise uniform, we have for k£ =0, 1,2, 3,
E )[Tr DF¢(A) [B]] = E [Tr D*¢(A)[C]].
b J

pli—1
Thus,
1 ; 1 _
(i-1) _ ()
mh b<J D [Tr ¢ ( (b ))} mh fb(J) [Tr ¢ ( (b )ﬂ ’
1
< i eno- 1)[|T1r Ase(A,B)|]+ o el )[|Tr Aye(A, Q)]

IN

aieo(, &, 1812 + B, [icni]).
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where the last inequality is from Fact 54, and C is a universal constant. Because z; is
4d-wise uniform, we have Ey -1 [H|BH|3] =E,» [|||CH|3] Using Theorem 14 with 1 < 1/+/3,

LB < om)? <J<E [||B||§])2

So we have

s (o) -

(LE, [|||B||§]>2}

- 20100(9m)d1§[VarInff,j (P(b))2] .

2 e (o)

1
mh f,b(jfl) mh f,b<1

< 20100(9m)d1§

Summing over j € [p] and by Lemma 82, we have

iJE[Trg(P(b))]— ! E [Tr ¢ (P(x ))]‘

mh b

2
< 201Cy(9m)? (Z Varlnf; ( )2 i))

2
< 2C1C( 9m (TZVarInf b)) + C;)

S 40100(977’1) dT,

mh £ xe

where the last inequality is by Lemma 81 and p > d/7. <

B.2 Positivity Tester for Low Degree Operators

Proof of Theorem 23. Consider the algorithm below

Input: Parameters given in Definition 22.

Algorithm:
1. Regularization: Compute 7 = §2/ (8 . 32dmdd2). For each i, compute the
influence
Inf; (P) = Y P(o)

0:0;7#0

Let H = {i : Inf; (P) > 7}.

2. Derandomized invariance principle: Let p be the smallest power of 2 satisfying
p>d/r. Let n = (m? —1)(D - |H|) and F = {f: [n] = [p]} be a family of
pairwise uniform hash functions. For any i € [p], let z¢ be 4d-wise uniform random
variables of length n and (z’)’s be independent across i € [p]. For any f € F, set

=G ( f.zt, ..., zp) as defined in Theorem 19. Define the random operator

P'(f,z) = > P(0)XpopBos (19)

oe[m?]L :|o|<d

where Xfog = H1¢H (Xf)(m2—1)(i—1)+0'z and B, = ®i€H BUi'

CCC 2024
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3. Compute the distance to PSD: For each f,z, compute
87 =m” M T ((P'(f,2)).
4. Accept if

El§r.] <B.
f’z[f,} B

Time complexity

1. Given that each computation of Inf; (P) entails calculating a sum of products of Fourier

coefficients, the time required can be expressed as Z?:o (D) (m2 — 1)1 < dm?iD4. In

i
addition, the time needed to determine the set H is at most D.
2. When fixing f and z, computing s , takes time

exp (|H|) = exp (|d/7]) = exp (poly (md, 1/6)).

3. By Lemma 60 and Corollary 61, the enumeration over F and z takes time polynomial in
D, thus computing the expectation of 07 , also takes time polynomial in D.

Correctness

By the choice of 7, it holds that

(sdmd/2\/Fd)2/3 <62, (20)

Cy/(9m)ddr < §/2. (21)

Let b € {~1,1}" be uniformly distributed. Consider the operator P(!) obtained by
replacing the basis outside of H by random bits. That is,

PO (b) = > P(o)bs,B,,,

06[m2]§0:\0|§d

where b, = HigEH b(m2_1)(i-1)40; ad Boyy = Qe Bo, -
By Eq. (20) and Lemma 16, we have

1 1
1) _
i B[ O] - ot )| < o2
Then we define P® to be the operator obtained by replacing b with X7, which is the
operator in Equation (19). By Eq. (21) and Theorem 19,

1 2 1 1
]m‘,ﬂ E[Tr (PP (xp0)] 7 E [T (PO (b)]| < /2
Thus by triangle inequality, we have
1 1
_— (2) _ <
i B [T P a))] - e ()| <6 (22)

The algorithm computes m~1#IE; , [Tr ((P@)(Xf,z))]. By Eq.(22), the value is smaller than
B if m™PTr ((P) < B — §; or greater than 3 if m™P Tr ((P) > 8 + J. Therefore, the
algorithm distinguishes the two cases correctly. <
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B.3 Noisy Nonlocal Games are NP-complete
B.3.1 The nondeterministic algorithm

First, we prove an upper bound on the Number of Noisy MES’s for Nonlocal Games. The
proof follows closely to that of [46]. The major difference is that in the proof of [46], each
pair of questions (z,y) is treated independently. Then, a union bound is applied to all
possible questions. To improve the upper bound, we take into account the distribution of
the questions, combined with a better Gaussian dimension reduction in [47]. Then our new
upper bound below only depends polynomially on the size of the question set whereas the
previous one has an exponential dependence.

Gaussian Dimension Reduction

The following lemma is a simplified version of [47, Lemma 5.13], with the questions and
answers being classical. In the proof of Theorem 28, we will use this lemma, after we replace
the low-influence registers by Gaussian random variables, to further reduce the dimension of
the Gaussian space. The only difference is in Item 3 of Lemma 83, where we preserve the
expectation of the ¢ function value over the random variable M. In the previous version
(Ttem 2 of [47, Lemma 5.13]), we used Markov’s inequality on the expectation value. As the
notations are considerably different, we include a new proof for completeness.

» Lemma 83 ([47, Lemma 5.13]). Given parameters p € [0,1], 6 >0, d,n,h € Zsg, m > 2,
an m-dimensional noisy MES 1 ap with the mazimal correlation p = p(Yap), and degree-d
multilinear joint random matrices

(P(),QM) = [ > gsPs, Y hsQs )

SCln] SC[n] (g,h)'\/g?"

where gs = [];cq 8i,hs =[[;eghi and Ps,Qs € HB® for all S C [n], satisfying
2 2
E[IIP@II3] <1 and E[lQm)] < 1.

Let L? (Hff’Lh,’yn) be the space of random operators whose Fourier coefficients are square-
integrable with respect to the measure v,. Then there exists an explicitly computable ng =
no(d, §) and maps far, gas : L? ('th,%) — L? (H%h,'}/n) for M € R™"*™ and joint random
operators (P(MX), Q(MY)) = (fu(P(g)), g (Q(h))):

(P(M%),Q(Mg)) = | Y usPs, > vsQs ;

SCin] SCin] (y)~GE"0

where X = x/||x|l2, ¥ = y/|I¥ll2, us = [[,cq (mi,X), vs = [;cq (M4, 3), (-,-) denotes the
standard inner product over R™ and m; denotes the i’th row of M, such that if we sample
M ~ Ypxng, then the following hold:

1. With probability at least 1 — 25, we have

E[IPMR)3]| <145 and E[llQMy)I3| <1+,

2. With probability at least 1 — §, we have

E [Tr (P(M%) ® Q(MY)) ¥35)] — E [Tr ((P(g) © QW) v35)] | < 4.

x,y
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[Tr ¢(Q(My))].

4. the maps frr, g are linear and unital for any nonzero M € R™*™0,

3. E[Tr ¢(P(g))] = E [Tr ((P(MX))] and E[Tr ((Q(h))] = E

. O(d)
In particular, one may take ng = dé—c.

For M € R"*™ denote F(M) = Exy[Tr (P(M%) ® Q(My)) 1/)%%)]. To prove Lemma 83
item 2, we need the following lemma.

» Lemma 84. In the setting of Lemma 83, given d € Z~q, 6 > 0, there exists ng = d(;;d)

such that the following holds: For M ~ ~pxn,,

E[F(M)] - E [Tr ((P(g) © Q) v43)] | < 6,

Var [F(M)] < 6.

We use the following lemma to prove Lemma 84.

» Lemma 85 ([20, Lemma A.8,A.9]). Given parameters d and ¢, there exists an explicitly
computable ng(d, d) such that the followings hold:

For any subsets S, T C [n] satisfying |S|,|T| < d, it holds that

if S #T: M]B;y[uSVT] =0,

s Xy

ifS=T: ‘ E [ugvy] - pfl| <.
M, x,y

Let (x',y'") ~ g;)@"u be independent of (x,y), and let usy = [];cq <mi,ﬁ>, v =

[Tics <mi, ﬁ> For any subsets S,T,S',T' C [n] satisfying |S|,|T|,|S'|,|T"| <d, it
holds that

FSATAS AT #0:

‘ E [ugvyu'sv'p/] — ( E [uSvT]> (ME /[u'S/V'T'])‘ =0,
Xy

M,x,y,x" )y’ M,x,y

fSATAS AT =0:

/ / / /
vru g v ] — Vo v <.
‘M,x,EMX'yy’ wsvru'svir] (MIE(,y [us ]> (M,Eﬂ,y’ (s /]) ’ ’

Here, SAT N S" AT’ is the symmetric difference of the sets S,T,S’,T’, equivalently,
the set of all i € [n] which appear an odd number of times in the multiset SUT US UT".

Pl

In particular, one may take ng = “5z—.
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Proof of Lemma 84. Use Lemma 85 with parameters d and §, we have

EIF(M)] - E [Tr ((P(g) © Q(h) ¥35)] ‘

= Z (M]E [ugvr] — E [gShT]> Tr ((PS ® Qr) Qpizl%)
S,TCn) N Y gh

Y < K [usvs]—plsl) Te ((Ps © Qs) 65

) X,y
<6 Z [ Tr ((Ps © Qs)¢53)| (Lemma 85)
SCn
<5 > [IPsllyll@sll, (Fact 66)
SCln]
<o |3 Psll- > ll@sli;
SCln] 5C[n)

~ s (E[Ir@] lg[|||c2<h>|||§])1/2 <s

Use Lemma 85 with parameters d and § < §/9¢, we have
Var [F'(M)]

— 27 _

- £(rov?) - (Eirom))

>

S, 1,5, 7'Cln]
|Tr ((Ps @ Qs) ¥573) Tr ((Psr ® Qsr) ¥/55) |
0

< 5i > Il Pl QT M Ps @l

8,T,8',T'C[n]
SATAS ' AT'=0

2

IN

’

M,x,y,x’,y

To finish the proof, we will show that,

2 2
S PRl IPs s NQw I, < 9B [I1P(@)I12]) E [Iem)iE]
S,T,58",T'C[n]
SATAS' AT =0

Define functions f,g: {1,—1}" — R over the boolean hypercube as,

f@) =Y IPsllyxs(x) and g(z) = Y [lQrll,xr(x)
SCln] TCln]
[S|<d |T|<d

By the hypercontractivity inequality over the boolean hypercube [42, Page 240]

IE[f(as)ﬂ < 9¢ (IE [f(a:)Q])2 and Ig[g(;r)ﬂ <9¢ (]E [g(x)QDQ,

x x x

E = [usgvyu'sv'r] —( E [usvT]> ( E /[u’S,v’T,])‘
Mx,y M,x",y
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we have

>o Bl QN Ps Il @l

S,T,5',T'Cln]
SATAS' AT =0

E[f(z)’g(x)?]
E[f(x)*) Elg(z)*]
< 9'B[f(2)°] E[g(x)’]

=9 S Ipsls S lleslis
]

SCin SCin)

IN

= 9'EIP@) 5| E[lQm] <o

Thus Var [F(M)] < 4. <
To prove Lemma 83 Item 1, we need the following lemma whose proof is similar to that
of Lemma 84. We omit the proof here.

4O

> Lemma 86. In the setting of Lemma 83, given d € Zxq, 6 > 0, there exists ng = “5

such that the following holds: For M ~ v, xn,,

\&JlliP(Mi)n@] ~E[IP@)I3)| < 4

Var [E[[|[P(MR)]I3] | < 4.

2, (1012 - B iomyg] | < o

var [E[loey)IE]| < 5

Proof of Lemma 83. For item 2, we invoke Lemma 84 with parameters d and & + §°/2.
Using Chebyshev’s inequality, we have that for any n > 0,

Pr|:
M

Using the triangle inequality, we get

53

< —.
=92

FOM) - EIFOM]| > 1]

Br|jFon - B [Tr ((P(g) ® Q(h)) v51)] ‘ > 5]

< ry[[Fon - prow)| + |girmo) - B [T () 0 Q) u3h)]| >

< Pl\}r:F(M)— [F(M)]’ >5—53/2} <.

By Lemma 86, we can similarly argue for item 1. For item 3, note that for any fixed
x € R, the distribution of Mz/||x||2 is identical to ~,. It is easy to verify Item 4. <

We are now ready to prove Theorem 28.
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Proof of Theorem 28. The proof follows that in [46] step by step, except that the Gaussian
dimension reduction step in the original proof is replaced by Lemma 83. Here, we include

the proof for completeness.
zEX

yey
Suppose the players use the strategy ({Pf’(o) } , {Q;’ (0) }b B) to achieve the highest
€

acA
winning probability when sharing n copies of 145, where P is the POVM element of
Alice corresponding to the answer a upon receiving the question z, and Q;’ 0 ig the POVM
element of Bob corresponding to the answer b upon receiving the question y. Then for all
(r,9,0,b) € X x Y x Ax B, B9 >0, QY >0, 3, P79 =1, 5,02 =1, and

wn(®,ap) = val, ({ Z(O)} {Qy(0>})

Let d, 7 be parameters which are chosen later. The proof is composed of several steps.

Smoothing. This step allows us to restrict ourselves to strategies with low-degree
POVMs.

More specifically, for any (z,y,a,b) € X x Y x A x B, we apply the map f() implied by
Lemma 62 to P=* and Q;”(m to get P and Qé”m respectively. Note that for all

2 2
T

m7 by Lemma 62 Item 3 and

tem 4,

(P 000 ) -1 (20 001 i)
and
TR0y <6 T (@) <

By Lemma 67 and Lemma 62 items 1, 2 and 5, the following hold.

For any z,y, a, b, Pf’(l) and Q;‘”m are of degree at most d.
2. For any z,y,a,b, <1 and H’Q;”(I)H‘ <1
2 2

o o ({2} far ) - () Jer ) o
Tr ¢

4, —Z,uA )Tr ¢ (P“C (1)) < 4t and —Z,uB (Q;”(l)> < dt.
y.b

5. For any z,y, ZP””(D ZQ?J(U

a€A beB

Regularization. In this step, we identify the set H of high-influence registers for all
POVM elements.

For any (z,y,a,b) € X x Y x A x B, we apply Lemma 64 to P and Qg”(l) to get sets
H. o and Hy of size at most d/7, respectively, such that

(Vi ¢ Hy o) Inf; (Pa”’(l)) <7 and (Vi¢ Hy,;) Inf; (Qy <1)>
Set H = (Uxa Hm‘a> U (Uy’b Hyﬁb>7 then h = |H| < 2544 and

(Vi ¢ H) Inf; (Pf’(l)> <71 and Inf; (Qy (1>)

30:53
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Invariance from H®" to L2 (’H,%h,'y(ma_l)(n_h)). In this step, we only keep the
quantum registers in H and replace the rest of the quantum registers by Gaussian random
variables. Hence, the number of quantum registers is reduced from n to h = |H| = d/.
For any (x,y,a,b) € X x Y x A x B, applying [46, Lemma 10.5] to Pf’(l), Q;”(l) and H,
we obtain joint random matrices

(Po@(8), Q0P (0)) € L2 (MG e 10 my) X L2 (G A 1yn ) »

where (g, h) ~ g,‘?Q(m2‘”<”‘h), such that the following hold.
2 2

1. For any z,v,a,b, IgE {H’Pax’@)(g)w ] <1 and IE {H Qf’@)(h)m } <1
2 2

2. Egn [Valh ({paw,@)(g)} 7 {Qg;,(Q)( )})} — val, ({Pax,u)} , {Q;J,(l)}) _

3. Zm(x) ’%E[Tr ¢(PHP(g)] - 7Tr ¢(P, z<1>)’ <0 (t <3dmd/2\/7>_d)2/3) and
2#3(9) ’#E[Tr ¢ (Qf»(?)(h)ﬂ 1y ¢ (Qy (U)‘ <0 (t( d/2fd)2/3)
y,b

mm

4. For any ,y, >, Pa” (2)( ) =2 e QY (2>( h) =1.
Gaussian dimension reduction. In this step, we apply Lemma 83 to further reduce

the number of Gaussian random variables. This is the only part different from the proof
in [46)].

Let ng be determined later. For any (z,y,a,b) € X x Y X Ax B and M € R"*"™ applying
Lemma 83 to P >( ) and Q; @ >( h) with 6 - 0/ (25°t?), d < d, n < 2(m* —1)(n— h),

we get joint random matrices P, >3 )(MX) and Q;” (3)(My). If we sample M ~ 4, xnq, by
Lemma 83 item 3 we have

> nal@) E [T ¢ (PrO(Mx))| = ZuA E[Tr ¢ (PrP(g))]
and:m

() B, ¢ (@Y my)] = L E[Tr ¢ (@)Y m)).

> ralo) E[Tr ¢ (P (Mz))] > 6% a0 E[Tr ¢ (P2 (g))]

and

> s E[Tr ¢ (@ M) >6Zu3 E[T ¢ (Qr®m)].

y,b

By Lemma 83 item 1, 2, and using a union bound, with probability at least 2/3 — ¢ the
following hold:

2
1. For any z,y,a,b, E “HPGI’@(ZV[)E)‘H ] <2 and I}@ “HQ;’
x 2

5 o ({re s} far o )] - o (00} for )

2
<2
2

2. < 5%
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3. Z/LA(. [Tr ¢ (PﬂE B (Mx )} < GZ[LA [ (PI m(g))} and
%MB(y)IyE[Tr ¢ (@@ o)] < GZuB(y)IE[ ¢ (@Y m)).

y,b
4. For any x,y, Z P>O)(Mz) = Z Qf’<3)(M§/) =1.
acA beB
Here ng = do(d;#.

Smoothing random matrices. In this step, we reduce deg(P," (3)) and deg(Qy’(j)) for
any (z,v,a,b) € XxYx AxB. We apply [46, Lemma 12.1] to P, (3)(Mx) and Q) (3)( My)
with § < 8, h « h, n < ng and obtain joint random matrices P, <4>( ), Qé”w (y) €
L? (Hm . Yno) such that the following holds.
1. For any z,y,a,b, the entries of pr® (x) and Q;”(Zl) (y) are polynomials of degree at
most d.

2. For any (z,y,a,b) € X x Y x Ax B, IEUHPI,(AL)(X)H’Q] < 2and @U

Qé”(‘“(y)wz] <2

o ({2000 far o)) 5 o ({re O} for o)) <o
e[ ()] - S arz e (0 nm)] [ <o

> un) BT ¢ (@0 0)] - S nsw)E[1r ¢ (@ V)| <ot

y,b y,b
5' FOI' any x, Y, EaEA Pax7(4>(x) = ZbEB Qb y(4) (y) = :ﬂ'
Multilinearization. For any (z,y,a,b) € X x Y x A x B, we apply [46, Lemma 13.1]
to Py (4)( ) and Qg/’m (y) with d < d, § < 7, h < h, n < ng and obtain joint random
matrices Pax’(“:’)(x), Q, ’(5)(y) € L? (HE", Anon, ) such that the following holds.

1. For any z,y,a,b, the entries of Pax’(B)(x) and Q;”@(y) are multilinear polynomials of

3.

degree at most d, and every variable in P (x) and QY ‘®)(x) has influence at most

T
2 2

2. For any z,y,a,b, E [H‘Pf’w)(x)m } <2 and I}@ [H‘Qf@(y)m } <2.
x 2 2

0 P T A PR
SB[t (22960) | - sz e (2 00)][ <70 e

S asto gl (@) - St ¢ )] <.
y,b

5. For any z,y, ZCLEAPG'I’(5>( )= Zb BQy(E)( )=1.
Here nqy = O (f—;) .
Invariance from L2 (7-{,%’1, 'ynonl) to H%h+"0"1. In this step, we transform all the
random matrices from the previous step to matrices without any classical randomness.
In particular, we replace all the Gaussian random variables with ngn; quantum registers,
so after this step, the number of quantum registers is h + ngn;.
For any (z,y,a,b) € X x Y x A x B, applying [46, Lemma 10.11] to P;E’(S)(x)7 Q;”(S)(y)
with n < ngny, h < h, d < 2d, 7 < 7 to get Pf’(G)7 Qé”(ﬁ) S 'H?;Lh’*"“"l satisfying the
following.
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1. For any z,y, (6

< 2 and H‘Qy (G)H‘ < 2.

2-‘@h+mm1({P ). (0 = o ({72710} )

3. Z“A(f”)’ T € (P) - 771 E[Tr ¢ (PO (x ))]‘go(t(gdmdﬁd)w) and

S nt)| e ¢ (@) —WE[TrC(Qé”(S)(y))H <o (t(o'm"v7d)”").
y,b

6) 6)
4. For any z,y, > o4 Pa P ZbEBQy( =

Rounding. Note that the matrices from the previous step may not form valid POVMs,
so in this step we round them to close POVMs. In this step, the number of quantum
registers remains the same as h + ngn;.

By Lemma 65 there exist operators { Pf’m} and {Q;’ "<7)} satisfying for all x
1/2
S(t +1) z,(6) 1 z,(6)
<=5 ZT g( )+6\/£ m—DZTrg(Pa )
1/2
glOt( DZTr<< x(6)>> . (23)

Similarly, for all y, we have

1/2
2 1
- L (e () &
a b

Then

H‘Paz,m z,(6)
>

valo ({2} Q™) —valo ({P @} {@@})]
‘ValD ({Pf’m —prO), {Qg,m})‘ + |valp ({Pf’(ﬁ)} , {Qf’m _ Qby,(eo})’
Z w(z,y) (H|Pf’(7) - 2 : ,(6>|H2H‘Qby,(7> _Qp® 2)

o 1/2 ) 1/2
(ol -0 ) (S moffor )
b x,a a b
1/2 ’
-{Zzwwmwm)(ZZwWWW“w@
b z,a a y,b
(Cauchy Schwarz)

Z/m(m‘)( ZTrc (P2®) )

IN

IN

IN

1/2
2
)

IN

1/2

+2v5¢" ZMB(y)< P2 Q“G))>
1/4
S¢W< DZMHD“C( “”)) +2V5¢ <M2u3(ym<(cz;”“)> :
y,b

where in the second last inequality, we use H‘Pf’(m H‘ <2, H‘Q;”m ‘H < 1, and Equations (23)

and (24). The last inequality follows from concavity of the function x — /z.
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Keeping track of the parameters in the construction, we can upper bound
m% >zaba(@)Tr ¢ (Pax’(6)) and m—lD >y kBT ¢ (@5&(6))' We choose

et e? 300¢° logm t
§=——\7=— — T 0 D og? ( - 25
30000 " 7 eXp( A1—p 8 (e>> (25)
such that the difference in the game value at the final step matches that of the previous steps,

remaining on the order of O(6t2). We conclude that the number of quantum registers is

d dO(d) 12412 42
——o(5)

D:h+n0n1:;+ 56 7_*2
5124120 600t%logm |, t
—o(2 oL log v
( s o ( ai-p ® (eu - p>>>) ’
which completes the proof. <

Next, we give the non-deterministic algorithm with the following parameters.

Cpt = 300
era = €2/(4t%)
§ = E?"d
Cpt(t+1)
Ciym log?
= ‘m’iog‘;as in Lemma 62.
dlog(1/p)

2
Sw = Dlogm + log <5) as in Lemma 68.
D = is the polynomial specified in Theorem 28 withe + /2.

Proof of Proposition 26. Consider the algorithm below, with the parameters above.

Input: Parameters in Definition 24.

Certificate: Let {(Ai,,Bi)};fO_l be a pair of standard orthonormal basis satisfying
Fact 46. A tuple of real numbers of width s,,, which are non-zero Fourier coefficients
of a degree-d pseudo-strategy on D copies of ¢4p. For each x € X,a € A and
o € [m?)Z, satisfying |o| < d, the certificate should contain the coefficient ]Sax (o).
Similarly, for y € V,b € B and o, the certificate should contain the coefficient @;’ (o).

Then the degree-d pseudo-strategy can be written as P” and @,/ satisfying

Pr= Y Br(0)A, md Q) = Y Qo).

lo|<d lo|<d

Algorithm:

1. Compute the winning probability on the pseudo-strategy, which is

valp (P} AQYN = D nla,y) - Viwy,ab) Y coPl(0)- QL o),

z,y,a,b oe[m?]D,

2
1. . . .
where ¢, = Co, *+* Cop, and {¢;}i—, " is given in Fact 46. Reject if

valp ({P"},{Q,'}) < 8.
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2. Check if the operators sum up to the identity by checking
For all 2,y and o # 0P, it should hold that

Y Pr(o)=>_Qa)=0.
a b
For all z,y, and ¢ = 07, it should hold that
Y Pie) =) Qo) =1.
a b

Reject if any of the above equalities fails.

3. For each x,y,a,b, run the positivity testing algorithm described in Section 4 on
P* and Q) with parameters 3 + 46 and § < 2. Reject if any of the positivity
testings fails.

4. Accept.

Time complexity

We upper bound the time complexity of each step.
1. Certificate length: The certificate contains the non-zero Fourier coefficients of degree-d
operators acting on D qudits. Each degree-d operator consists of

Zd: (g) -(m* = 1) < d(m* - 1)*D*

d=0

coefficients, each s,, bits. Hence, the length of the certificate is O(stdm??D%s,,).
2. To compute the game value, we need to enumerate over all z,y, a,b, o and compute a
sum of products. This takes time

s%t2(m? — 1)D%.

3. Checking if the operators sum up to the identity takes linear time in certificate length as
it involves only summation over Fourier coefficients.
4. Each positivity testing takes time as specified in Theorem 23, which is

exp (poly (md7 1/5)) . DO,

By the choices of parameters, the overall running time is upper bounded by

1\ 1
poly (s,eexp (t,log (7> ,7>> .
p) €

Completeness

Suppose w*(G,¥ap) > 8 +¢e. Then by Theorem 28, there exists a strategy (P, Q) that
uses D copies of ¢4 with game value valp ({P},{Q/}) > B+¢/2. Let f be the smoothing
map in Lemma 62, and let P> = f(PF) and Q;”(l) = f(QY). Then {Pf’(l)} , {Q;"'(l)}
are of degree at most d and satisfy
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. For all z,y, we have ), = poW - > Q;”(l) =1 (since f is linear and unital)
. For all z,y,a,b, pr® <1 and H‘Q;”(Um <1
2 2

1
2
3. Forall a,y.a.b, [Te (P50 @ QP ) 0fs) — T (P2 @ Q) vis)| <6
4. For all z,y,a,b, m~D Tr ¢ (Pf*“)) < &and m™PTr ¢ (Q,}"“)) <4

We observe that Lemma 62 also guarantees the Fourier coefficients of Paz’(l) and @ ‘M Yave
absolute values bounded by 1. This allows us to truncate the strategy. For each Fourier
coefficient we preserve s,, digits and by Lemma 68 get {Pf’@)} , {Q;” ’(2)} satisfying
1. Forallz,y, ¥, P"® =3, Qr® = 1.
2. For all z,y,a,b, Pam’@) <1 and H‘Q;”@)m <1

2 2

3. For all z,y,a,b, ‘Tr ((Pax’@) ® Qé”(2)> w%g) —Tr ((Pf’<1> ® Q;”(U) 1&%]’;)‘ <9,

4. For all z,y,a,b, m~P Tr ¢ (Pam’@)) <26 and m™P Tr ¢ (Q;”@)) < 2.
This pseudo-strategy is the certificate. Specifically, by Lemma 67 the game value is

2
c >3
2Cyr

valp ({Pr@} {Qr@}) 2 8+e/2- 202 = p42/2 -
and the first check is passed. Also, by item 4, the positivity testings can also be passed.

Soundness

Suppose that there exists a certificate that passes all the testings, then there exists a degree-d
pseudo-strategy {Pf’(l)} , {Q;"'“)} satisfying
By the game value testing,

win ({20} {ar}) 25,

By “summing up to the identity” testings, for all x,y
STprW =1, and Y QW =1
a b

By the positivity testings, for all x,y,a,b

1

—5Tr ¢ (Pf’(l)) <60, and #Tr ¢ (ng’“)) < 60.

We then apply Lemma 65 to get a strategy {Pf’m} and {Qg’”(z)}. It holds that for each
reX

1/2
Sl - e O <) (2 e () ) ot (3 e ()

a€A acA a€cA

2 18 4 6,/6C,
< 18t(t 4 1)8 + 6v61V3 < 1860 6vera L

Chpt Cpt Cpt

Erd S Erd-

Similarly, for each y € Y we have

2
)
beB
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We get a strategy {Pf’m} and {le,,(z)} with game value

o ({722} ) oo ({7, {02
o ({22 120} @Y o ([} {05 - a2 )
5 e (222 or ]l o -z

z,Y,a,

IN

IN

1/2
2

1/2
' 2 (2
oy ot ECEN R N I Do) oyt RV
b =,a a y,b

IN

/2

1/2 1
2 2
H(ETmellol) (ST mwljer -ar;
b wa a y,b

(Cauchy-Schwarz)

< 2t /%2 q.
Thus there exists a strategy with game value
walp ({Pr@} {Qr®}) > B 2tvie,a = - <. <

B.3.2 NP-hardness

Proof of Proposition 29. The noisy MIP* verifier V* from an MIP verifier
V = (Algg,Algy)

Setup: Flip two unbiased coins b,c ~ {0,1}. Sample questions (z,y) ~ Algg(input).
With probability 1/2 each, perform one of the following ten tests.
Verify: Distribute the questions as follows
Player b: give z; receive a.
Player b: give y; receive b
Accept if V (input,z,y) accepts on a,b.
Consistency: Distribute the questions as follows: if ¢ =0
Player b: give x; receive a,
Player b: give x; receive b,
otherwise
Player b: give y; receive a,
Player b: give y; receive b,
Accept if a = b.

Completeness. If input is satisfiable, the value-1 strategy for V is also a value-1 strategy
for V*.

Soundness. In the consistency test, with probability 1/2 both provers get a question x.
Hence the probability for the provers to pass the consistency test of x is at least 1 — 4e. If
Alice and Bob sharing n copies of a noisy m-dimensional MES ¢ 4, it means that

B> Tr((PY® PHYSE) > 1 - de.
acA
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Using the Fourier expansion of Py =3 ]32” (o) P,. the condition above is equivalent to
EYY 0P (o) 21~ de.
a o

Notice that || PZ[[3 = 3, P7 (0)%, and for all z, Y, || PZ|[; < 1. Hence

EY Y oIP (o) <E = (0)* +p Y PE (o)
a ag

a#£0

2 | B
> [P ) + p(IPII3 — Pi (0)%)]
p+( EZP”C ()

IN
s =

Therefore,

D 2 . 4e
]gzajpa((z)) >1 — (26)

On the other hand, for all z, Z g 0) = 1 For each z, let a, be the answer that maximizes
Py (0). Then 32, PF (0)° < Py (0) X2, P (0) = Py (0), and

4e
1—p

EPs (0)>1—

Similarly, for each y, let b, be the answer that maximizes Cf)\i’ (0), and then
= 4e
) > _
zH;bey 0 =1 1—p
In the deterministic strategy, Alice answers a, for question x and Bob answers b, for

question y. The difference in the probability of satisfying V' between the original strategy
and the deterministic strategy is

|I]EyZTr [(P? @ Q) viE] V(z,y,a,b) — ZIEy V(z,y, az,by)l
v :

=B (- ((r e an) vi]) Ve oy

+Z]Ey Z TI‘ P ®Qb) ]V($7y7a7b)

a#a, or
b#b,
gfy(l—Tr[(Pjﬁ@Qi’y) ])+]E > T [(Pre Q) v
aF#a, or
b#b,

where we use the fact that V(z,y,a,b) <1 for all z,y,a,b.
Writing 1 =, , Tr [(P,f ®QY) ¢®"], we get that the expression above equals

2E > T (P o)) v

a;&a,r or
b#by
=2E > T [(PY @ QYUY Bl +2E ST [(Pr @ QY) v
a;ﬁaz b;ﬁb

<2E SR+ > Q)
a#ag b#b,
16e

1—p

<
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The probability for the original strategy to satisfy V is at least 1 — 2¢, so the probability for
the deterministic strategy to satisfy V is at least 1 — 2 — 16e/(1 — p). <

B.4 MIP* Protocol for RE with O(1)-size Answers

Subset tester for the Hadamard code

Let £ <n and D be a distribution on the subsets of F5 with size k. Flip an unbiased
coin b ~ {0,1}. Sample F = {1, ..., 25} ~ D and a uniformly random y € F3, Perform
one of the following three subtests with equal probability.
Subtest 1: Perform one of the following checks with equal probability.
Check 1: Distribute the question as follows:
Player b: give F' and y; receive (@1,...,a5,c,a},....a}) € ]ngﬂ.
Player b: give F, receive (di,...,d;) € F§.
Accept if @; + ¢ = @) and a; = d; for all ¢.
Check 2: Distribute the question as follows:
Player b: give F and y; receive (a1,...,ax,c,a},...,a;) € Rk,
Player b: give y, receive e € Fy.
Accept if @; + ¢ = a) for all i, and e =¢.
Check 3: Distribute the question as follows:
Player b: give F and y; receive (a1,...,ax,c,a},...,a;) € Fak+t
Player b: give F +y = {x, +v, ...,z +y}, receive (di,...,dy) € F5.
Accept if a; + ¢ = a); and a], = d; for all 7.
Subtest 2: Distribute the question as follows:
Player b: give F +y = {z1 +y,...,Zx + y}; receive (a,...,ax).
Player b: give x; +y for a random 3, receive d.
Accept if a; = d.
Subtest 3: Perform one of the following checks with equal probability
Check 1: Distribute the question as follows:
Player b: give F; receive (ay,...,ax).
Player b: give F; receive (di,...,dy).
Accept if a; = d; for all 7.
Check 2: Distribute the question as follows:
Player b: give z; +y for a random i; receive a.
Player b: give x; +y for a random ; receive d.
Accept if a = d.

Proof of Proposition 31. Let F+y = (21 4+ y,...,zr +y). Let
Q= {(a,c,a’) | a; + c = a for all i € [k]}.

The set Q is the set of valid answer tuples for Alice in Subtest 1; we also use €2 to denote
the event that Alice’s answers are valid. Winning the subset tester with probability 1 — e
implies that winning each subtest with a probability of at least 1 — 3e. Furthermore, winning
Subtest 1 with a probability of at least 1 — 3¢ implies that when Alice gets question (F,y)
and Bob gets Player 1’s questions:
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E E Prlai=bhA.. ANap=bNQlga=(Fy),qp=F>1-18

F~D y~Duyni

E E Prlc= QO —(F —u>1-1

F~D y~Dypnis I‘[C dn |QA ( 7y)7QB y], 8¢

E E Prla,=biA...Aay=bpAQ|qga=(Fy),qg=F+y]>1—18¢
Fr~D y~ Duynit

= >1_
F]ED yNIEU"” PI‘[Q ‘ A (Fv y)] = 1 65,

for all ¢ € [k]; winning Subtest 2 with a probability of at least 1 — 3¢ implies that when
Alice gets Player 0’s question and Bob gets Player 1’s question

;] — = P . > _ .
FINED yNIlEﬁumf Prla; =d|qa=F +y,qp = xi +y] = 1 — bke;

and winning Subtest 3 with a probability of at least 1 — 3¢ implies that when Alice gets
Player 0’s question and Bob gets Player 1’s question

F]EDPI'[alzb]_/\.../\ak:bk|qA:qB:F]21_12€

B E Prla=blga=qs=mity]>1- 12k foralli

In terms of the measurements and the state 1), these conditions are equivalent to

Fy F ~1_
FINED yelgunif Z/ <d)| ]\/[a,c,a’ ® Na W)> >1—-18¢
a,c,a’:
a;+c=a}Vi

yen MPY, @ NY ) >1-18
F~D y&€Dynis Z/' <1/}| a,c,a ® c |¢> = 13
az+7c,=aiw

Do WM, @ NG ) > 1 - 18¢

o
F~D y€&Duynit a,c,a

a,c,a’:
a;+c=a}Vi

E s MY, @1 >1-6
B E Y WM, e 1ple) 216

a,c,a’:

a;+c=a}Vi
E E Nty o @ity >1_ for all i
F~D y€&Duyni Z <¢‘ a ® a; |¢> = 6ke or all 2
a€Fk
F F
FED <¢|Na ® Na W)) >1-12¢
a€Fk
Tity zity S 1 )
VB B D WING @ N ) 2 1 - 12ke - for all i

a€lFy

We define binary observables

Py — Z (—1)% M"Y MYIEY — Z (—1)°MF At Fy Z (1) ME

a,c,a’ a,c,a’ a,c,a’
a,c,a’ a,c,a’ a,c,a’
NEE =N N NY=NY - NY NV =N )N
b b

30:63

CCC 2024



30:64 The Computational Advantage of MIP™* Vanishes in the Presence of Noise

We can prove

E MEilFy @ N@ilF
F~D y€Duyni <¢| . ® W})

- erwEDyGIEUnif [Pr[ai = bz AQ | qa = (Fvy)v(ZB = F]

— (Prla; #b; | ga = (F,y),qz = F] = Prla; = b; AQ | g4 = (F,y),q5 =F])]

> . _ _
N FIED ye%umf {PI‘[(LZ b A QY | qa (F7 y)7 qB F]

— (L= Prla; = b AQ| a1 = (F.y).ap = F))]

= E, E [2Pra;=b:AQ g4 = (Fy).q5 = F] - 1]

2 = - = — — _
> FINED yeIDEU,.i; [2 Prlai =biA...ANap =bp AQ | qa = (F,y),q5 = F] 1]

> 1 — 36¢,

which implies that Erp Eyepy. |M* 1Y @ 15 [¢) — 14 @ N=IF |)||? < 72¢ by expanding
the vector norm. Similarly, from the two other checks of Subtest 1,
E E |[MY¥e1 —1a® NY[¢)|? < 72
) B M 01510 - 10 N[y < 72
E E [[M*% P9 @1p|p) — 14 @ NZHIEFHY |92 < 726,
F~D y&Duynis
Applying a similar argument to the probability of the event 2, we can also show

E E MENFy ppyulFy preatul Py o 1
Fe~D y€Duypi <¢| @ B|¢>

= _1)aitctal Fyy
- FIED yE%Unif az ( 1) <¢| Ma,c,a’ ® ]lB |’¢>

c,a’

= te=dl |qs= B
B FINED ye%umf 2Pr[al te a; | qa (F7 y)] 1

> E E 2Pr[Q = (F —1>1—12%.
~ F~D y€Dyns r[2] g4 = (F.y)] = €

Next, we would like to replace M=!F¥ by N@:lF AfulFy by NY and M vy by
NIy and show

‘FED yGIE f W|1la® NEitylFty gy ol F ) — 1] < 381/%. @)
~Ue Uni

In the first step
‘FIED E]]5: <,¢| MJ?ileyMyley(M$i+y|F,y @lp—1,4® Nwi+y|F+y) "¢'>|
~Dy Unif

< E E ||My\F,yJWzilF,y ®1p|y)| - ||(Mzi+y|F,y ®lp—14® sz'+y|F+y) |
F~D y&Duyni

(Cauchy-Schwarz)

= E E ||(M&%HFYv @1 -1, @ NCtTyE+y
FED ye b ®lp—14® ) )]

< E E Af$z+y|F7y 1 —1 N’Jery\Fer 9 3
- \/FND yEDUnifH( ® B A ® ) W))H ( eHSen)

< 6v/2e.
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Similarly,
|FIED ye%umf (| M= FY @ N#tulBy . (AvIFY @ 15 — 14 ® NY) [1)] < 612
LE, B (WlLae NeHINy . eIt @ g — 109 NI [0)] < 6V,
Hence

LB, E (1o NZHUEFY NYNTIF ) — 1| < 18/2¢ 4 126 < 38/E.
~LDy Unif

On the other hand, from Subtest 2, we have that for all i € [k]

E NTitulF+y o NTity |y
ey e (Y] ® |¥)

= — = = 2 _1>1—
2FINEDy€]gunifPr[az blga=F+y,qg=ax;+y] —1>1—12ke,

which implies that

B BN @ 1y — 14 © N )7 < 24ke.

From Subtest 3, with similar reasoning we know

NN 915 - 14 @ NP )] < 48

E NtV o 1ns —1 NzEity 2 < 48k f i
FNDyeDUnif”( ®lp A® )|)||* < 48ke  for all ¢

Then

zi+y|F+y vy Nyoi | F
F]EDyeIgumfw']lA@N NENZE W)

~ x;+y aNea
Nore FINED ye%w (Y| N ® NYN )

~ zity il F Y
vz B, B (U NNTIE @ N )

~ x| F zi+y Ny
Va8ke FINED yEIDEU"” (| N*HE @ NTTYNY o))

Hence Equation (27) implies that

| E E (| N=IF @ N*HNY |g) — 1] < (45 + 12VE)Ve. (28)
Fr~D y€Duyni
Let Cy = 45+ 12Vk. Let Ny = 3: 3 cpn(=1)"YNY and G, = (N,)?. Since

each NY is a binary observable, {G,} is a POVM. It can be checked that NV =
Zuemg(*l)u'y]vu- Averaging over F' ~ D, the consistency between {Ngi‘F,leZIF} and
{Zu:u-xizo G“’ Zu:u<x,1:1 Gu} is

E
F~D

1 . . e

LB, B S o N )
1
2

(Wl B E N®IF @ N"HNF|y)

~c 1
F~D z€Dyni Tl\/g ’
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which follows Equation (28). We consider the Naimark’s dialation of {G,} on H @ H’

denoted by {éu}, which is a projective measurement. There exists |auz) € H' such

that averaging over F' ~ D, the consistency between {NSIIF ® ]l;.y,NfilF ® ]lq_y} and

{0 G sy G f with xespect to [0/) = [6) @ |aur) @ Jaua) is

/ x| F , A /
B, T WIOE e o (3 6w

= FINED Z (| NTIF ( E (1 ® (auz)G, (1 ® |au.7:>)) [4)

a=0,1 UUT;=a
_ x| F
= E Y W ( ) Gu> )
a=0,1 uu-T;=a
%01/2\/5 1
;| F

Since both {Na ® ]IH/} and {Zu:u,zi:a @u} are projective measurements, their consist-
ency implies that

;| F no_ A N2
B IN T et - Y Gu)IP S OivE,
d=0,1 wu-r;=d
Next, notice that

NF = NzeIP NZIF and ZG=< > Gu>< > G>< > Gu)

i
Then by Lemma 74
EY NS @l elpl) ~1ae Y Gu|h)IP < (2k-1)°CivE,
ae]F’,; WU T ;=0

Vie[k]

which completes the proof. <

The answer reduced verifier VAE

Setup Flip two unbiased coins b,¢ ~ {0,1}. Sample questions (zo,z1) ~ Alg(input).
Sample a view Io,I1,J ~ Vpopp(input,zo,z1). Set J' = ug, (J). Randomly select
0,17 C [24] and J” C [2%] such that |I}| = |I}| = |J”| = &, which is a sufficiently
large constant. Details about how to choose x can be found in the proof below. Set
TQ =IO UIa, T1 :Il UI’l and U = J U J".
With probability 1/10 each, perform one of the following ten tests.
Verify : Distribute the questions as follows:
Player b: give (2g,21),T,T1,U; receive ag,a1,as.
Accept if Vpepp (input, Zo, 1) accepts on aglr,, a1|r, and az|;.
Cross check:
Consistency test: Distribute the questions as follows:
Player b: give (zg,21),T0,T1,U; receive ag, a1, as.
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Player b: give (zo,21),T0,T1,U; receive a), a,a)
Accept if ap = a(), a1 = a} and as = ab,.
Answer cross-check: Distributed the questions as follows:
Player b: give (zo,z1),To,T1,U; receive ag,a1,as.
Player b: give x.,T; receive al,
Accept if ac = aer.
Answer consistency check: Distributed the questions as follows:
Player b: give z.,T;; receive ac.
Player b: give z.,T.; receive al,
Accept if ae = aer.
Proof cross-check: Distribute the questions as follows:
Player b: give (zo,21),To,T1,U; receive ag,a1,as.
Player b: give (zo, 1), U; receive aj
Accept if as = ab,.
Code checks :
Answer code check: Sample questions (wg,w;) ~ Gy, (T¢). Distributed the ques-
tions as follows:
Player b: give x.,wq; receive ag.
Player b: give x, w1 ; receive a;.
Accept if Gy, (T.) accepts on ag and a;.
Proof code check: Sample questions (wg,w;) ~ Gy, (U). Distribute the questions
as follows:
Player b: give (29,21 ), wo; receive ag.
Player b: give (o, 1), w1; receive ay.
Accept if Gy, (U) accepts on ag and a;.

Proof of Theorem 35.

Completeness. This follows the same proof of the completeness part of [39, Theorem 17.10].

Soundness. The constant Ky depends on the parameter x = |Ij|, so we should set & to

be a sufficiently large constant so that 1 — Ky — Koe'/8 is greater than the soundness of V.

Operationally, the views are augmented by x uniformly randomly chosen coordinates. The
purpose of this is to drive the distance of the Hadamard code up from 1/2 to 1 —1/2% which
will be needed for Lemma 75.

Suppose input is not in L. Let (J¢)), M) be a strategy that passes with probability
1 — . This strategy can pass each Answer code check with probability 1 — 10e. Given
values ¢ and z., write 1 — e, . for the probability the code check passes conditioned on

12 ¢, .. < e'/2. When this occurs, we

these values. Then with probability at least 1 — 10e
can apply Proposition 31 to Gy, (T'.) where the distribution of T'. is determined by ¢ and
x.. Proposition 31 implies that there exists Hilbert spaces H,,, |aux,,) € Hy, @ H,, and

projective measurement {G%<} on H" such that

E Do @ 1y, © 1 —1a® Gpy ) [¥) ® lauzs, )|* < O(vEca,)

T.~D,. [w]|r, =a]

¢ aE]F;c

where we use the fact that k is a constant and 14 = 13, g%, ., and similar for 15. When
this does not occur, we can still assume such Hilbert spaces and projective measurements so
that
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E Y (M7 @1y, @1 —140G; ) [¥) ® Jauas, )| < O(1).

T,~D., [w]z, =a]
aEIF’zc

When averaging over ¢ and z.,

E_E > (M @1ae @lp—1a@G ) 1) @ |aua, )| < O().

e,z Te~ Dy, [w|r,=a]
a€Fk

Passing the Proof code check implies that there exists Hilbert spaces Hg, .,, states
lauz sy o) € Hagan @ Hay,z, and projective measurements {H52"} on H ® Hy, o, such that

E B Y MY @My ., @1e = 1a® HIY™, ) 1) @ |auzsg o) ||* < O(*).

w|y=al
x0,T1 UwD(z 1) [
01 aEJFg

The next step is ensuring the G and H measurements act on the same Hilbert space. Let
M’> = [¥) ® (8 |auzy)) @ (®zg 01 [0UT20,2,))

and

Gie = Gie @ (Qapa Mnt,) @ (R 2y Lty o)
HEo™ = H™"' @ (Qp L3y, ) ® (D (20,21) £ (w0,01) ey 2y )s

and, let

NpeTe = MIT @ (®219,) ® (®Rag,e0 s, 0, )
N#omU = MI*Y @ (@41¢,) @ (Dmg,ar Lty ., )

z0,21,T0,T1,U _ pgwo,21,T0,T1,U
Nao,yahyaz = Mao:al»yaz e (®w]l7'lw) ® (®x07x1]17't¢0,w1 )

Note that we omit the permutation of the Hilbert spaces in the definitions above. Then for
all z.

B, DI 01146 ) )

[w|T,=a
a€F%
= B NG @t @ g = La @Gy ) [6) @ lauay, )|
) N ¢z€]F’2C
Thus
EE D INsT ol - 140G, ) [9)I° <OE, (29)
¢ acFk
and
E Y (VeerrY @ lp - 1a@ Hifr ) [§)° < 0. (30)

x0, 21 U~D (.. ,
(zg,21) ang

Note these relations also hold with the two systems flipped.
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Passing the Cross Checks implies that

Nog et TV @ g mo (o) 1a ® Nop™
NI @ g mo ) 1a @ N2
N(f(;)’TO ®1 ~o(e) 14® N(f(;)"TO

No T @1 mpey 1a ® N2

N o0 @ 15 mo(e) 1a @ Nop ¥

~ zo,21,T0,T1,U
~O(e) 14 Nag,a1¢a2 ’

31
32
33
34
35

(
(
(
(
(
(36

= L I = = —

21,70,T1,U
agaraz " @Lp
with respect to |)). These equations combined with Equations (29) and (30) imply the
measurements {Né”(j)”jll’;lJ;O*Tl*U}, {Gz} and {HZo™} satisfy conditions of Lemma 75 with

respect to |1/~)> Let

T0,T1 . (¥TO | AIT1 | FJT0,T1 , AIT1 , (ITO
{A . = Guo 'Gu1 CHy> 'Gm 'Guo}

Uo,u1, W

be a POVM constructed following Lemma 75. Recall that T, and U has s independent

coordinates, so two different codewords agree on T, or U with a probability at most n}§; = 1/2".

Hence we can applying Lemma 75 to this POVM with k=3, § :=&'/* and € := 1/2%, and
get that
1, To,T1,U ~ ;

N‘f(;),gll,a; 1 ® ]lB RO(c1/4841/25/6) ]].A (24 A?;fu‘z;oyulhl¢w‘U=au,al’az] (37)
with respect to M>, where [uo|z,,u1|r,, w|lu = ag,a1,as] means that Ency, (ug)|r, = ao
and etc.. Passing Verify with a probability at least 1 — 10 along with Equation (37)
and Lemma 70 implies that {AZ>%1 1 can be used to pass the verify test with probability
1 —10e — O(/96 + (1/2)"/6). The player would measure 14 ® A on ‘1/)> and return the local
views of the measurement outcomes according to the questions.

Consider the measurements {AZ0-%1 := 37 AZo-%1 4 Let

Uo,u1 Uuo,uU1,

Py— ~ T ,I ~
pi= E > (] 14 ® AT [),
" uo,ua:V(input, o, @1 ,u0,u1 ) =1

which is the probability that measuring with A70°%! gives answers ug and uy accepted by the

verifier V' when the questions are zg and z;. Then

_ 7 x0,T 7
p= zo[[jjwl u;t:li E <,¢}‘ ILA ® Aug,ui,w w>
V(input,zo,;vl,uo,ul):l v
’ , 7 ULLW (3 L1, py—
SETEED DR G I R e
V(input,aco,;l,z'to,ul):1 v
= Pr[(|1/~)> ,\) pass verify check ]
- > S (] 1a @ NI [5) - PV nput, o, 1,2- 215 R) = 1]

uQ,uUL: w
V (input,z0,z1,u0,u1)=0

>1—10e — O/ + (1/2)"/°)
- Z E <12;| 1a® Aig’,ii,w
uQ,uUl: w

V (input,z0,21,u0,u1)=0

>1-10e — O/ +1/2%) — (1 — p)s,

) - eV (input, 20, 21,2 -2 R) = 1]
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where s is the soundness of Vpcpp. In the derivation above, Prp [Vlﬁ‘gg‘ﬁ’w(input, To, T1,2 -
221;R) = 1] is the probability that Vpcpp accepts input. For any xg, 21, ug, u1 not accepted

by V, this probability is below s by [39, Proposition 17.8]. Hence

J 110 - O + (1/2)%/%) —s 1o+ O(e1/96 4 (1/2)%/6)
- 1—s T 1—s

In the end, we use ({éﬁ} , M>) as a strategy for V. Applying Lemma 73 to Equations (29),
(33), and (34), we get that

GIU ® 1 %0(81/4) 1 ® GIO

ulry=a ulo=a

with respect to the distribution of xy and the distribution of T determined by xy on the
state ’¢> Since {Gio} is a projective measurement, we know

E_E Y (PG _ @Gk _ |g)>1-0("".

x0 To~ Dy, ul|ry= ulry=a
On the other hand
2,5, S 010, 00, 19
a

:£;<¢\Gu°®Gu°\w>+E E > (]| G0 Ge

xo TOND >
o uFu' u|ry=u'|T,

= E)Z @GroGe[b)+E_E Y 1ulg =5 (§| G0 © Git

zo To~Dyy ,
uFu

3.
Since for all 2o and u # v’, Ex,~p,, 1[ulr, = v'|1] < 1/2%, we know
EY (|G @G |§) 2 1-1/2° — 0.
u
Again, because { éfLU} is a projective measurement
EY NG 8 1-10Gr) ) < semr + O,
Let S(zg,z1) = {(ao,a1) | V(zo,x1,a0,a1) = 1}. We can calculate

B> (9]GR oG |¢) - (PGl o GL G |4)|

Zo,r
(ap,a1)€S

< [ E > |Ged|d))
oT (ag,a1)€S

E Y @Gel-10G63)(1eG)(Gnel-1aG65)|v)
To,T1

(an,al)GS

<1 EZII(G@S ®1-18Gw)|v)|?
ag

1
<055+,
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and

| E Y (@leGpanan|d) - (¢ Gr e Gran |d)

rom (a0,a1)€S
< LE Y I1echén o)
(ao,(ll)ES

E Y @GEel-1063)1eG)(Gnel-1cG65)|v)
Z0o,T1

(ag,a1)€sS

<1 JEY@E 01 - 1060 )2
ag

<O(

+€l/®).

92r/2

Note that GZ0G21GZ0 = AZo-21. Therefore,

1

1
9r/2

LE D (G e6h —10AR) [9)] < OG5, +/%).
’ (ao,a1)€ES

On the other hand, we have shown

ED (l1eaimin]e) =p21-0( + (1/2)°),
(ao,a1)€S

Hence, the winning probability of the strategy ({GZ},[)) is at least 1 — ;55 — Cye!/% for
some constants C; and Cs. Hence, K1 = ;ﬁ and K5 = (s in the soundness statement. <

Proof of Theorem 36. We first oracularize the MIP* protocol for the Halting problem
from [28]. Denote the oracularized verifier by V. For inputs of size n, the verifier’s running
time for sampling questions and checking answers is O(poly(n)). The sizes of the questions
and answers are also O(poly(n)). The oracularized protocol maintains completeness 1 and a
constant soundness.

Define the language Lg,c as in Definition 33 for V. Then Lg,c € DTIME(ZPOIY(”)) because

the most costly step of the decider of Lgnc is running Decpq1y () Which takes O(2POIY(”)) time.

By Definition 32, the PCPP verifier Vpcpp for Lgac has randomness complexity O(poly(n)),
query complexity O(1), and verification time O(poly(n)).

Next, we apply the answer reduction technique of this section to V' to get verifier VAR,

The sampling time of VA is the sum of the sampling time of V, the sampling time of

Vpcpp, and the sampling time of the additional constantly many independent coordinates,
so it is O(poly(n)). Since the question sizes of V and Vpcpp are both O(poly(n)), the
question size of VA% is also O(poly(n)). The answers expected by VAR

bits, so the answer size is O(1). Lastly, the verification time of VA is determined by the
VAR

are constantly many

verification time of Vpcpp, so it is also O(poly(n)). The completeness and soundness of
follow from Theorem 35. Then the theorem statement follows from the Halting problem is
RE-complete. |
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