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Reinforcement learning for rotation sensing with ultracold atoms in an optical lattice
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In this paper, we investigate a design approach of reinforcement learning to engineer a gyroscope in an optical
lattice for the inertial sensing of rotations. Our methodology is not based on traditional atom interferometry, that
is, splitting, reflecting, and recombining wavefunction components. Instead, the learning agent is assigned the
task of generating lattice shaking sequences that optimize the sensitivity of the gyroscope to rotational signals
in an end-to-end design philosophy. What results is an interference device that is completely distinct from the
familiar Mach-Zehnder-type interferometer. For the same total interrogation time, the end-to-end design leads to
a twentyfold improvement in sensitivity over traditional Bragg interferometry.
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I. INTRODUCTION

Over the past decade, optical Michelson interferometers
have achieved astounding levels of sensitivity leading to en-
tirely new fields of gravitational wave cosmology [1,2]. Their
matter-wave counterparts, in particular atom interferometers
[3,4], have proven to be a principal technology for sensing
[5–16], especially for the inertial measurements of acceler-
ations, rotations, gravimetry [17], and gravity gradiometry
[18]. The sensitivity that can be achieved in atom interferom-
etry is fundamentally limited by the de Broglie wavelength of
the atoms, the area that can be enclosed in space and/or space-
time, and by the number of particles [19]. Improvements have
primarily focused on individual components, such as larger
momentum splitting and longer hold time.

Recently, however, a completely distinct approach to light
pulse atom interferometry has been developed [20,21]. It in-
volves confining atoms to an optical lattice during the entire
interferometry protocol, and builds on early experiments that
created beamsplitters and other components by shaking the
lattice [22]. In part, the purpose of the optical lattice is to
provide robustness of the system in the face of a harsh dynam-
ical environment typical of real-world applications [23,24],
including platform vibrations and temperature fluctuations
and drifts. Since there is no unique protocol for generating
the components of beam-splitters and mirrors in an optical
lattice, it makes sense to delegate this optimization task to
machine learning algorithms [21]. One “teaches” the sys-
tem to carry out an interferometric task by learning how
to correctly modulate the phase of the lattice. Experiments
using this method can now demonstrate full interferometer
sequences that cascade the machine-designed components to-
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gether [25–27]. In these experiments it has been shown that
the learning can be performed in simulation first and only
later applied to the experiment, as demonstrated by the high-
fidelity agreement of the measured data with the anticipated
sensor performance.

While these works have established the key principles, the
learning that was implemented was constrained by a premed-
itated viewpoint as to how interferometry is to take place.
Traditionally, nearly every kind of interferometry, optical or
matter wave, results from a sequence of wavefront split-
ting, reflection, and recombination, with wave propagation
in between, known as the Mach-Zehnder configuration [28].
However, if the learning agent is freed from being restricted
by conventional wisdom, it could potentially discover solu-
tions that surpass what humans have explored to date [29].
This different learning goal may provide a pathway to the
discovery of a revolutionary kind of atomic gyroscope that
is purely optimized for specified design constraints, such as
a combination of sensitivity, dynamic range, and tolerance to
noise and experimental drifts.

A type of machine learning that has the potential to real-
ize this goal is reinforcement learning [30]. Reinforcement
learning is especially effective when the agent is trained
in an end-to-end manner, meaning an uninterrupted shak-
ing sequence from start to finish that is not decomposable
into components such as beam splitters and mirrors. This
is because reinforcement learning allows for the maximiza-
tion of long-term rewards of a control protocol in situations
where the optimal solution is not transparent at each individ-
ual step. Reinforcement learning has emerged as a powerful
tool in quantum research and has already been applied to
a variety of quantum problems, such as the generation of
highly-entangled states and the development of quantum er-
ror correction protocols, thereby bringing new insights to the
field [31–43].

In this paper, we present results from the application of
reinforcement learning to quantum metrology, specifically to
train a two-dimensional optical lattice to sense rotation with
high precision and thereby embody the design objectives of a
gyroscope.
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FIG. 1. A two-dimensional optical lattice potential in a rotating
frame, where atoms are trapped and their dynamics can be con-
trolled by an external agent (the hand) shaking the lattice. The blue
arrows indicate possible trajectories associated with splitting of the
matterwaves.

II. PHYSICAL MODEL

The system we consider is one where the atoms are con-
fined in a two-dimensional optical lattice, as shown in Fig. 1.
The lattice in each dimension can be “shaken” by varying the
phases of the corresponding pairs of interfering laser beams.
The entire system is described mathematically in a rotating
noninertial frame by the Hamiltonian

Ĥ = p̂2

2m
− � · L̂ −

∑
α∈{x,y}

Vα

2
cos(2kα̂ + φα ), (1)

where m is the mass of a single atom with coordinate r̂ =
{x̂, ŷ} and momentum p̂, k is the laser wavenumber, φα’s
are the phase differences between the two counterpropagating
lasers in the x or y directions, and Vα’s are the correspond-
ing lattice potential strengths. The term � · L̂ describes the
rotational kinetic energy of the system, with L̂ = r̂ × p̂ the

angular momentum, and � the angular velocity. It is the un-
known magnitude, �, that is the metrological parameter that
we wish to measure with high accuracy. For simplicity, we
limit the discussion here to the case of dilute atom clouds,
meaning atom-atom interactions do not adversely affect the
detection of the rotation signal.

Before investigating end-to-end solutions, we first derive
a conventional two-path Sagnac matter-wave interferometer,
motivated by the fiberoptic gyroscope [44], but implemented
with atoms [45–47]. This can be constructed in the lattice
using the previously developed beam-splitting and reflect-
ing protocols that were based on components optimized
by reinforcement learning [21]. The splitting protocol was
demonstrated to transfer the ground state to an approximate
superposition of the |±4h̄k〉 states, and the reflecting protocol
to map any linear combination of the |±4h̄k〉 states to the
corresponding combination of the |∓4h̄k〉 states. In order to
build a gyroscope from these components, as illustrated in
Fig. 2(a), the sequence of operations is the following:

(i) The wavefunction is prepared in the ground state of the
2D lattice.

(ii) In the x direction, the 1D beam-splitting protocol is ap-
plied, allowing free propagation for a duration, denoted as T ,
and then the reflecting protocol is applied. Following this, free
propagation occurs for a duration 2T , and then the reflecting
protocol is applied again, followed by free propagation for a
duration T , and finally the recombining protocol.

(iii) In the y direction, the lattice operates as a con-
veyor belt and is smoothly accelerated to the velocity 4h̄k/m
according to the adiabaticity criterion, as described in the Sup-
plemental Material (SM) [48], and then translated at constant
velocity. During the halfway point of the sequence, when the
two paths in the x -directions cross, the velocity of the y
-lattice is decelerated through zero to −4h̄k/m, so that the
lattice can be translated backward at the constant velocity. The
last step is to adiabatically accelerate the y lattice back to zero
velocity for the final recombination.

FIG. 2. (a) The clockwise trajectory (blue) and the counter-clockwise trajectory (red) taken by the wave functions in the two-path shaken
lattice gyroscope. The vertical back line is where the wave functions were initially split and are eventually recombined. (b) Bayesian
reconstruction of the rotation rate from the interference patterns generated by the two-path gyroscope. The main plot shows the probability
distribution of the estimated rotation rate for numbers of measurements ranging from 1 to 500 and lattice depths Vx = Vy = 10h̄ωr , where
ωr = h̄k2/(2m). The red curve indicates the true value of the rotation rate, which was 2 × 10−4 ωr . At 500 measurements, the peak of the
distribution coincides with the true value, meaning that the estimation is unbiased. The inset shows the momentum distribution that results at
the output for a rotation rate of 2 × 10−4 ωr .
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Such a device operates on the principle of the Sagnac
effect, which describes the phase difference, �φ, that
accumulates between two waves that propagate in opposite
directions in a loop when in a noninertial rotating frame. In
general, the phase difference is proportional to both the angu-
lar velocity and to the area that the two paths enclose, A. In
the case of matterwaves, �φ = 4m� · A/h̄ [49,50]. If higher
sensitivity is desired, one could effectively increase A by com-
pleting many cycles before applying the last recombination
step. In practice, one must balance multiple cycles against any
reduced fringe visibility arising from imperfections.

III. END-TO-END DESIGN

With respect to this reference system, we now consider the
possibility for a completely end-to-end design that is not based
on the decomposition into components. We implement the
machine learning for this overarching design goal by employ-
ing the double-deep-Q-network approach [51], an algorithm
that is particularly effective in situations where determinis-
tic outcomes are expected and sample efficiency is critical
(details described in Ref. [21]). This reinforcement learning
algorithm consists of an agent that selects actions based on
the observed state of the environment, and an environment
that carries out the the action and generates a consequential
reward based on the resulting quality of the state. The agent
does not need to be exposed to the full quantum state, but only
to relevant features of that state, such as the population in the
discrete momentum basis in x and the average position and
momentum in y.

Motivated in part by potential experimental implementa-
tion, we choose the actions to be selected from a finite set of
discrete options for the time derivative of the phase, dφ/dt .
This represents a frequency difference between interfering
laser beam pairs. The wave packet evolution that this gener-
ates is calculated by numerically solving the time-dependent
Schrödinger equation, using a separation ansatz for the x and y
dimensions (see the SM). In order to compute the reward, we
use the classical Fisher information [52], which quantitatively
measures the sensitivity. To do this, we replicate the envi-
ronment as three copies of the quantum system with slightly
different rotation rates, � = [�0 − d�, �0, �0 + d�], for
small d� and with each evolving according to Eq. (1). This
construction allows us to compute the derivative with respect
to � by numerical symmetric finite differencing. The classical
Fisher information is given by

I (�) =
∑

p

1

Pr(p|�)

[
∂Pr(p|�)

∂�

]2

, (2)

where Pr(p|�) is the probability for measuring a momentum
p at the gyroscope output for the given �. Reinforcement
learning aims to generate steps that maximize the long-term
reward, that is, to find a sequence of dφ/dt steps that opti-
mizes the Fisher information evaluated at the terminal time.
The potential sensitivity is constrained by a theoretical bound
(Cramér-Rao bound) for the standard deviation of the mea-
surement,

σ� � 1/
√

NI (�), (3)

FIG. 3. Evolution of the phase function and the spatial wavefunc-
tion. The shaking protocol was generated from the reinforcement
learning agent with ∂φ/∂t as the actions in an end-to-end design.
There are 125 discrete steps in this protocol. The wavefunction was
initialized in the ground state of the lattice convolved with a momen-
tum width σp = 0.1 h̄k, and then evolved according to the shaking
protocol given.

where N is the number of independent measurements (atoms).
In this work, we have optimized for a specific choice of
the angular frequency, �0, but straightforward extensions are
possible, including designing for net performance over a finite
domain.

IV. RESULTS

Within the context of our learning framework, we are able
to obtain lattice shaking protocols that outperform the con-
ventional two-path gyroscope. The solution varies for every
instantiation due to the randomized initialization of the agent.
The illustration in Fig. 3 shows one of the realized machine-
learned protocols that gives high sensitivity. The pattern is
reminiscent of speckle patterns that emerge from a multimode
fiber (fiber specklegram), which are known to be sensitive
interference detectors of inertial phase. However, in the case
of a multimode fiber system, the patterns are not robust and
are scrambled by temperature changes or strain on the fiber.
The situation is quite different here, since the adverse noise
and imperfections that may enter are different in origin and
primarily common mode. Despite the nontrivial and irregular
pattern, this device will measure rotation signals with high
accuracy, something that we now demonstrate by simulating
an example experimental measurement.

The momentum distributions that are produced by the mul-
tipath interferometer under conditions of different values of
the rotation rate are shown in Fig. 4. The population of each
momentum component is indicated by false color. Momentum
distributions are typically directly observable in experiment
by expanding the cloud under time of flight, and integrating
regions of the absorption image to find the relative proportions
for each momentum component. The more detailed structure
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FIG. 4. Population distribution in the momentum basis and
the resulting classical Fisher information for the machine-learned
shaken-lattice gyroscope as a function of the rotation rate �. The
value of the Fisher information is normalized by the Fisher infor-
mation for the two-path interferometer, which has splitting of order
�p = 8h̄k, and thus sensitivity about four times better than a con-
ventional Bragg interferometer.

there is in the observed momentum distribution as the rotation
rate is varied, the more sensitive is the interferometer. Note
that each vertical slice is essentially unique, and therefore
the momentum distribution is a fingerprint that allows one to
infer the rotation rate without aliasing. The Fisher information
calculated from the distribution is also shown in Fig. 4. The
value on the y axis is the ratio between the Fisher information
from this multimode interferometer and the one shown earlier
based on the two-path arrangement. We optimize the Fisher
information around �0 = 0, and one can see that the Fisher
information is maximum at � = 0, as anticipated, with large
dynamic range being sacrificed for high sensitivity.

The result of our design was a machine-learned gyro-
scope that achieved a Fisher information of around 25 times
higher than the previously investigated two-path gyroscope,
meaning that the sensitivity is improved by the square root
of this, or a factor of five. In other words, the interferom-
eter is effectively as sensitive as a conventional one that is
five times larger. This gain can be understood from several
aspects, including population transfer into the higher momen-
tum states (the maximum observed splitting is of order 18h̄k),
and a larger spatial footprint, as also seen in Ref. [29]. If
we make a comparison to the gyroscope with the same total
interrogation time as constructed from conventional Bragg
interferometry, the improvement is 4 × 5 = 20-fold. The extra
factor of four introduced here is primarily due to large angle
splitting of the two-path gyroscope with respect to the Bragg
one, i.e., 8h̄k instead of 2h̄k, as was shown in Ref. [21].
The potential gain of 20 is remarkable and reveals the scope

RL
CR bound
Two-path

FIG. 5. (a) An example Bayesian reconstruction of the rotation
rate, showing the probability distribution for sampling 1 atom to 100
atoms. The true rotation value is indicated by the red line, and the
inset shows the shaken lattice interferometer output distribution for
this value. (b) The standard deviation of the rotation rate as a function
of the atom number (RL, red curve). Note that the behavior of the
curve is subject to large sampling noise at small N , and only begins
to agree with its asymptotic limit at around N = 100. The result
at large atom number, when the central limit theorem applies and
the sample average converges to the true value, is consistent with
the Cramér-Rao (CR, dotted line) bound. The performance greatly
surpasses the two-path interferometer shown earlier (two-path,
blue curve).

for significant improvements upon current state-of-the-art
devices.

To extract the rotational signal from the distribution shown
in Fig. 4, we apply Bayesian reconstruction [53]. This means
that we iteratively update the prior distribution for � from
each atom measurement. The reconstruction of the rotational
signal is shown in Fig. 5(a), and note that the peak coincides
with the true rotation rate as indicated by the red line, thereby
verifying that the estimation for � is unbiased. In Fig. 5(b),
we plot the standard deviation of �, and see that the sen-
sitivity scales inversely with the square root of the number
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of atoms for up to 104 atoms, as expected from independent
measurements. We emphasize that for large atom numbers, in-
teractions between atoms may become increasingly important
and are not considered here.

V. DISCUSSION

In conclusion, we have shown how to build a gyroscope
in an optical lattice that uses demonstrated experimental
methodology [25], but extended here to end-to-end design.
From a broader perspective, these results show the exceptional
potential of the general learning approach for quantum design,
and opens up the application of the same principal machin-
ery to a variety of quantum sensing problems with more
complex landscapes, such as multiparameter estimation and

entanglement-enhanced metrology [54,55]. Furthermore, the
implications of our results may go beyond this framework,
and the same ideas of reinforcement learning may be applied
to a variety of quantum and classical systems, such as those
where the design of complex quantum circuits for algorithmic
tasks is needed [56].
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